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1 Introduction

We consider both the linear second-order cone program (linear SOCP)

min cT x s.t. Ax = b, x ∈ K, (1)

and the nonlinear second-order cone program (nonlinear SOCP)

min f(x) s.t. Ax = b, x ∈ K, (2)

where f : Rn → R is a twice continuously differentiable function, A ∈ Rm×n is a given
matrix, b ∈ Rm and c ∈ Rn are given vectors, and

K = K1 × · · · × Kr

is a Cartesian product of second-order cones Ki ⊆ Rni , n1 + · · · + nr = n. Recall that the
second-order cone (or ice-cream cone or Lorentz cone) of dimension ni is defined by

Ki :=
{
xi = (xi0, x̄i) ∈ R× Rni−1

∣∣ xi0 ≥ ‖x̄i‖
}
,

where ‖ · ‖ denotes the Euclidean norm. Observe the special notation that is used in the
definition of Ki and that will be applied throughout this manuscript: For a given vector
z ∈ R` for some ` ≥ 1, we write z = (z0, z̄), where z0 is the first component of the vector
z, and z̄ consists of the remaining `− 1 components of z.

The linear SOCP has been investigated in many previous works, and we refer the
interested reader to the two survey papers [18, 1] and the books [2, 4] for many important
applications and theoretical properties. Software for the solution of linear SOCPs is also
available, see, for example, [17, 28, 24, 27]. In many cases, the linear SOCP may be viewed
as a special case of a (linear) semidefinite program (see [1] for a suitable reformulation).
However, we feel that the SOCP should be treated directly since the reformulation of a
second-order cone constraint as a semidefinite constraint increases the dimension of the
problem significantly and, therefore, decreases the efficiency of any solver. In fact, many
solvers for semidefinite programs (see, for example, the list given on Helmberg’s homepage
[14]) are able to deal with second-order cone constraints separately.

The treatment of the nonlinear SOCP is much more recent, and, in the moment, the
number of publications is rather limited, see [3, 5, 6, 7, 8, 12, 13, 16, 25, 26, 29]. These
papers deal with different topics; some of them investigate different kinds of solution meth-
ods (interior-point methods, smoothing methods, SQP-type methods, or methods based
on unconstrained optimization), while some of them consider certain theoretical properties
or suitable reformulations of the SOCP.

The method of choice for the solution of (at least) the linear SOCP is currently an
interior-point method. However, some recent preliminary tests indicate that the class of
smoothing or semismooth methods is sometimes superior to the class of interior-point
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methods, especially for nonlinear problems, see [8, 13, 26]. On the other hand, the theo-
retical properties of interior-point methods are much better understood than those of the
smoothing and semismooth methods.

The aim of this paper is to provide some results which help to understand the theoretical
properties of semismooth methods being applied to both linear and nonlinear SOCPs. The
investigation here is of local nature, and we provide sufficient conditions for those methods
to be locally quadratically convergent. An interesting and important feature of those
sufficient conditions is that they do not require strict complementarity of the solution.
This is an advantage compared to interior-point methods where singular Jacobians occur
if strict complementarity is not satisfied. Similar results were recently obtained in [15]
(see also [11]) for linear semidefinite programs. In principle, these results can also be
applied to linear SOCPs, but this requires a reformulation of the SOCP as a semidefinite
program which, as mentioned above, is not necessarily the best approach, and therefore
motivates a direct treatment of SOCPs. In fact, to the best of our knowledge, the algorithm
investigated in this paper is currently the only one which deals with SOCPs directly and
has the property of local quadratic convergence in the absence of strict complementarity.

The paper is organized as follows: Section 2 states a number of preliminary results
for the projection mapping onto a second-order cone, which will later be used in order to
reformulate the optimality conditions of the SOCP as a system of equations. Section 3
then investigates conditions that ensure the nonsingularity of the generalized Jacobian of
this system, so that the nonsmooth Newton method is locally quadratically convergent.
Some preliminary numerical examples illustrating the local convergence properties of the
method are given in Section 4. We close with some final remarks in Section 5.

Most of our notation is standard. For a differentiable mapping G : Rn → Rm, we denote
by G′(z) ∈ Rm×n the Jacobian of G at z. If G is locally Lipschitz continuous, the set

∂BG(z) :=
{
H ∈ Rm×n

∣∣∃{zk} ⊆ DG : zk → z, G′(zk) → H
}

is nonempty and called the B-subdifferential of G at z, where DG ⊆ Rn denotes the
set of points at which G is differentiable. The convex hull ∂G(z) := conv∂BG(z) is the
generalized Jacobian of Clarke [9]. We assume that the reader is familiar with the concepts
of (strongly) semismooth functions, and refer to [23, 22, 20, 10] for details. The identity
matrix of order n is denoted by In.

2 Projection Mapping onto Second-Order Cone

Throughout this section, let K be the single second-order cone

K :=
{
z = (z0, z̄) ∈ R× Rn−1

∣∣ z0 ≥ ‖z̄‖}.

In the subsequent sections, K will be the Cartesian product of second-order cones. The
results of this section will later be applied componentwise to each of the second-order cones
Ki in the Cartesian product.
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Recall that the second-order cone K is self-dual, i.e. K∗ = K, where K∗ := {d ∈
R × Rn−1 | zT d ≥ 0 ∀z ∈ K}

denotes the dual cone of K, cf. [1, Lemma 1]. Hence the
following result holds, see, e.g., [12, Proposition 4.1].

Lemma 2.1 The following equivalence holds:

x ∈ K, y ∈ K, xT y = 0 ⇐⇒ x− PK(x− y) = 0,

where PK(z) denotes the (Euclidean) projection of a vector z on K.

An explicit representation of the projection PK(z) is given in the following result, see [12,
Proposition 3.3].

Lemma 2.2 For any given z = (z0, z̄) ∈ R× Rn−1, we have

PK(z) = max{0, η1}u(1) + max{0, η2}u(2),

where η1, η2 are the spectral values and u(1), u(2) are the spectral vectors of z, respectively,
given by

η1 := z0 − ‖z̄‖, η2 := z0 + ‖z̄‖,

u(1) :=





1

2

(
1

− z̄
‖z̄‖

)
if z̄ 6= 0,

1

2

(
1
−w̄

)
if z̄ = 0,

u(2) :=





1

2

(
1
z̄
‖z̄‖

)
if z̄ 6= 0,

1

2

(
1
w̄

)
if z̄ = 0,

where w̄ is any vector in Rn−1 with ‖w̄‖ = 1.

It is well-known that the projection mapping onto an arbitrary closed convex set is non-
expansive and hence is Lipschitz continuous. When the set is the second-order cone K, a
stronger smoothness property can be shown, see [5, Proposition 4.3], [7, Proposition 7], or
[13, Proposition 4.5].

Lemma 2.3 The projection mapping PK is strongly semismooth.

We next characterize the points at which the projection mapping PK is differentiable.

Lemma 2.4 The projection mapping PK is differentiable at a point z = (z0, z̄) ∈ R×Rn−1

if and only if z0 6= ±‖z̄‖ holds. In fact, the projection mapping is continuously differentiable
at every z such that z0 6= ±‖z̄‖.
Proof. The statement can be derived directly from the representation of PK(z) given in
Lemma 2.2. Alternatively, it can be derived as a special case of more general results stated
in [7], see, in particular, Propositions 4 and 5 in that reference. ¤
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We next calculate the Jacobian of the projection mapping PK at a point where it is differ-
entiable. The proof is not difficult and therefore omitted.

Lemma 2.5 The Jacobian of PK at a point z = (z0, z̄) ∈ R × Rn−1 with z0 6= ±‖z̄‖ is
given by

P ′
K(z) =





0, if z0 < −‖z̄‖,
In, if z0 > +‖z̄‖,
1

2

(
1 w̄T

w̄ H

)
, if − ‖z̄‖ < z0 < +‖z̄‖,

where

w̄ :=
z̄

‖z̄‖ , H :=
(
1 +

z0

‖z̄‖
)
In−1 − z0

‖z̄‖w̄w̄T .

(Note that the denominator is automatically nonzero in this case.)

Based on the above results, we give in the next lemma an expression for the elements
of the B-subdifferential ∂BPK(z) at an arbitrary point z. A similar representation of the
elements of the Clarke generalized Jacobian ∂PK(z) is given in [13, Proposition 4.8] (see
also [19, Lemma 14] and [7, Lemma 4]), and hence we omit the proof of the lemma. Note
that we deal with the smaller set ∂BPK(z) here, since this will simplify our subsequent
analysis to give sufficient conditions for the nonsingularity of all elements in ∂BPK(z). In
fact, the nonsingularity of all elements of the B-subdifferential usually holds under weaker
assumptions than the nonsingularity of all elements of the corresponding Clarke generalized
Jacobian.

Lemma 2.6 Given a general point z = (z0, z̄) ∈ R × Rn−1, each element V ∈ ∂BPK(z)
has the following representation:

(a) If z0 6= ±‖z̄‖, then PK is continuously differentiable at z and V = P ′
K(z) with the

Jacobian P ′
K(z) given in Lemma 2.5.

(b) If z̄ 6= 0 and z0 = +‖z̄‖, then

V ∈
{

In,
1

2

(
1 w̄T

w̄ H

)}
,

where w̄ := z̄
‖z̄‖ and H := 2In−1 − w̄w̄T .

(c) If z̄ 6= 0 and z0 = −‖z̄‖, then

V ∈
{

0,
1

2

(
1 w̄T

w̄ H

)}
,

where w̄ := z̄
‖z̄‖ and H := w̄w̄T .
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(d) If z̄ = 0 and z0 = 0, then either V = 0 or V = In or V belongs to the set

{
1

2

(
1 w̄T

w̄ H

) ∣∣∣H = (1 + ρ)In−1 − ρw̄w̄T for some |ρ| ≤ 1 and ‖w̄‖ = 1

}
.

We can summarize Lemma 2.6 as follows: Any element V ∈ ∂BPK(z) is equal to

V = 0 or V = In or V =
1

2

(
1 w̄T

w̄ H

)
(3)

for some vector w̄ ∈ Rn−1 with ‖w̄‖ = 1 and some matrix H ∈ R(n−1)×(n−1) of the form
H = (1 + ρ)In−1 − ρw̄w̄T with some scalar ρ ∈ R satisfying |ρ| ≤ 1. Specifically, in cases
(a)–(c), we have w̄ = z̄/‖z̄‖, whereas in case (d), w̄ can be any vector of length one.
Moreover, we have ρ = z0/‖z̄‖ in case (a), ρ = 1 in case (b), ρ = −1 in case (c), whereas
there is no further specification of ρ in case (d) (here the two simple cases V = 0 and
V = In are always excluded).

Remark 2.7 The special cases of n = 1 and n = 2 are not excluded in the above and the
subsequent arguments. In fact, when n = 1, any element V ∈ ∂BPK(z) is either of the
1× 1 matrices V = (0) and V = (1). When n = 2, it is one of the following 2× 2 matrices:

V = 0 or V = I2 or V =
1

2

(
1 1
1 1

)
or V =

1

2

(
1 −1
−1 1

)
.

The eigenvalues and eigenvectors of any matrix V ∈ ∂BPK(z) can be given explicitly,
as shown in the following result.

Lemma 2.8 Let z = (z0, z̄) ∈ R × Rn−1 and V ∈ ∂BPK(z). Assume that V 6∈ {0, In} so
that V has the third representation in (3) with H = (1 + ρ)In−1 − ρw̄w̄T for some scalar
ρ ∈ [−1, +1] and some vector w̄ ∈ Rn−1 satisfying ‖w̄‖ = 1. Then V has the two single
eigenvalues η = 0 and η = 1 as well as the eigenvalue η = 1

2
(1 + ρ) with multiplicity

n − 2 (unless ρ = ±1, where the multiplicities change in an obvious way). In particular,
when P ′

K(z) exists, i.e., in case (a) of Lemma 2.6, the multiple eigenvalue is given by
η = 1

2
(1 + z0

‖z̄‖). Moreover, the eigenvectors of V are given by

( −1
w̄

)
,

(
1
w̄

)
, and

(
0
v̄j

)
, j = 1, . . . , n− 2, (4)

where v̄1, . . . , v̄n−2 are arbitrary vectors that span the linear subspace {v̄ ∈ Rn−1 | v̄T w̄ = 0}.
Proof. By assumption, we have

V =
1

2

(
1 w̄T

w̄ H

)
with H = (1 + ρ)In−1 − ρw̄w̄T
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for some ρ ∈ [−1, +1] and some vector w̄ satisfying ‖w̄‖ = 1. Now take an arbitrary vector
v̄ ∈ Rn−1 orthogonal to w̄, and let u = (0, v̄T )T . Then an elementary calculation shows
that V u = ηu holds for η = 1

2
(1 + ρ). Hence this η is an eigenvalue of V with multiplicity

n− 2 since we can choose n− 2 linearly independent vectors v̄ ∈ Rn−1 such that v̄T w̄ = 0.
On the other hand, if η = 0, it is easy to see that V u = ηu holds with u = (−1, w̄T )T ,
whereas for η = 1 we have V u = ηu by taking u = (1, w̄T )T . The multiple eigenvalue of
P ′
K(z) (in the differentiable case) can be checked directly from the formula given in Lemma

2.5. This completes the proof. ¤

Note that Lemma 2.8 particularly implies η ∈ [0, 1] for all eigenvalues η of V . This
observation can alternatively be derived from the fact that PK is a projection mapping,
without referring to the explicit representation of V as given in Lemma 2.6.

We close this section by pointing out an interesting relation between the matrix V ∈
∂BPK(z) and the so-called arrow matrix

Arw(z) :=

(
z0 z̄T

z̄ z0In−1

)
∈ Rn×n

associated with z = (z0, z̄) ∈ R×Rn−1, which frequently occurs in the context of interior-
point methods and in the analysis of SOCPs, see, e.g., [1]. To this end, consider the
case where PK is differentiable at z, excluding the two trivial cases where P ′

K(z) = 0 or
P ′
K(z) = In, cf. Lemma 2.5. Then by Lemma 2.8, the eigenvalues of the matrix V = P ′

K(z)
are given by η = 0, η = 1, and η = 1

2
(1+ z0

‖z̄‖) with multiplicity n−2, and the corresponding
eigenvectors are given by

( −1
z̄
‖z̄‖

)
,

(
1
z̄
‖z̄‖

)
, and

(
0
v̄j

)
, j = 1, . . . , n− 2, (5)

where v̄1, . . . , v̄n−2 comprise an orthogonal basis of the linear subspace {v̄ ∈ Rn−1 | v̄T z̄ =
0}. However, an elementary calculation shows that these are also the eigenvectors of the
arrow matrix Arw(z), with corresponding single eigenvalues η̂1 = z0 − ‖z̄‖, η̂2 = z0 + ‖z̄‖
and the multiple eigenvalues η̂i = z0, i = 3, . . . , n. Therefore, although the eigenvalues of
V = P ′

K(z) and Arw(z) are different, both matrices have the same set of eigenvectors.

3 Second-Order Cone Programs

In this section, we consider the SOCP

min f(x) s.t. Ax = b, x ∈ K,

where f : Rn → R is a twice continuously differentiable function, A ∈ Rm×n is a given
matrix, b ∈ Rm is a given vector, and K = K1×· · ·×Kr is the Cartesian product of second-
order cones Ki ⊆ Rni with n1+ · · ·+nr = n. The vector x and the matrix A are partitioned
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as x = (x1, . . . , xr) and A = (A1, . . . , Ar), respectively, where xi = (xi0, x̄i) ∈ R × Rni−1

and Ai ∈ Rm×ni , i = 1, . . . , r. Thus the linear constraints Ax = b can alternatively be
written as

∑r
i=1 Aixi = b. Although the objective function f is supposed to be nonlinear

in general, we will particularly discuss the linear case as well.

Under certain conditions like convexity of f and a Slater-type constraint qualification
[4], solving the SOCP is equivalent to solving the corresponding KKT conditions, which
can be written as follows:

∇f(x)− AT µ− λ = 0,

Ax = b,

xi ∈ Ki, λi ∈ Ki, xT
i λi = 0, i = 1, . . . , r.

Using Lemma 2.1, it follows that these KKT conditions are equivalent to the system of
equations M(z) = 0, where M : Rn × Rm × Rn → Rn × Rm × Rn is defined by

M(z) := M(x, µ, λ) :=




∇f(x)− AT µ− λ
Ax− b

x1 − PK1(x1 − λ1)
...

xr − PKr(xr − λr)




. (6)

Then we can apply the nonsmooth Newton method [22, 23, 20]

zk+1 := zk −W−1
k M(zk), Wk ∈ ∂BM(zk), k = 0, 1, 2, . . . , (7)

to the system of equations M(z) = 0 in order to solve the SOCP or, at least, the cor-
responding KKT conditions. Our aim is to show fast local convergence of this iterative
method. In view of the results in [23, 22], we have to guarantee that, on the one hand, the
mapping M , though not differentiable everywhere, is still sufficiently ‘smooth’, and, on the
other hand, it satisfies a local nonsingularity condition under suitable assumptions.

The required smoothness property of M is summarized in the following result.

Theorem 3.1 The mapping M defined by (6) is semismooth. Moreover, if the Hessian
∇2f is locally Lipschitz continuous, then the mapping M is strongly semismooth.

Proof. Note that a continuously differentiable mapping is semismooth. Moreover, if the
Jacobian of a differentiable mapping is locally Lipschitz continuous, then this mapping is
strongly semismooth. Now Lemma 2.3 and the fact that a given mapping is (strongly)
semismooth if and only if all component functions are (strongly) semismooth yield the
desired result. ¤

Our next step is to provide suitable conditions which guarantee the nonsingularity of
all elements of the B-subdifferential of M at a KKT point. This requires some more work,
and we begin with the following general result.
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Proposition 3.2 Let H ∈ Rn×n be symmetric, and A ∈ Rm×n. Let V a, V b ∈ Rn×n be two
symmetric positive semidefinite matrices such that their sum V a + V b is positive definite
and V a and V b have a common basis of eigenvectors, so that there exist an orthogonal
matrix Q ∈ Rn×n and diagonal matrices Da = diag

(
a1, . . . , an

)
and Db = diag

(
b1, . . . , bn

)
satisfying V a = QDaQT , V b = QDbQT as well as aj ≥ 0, bj ≥ 0 and aj + bj > 0 for all
j = 1, . . . , n. Let the index set {1, . . . , n} be partitioned as {1, . . . , n} = α ∪ β ∪ γ, where

α := {j | aj > 0, bj = 0},
β := {j | aj > 0, bj > 0},
γ := {j | aj = 0, bj > 0},

and let Qα, Qβ, and Qγ denote the submatrices of Q consisting of the columns from Q
corresponding to the index sets α, β, and γ, respectively. Let us also partition the diagonal
matrices Da and Db into Da = diag

(
Da

α, Da
β, Da

γ

)
and Db = diag

(
Db

α, Db
β, Db

γ

)
, respectively,

and let
Dβ := (Db

β)−1Da
β. (8)

Assume that the following two conditions hold:

(a) The matrix (AQβ, AQγ) ∈ Rm×(|β|+|γ|) has full row rank.

(b) The matrix (
QT

β HQβ + Dβ QT
β HQγ

QT
γ HQβ QT

γ HQγ

)
∈ R(|β|+|γ|)×(|β|+|γ|)

is positive definite on the subspace V :=
{(

dβ

dγ

)
∈ R|β|+|γ|

∣∣ (AQβ, AQγ)

(
dβ

dγ

)
= 0

}
.

Then the matrix

W :=




H −AT −In

A 0 0
V a 0 V b




is nonsingular. In particular, when H = 0, the matrix W is nonsingular if the following
condition holds together with (a):

(c) The matrix AQγ has full column rank.

Proof. An elementary calculation shows that the matrix W is nonsingular if and only if
the matrix

W ′ :=




QT HQ −(AQ)T −In

AQ 0 0
Da 0 Db




is nonsingular. Taking into account the definition of the three index sets α, β, γ, we obtain

Da = diag
(
Da

α, Da
β, Da

γ

)
= diag

(
Da

α, Da
β, 0

)
,

9



Db = diag
(
Db

α, Db
β, Db

γ

)
= diag

(
0, Db

β, Db
γ

)
.

Using this structure and premultiplying the matrix W ′ by



In

Im

D


 with D := diag

(
(Da

α)−1, (Da
β)−1, I|γ|

)
,

we see that the matrix W ′ is nonsingular if and only if

W ′′ :=




QT HQ −(AQ)T −In

AQ 0 0

D̃a 0 D̃b




is nonsingular, where D̃a and D̃b are diagonal matrices given by

D̃a := diag
(
I|α|, I|β|, 0

)
and D̃b := diag

(
0, D−1

β , Db
γ

)
.

Note that the matrix Dβ defined by (8) is a positive definite diagonal matrix. It then
follows that the matrix W ′′ is a block upper triangular matrix with its lower right block
Db

γ being a nonsingular diagonal matrix. Therefore the matrix W ′′ is nonsingular if and
only if its upper left block

W̃ :=




QT HQ −(AQ)T −Iα −Iβ

AQ 0 0 0
IT
α 0 0 0

IT
β 0 0 D−1

β


 (9)

is nonsingular, where Iα, Iβ denote the matrices in Rn×|α|,Rn×|β| consisting of all columns
of the identity matrix corresponding to the index sets i ∈ α, i ∈ β, respectively. (Note the
difference between Iα, Iβ and the square matrices I|α|, I|β|.) In other words, the matrix W

is nonsingular if and only if W̃ is nonsingular.

In order to show the nonsingularity of W̃ , let W̃y = 0 for a suitably partitioned vector
y = (d, p, qα, qβ)T ∈ Rn × Rm × R|α| × R|β|. We will see that y = 0 under assumptions (a)
and (b). Using (9), we may write W̃y = 0 as

QT HQd−QT AT p−



qα

qβ

0


 = 0, (10)

AQd = 0, (11)

dα = 0, (12)

dβ + D−1
β qβ = 0. (13)

Premultiplying (10) by dT and taking into account (11) and (12), we obtain

(
dβ

dγ

)T

(Qβ, Qγ)
T H(Qβ, Qγ)

(
dβ

dγ

)
− dT

β qβ = 0,
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which along with (13) yields

(
dβ

dγ

)T (
QT

β HQβ + Dβ QT
β HQγ

QT
γ HQβ QT

γ HQγ

)(
dβ

dγ

)
= 0.

On the other hand, from (11) and (12), we have

(AQβ, AQγ)

(
dβ

dγ

)
= 0. (14)

Then, by assumption (b), we obtain dβ = 0 and dγ = 0, which together with (13) implies
qβ = 0. Now it follows from (10) that

−QT
αAT p− qα = 0 (15)

and

−
(

QT
β AT

QT
γ AT

)
p = 0. (16)

By assumption (a), (16) yields p = 0, which in turn implies qα = 0 from (15). Consequently,
we have y = 0. This shows W̃ , and hence W , is nonsingular.

When H = 0, we obtain from (10)–(13)

dT
β Dβdβ = −dT

β qβ = 0.

Since Dβ is positive definite, this implies dβ = 0. Then by assumption (c), it follows from
(14) that dγ = 0. The rest of the proof goes in the same manner as above. ¤

The two central assumptions (a) and (b) of Proposition 3.2 can also be formulated in a
different way: Using some elementary calculations, it is not difficult to see that assumption
(a) is equivalent to

(a’) The matrix (QT AT , Iα) ∈ Rn×(m+|α|) has full column rank;

whereas assumption (b) is equivalent to

(b’) H + QβDβQT
β is positive definite on the subspace S :=

{
v ∈ Rn

∣∣ Av = 0, QT
αv = 0

}
.

At this point, let us examine how stringent the conditions in Proposition 3.2 are. In
view of the particular structure of the matrix W̃ given in (9), we notice from condition (a’)
that (a) is also a necessary condition for the nonsingularity of the matrix W in Proposition
3.2. Furthermore, note that condition (b) obviously implies that the following implication
holds: (

QT
β HQβ + Dβ QT

β HQγ

QT
γ HQβ QT

γ HQγ

)(
dβ

dγ

)
= 0,

(
AQβ, AQγ

) (
dβ

dγ

)
= 0





=⇒
(

dβ

dγ

)
= 0. (17)
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We claim that this (slightly weaker and, for positive semidefinite H, actually equivalent)
condition is also necessary for the nonsingularity of W . To see this, suppose there is a
vector (dβ, dγ) 6= (0, 0) such that

(
QT

β HQβ + Dβ QT
β HQγ

QT
γ HQβ QT

γ HQγ

)(
dβ

dγ

)
= 0 and

(
AQβ, AQγ

) (
dβ

dγ

)
= 0,

and define

dα := 0, p := 0, qα := QT
αHQβdβ + QT

αHQγdγ, qβ := −Dβdβ.

A simple calculation then shows that we have W̃y = 0 for the nonzero vector y :=
(dT , pT , qT

α , qT
β )T . Hence W̃ is singular, implying that W itself is singular.

Thus, condition (a) and the slightly relaxed version (17) of condition (b) are both
necessary for the nonsingularity of the matrix W in Proposition 3.2. This fact suggests
that it is not easy to weaken these conditions. We stress this point here because in the
following we will directly translate the conditions of Proposition 3.2 to the case of second-
order cone programs. These translations may look rather complicated, but they result
quite naturally from Proposition 3.2, and the above discussion shows that it is, in the
above sense, not easy to relax the assumptions.

Now let us go back to the mapping M defined by (6). In order to apply Proposition
3.2 to the (generalized) Jacobian of the mapping M at a KKT point, we first introduce
some more notation:

intKi :=
{
xi

∣∣ xi0 > ‖x̄i‖
}

denotes the interior of Ki,

bdKi :=
{
xi

∣∣ xi0 = ‖x̄i‖
}

denotes the boundary of Ki, and

bd+Ki := bdKi \ {0} is the boundary of Ki excluding the origin.

We also call a KKT point z∗ = (x∗, µ∗, λ∗) of the SOCP strictly complementary if x∗i +λ∗i ∈
intKi holds for all block components i = 1, . . . , r. This notation enables us to restate the
following result from [1].

Lemma 3.3 Let z∗ = (x∗, µ∗, λ∗) be a KKT point of the SOCP. Then precisely one of the
following six cases holds for each block pair (x∗i , λ

∗
i ), i = 1, . . . , r:

x∗i λ∗i SC
x∗i ∈ intKi λ∗i = 0 yes
x∗i = 0 λ∗i ∈ intKi yes
x∗i ∈ bd+Ki λ∗i ∈ bd+Ki yes
x∗i ∈ bd+Ki λ∗i = 0 no
x∗i = 0 λ∗i ∈ bd+Ki no
x∗i = 0 λ∗i = 0 no

The last column in the table indicates whether or not strict complementarity (SC) holds.

12



We also need the following simple result which, in particular, shows that the projection
mapping PKi

involved in the definition of the mapping M is continuously differentiable at
si := x∗i − λ∗i for any block component i satisfying strict complementarity.

Lemma 3.4 Let z∗ = (x∗, µ∗, λ∗) be a KKT point of the SOCP. Then the following state-
ments hold for each block pair (x∗i , λ

∗
i ):

(a) If x∗i ∈ intKi and λ∗i = 0, then PKi
is continuously differentiable at si := x∗i −λ∗i with

P ′
Ki

(si) = Ini
.

(b) If x∗i = 0 and λ∗i ∈ intKi, then PKi
is continuously differentiable at si := x∗i −λ∗i with

P ′
Ki

(si) = 0.

(c) If x∗i ∈ bd+Ki and λ∗i ∈ bd+Ki, then PKi
is continuously differentiable at si := x∗i−λ∗i

with P ′
Ki

(si) = 1
2

(
1 w̄T

i

w̄i Hi

)
, where w̄i = s̄i

‖s̄i‖ and Hi =
(
1 + si0

‖s̄i‖
)
Ini−1 − si0

‖s̄i‖w̄iw̄
T
i .

Proof. Parts (a) and (b) immediately follow from Lemma 2.5. To prove part (c), write
x∗i = (x∗i0, x̄

∗
i ), λ∗i = (λ∗i0, λ̄

∗
i ), and si = (si0, s̄i) := x∗i −λ∗i = (x∗i0−λ∗i0, x̄

∗
i −λ̄∗i ). Since x∗i 6= 0

and λ∗i 6= 0, we see from [1, Lemma 15] that there is a constant ρ > 0 such that λ∗i0 = ρx∗i0
and λ̄∗i = −ρx̄∗i , implying si0 = (1 − ρ)x∗i0 and ‖s̄i‖ = (1 + ρ)‖x̄∗i ‖. Since x∗i0 = ‖x̄∗i ‖ 6= 0
by assumption, we have si0 = 1−ρ

1+ρ
‖s̄i‖. Hence we obtain si0 = ‖s̄i‖ − 2ρ

1+ρ
‖s̄i‖ < ‖s̄i‖ and

si0 = 2
1+ρ
‖s̄i‖ − ‖s̄i‖ > −‖s̄i‖. The desired result then follows from Lemma 2.5. ¤

We are now almost in a position to apply Proposition 3.2 to the Jacobian of the mapping
M at a KKT point z∗ = (x∗, µ∗, λ∗) provided that this KKT point satisfies strict com-
plementarity. This strict complementarity assumption will be removed later, but for the
moment it is quite convenient to assume this condition. For example, it then follows from
Lemma 3.3 that the three index sets

JI :=
{
i
∣∣ x∗i ∈ intKi, λ

∗
i = 0

}
,

JB :=
{
i
∣∣ x∗i ∈ bd+Ki, λ

∗
i ∈ bd+Ki

}
, (18)

J0 :=
{
i
∣∣ x∗i = 0, λ∗i ∈ intKi

}

form a partition of the block indices i = 1, . . . , r. Here, the subscripts I, B and 0 indicate
whether the block component x∗i belongs to the interior of the cone Ki, or x∗i belongs to
the boundary of Ki (excluding the zero vector), or x∗i is the zero vector.

Let Vi := P ′
Ki

(x∗i − λ∗i ). Then Lemma 3.4 implies that

Vi = Ini
∀i ∈ JI and Vi = 0 ∀i ∈ J0. (19)

To get a similar representation for indices i ∈ JB, we need the spectral decompositions
Vi = QiDiQ

T
i of the matrices Vi. Since strict complementarity holds, it follows from

13



Lemmas 2.8 and 3.4 that each Vi has precisely one eigenvalue equal to zero and precisely
one eigenvalue equal to one, whereas all other eigenvalues are strictly between zero and
one. Without loss of generality, we can therefore assume that the eigenvalues of Vi are
ordered in such a way that

Di = diag
(
0, ηi, . . . , ηi, 1

) ∀i ∈ JB, (20)

where ηi denotes the multiple eigenvalue that lies in the open interval (0, 1). Correspond-
ingly we also partition the orthogonal matrices Qi as

Qi =
(
qi, Q̂i, q′i

) ∀i ∈ JB, (21)

where qi ∈ Rni denotes the first column of Qi, q′i ∈ Rni is the last column of Qi, and
Q̂i ∈ Rni×(ni−2) contains the remaining ni − 2 middle columns of Qi. We also use the
following partitionings of the matrices Qi:

Qi =
(
qi, Q̄i

)
=

(
Q̃i, q

′
i

) ∀i ∈ JB, (22)

where, again, qi ∈ Rni and q′i ∈ Rni are the first and the last columns of Qi, respectively,
and Q̄i ∈ Rni×(ni−1) and Q̃i ∈ Rni×(ni−1) contain the remaining ni − 1 columns of Qi. It is
worth noticing that, by (5), the vectors qi and q′i are actually given by

qi =
1√
2

(
−1

x̄∗i−λ̄∗i
‖x̄∗i−λ̄∗i ‖

)
and q′i =

1√
2

(
1

x̄∗i−λ̄∗i
‖x̄∗i−λ̄∗i ‖

)
,

where 1/
√

2 is the normalizing coefficient. Also, by Lemma 2.8, the eigenvalue ηi in (20)
is given by

ηi =
1

2

(
1 +

x∗i0 − λ∗i0
‖x̄∗i − λ̄∗i ‖

)
. (23)

(From [1, Lemma 15], we may easily deduce x̄∗i − λ̄∗i 6= 0 whenever x∗Ti λ∗i = 0, x∗i ∈ bd+Ki,
λ∗i ∈ bd+Ki.)

Consider the matrix Dβ defined by (8). In the SOCP under consideration, for each
j ∈ β, aj and bj are given by

aj =
1

2

(
1− si0

‖s̄i‖
)
, bj =

1

2

(
1 +

si0

‖s̄i‖
)

with si := x∗i −λ∗i corresponding to some index i belonging to JB (cf. the proof of Theorem
3.5 below). For any such pair (x∗i , λ

∗
i ), i ∈ JB, we have

x∗i0 = ‖x̄∗i ‖, λ∗i0 = ‖λ̄∗i ‖

and
x∗i = ρiRiλ

∗
i ,
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where ρi = x∗i0/λ
∗
i0 and Ri =

(
1 0
0 −Ini−1

)
, see [1, Lemma 15]. Hence we have

si = (ρiRi − Ini
)λ∗i = −

(
(1− ρi)λ

∗
i0

(1 + ρi)λ̄
∗
i

)
,

which implies si0/‖s̄i‖ = (1− ρi)/(1 + ρi). Therefore we obtain

aj =
ρi

1 + ρi

, bj =
1

1 + ρi

,
aj

bj

= ρi

(
=

x∗i0
λ∗i0

)
.

This indicates that Dβ = (Db
β)−1Da

β is a block diagonal matrix with block components of
the form ρiI, where ρi and the size of the identity matrix I vary with blocks. The matrix
Dβ contains the curvature information of the second-order cone at a boundary surface and
ρi = x∗i0/λ

∗
i0 corresponds to the quantity that appears in the second-order condition given

by Bonnans and Ramı́rez [3, eq.(43)]. In fact, we may regard the conditions given in this
paper as a dual counterpart of those given in [3], since the problem studied in the present
paper corresponds to the primal problem and that of [3] corresponds to the dual problem
in the sense of [1].

We are now able to prove the following nonsingularity result under the assumption that
the given KKT point satisfies strict complementarity. In the theorem, the index sets β and
γ will be implicitly defined through AQβ and AQγ, respectively, since it is more convenient
than stating their definitions explicitly. Indeed, as described in the proof of the theorem,
β is defined as the index set consisting of the middle (ni − 2) components of each block
component i ∈ JB, while γ consists of all components of each block component i ∈ JI and
the last component of each block component i ∈ JB. Incidentally, the index set α, which
does not appear in the conditions of the theorem, consists of all the remaining components,
that is, all components of each block component i ∈ J0 and the first component of each
block component i ∈ JB.

Theorem 3.5 Let z∗ = (x∗, µ∗, λ∗) be a strictly complementary KKT point of the SOCP
(2), let H := ∇2f(x∗) with block components Hij := ∇2

xixj
f(x∗), and let the (block) index

sets JI , JB, J0 be defined by (18). Let

AQβ :=
(

(AiQ̂i)i∈JB

)
∈ Rm×|β|, AQγ :=

(
(Ai)i∈JI

, (Aiq
′
i)i∈JB

)
∈ Rm×|γ|,

|β| :=
∑
i∈JB

(ni − 2) =
∑
i∈JB

ni − 2|JB|, |γ| :=
∑
i∈JI

ni + |JB|,

and

Dβ := diag
(

(ρiIni−2)i∈JB

)
∈ R|β|×|β| with ρi :=

x∗i0
λ∗i0

(i ∈ JB).

Then the Jacobian M ′(z∗) exists and is nonsingular if the following conditions hold:

(a) The matrix (AQβ, AQγ) ∈ Rm×(|β|+|γ|) has full row rank.
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(b) The matrix (
C1 + Dβ C2

CT
2 C3

)
∈ R(|β|+|γ|)×(|β|+|γ|)

is positive definite on the subspace V :=
{(

dβ

dγ

)
∈ R|β|+|γ|

∣∣ (AQβ, AQγ)

(
dβ

dγ

)
= 0

}
,

where

C1 :=
(

(Q̂T
i HijQ̂j)i,j∈JB

)
∈ R|β|×|β|,

C2 :=
(

(Q̂T
i Hij)i∈JB ,j∈JI

, (Q̂T
i Hijq

′
j)i∈JB ,j∈JB

)
∈ R|β|×|γ|,

C3 :=

(
(Hij)i∈JI ,j∈JI

(Hijq
′
j)i∈JI ,j∈JB

(q′Ti Hij)i∈JB ,j∈JI
(q′Ti Hijq

′
j)i∈JB ,j∈JB

)
∈ R|γ|×|γ|.

For the linear SOCP (1), the assertion holds with condition (b) replaced by the following
condition:

(c) The matrix AQγ ∈ Rm×|γ| has full column rank.

Proof. The existence of the Jacobian M ′(z∗) follows immediately from the assumed strict
complementarity of the given KKT point together with Lemma 3.4. A simple calculation
shows that

M ′(z∗) =




H −AT −In

A 0 0
In − V 0 V


 ,

where V is the block diagonal matrix diag(V1, . . . , Vr) with Vi := P ′
Ki

(x∗i − λ∗i ). Therefore,
taking into account the fact that all eigenvalues of the matrix V belong to the interval [0, 1]
by Lemma 2.8, we are able to apply Proposition 3.2 (with V a := In − V and V b := V ) as
soon as we identify the index sets α, β, γ ⊆ {1, . . . , n} and the structure of the matrices Q
and D from that result. To this end, we consider each block index i separately. Note that,
since the matrix V has n columns j = 1, . . . , n, and since we only have r block indices
i = 1, . . . , r, each block index i generally consists of several components j.

For each i ∈ JI , we have Vi = Ini
(see (19)) and, therefore, Qi = Ini

and Di = Ini
.

Hence all components j from the block components i ∈ JI belong to the index set γ.

On the other hand, for each i ∈ J0, we have Vi = 0 (see (19)), and this corresponds to
Qi = Ini

and Di = 0. Hence all components j from the block components i ∈ J0 belong to
the index set α.

Finally, let i ∈ JB. Then Vi = QiDiQ
T
i with Di = diag(0, ηi, . . . , ηi, 1), where ηi ∈ (0, 1)

is given by (23), and Qi = (qi, Q̂i, q′i). Hence the first component for each block index
i ∈ JB is an element of the index set α, the last component for each block index i ∈ JB

belongs to the index set γ, and all the remaining middle components belong to the index
set β.
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Taking into account that Q = diag(Q1, . . . , Qr) and D = diag(D1, . . . , Dr) with Qi, Di

as specified above, and using the partitioning




(Hij)i∈JI ,j∈JI
(Hij)i∈JI ,j∈JB

(Hij)i∈JI ,j∈J0

(Hij)i∈JB ,j∈JI
(Hij)i∈JB ,j∈JB

(Hij)i∈JB ,j∈J0

(Hij)i∈J0,j∈JI
(Hij)i∈J0,j∈JB

(Hij)i∈J0,j∈J0




of the Hessian H = ∇2f(x∗), it follows immediately from the above observations that
conditions (a), (b), and (c) correspond precisely to conditions (a), (b), and (c), respectively,
in Proposition 3.2. ¤

The following simple example illustrates the conditions in the above theorem.

Example 3.6 Consider the nonlinear SOCP

min
1

2
x2

1 +
1

2
(x2 − 2)2 − ε

2
x2

3

s.t. x ∈ K3,

where K3 denotes the second-order cone in R3 and ε is a scalar parameter. This problem
contains only one second-order cone constraint. (Here, unlike the rest of this section, xi

denotes the ith (scalar) component of the vector x.) Note that the objective function is
nonconvex for any ε > 0. It is easy to see that the solution of this problem is given by
x∗ = (1, 1, 0)T ∈ bd+K3 together with the multiplier vector λ∗ = (1,−1, 0)T ∈ bd+K3,
which satisfies strict complementarity. Furthermore, we have

V = P ′
K3(x∗ − λ∗) = QDQT ,

where D = diag(0, 1
2
, 1) and

Q =
(
q, Q̂, q′

)
=



− 1√

2
0 1√

2
1√
2

0 1√
2

0 1 0


 .

Since there is no equality constraint, condition (a) in Theorem 3.5 is automatically satisfied.
Moreover, by direct calculation, we have C1 = −ε, C2 = 0, C3 = 1, Dβ = 1, and hence

(
C1 + Dβ C2

CT
2 C3

)
=

(−ε + 1 0
0 1

)
,

for which condition (b) holds as long as ε < 1, since V = R2. This example shows that
condition (b) may be secured with the aid of the curvature term Dβ even if the Hessian of
the objective function fails to be positive definite in itself. ♦
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We now want to extend Theorem 3.5 to the case where strict complementarity is violated.
Let z∗ = (x∗, µ∗, λ∗) be an arbitrary KKT point of the SOCP, and let JI , JB, J0 denote the
index sets defined by (18). In view of Lemma 3.3, in addition to these sets, we also need
to consider the three index sets

JB0 :=
{
i
∣∣ x∗i ∈ bd+Ki, λ

∗
i = 0

}
,

J0B :=
{
i
∣∣ x∗i = 0, λ∗i ∈ bd+Ki

}
, (24)

J00 :=
{
i
∣∣ x∗i = 0, λ∗i = 0

}
,

which correspond to the block indices where strict complementarity is violated. Note that
these index sets have double subscripts; the first (resp. second) subscript indicates whether
x∗i (resp. λ∗i ) is on the boundary of Ki (excluding zero) or equal to the zero vector. Note
that the index sets JB0, J0B, as well as JB are empty whenever ni = 1 since these cases
simply do not exist in the one-dimensional setting.

The following lemma summarizes the structure of the matrices Vi ∈ ∂BPKi
(x∗i − λ∗i ) for

i ∈ JB0 ∪ J0B ∪ J00, in which we use the same notations as those defined in (20)–(22) for
i ∈ JB. Hence this lemma is the counterpart of Lemma 3.4 in the general case.

Lemma 3.7 Let i ∈ JB0∪J0B∪J00 and Vi ∈ ∂BPKi
(x∗i−λ∗i ). Then the following statements

hold:

(a) If i ∈ JB0, then we have either Vi = Ini
or Vi = QiDiQ

T
i with Di = diag(0, 1, . . . , 1)

and Qi = (qi, Q̄i).

(b) If i ∈ J0B, then we have either Vi = 0 or Vi = QiDiQ
T
i with Di = diag(0, . . . , 0, 1)

and Qi = (Q̃i, q
′
i).

(c) If i ∈ J00, then we have Vi = Ini
or Vi = 0 or Vi = QiDiQ

T
i with Di and Qi given

by Di = diag(0, ηi, . . . , ηi, 1) for some ηi ∈ (0, 1) and Qi = (qi, Q̂i, q
′
i), or by Di =

diag(0, 1, . . . , 1) and Qi = (qi, Q̄i), or by Di = diag(0, . . . , 0, 1) and Qi = (Q̃i, q
′
i).

Proof. First let i ∈ JB0. Then si := x∗i − λ∗i = x∗i ∈ bd+Ki. Therefore, if we write
si = (si0, s̄i), it follows that si0 = ‖s̄i‖ and s̄i 6= 0. Statement (a) then follows immediately
from Lemma 2.6 (b) in combination with Lemma 2.8.

In a similar way, the other two statements can be derived by using Lemma 2.6 (c)
and (d), respectively, together with Lemma 2.8 in order to get the eigenvalues. Here the
five possible choices in statement (c) depend, in particular, on the value of the scalar ρ in
Lemma 2.6 (d) (namely ρ ∈ (−1, 1), ρ = 1, and ρ = −1). ¤

Lemma 3.7 enables us to generalize Theorem 3.5 to the case where strict complementarity
does not hold. Note that we use the spectral decompositions Vi = QiDiQ

T
i and the

associated partitionings (20)–(22) for all i ∈ JB, as well as those specified in Lemma 3.7
for all indices i ∈ JB0 ∪ J0B ∪ J00. Moreover, we will employ implicit definitions of the
index sets β and γ as in Theorem 3.5; see the remark preceding Theorem 3.5.
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Theorem 3.8 Let z∗ = (x∗, µ∗, λ∗) be a (not necessarily strictly complementary) KKT
point of the SOCP (2), let H := ∇2f(x∗) with block components Hij := ∇2

xixj
f(x∗), and let

the (block) index sets JI , JB, J0, JB0, J0B, J00 be defined by (18) and (24). Then all matrices
W ∈ ∂BM(z∗) are nonsingular if, for any partitioning JB0 = J1

B0 ∪ J2
B0, any partitioning

J0B = J1
0B∪J2

0B, and any partitioning J00 = J1
00∪J2

00∪J3
00∪J4

00∪J5
00 such that J3

00 = J4
00 = ∅

when ni ≤ 2 and J5
00 = ∅ when ni = 1, the following two conditions (a) and (b) hold with

AQβ :=
(

(AiQ̂i)i∈JB∪J3
00

)
∈ Rm×|β|,

AQγ :=
(

(Ai)i∈JI∪J1
B0∪J1

00
, (Aiq

′
i)i∈JB∪J2

0B∪J3
00∪J5

00
, (AiQ̄i)i∈J2

B0∪J4
00

)
∈ Rm×|γ|,

|β| :=
∑

i∈JB∪J3
00

(ni − 2),

|γ| :=
∑

i∈JI∪J1
B0∪J1

00

ni + |JB ∪ J2
0B ∪ J3

00 ∪ J5
00|+

∑

i∈J2
B0∪J4

00

(ni − 1),

Dβ := diag
(

(ρiIni−2)i∈JB∪J3
00

)
∈ R|β|×|β|

with ρi =
x∗i0
λ∗i0

(i ∈ JB), ρi > 0 (i ∈ J3
00) :

(a) The matrix (AQβ, AQγ) ∈ Rm×(|β|+|γ|) has full row rank.

(b) The matrix (
C1 + Dβ C2

CT
2 C3

)
∈ R(|β|+|γ|)×(|β|+|γ|)

is positive definite on the subspace V :=
{(

dβ

dγ

)
∈ R|β|+|γ|

∣∣ (AQβ, AQγ)

(
dβ

dγ

)
= 0

}
,

where

C1 :=
(

(Q̂T
i HijQ̂j)i,j∈JB∪J3

00

)
∈ R|β|×|β|,

C2 :=
(
C1

2 , C2
2 , C3

2

) ∈ R|β|×|γ|,

C3 :=




C11
3 C12

3 C13
3

(C12
3 )T C22

3 C23
3

(C13
3 )T (C23

3 )T C33
3


 ∈ R|γ|×|γ|

with the submatrices

C1
2 :=

(
(Q̂T

i Hij)i∈JB∪J3
00, j∈JI∪J1

B0∪J1
00

)
,

C2
2 :=

(
(Q̂T

i Hijq
′
j)i∈JB∪J3

00, j∈JB∪J2
0B∪J3

00∪J5
00

)
,

C3
2 :=

(
(Q̂T

i HijQ̄j)i∈JB∪J3
00, j∈J2

B0∪J4
00

)
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and

C11
3 :=

(
(Hij)i∈JI∪J1

B0∪J1
00, j∈JI∪J1

B0∪J1
00

)
,

C12
3 :=

(
(Hijq

′
j)i∈JI∪J1

B0∪J1
00, j∈JB∪J2

0B∪J3
00∪J5

00

)
,

C13
3 :=

(
(HijQ̄j)i∈JI∪J1

B0∪J1
00, j∈J2

B0∪J4
00

)
,

C22
3 :=

(
(q
′T
i Hijq

′
j)i∈JB∪J2

0B∪J3
00∪J5

00, j∈JB∪J2
0B∪J3

00∪J5
00

)
,

C23
3 :=

(
(q
′T
i HijQ̄j)i∈JB∪J2

0B∪J3
00∪J5

00, j∈J2
B0∪J4

00

)
,

C33
3 :=

(
(Q̄T

i HijQ̄j)i∈J2
B0∪J4

00, j∈J2
B0∪J4

00

)
.

For the linear SOCP (1), the assertion holds with condition (b) replaced by the following
condition:

(c) The matrix AQγ ∈ Rm×|γ| has full column rank.

Proof. Choose W ∈ ∂BM(z∗) arbitrarily. Then a simple calculation shows that

W =




H −AT −In

A 0 0
In − V 0 V




for a suitable block diagonal matrix V = diag(V1, . . . , Vr) with Vi ∈ ∂BPKi
(x∗i − λ∗i ). In

principle, the proof is similar to the one of Theorem 3.5: We want to apply Proposition
3.2 (with V a := I − V and V b := V ). To this end, we (once again) have to identify the
index sets α, β, γ (and the corresponding matrices Q,D). The statement itself then follows
immediately from Proposition 3.2.

Before identifying the index sets α, β, γ, we stress once more that we only have r block
indices i, whereas there are n ≥ r columns j in the matrix V . Hence each block index i
generally consists of several components j. If, for example, the block index i consists of
the columns j = 5, 6, 7, 8, we call j = 5 the first component of the block index i, j = 8 the
last component of i, and j = 6, 7 the middle components of i.

The situation here is, unfortunately, much more complicated than in the proof of The-
orem 3.5, since the index sets α, β, γ may depend on the particular element W chosen from
the B-subdifferential ∂BM(z∗). To identify these index sets, we need to take a closer look
especially at the index sets JB0, J0B, and J00. In view of Lemma 3.7, we further partition
these index sets into

JB0 = J1
B0 ∪ J2

B0,

J0B = J1
0B ∪ J2

0B,

J00 = J1
00 ∪ J2

00 ∪ J3
00 ∪ J4

00 ∪ J5
00
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with
J1

B0 := {i |Vi = Ini
}, J2

B0 := JB0 \ J1
B0,

J1
0B := {i |Vi = 0}, J2

0B := J0B \ J1
0B,

and

J1
00 := {i |Vi = Ini

},
J2

00 := {i |Vi = 0},
J3

00 := {i |Vi = QiDiQ
T
i with Di and Qi given by (20) and (21), respectively},

J4
00 := {i |Vi = QiDiQ

T
i with Di = diag(0, 1, . . . , 1) and Qi = (qi, Q̄i)},

J5
00 := {i |Vi = QiDiQ

T
i with Di = diag(0, . . . , 0, 1) and Qi = (Q̃i, q′i)}.

Using these definitions and Lemmas 3.4 and 3.7, we see that the following indices j belong
to the index set α in Proposition 3.2:

• All components j of the block indices i ∈ J0 ∪ J1
0B ∪ J2

00, with Qi = Ini
being the

corresponding orthogonal matrix.

• The first components j of the block indices i ∈ JB ∪ J2
B0 ∪ J3

00 ∪ J4
00, with qi being

the first column of the corresponding orthogonal matrix Qi.

• The first ni − 1 components j of the block indices i ∈ J2
0B ∪ J5

00, with Q̃i consisting
of the first ni − 1 columns of the corresponding orthogonal matrix Qi.

We next consider the index set β in Proposition 3.2. In view of Lemmas 3.4 and 3.7, the
following indices j belong to this set:

• All middle components j of the block indices i ∈ JB ∪ J3
00, with Q̂i consisting of the

middle ni − 2 columns of the corresponding orthogonal matrix Qi.

Using Lemmas 3.4 and 3.7 again, we finally see that the following indices j belong to the
index set γ in Proposition 3.2:

• All components j of the block indices i ∈ JI∪J1
B0∪J1

00. The corresponding orthogonal
matrix is Qi = Ini

.

• The last components j of the block indices i ∈ JB ∪ J2
0B ∪ J3

00 ∪ J5
00, with q′i being the

last column of the corresponding orthogonal matrix Qi.

• The last ni − 1 components j of the block indeces i ∈ J2
B0 ∪ J4

00, with Q̄i consisting
of the last ni − 1 columns of the corresponding orthogonal matrix Qi.

The theorem then follows from Proposition 3.2 in a way similar to the proof of Theorem
3.5. ¤
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Note that the second-order condition (b) of Theorem 3.8 holds, in particular, if H =
∇2f(x∗) is positive definite. This follows immediately from its derivation via Proposition
3.2 (see also condition (b’) given after the proof of Proposition 3.2).

Further note that, in the case of a strictly complementary KKT point, Theorem 3.8
reduces to Theorem 3.5. It may be worth noticing that, for interior-point methods of the
linear SOCP, we cannot expect to have a result corresponding to Theorem 3.8, since the
Jacobian matrices arising in that context are singular whenever the strict complementarity
fails to hold.

The next example, which is an instance of the linear SOCP and will also be used in
the numerical experiments (Example 4.3) in Section 4, illustrates how the conditions in
Theorem 3.8 can be verified when the strict complementarity is not satisfied.

Example 3.9 Consider the problem of minimizing the maximum distance to N points
bi (i = 1, . . . , N) in the Euclidean space Rν :

min
t∈R,y∈Rν

t s.t. ‖y − bi‖ ≤ t, i = 1, . . . , N.

By translating the axes if necessary, we assume without loss of generality that b1 = 0.
Then this problem can be rewritten as

minimize t

subject to x1 − xi =

(
0
bi

)
, i = 2, . . . , N,

x1 :=

(
t
y

)
∈ Kν+1, xi ∈ Kν+1, i = 2, . . . , N,

where Kν+1 denotes the second-order cone in Rν+1. This is a linear SOCP of the standard
form

min f(x) s.t. Ax = b, x ∈ K,

with the objective function f(x) := cT x, the variables

x := (xT
1 , . . . , xT

N)T ∈ Rn, n := (ν + 1)N,

and the data

c := (1, 0, . . . , 0)T ∈ Rn,

b := (0, bT
2 , 0, bT

3 , . . . , 0, bT
N)T ∈ R(ν+1)(N−1),

A :=




Iν+1 −Iν+1 0
Iν+1 −Iν+1

...
. . .

Iν+1 0 −Iν+1


 ∈ R(ν+1)(N−1)×n,

K := Kν+1 × · · · × Kν+1

︸ ︷︷ ︸
N-times

⊆ Rn.
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To be more specific, let us consider the particular instance with ν = 2, N = 3, and
b2 = (4, 0)T , b3 = (4, 4)T . The solution of this problem is given by x∗1 = (t∗, y∗T )T =(
2
√

2, 2, 2
)T

, x∗2 =
(
2
√

2,−2, 2
)T

and x∗3 =
(
2
√

2,−2,−2
)T

, i.e.,

x∗ =
(
x∗T1 , x∗T2 , x∗T3

)T
=

(
2
√

2, 2, 2, 2
√

2,−2, 2, 2
√

2,−2,−2
)T

.

An elementary calculation then shows that the corresponding optimal multipliers are given

by µ∗ =
(
0, 0, 0, 1

2
, 1

2
√

2
, 1

2
√

2

)T
and

λ∗ =
(
λ∗T1 , λ∗T2 , λ∗T3

)T
=

(
1
2
, −1

2
√

2
, −1

2
√

2
, 0, 0, 0, 1

2
, 1

2
√

2
, 1

2
√

2

)T
.

Looking at the pair (x∗, λ∗), we find that the strict complementarity is violated in the
second block component.

To examine the conditions of Theorem 3.8, we need the orthogonal matrices Qi, i =
1, 2, 3, that appear in the spectral decompositions Vi = QiDiQ

T
i of Vi ∈ ∂BPKi

(x∗i − λ∗i ).
For the first block component i = 1, we have x∗1 =

(
2
√

2, 2, 2
)T

, λ∗1 =
(

1
2
, −1

2
√

2
, −1

2
√

2

)T
, which

yield s1 := x∗1 − λ∗1 =
(

4
√

2−1
2

, 4
√

2+1
2
√

2
, 4
√

2+1
2
√

2

)T
and w̄1 := s̄1/‖s̄1‖ =

(
1√
2
, 1√

2
)T . In view

of Lemma 2.8, the orthogonal matrix Q1 associated with the first block is obtained by
normalizing the vectors in (4) as

Q1 =
(
q1 Q̂1 q′1

)
=

(
q1 q̂1 q′1

)
=




−1√
2

0 1√
2

1
2

−1√
2

1
2

1
2

1√
2

1
2


 . (25)

Here, notice that we denote the middle component of Q1 by Q̂1 = q̂1, since it consists of
only one column. Similarly, for the other two block components, we have

Q2 =
(
q2 q̂2 q′2

)
=




−1√
2

0 1√
2−1

2
1√
2

−1
2

1
2

1√
2

1
2


 , Q3 =

(
q3 q̂3 q′3

)
=




−1√
2

0 1√
2−1

2
−1√

2
−1
2

−1
2

1√
2

−1
2


 . (26)

Now let us verify that the conditions in Theorem 3.8 (for the linear SOCP) hold for
this particular example. Note that, at the complementary pair (x∗, λ∗), we have JI = J0 =
J0B = J00 = ∅, JB = {1, 3} and JB0 = {2}. In particular, there exist only two possible
partitionings of the index set JB0 = J1

B0∪J2
B0, i.e., (i) J1

B0 = {2}, J2
B0 = ∅ and (ii) J1

B0 = ∅,
J2

B0 = {2}.
Case (i). Noticing that the size of each block is ni = ν + 1 = 3, we have |β| =∑

i∈JB
(ni − 2) = 2, |γ| = ∑

i∈J1
B0

ni + |JB| = 3 + 2 = 5, and

AQβ = (A1q̂1 A3q̂3) ∈ R6×2, AQγ = (A2 A1q
′
1 A3q

′
3) ∈ R6×5. (27)

Since the matrix A is partitioned as A =
(
A1 A2 A3

)
with

A1 =

(
I
I

)
, A2 =

(−I
0

)
, A3 =

(
0
−I

)
∈ R6×3, (28)

23



we have from (27)

AQβ =

(
q̂1 0
q̂1 −q̂3

)
∈ R6×2, AQγ =

(−I q′1 0
0 q′1 −q′3

)
∈ R6×5,

where q̂1, q
′
1, q̂3, q

′
3 are given by (25) and (26). Notice that q̂1 = q̂3. Then it is not difficult

to conclude that the condition (a) holds, since the matrix

(
q̂1 q′1 q′3

)
=




0 1√
2

1√
2−1√

2
1
2

−1
2

1√
2

1
2

−1
2


 ∈ R3×3

is nonsingular. Moreover, since vectors q′1 and q′3 are linearly independent, the condition
(c) holds.

Case (ii). We have |β| = ∑
i∈JB

(ni − 2) = 2, |γ| = |JB|+
∑

i∈J2
B0

(ni − 1) = 2 + 2 = 4,

and

AQβ = (A1q̂1 A3q̂3) ∈ R6×2, AQγ = (A1q
′
1 A3q

′
3 A2Q̄2) = (A1q

′
1 A3q

′
3 A2q̂2 A2q

′
2) ∈ R6×4.

By (28), (25) and (26), we have

(
AQβ AQγ

)
=

(
q̂1 0 q′1 0 −q̂2 −q′2
q̂1 −q̂3 q′1 −q′3 0 0

)

=




0 0 1√
2

0 0 −1√
2−1√

2
0 1

2
0 −1√

2
1
2

1√
2

0 1
2

0 −1√
2

−1
2

0 0 1√
2

−1√
2

0 0
−1√

2
1√
2

1
2

1
2

0 0
1√
2

−1√
2

1
2

1
2

0 0




.

By elementary calculation, it is easy to check that this 6 × 6 matrix is nonsingular, from
which both conditions (a) and (c) immediately follow.

The above arguments suggest that, by virtue of the special structure of the matrix A,
there is a good chance that the conditions in Theorem 3.8 hold in many instances of this
application of SOCP. ♦

Using Theorems 3.1 and 3.8 along with [22], we get the following result.

Theorem 3.10 Let z∗ = (x∗, µ∗, λ∗) be a (not necessarily strictly complementary) KKT
point of the SOCP (1), and suppose that the assumptions of Theorem 3.8 hold at this
KKT point. Then the nonsmooth Newton method (7) applied to the system of equations
M(z) = 0 is locally superlinearly convergent. If, in addition, f has a locally Lipschitz
continuous Hessian, then it is locally quadratically convergent.
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To conclude this section, let us consider the special case where K is the nonnegative orthant
Rr

+, i.e., ni = 1 for all i = 1, . . . , r, and see how the conditions in Theorem 3.8 can be
interpreted in this case. First notice that xi, λi ∈ R and Ai ∈ Rm for all i. Moreover, at
a KKT point z∗ = (x∗, µ∗, λ∗) of the problem, there are only three cases among the six
cases shown in Lemma 3.3, that is, the index set {1, 2, . . . , r} can be partitioned into the
following three subsets:

JI := {i | x∗i > 0, λ∗i = 0},
J0 := {i | x∗i = 0, λ∗i > 0},

J00 := {i | x∗i = 0, λ∗i = 0}.

Accordingly we have JB = JB0 = J0B = ∅, which particularly implies that the (implicitly
defined) index set β in Theorem 3.8 is empty. Therefore, the statement of Theorem 3.8
can be phrased as follows: All matrices W ∈ ∂BM(z∗) are nonsingular if, for any subset
J1

00 ⊆ J00, the following conditions (a) and (b) hold with

γ = JI ∪ J1
00, Aγ =

(
(Ai)i∈γ

)
∈ Rm×|γ| :

(a) The matrix Aγ has full row rank.

(b) The matrix ∇2
γγf(x∗) is positive definite on the subspace {dγ ∈ R|γ| |Aγdγ = 0},

where ∇2
γγf(x∗) is the submatrix of ∇2f(x∗) with components ∂2f(x∗)

∂xi∂xj
(i ∈ γ, j ∈ γ).

When the problem is a linear program, the condition (b) can be replaced by

(c) The matrix Aγ has full column rank.

By taking a closer look, we see that the above conditions can be replaced by the following
simpler conditions, where J̄I := JI ∪ J00 = {i |λ∗i = 0} ⊇ JI = {i |x∗i > 0}:

(a∗) The matrix AJI
has full row rank.

(b∗) The matrix ∇2
J̄I J̄I

f(x∗) is positive definite on the subspace {dJ̄I
∈ R|J̄I | |AJ̄I

dJ̄I
= 0}.

(c∗) The matrix AJ̄I
has full column rank.

Condition (a∗) ensures the uniqueness of the Lagrange multiplier vector λ∗. Condition (b∗)
is a second-order sufficient condition for optimality, which ensures the local uniqueness of
the primal solution x∗. In the linear case, (a∗) implies m ≤ |JI |, while (c∗) implies |J̄I | ≤ m.
However, since |JI | ≤ |J̄I |, we must have m = |JI | = |J̄I |, and hence J00 is empty and AJI

is square and nonsingular. In other words, x∗ is a nondegenerate basic solution. Thus the
conditions given in Theorem 3.8 reduce to familiar conditions in the special case K = Rr

+.
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k ‖M(zk)‖ xk
1 xk

2 xk
3 ‖∇f(xk)− λk‖

0 1.020784e+02 2.000000e+00 2.000000e+00 2.000000e+00 3.464102e+00
1 1.414214e+00 0.000000e+00 2.000000e+00 0.000000e+00 0.000000e+00
2 0.000000e+00 1.000000e+00 1.000000e+00 0.000000e+00 0.000000e+00

Table 1: Numerical results for the nonconvex SOCP of Example 4.1

4 Numerical Examples

In this section, we show some preliminary numerical results with the nonsmooth Newton
method tested on linear and nonlinear SOCPs. The main aim of our numerical experiments
is to demonstrate the theoretical results established in the previous section by examining
the local behaviour of the method, rather than making a comparison with existing solvers.
Note that the usage of symbols such as x and xi in this section is different from the previous
sections. However there should be no confusion since the meaning will be clear from the
context.

Example 4.1 We first consider the nonconvex SOCP of Example 3.6. Letting ε := 1
2

and using the starting point x0 := (2, 2, 2)T together with the multipliers λ0 := (2, 2, 2)T ,
we obtain the results shown in Table 1. Here we have very fast convergence in just two
iterations. ♦

Our next example is taken from [13].

Example 4.2 Consider the following nonlinear (convex) SOCP:

min exp(x1 − x3) + 3(2x1 − x2)
4 +

√
1 + (3x2 + 5x3)2

s.t.

(
x4

x5

)
=

(
4 6 3
−1 7 −5

) 


x1

x2

x3


 +

(−1
2

)
∈ K2,




x1

x2

x3


 ∈ K3,

where Kr denotes the second-order cone in Rr. This problem can be written in the standard
form

min f(x) s.t. Ax = b, x ∈ K
with f(x) := exp(x1 − x3) + 3(2x1 − x2)

4 +
√

1 + (3x2 + 5x3)2 and

A :=

(
4 6 3 −1 0
−1 7 −5 0 −1

)
, b :=

(
1
−2

)
, K := K3 ×K2.

Table 2 shows a sequence of the first three components of xk generated by the nonsmooth
Newton method with a starting point randomly chosen from the box [0, 1]5 ⊂ R5. We may
observe a typical feature of the local quadratic convergence. ♦
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k ‖M(zk)‖ xk
1 xk

2 xk
3 ‖Axk − b‖

0 1.273197e+02 9.501293e-01 2.311385e-01 6.068426e-01 5.663307e+00
1 3.765549e+01 3.019551e-01 -5.312774e-01 1.198684e-01 6.280370e-16
2 3.158146e+01 2.331042e-01 -9.730924e-02 2.171462e-01 1.110223e-15
3 3.259677e+00 1.196822e-01 -9.886805e-02 3.688092e-02 0.000000e+00
4 1.675676e+00 1.973609e-01 -8.539481e-02 2.409751e-01 4.440892e-16
5 3.516159e-01 2.357895e-01 -9.820433e-02 2.153560e-01 1.110223e-16
6 4.875888e-02 2.325429e-01 -7.451132e-02 2.203468e-01 0.000000e+00
7 1.511531e-04 2.324026e-01 -7.308263e-02 2.206131e-01 2.220446e-16
8 7.295537e-10 2.324025e-01 -7.307928e-02 2.206135e-01 1.110223e-16
9 1.102302e-15 2.324025e-01 -7.307928e-02 2.206135e-01 4.440892e-16

Table 2: Numerical results for the nonlinear (convex) SOCP of Example 4.2

k ‖M(zk)‖ xk
1 xk

2 ‖Axk − b‖ ‖φ(xk, λk)‖
0 7.029663e+00 8.121259e-01 9.082626e-01 6.393857e+00 1.769382e+00
1 4.816071e+01 4.094855e+00 2.944570e+00 1.297632e-13 4.816071e+01
2 3.107185e+01 1.971163e+00 1.659028e+00 5.043708e-12 3.107185e+01
3 2.109201e+00 3.278852e+00 9.489322e-01 9.485085e-11 2.109201e+00
4 9.107635e-01 2.232357e+00 1.816440e+00 1.719429e-11 9.107635e-01
5 4.255234e-02 2.032107e+00 1.967839e+00 5.819005e-10 4.255234e-02
6 5.825558e-04 2.000563e+00 1.999989e+00 1.239050e-10 5.825558e-04
7 4.474272e-08 2.000000e+00 2.000000e+00 1.379164e-11 4.474272e-08
8 7.675809e-15 2.000000e+00 2.000000e+00 6.616780e-15 3.890536e-15

Table 3: Numerical results for the linear SOCP of Example 4.3

Example 4.3 We next consider the particular instance of the linear SOCP given in Ex-
ample 3.9. As shown there, this instance violates the strict complementarity but the
conditions in Theorem 3.8 are satisfied. We applied the nonsmooth Newton method to
this problem and the results are shown in Table 3, where the function φ in the last column
is defined by φ(x, λ) := x − PK(x − λ). We observe that the method is just a local one:
The residual ‖M(zk)‖ increases in the beginning. Fortunately, after a few steps, ‖M(zk)‖
starts to decrease, and eventually exhibits nice local quadratic convergence. ♦

We also applied the nonsmooth Newton method to the three SOCPs in the DIMACS library,
see [21]. Due to its local nature, the method sometimes failed to converge depending on the
choice of a starting point. Nevertheless, the asymptotic behaviour of the method applied
to problem nb L1 from the DIMACS collection, as shown in Table 4, indicates that the
rate of convergence is at least superlinear for this problem. Whether the non-quadratic
convergence has to do with the fact that our assumptions are violated, or it is simply due
to the finite precision arithmetic of the computer, is currently not clear to us.
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k ‖M(zk)‖ ‖Axk − b‖ ‖φ(xk, λk)‖
34 2.397717e-03 7.130277e-13 2.397717e-03
35 6.252936e-07 9.029000e-13 6.252936e-07
36 1.470491e-09 5.177835e-13 1.470491e-09
37 4.781069e-12 6.815003e-13 4.732249e-12

Table 4: Numerical results for the linear SOCP nb L1 from the DIMACS collection

5 Final Remarks

We have investigated the local properties of a semismooth equation reformulation of both
the linear and the nonlinear SOCPs. In particular, we have shown nonsingularity results
that provide basic conditions for local quadratic convergence of a nonsmooth Newton
method. Strict complementarity of a solution is not needed in our nonsingularity results.
Apart from these local properties, it is certainly of interest to see how the local Newton
method can be globalized in a suitable way. We leave it as a future research topic.

Acknowledgment. The authors are grateful to the referees for their critical comments
that have led to a significant improvement of the paper.
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