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Abstract. This paper presents a new formulation for the stochastic linear
complementarity problem (SLCP), which aims at minimizing an expected residual
defined by an NCP function. We generate observations by the quasi-Monte Carlo
methods and prove that every accumulation point of minimizers of discrete approx-
imation problems is a minimum expected residual solution of the SLCP. We show
that a sufficient condition for the existence of a solution to the expected residual
minimization (ERM) problem and its discrete approximations is that there is an
observation ωi such that the coefficient matrix M(ωi) is an R0 matrix. Further-
more, we show that, for a class of problems with fixed coefficient matrices, the
ERM problem becomes continuously differentiable and can be solved without us-
ing discrete approximation. Preliminary numerical results on a refinery production
problem indicate that a solution of the new formulation is desirable.
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1 Introduction

The stochastic variational inequality problem is to find a vector x ∈ Rn such that

x ∈ S, F (x, ω)T(y − x) ≥ 0 ∀y ∈ S, (1.1)

where S ⊆ Rn is a nonempty closed convex set, F : Rn × Ω → Rn is a vector-
valued function, and (Ω,F , P ) is a probability space with Ω ⊆ Rm. When S is
the nonnegative orthant Rn

+ := {x ∈ Rn |x ≥ 0}, this problem is rewritten as the
stochastic complementarity problem

F (x, ω) ≥ 0, x ≥ 0, F (x, ω)Tx = 0. (1.2)

1This work was supported in part by a Grant-in-Aid for Scientific Research from Japan Society
for the Promotion of Science.

2Department of Mathematical System Science, Faculty of Science and Technology, Hirosaki
University, Hirosaki 036-8561, Japan (chen@cc.hirosaki-u.ac.jp)

3Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto
University, Kyoto 606-8501, Japan (fuku@i.kyoto-u.ac.jp)

1



In general, there is no x satisfying (1.1) or (1.2) for all ω ∈ Ω. An existing
approach, which may be called the expected value method, considers the following
deterministic formulations of (1.1) and (1.2), respectively:

x ∈ S, F∞(x)T (y − x) ≥ 0 ∀y ∈ S, (1.3)

and
F∞(x) ≥ 0, x ≥ 0, F∞(x)Tx = 0, (1.4)

where F∞(x) := E[F (x, ω)] is the expectation function of the random function
F (x, ω) [12, 13]. Note that these problems are in general different from those
which are obtained by simply replacing the random variable ω by its expected
value E[ω] in (1.1) or (1.2). Since the expectation function F∞(x) is usually still
difficult to evaluate exactly, one may construct a sequence of functions {Fk(x)}
that converges in a certain sense to F∞(x), and solve a sequence of problems (1.3)
or (1.4) in which F∞(x) is replaced by Fk(x). In practice, approximating functions
Fk(x) may be constructed by using discrete distributions {(ωi, pi), i = 1, . . . , k} as

Fk(x) :=
k
∑

i=1

F (x, ωi)pi,

where pi is the probability of sample ωi. Convergence properties of such approxi-
mation problems have been studied in [12, 13] by extending the earlier results [23]
for stochastic optimization and deterministic variational inequality problems.

The deterministic complementarity problem has played an important role in
studying equilibrium systems that arise in mathematical programming, operations
research and game theory. There are numerous publications on complementarity
problems. In particular, Cottle, Pang and Stone [6] and Facchinei and Pang [8]
give comprehensive treatment of theory and methods in complementarity problems.
Ferris and Pang [9] present a survey of applications in engineering and economics.
On the other hand, in many practical applications, complenmentarity problems
often involve uncertain data. However, references on stochastic complementarity
problems are relatively scarce [1, 7, 12, 13, 14], compared with stochastic opti-
mization problems for which abundant results are available in the literature; see
[15, 18, 25] in particular for simulation-based approaches in stochastic optimiza-
tion.

In this paper, we study a new deterministic formulation for the stochastic com-
plementarity problem, which employs an NCP function. A function φ : R2 → R is
called an NCP function if it has the property

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

Two popular NCP functions are the “min” function

φ(a, b) = min(a, b)

and the Fischer-Burmeister (FB) function [10]

φ(a, b) = a+ b−
√
a2 + b2.
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All NCP functions including the “min” function and FB function are equivalent
in the sense that they can reformulate any complementarity problem as a system
of nonlinear equations having the same solution set. Moreover, some NCP func-
tions have the same growth rate. In particular, Tseng [27] showed that the “min”
function and the FB function satisfy

2√
2 + 2

|min(a, b)| ≤ |a+ b−
√
a2 + b2| ≤ (

√
2+2)|min(a, b)| ∀a, b ∈ R. (1.5)

In the last decade, NCP functions have been used as a powerful tool for dealing
with linear and nonlinear complementarity problems [2, 5, 11, 16, 17, 19, 22, 26].

In this paper, we propose the following deterministic formulation which is to
find a vector x ∈ Rn

+ that minimizes an expected residual for the complementarity
problem (1.2):

min
x∈Rn

+

E[‖Φ(x, ω)‖2], (1.6)

where Φ : Rn × Ω → Rn is defined by

Φ(x, ω) =









φ(F1(x, ω), x1)
...

φ(Fn(x, ω), xn)









.

Our approach may be regarded as a natural extension of the least-squares method
for a system of stochastic equations to the stochastic complementarity problem.
Problem (1.6) will be referred to as the expected residual minimization (ERM)
problem associated with the complementarity problem (1.2).

Throughout, we will focus on the stochastic linear complementarity problem
(SLCP)

F (x, ω) := M(ω)x + q(ω) ≥ 0, x ≥ 0, xTF (x, ω) = 0, (1.7)

where M(ω) ∈ Rn×n and q(ω) ∈ Rn are continuous random matrices and vectors.
The norm ‖ · ‖ is the Euclidean norm ‖ · ‖2.

We note that, if Ω has only one realization, then the ERM problem (1.6) asso-
ciated with an SLCP reduces to the standard LCP and the solubility of (1.6) does
not depend on the choice of NCP functions. However, the following example shows
that we do not have such equivalence if Ω has more than one realization.

Example 1. Let n = 1, m = 1, Ω = {ω1, ω2} = {0, 1}, p1 = p2 = 1/2, M(ω) =
ω(1 − ω) and q(ω) = 1 − 2ω. Then we have M(ω1) = M(ω2) = 0, q(ω1) = 1,
q(ω2) = −1 and

E[‖Φ(x, ω)‖2] =
1

2

2
∑

i=1

‖Φ(x, ωi)‖2.

The objective function of the ERM problem (1.6) defined by the “min” function is

1

2
[(min(1, x))2 + (min(−1, x))2] =











x2 x ≤ −1
1
2
(x2 + 1) −1 ≤ x ≤ 1

1 x ≥ 1
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and the problem has a unique solution x∗ = 0. However, problem (1.6) defined by
the FB function has no solution as the objective function

1

2
[(1 + x−

√
1 + x2)2 + (−1 + x−

√
1 + x2)2]

is monotonically decreasing on [0,∞).

The remainder of the paper is organized as follows: In Section 2, we show that
a sufficient condition for the existence of minimizers of the ERM problem and its
discrete approximations is that there is an observation ωi such that the coefficient
matrix M(ωi) is an R0 matrix. Moreover, we prove that every accumulation point
of minimizers of discrete approximation problems is a solution of the ERM prob-
lem. Especially, for a class of SLCPs with a fixed coefficient matrix M(ω) ≡ M ,
we show that M being an R0 matrix is a necessary and sufficient condition for the
boundedness of the solution sets of the ERM problem and its discrete approxima-
tions with any q(ω). In Section 3, we show that a class of SLCPs with a fixed
coefficient matrix, the ERM problem with the “min” function is smooth and can
be solved without using discrete approximation. In Section 4, we present numerical
results to compare the proposed ERM method with the expected value method on
an example of SLCP. In Section 5, we make some remarks to conclude the paper.

2 Existence and convergence of solutions

Consider the following ERM problem:

min
x≥0

f(x) :=
∫

Ω
‖Φ(x, ω)‖2ρ(ω)dω, (2.1)

where ρ : Ω → R+ is a continuous probability density function satisfying
∫

Ω
ρ(ω)dω = 1 and

∫

Ω
(‖M(ω)‖ + ‖q(ω)‖)2ρ(ω)dω <∞. (2.2)

In order to find a solution of an ERM problem (1.6) numerically, it is necessary
to study the objective function of (1.6) defined by an NCP function. There are a
number of NCP functions [2, 17, 19, 22, 26]. In this paper, we focus on the “min”
function and the FB function. We use Φ1(x, ω) and Φ2(x, ω) to distinguish the
functions Φ(x, ω) defined by the “min” function and the FB function, respectively.
However, we retain the notation Φ(x, ω) to represent both Φ1(x, ω) and Φ2(x, ω)
when we discuss their common properties.

Note that, by the continuity of Φ1(·, ω), the function

f1(x) :=
∫

Ω
‖Φ1(x, ω)‖2ρ(ω)dω

is continuous. Moreover, by the continuous differentiability of ‖Φ2(·, ω)‖2 [16], the
function

f2(x) :=
∫

Ω
‖Φ2(x, ω)‖2ρ(ω)dω
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is continuously differentiable.
Let the level sets of functions f and fi, i = 1, 2, be denoted

D(γ) := {x | f(x) ≤ γ}

and
Di(γ) := {x | fi(x) ≤ γ}, i = 1, 2,

respectively. From (1.5) and the definitions of f1(x) and f2(x), we have

2

3 + 2
√

2
f1(x) ≤ f2(x) ≤ (6 + 4

√
2)f1(x) ∀x ∈ Rn.

This implies

D2(γ) ⊆ D1

(3 + 2
√

2

2
γ
)

(2.3)

and
D1(γ) ⊆ D2((6 + 4

√
2)γ).

Recall that M is called an R0 matrix if

x ≥ 0, Mx ≥ 0, xTMx = 0 =⇒ x = 0.

Lemma 2.1 If M(ω̄) is an R0 matrix for some ω̄ ∈ Ω, then there is a closed sphere
B(ω̄, δ) := {ω | ‖ω − ω̄‖ ≤ δ} with δ > 0 such that for every ω ∈ B̄ := B(ω̄, δ)∩Ω,
M(ω) is an R0 matrix.

Proof: Assume that this lemma is not true. Then there is a sequence {ωk} ⊂ B̄
such that

lim
k→∞

ωk = ω̄

and, for every M(ωk), we can find xk ∈ Rn satisfying

xk ≥ 0, xk 6= 0, M(ωk)xk ≥ 0, (xk)TM(ωk)xk = 0.

Put vk = xk

‖xk‖
. Then we have

vk ≥ 0, ‖vk‖ = 1, M(ωk)vk ≥ 0, (vk)TM(ωk)vk = 0.

Letting k → ∞, we obtain a vector v̄ ∈ Rn satisfying

v̄ ≥ 0, ‖v̄‖ = 1, M(ω̄)v̄ ≥ 0, v̄TM(ω̄)v̄ = 0.

This contradicts the assumption that M(ω̄) is an R0 matrix.

Lemma 2.2 Assume that there exists an ω̄ ∈ Ω such that ρ(ω̄) > 0 and M(ω̄) is
an R0 matrix. Then, for any positive number γ, the level set D(γ) is bounded.
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Proof: By the continuity of ρ and Lemma 2.1, there exist a closed sphere B(ω̄, δ)
with δ > 0 and a constant ρ0 > 0 such that M(ω) is an R0 matrix and ρ(ω) ≥ ρ0

for all ω ∈ B̄ := B(ω̄, δ)∩Ω. Let us consider a sequence {xk} ⊂ Rn. Then, by the
continuity of M(·), q(·) and Φ, for each k, there exists an ωk ∈ B̄ such that

‖Φ(xk, ωk)‖ = min
ω∈B̄

‖Φ(xk, ω)‖.

It then follows that

f(xk) ≥
∫

B̄
‖Φ(xk, ω)‖2ρ(ω)dω

≥ ‖Φ(xk, ωk)‖2ρ0

∫

B̄
dω

≥ Cρ0‖Φ(xk, ωk)‖2,

where C =
∫

B̄
dω > 0. To prove the lemma, it suffices show that ‖Φ(xk, ωk)‖ →

+∞ whenever ‖xk‖ → +∞.
Suppose ‖xk‖ → +∞. It is not difficult to see that if xk

i → −∞ or (M(ωk)xk +
q(ωk))i → −∞ for some i, then we have |φ((M(ωk)xk + q(ωk))i, x

k
i )| → +∞ and

hence ‖Φ(xk, ωk)‖ → +∞. So we only need to consider the case where both {xk
i }

and {(M(ωk)xk + q(ωk))i} are bounded below for all i. Then, by dividing each
element of these sequences by ‖xk‖ and passing to the limit, we obtain

(M(ω̂)v̂)i ≥ 0, v̂i ≥ 0, i = 1, . . . , n,

where ω̂ and v̂ are accumulation points of {ωk} and { xk

‖xk‖
}, respectively. Note that

ω̂ ∈ B̄ and ‖v̂‖ = 1. Since M(ω̂) is an R0 matrix and v̂ 6= 0, there must exist some
i such that (M(ω̂)v̂)i > 0 and v̂i > 0. This implies (M(ωk)xk + q(ωk))i → +∞
and xk

i → +∞, which in turn implies |φ((M(ωk)xk + q(ωk))i, x
k
i )| → +∞. Hence

we have ‖Φ(xk, ωk)‖ → +∞. This completes the proof.

Now, we employ a quasi-Monte Carlo method for numerical integration [20]. In
particular, we use a transformation function ω = u(ω̃) to go from an integral on
Ω to the integral on the unit hypercube [0, 1]m ⊆ Rm and generate observations
{ω̃i, i = 1, . . . , N} in the unit hypercube. The function f(x) can then be written
as

f(x) =
∫

Ω
‖Φ(x, ω)‖2ρ(ω)dω

=
∫

[0,1]m
‖Φ(x, u(ω̃))‖2ρ(u(ω̃))u′(ω̃)dω̃

=
∫

[0,1]m
‖Φ(x, u(ω̃))‖2ρ̃(ω̃)dω̃,

where ρ̃(ω̃) = ρ(u(ω̃))u′(ω̃).
To simplify the notation, without confusion, we suppose Ω = [0, 1]m and let ω

denote ω̃ in the remainder of this section.
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For each k, let

f (k)(x) :=
1

Nk

∑

ωi∈Ωk

‖Φ(x, ωi)‖2ρ(ωi),

where Ωk := {ωi, i = 1, . . . , Nk} is a set of observations generated by a quasi-
Monte Carlo method such that Ωk ⊂ Ω and Nk → ∞ as k → ∞. In the remainder
of this section, we will study the behavior of the following approximations to the
ERM problem (2.1):

min
x≥0

f (k)(x). (2.4)

By the continuity of Φ1(·, ω), the function

f
(k)
1 (x) :=

1

Nk

∑

ωi∈Ωk

‖Φ1(x, ω
i)‖2ρ(ωi)

is continuous. Moreover, by the continuous differentiability of ‖Φ2(·, ω)‖2 [16], the
function

f
(k)
2 (x) :=

1

Nk

∑

ωi∈Ωk

‖Φ2(x, ω
i)‖2ρ(ωi)

is continuously differentiable.

Theorem 2.1 For any fixed x ∈ Rn
+

f(x) = lim
k→∞

f (k)(x).

Proof: By the assumption of this theorem, for any fixed x ∈ Rn
+, we have

‖Φ1(x, ω)‖ = ‖min(M (ω)x + q(ω), x)‖
≤ ‖M(ω)x + q(ω)‖
≤ ‖M(ω)‖‖x‖ + ‖q(ω)‖
≤ (‖x‖ + 1)(‖M(ω)‖ + ‖q(ω)‖),

Hence the function ‖Φ1(x, ·)‖2ρ(·) is continuous, nonnegative and bounded due to
condition (2.2).

Since Φ2 and Φ1 have the same growth rate (1.5), ‖Φ2(x, ·)‖2ρ(·) is also con-
tinuous, nonnegative and bounded. Therefore, we can claim that ‖Φ(x, ·)‖2ρ(·) is
integrable, that is, 0 ≤ f(x) <∞.

Finally, from the continuity of ‖Φ(x, ·)‖2ρ(·), and convergence analysis of dis-
tribution of sequences [20], we find that f(x) = limk→∞ f (k)(x) for each x ∈ Rn

+.

Let us denote the set of optimal solutions to the ERM problem (2.1) by S and
those of approximate ERM problems (2.4) by Sk.

Theorem 2.2 Assume that there is an ω̄ ∈ Ω such that ρ(ω̄) > 0 and M(ω̄) is an
R0 matrix. Then for all large k, Sk is nonempty and bounded. Let x(k) ∈ Sk for
each k. Then every accumulation point of the sequence {x(k)} is contained in the
set S.
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Proof: By Lemma 2.1, there are a k̄ > 0 and a closed sphere B(ω̄, δ) := {ω | ‖ω−
ω̄‖ ≤ δ} with δ > 0 such that for all k ≥ k̄, Ωk ∩ B(ω̄, δ) are nonempty and for
every ω ∈ Ωk ∩B(ω̄, δ), M(ω) is an R0 matrix. Hence, we can show that for k ≥ k̄,
Sk is nonempty and bounded in a similar manner to Lemma 2.2.

Let x̄ be an accumulation point of {x(k)}. For simplicity, we assume that {x(k)}
itself converges to x̄. Let γ > f(x̄). Then from the continuity of f , we have

f(x(k)) ≤ γ for all large k,

that is, x(k) ∈ D(γ) for all large k.
Now we show

|f (k)(x(k)) − f (k)(x̄)| → 0 as k → ∞. (2.5)

It is known that for any fixed ω, Φ(·, ω) is globally Lipschitzian, that is,

‖Φ(x, ω) − Φ(y, ω)‖ ≤ L(ω)‖x− y‖ for all x, y ∈ Rn,

where L(ω) is a positive constant depending on ω. Moreover, we can show that

L(ω) ≤ c1(‖M(ω)‖ + ‖q(ω)‖)

for some positive constant c1.
In a way similar to the proof of Theorem 2.1, for any x ∈ D(γ), we obtain

‖Φ(x, ω)‖ ≤ c0(‖x‖ + 1)(‖M(ω)‖ + ‖q(ω)‖)

for some constant c0 > 0. Furthermore, since D(γ) is closed and bounded by
Lemma 2.2, we may define

c2 := max{‖x‖ | x ∈ D(γ)}.

Therefore, for any x, y ∈ D(γ), we obtain

∣

∣

∣‖Φ(x, ω)‖2 − ‖Φ(y, ω)‖2
∣

∣

∣ = (‖Φ(x, ω)‖ + ‖Φ(y, ω)‖) |‖Φ(x, ω)‖ − ‖Φ(y, ω)‖|
≤ c0c1(2 + ‖x‖ + ‖y‖)(‖M(ω)‖+ ‖q(ω)‖)2‖x− y‖
≤ C(‖M(ω)‖ + ‖q(ω)‖)2‖x− y‖,

where C := 2c0c1(1 + c2).
By the assumption (2.2) on the density function ρ, we obtain

|f (k)(x(k)) − f (k)(x̄)| ≤ 1

Nk

Nk
∑

i=1

∣

∣

∣‖Φ(x(k), ωi)‖2 − ‖Φ(x̄, ωi)‖2
∣

∣

∣ ρ(ωi)

≤ 1

Nk

Nk
∑

i=1

C(‖M(ωi)‖ + ‖q(ωi)‖)2ρ(ωi)‖x(k) − x̄‖

≤ K‖x(k) − x̄‖,
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where K is a constant satisfying

K ≥ C

Nk

Nk
∑

i=1

(‖M(ωi)‖ + ‖q(ωi)‖)2ρ(ωi) for all large k.

Hence (2.5) holds. Now by Theorem 2.1 and (2.5), we find

|f (k)(x(k)) − f(x̄)| ≤ |f (k)(x(k)) − f (k)(x̄)| + |f (k)(x̄) − f(x̄)|
→ 0 as k → ∞.

However, by definition, we have

f (k)(x(k)) ≤ f (k)(x) for all x ∈ Rn
+.

Therefore, combining the above results, we obtain

f(x̄) = lim
k→∞

f (k)(x(k)) ≤ lim
k→∞

f (k)(x) = f(x) for all x ∈ Rn
+.

This completes the proof.

The following lemma shows that the converse of Lemma 2.2 is true, when
M(ω) ≡ M and q(ω) is a linear function of ω.

Lemma 2.3 Suppose that M(ω) ≡ M . If M is not an R0 matrix, and q(ω) is a
linear function of ω, then there is a γ > 0 such that the level set D(γ) is unbounded.

Proof: Since M is not an R0 matrix, there is an x 6= 0 such that

x ≥ 0, Mx ≥ 0, xTMx = 0,

which in particular implies that either xi = 0 or (Mx)i = 0 holds for each i. Hence
we have

min(xi, (Mx+ q(ω))i) =































0 xi = 0, (Mx+ q(ω))i ≥ 0

(Mx+ q(ω))i xi = 0, (Mx+ q(ω))i ≤ 0

xi (Mx)i = 0, qi(ω) ≥ xi

qi(ω) (Mx)i = 0, qi(ω) ≤ xi.

(2.6)

Note that, sinceMx ≥ 0, we have |(Mx+q(ω))i| ≤ |qi(ω)| whenever (Mx+q(ω))i ≤
0. Thus it follows from (2.6) that

1√
2 + 2

|Φ2(x, ω)i| ≤ |Φ1(x, ω)i| = |min(xi, (Mx+ q(ω))i)| ≤ |qi(ω)|,

and hence we find

f(x) ≤ (
√

2 + 2)2
∫

Ω
‖q(ω)‖2ρ(ω)dω =: γ.

Since by assumption q(ω) is a linear function of ω, it follows from assumption (2.2)
on ρ(ω) that we have γ <∞.

Since the argument above holds for λx with any λ > 0, that is, f(λx) ≤ γ, we
complete the proof.
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Theorem 2.3 Suppose M(ω) ≡ M and q(ω) is a linear function of ω, i.e., q(ω) =
q̄ + Tω, where q̄ ∈ Rn and T ∈ Rn×m.

1. If M is an R0 matrix, then for any q̄ and T , the sets Sk are nonempty and
bounded. Let x(k) ∈ Sk for each k. Then any accumulation point of {x(k)} is
a solution of the ERM problem (1.6).

2. If M is not an R0 matrix, then there are q̄ and T such that the sets Sk are
unbounded for all k.

Proof: Part 1 follows from Theorem 2.2 directly. To prove Part 2, let x 6= 0 satisfy

x ≥ 0, Mx ≥ 0, xTMx = 0

and choose q̄ and T such that

xi = 0 =⇒ qi(ω) ≥ 0 for all ω ∈ Ω,

xi > 0 =⇒ qi(ω) ≡ 0 for all ω ∈ Ω.

Then we have

‖Φ2(λx, ω)‖ ≤ (
√

2 + 2)‖Φ1(λx, ω)‖ = (
√

2 + 2)‖min(λx,M(λx) + q(ω))‖ = 0

for all ω ∈ Ω and λ > 0. Hence f (k)(λx) = 0, that is, λx ∈ Sk for all λ > 0. Since
x 6= 0, Sk is unbounded.

Remark 2.1. It is well known that for the LCP, the matrix M being a P matrix is
a necessary and sufficient condition for the existence and uniqueness of the solution
of the LCP with all q. Theorem 2.3 states that the matrix M being an R0 matrix
is a necessary and sufficient condition for the boundedness of the solution set of
the ERM problem associated with the SLCP with a fixed matrix M and a random
vector q(ω) that is a linear function of ω.
Remark 2.2 Recall that G : Rn → Rn is called an R0 function in a domain
X ⊆ Rn, if the Jacobian ∇G(x) is an R0 matrix for any x ∈ X. (A slightly different
definition of an R0 function is also found in the literature. See [3, 27, 28].) Results
for the SLCP with an R0 matrix may be generalized to the stochastic nonlinear
complementarity problem (SNCP) with an R0 function. For instance, a nonlinear
version of Lemma 2.1 may be stated as follows: Suppose that F is continuously
differentiable with respect to x. If F (·, ω̄) is an R0 function for some ω̄ ∈ Ω on a
closed domain X, and ∇xF is continuous on X × Ω, then there is a closed sphere
B(ω̄, δ) = {ω | ‖ω − ω̄‖ ≤ δ} with δ > 0 such that for every ω ∈ B̄ := B(x̄, δ) ∩ Ω,
F (·, ω) is an R0 function on X.
Remark 2.3. Assuming that F (x, ·) = M(·)x + q(·) is continuous with respect
to ω makes the condition for the existence of a solution very simple, that is, there
is an ω̄ ∈ Ω such that M(ω̄) is an R0 matrix. Without the continuity in ω, we
may establish the existence of a solution by assuming that F is a Carathéodory
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mapping,4 i.e., F (x, ·) = M(·)x+q(·) is measurable for each x, and there is a closed
sphere B such that M(ω) is an R0 matrix for every ω ∈ B ∩ Ω and

∫

B∩Ω
dP (ω) > 0,

where P is a probability distribution function of ω.

3 SLCP with fixed coefficient matrix

In this section, we consider a class of SLCPs, where

M(ω) ≡M and q(ω) ≡ q̄ + Tω,

where M ∈ Rn×n, q̄ ∈ Rn and T ∈ Rn×m are given constants. Moreover we will
assume that matrix T has at least one nonzero element in each row.

Lemma 3.1 Suppose that ρ : R → [0,∞) satisfies (2.2). Then for any c 6= 0, the
function

ψ(a, b) :=
∫ ∞

−∞
(min(a, b+ cω))2ρ(ω)dω

is a real-valued and continuously differentiable function.

Proof: It is easy to verify

ψ(a, b) =
∫ ∞

−∞
(a− max(0, a− b− cω))2ρ(ω)dω

= a2 − 2a
∫ ∞

−∞
max(0, a− b− cω)ρ(ω)dω

+
∫ ∞

−∞
(max(0, a− b− cω))2ρ(ω)dω. (3.1)

By conditions (2.2), for any a, b, we have ψ(a, b) < ∞. Next, we show ψ is con-
tinuously differentiable. Obviously the first term is continuously differentiable. If
c > 0, then the second term is a class of smoothing function for the function
max(0, ·). By the results in [4], it is continuously differentiable. If c < 0, we set
ω̃ = −ω and ρ̃(ω̃) := ρ(ω). Then ρ̃ : R → [0,∞) is continuous. Hence we can use
the results in [4] to claim that

∫ ∞

−∞
max(0, a− b− cω)ρ(ω)dω

=
∫ ∞

−∞
max(0, a− b− |c|ω̃)ρ̃(ω̃)dω̃

is also continuously differentiable with respect to a and b.

4
F is called a Carathéodory mapping [24] if F is continuous in x for every ω and is measurable

in ω for every x.
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The continuously differentiability of the third term in (3.1) follows from the
fact that (max(0, a− b− cω))2 ρ(ω) is continuously differentiable with respect to
a and b.

We illustrate Lemma 3.1 by the following uniform density function

ρ(ω) =







1 ω ∈ [0, 1]

0 otherwise.

Suppose c > 0. We can deal with the case c < 0 in a similar manner. Calculating
the integrals, we obtain

∫ ∞

−∞
max(0, a− b− cω)ρ(ω)dω

=























0 a− b ≤ 0

1
2c

(a− b)2 0 ≤ a− b ≤ c

a− b− c
2

a− b ≥ c

and
∫ ∞

−∞
(max(0, a− b− cω))2 ρ(ω)dω

=























0 a− b ≤ 0

1
3c

(a− b)3 0 ≤ a− b ≤ c

1
3c

[(a− b)3 − (a− b− c)3] a− b ≥ c.

Summarizing these terms gives the function

ψ(a, b) =























a2 a− b ≤ 0

a2 − a
c
(a− b)2 + 1

3c
(a− b)3 0 ≤ a− b ≤ c

a2 − 2a(a− b) + ac+ 1
3c

[(a− b)3 − (a− b− c)3] a− b ≥ c,

which is continuously differentiable.

Theorem 3.1 Let Ω = [α1, β1]×. . .×[αm, βm] with αi < βi, j = 1, . . . , m. Suppose
that ωj , j = 1, . . . , m, are independent and the density function ρ satisfies (2.2).
We also assume that matrix T has at least one nonzero element in each row. Then
the function

f1(x) =
∫

Ω
‖min(x,Mx+ q̄ + Tω)‖2ρ(ω)dω

is real-valued and continuously differentiable.

Proof: From (2.2), we have
f1(x) <∞.
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For each j, let ρj denote the density function for ωj. Due to the structure of the
problem, f1 can be written as

f1(x) =
n
∑

i=1

∫ βm

αm

. . .
∫ β1

α1

(min(xi, (Mx+ q̄ + Tω)i)
2ρ1(ω1) · · · ρm(ωm)dω1 · · · dωm.

Recall that, for each i, there exists at least one j such that Tij 6= 0. From Lemma
3.1, it then follows that

ηij(x, ω1, . . . , ωj−1, ωj+1, . . . , ωm)

:=
∫ βj

αj

(min(xi, (Mx+ q̄ + Tω)i)
2ρj(ωj)dωj

=
∫ βj

αj

(min(xi, (Mx+ q̄)i +
∑

l6=j

Tilωl + Tijωj)
2ρj(ωj)dωj

is continuously differentiable in x, since Tij 6= 0. Hence

f1,i(x) :=
∫ β1

α1

. . .
∫ βm

αm

(min(xi, (Mx+ q̄ + Tω)i)
2ρ1(ω1) · · · ρm(ωm)dω1 · · · dωm

=
∫ β1

α1

. . .
∫ βj−1

αj−1

∫ βj+1

αj+1

. . .
∫ βm

αm

ηij(x, ω1, . . . , ωj−1, ωj+1, . . . , ωm)

ρ1(ω1) · · · ρj−1(ωj−1)ρj+1(ωj+1) · · · ρm(ωm)dω1 · · · dωj−1dωj+1 · · · dωm

is a continuously differentiable function. Since each row of T has at least one
nonzero element, we can claim that the function f1 =

∑n
i=1 f1,i is continuously

differentiable.

This theorem suggests that it is possible to solve some special SLCPs without
using discrete approximation. For example, we consider the following case: For
each i, the ith row of matrix T has just one positive element ti, and the density
function ρ is defined by

ρ(ω) =







1 ω ∈ [0, 1]m

0 otherwise.
(3.2)

In this case, we can write f1 explicitly as

f1(x) =
n
∑

i=1

f1,i(x),

where

f1,i(x) =































x2
i xi − yi ≤ 0

x2
i − xi

ti
(xi − yi)

2 + 1
3ti

(xi − yi)
3 0 ≤ xi − yi ≤ ti

x2
i − 2xi(xi − yi) + xiti + 1

3ti
[(xi − yi)

3

−(xi − yi − ti)
3] xi − yi ≥ ti
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and yi = (Mx + q̄)i. Moreover, it is notable, in this case, the ERM problem (1.6)
defined by the “min” function is continuously differentiable. Therefore, we even
do not need to use smoothing approximations.

In other cases, for example, ωj are distributed normally or exponentially. In
practice, we may always restrict ourselves to their 99% confidence interval [αj, βj].
Hence Theorem 3.1 is particularly important for the purpose of applications. More-
over, we can use a transformation function to go from an integral on Rm to the
integral of [0, 1]m.

Now let us turn our attention to the FB function. The ERM problem (1.6)
defined by the FB function is continuously differentiable. In the case where the
ith row of matrix T has only one positive element ti for each i = 1, . . . , n, and the
density function ρ is defined by (3.2), the function f2 can be written as

f2(x) =
n
∑

i=1

(xi + yi)
2 +

ti
2

+
1

2ti

(

yi

√

x2
i + y2

i − (yi + ti)
√

x2
i + (yi + ti)2

)

+
x2

i

2ti
log





√

x2
i + y2

i + yi
√

x2
i + (yi + ti)2 + yi + ti



 . (3.3)

Remark 3.1 Since f is not a convex function, it may be interesting to study
stationary points of f and its approximations f (k). In the case where ‖Φ(·, ·)‖2

is continuously differentiable with respect to x, a stationary point of the ERM
problem (2.1) is a solution of the equation

H(x) := min(∇f (x), x) = min(
∫

Ω
∇x‖Φ(x, ω)‖2ρ(ω)dω, x) = 0, (3.4)

while a stationary point of the approximate ERM problem (2.4) is a solution of
the equation

H(k)(x) := min(∇f (k)(x), x) = min(
1

Nk

∑

ωi∈Ωk

∇x‖Φ(x, ωi)‖2ρ(ωi), x) = 0. (3.5)

Solutions of (3.5) may be shown to converge to a solution of (3.4) under the as-
sumption that H(x) is real-valued for every x and H(·) is uniformly continuous.
Moreover, we may construct a superlinearly convergent Newton-like method for
solving the ERM problem via (3.4). However, the function ‖Φ1(·, ·)‖2 is gener-
ally nondifferentiable, and computing the gradient ∇x‖Φ2(x, ω)‖2 is much more
expensive than computing ‖Φ2(x, ω)‖2. Therefore, an explicit expression of f like
(3.3) will be useful theoretically and computationally, since it does not involve an
integral any more.

4 Numerical example

To illustrate our model, we use a refinery production problem, which is based on
an example in [15] and a market equilibrium model in [6].
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A refinery has two products; gasoline and fuel oil. The production and the
demand depend on the output of oil and the weather, respectively, which change
every day with uncertainty.

On the supply side, the problem is to minimize the production cost with the
technological constraint (4.1) and the demand requirement constraints (4.2)–(4.3):

min
u1,u2

2u1 + 3u2

s.t. u1 + u2 ≤ 100 (4.1)

(2 + ω1)u1 + 6u2 ≥ ω3y1 + ω3y2 + 180 + ω3 (4.2)

3u1 + (3.4 − ω2)u2 ≥ ω4y1 − ω4y2 + 162 + ω4 (4.3)

u1 ≥ 0, u2 ≥ 0,

where ω3 and ω4 are distributed normally, and ω1 and ω2 are distributed uniformly
and exponentially, respectively, with the following parameters:

distr ω1 ≈ U [−0.8, 0.8]
distr ω2 ≈ EXP(λ = 2.5)
distr ω3 ≈ N (0, 12)
distr ω4 ≈ N (0, 9).

Let

u =

(

u1

u2

)

, c =

(

2
3

)

, y =

(

y1

y2

)

, A = (−1,−1) , b = −100,

ω =











ω1

ω2

ω3

ω4











, B(ω) =

(

2 + ω1 6
3 3.4 − ω2

)

, D(ω) =

(

ω3 ω3

ω4 −ω4

)

and

d(y, ω) = D(ω)y +

(

180 + ω3

162 + ω4

)

.

Then the problem on the supply side can be written as

minu cTu
s.t. Au ≥ b

B(ω)u ≥ d(y, ω), u ≥ 0.
(4.4)

On the demand side, d(y, ω) is the market demand function with y representing
the demand prices. Generally, D(ω) is not symmetric, that is, the demand function
is not integrable.

The equilibrating condition is given by

y = π,
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where π denotes the market supply prices corresponding to the constraints (4.2)–
(4.3). Following the argument in [6], we may write the equilibrium conditions for
each fixed ω as the linear complementarity problem

M(ω)x + q(ω) ≥ 0, x ≥ 0, (M(ω)x + q(ω))Tx = 0 (4.5)

with

x :=







u
v
y





 , M(ω) :=







0 −AT −B(ω)T

A 0 0
B(ω) 0 −D(ω)





 , q(ω) :=











c
−b

−180 − ω3

−162 − ω4











.

A solution of problem (4.5) is dependent on the random variable ω. However,
in practice, we do not know the value of the random variable before solving the
problem. Now we apply the proposed ERM approach as well as the expected value
method to (4.5). In the latter method, one solves the single deterministic LCP

M̄x+ q̄ ≥ 0, x ≥ 0, (M̄x+ q̄)Tx = 0, (4.6)

where M̄ = E[M(ω)] and q̄ = E[q(ω)]. In this example, these expected values are
given as

E[M(ω)] = M(E[ω]) and E[q(ω)] = q(E[ω]).

Since the expected values of ω1, ω2, ω3, ω4 are 0, 0.4, 0, 0, respectively, we have

M̄ =

















0 0 1 −2 −3
0 0 1 −6 −3
−1 −1 0 0 0
2 6 0 0 0
3 3 0 0 0

















, q̄ =

















2
3

100
−180
−162

















.

Note that the LCP (4.6) corresponds to the expected value formulation (1.4). An
advantage of the expected value formulation (4.6) is that we may solve the problem
fast, for example, by applying a Newton-type method [5] to the equivalent system
of nonsmooth equations

min(M̄x+ q̄, x) = 0.

In fact, the solution to (4.6) is computed as

x̄ = (36, 18, 0.0, 0.25, 0.5)T .

However, as shown below, the decision based on the expected value formulation
(4.6) may not be reliable in terms of the feasibility for the constraints (4.2)–(4.3).

To compare the ERM approach with the expected value method, we will con-
sider two cases. In the first case, we assume that only the demand vector d changes
its values randomly, whereas the productivity matrix B is fixed with ω1 ≡ 0 and
ω2 ≡ 0.4. In the second case, both of the vector d and matrix B change their
values randomly according to the afore-mentioned distributions. Note that the
expected value method yields the identical formulation (4.6) for both cases. In
our implementation of the ERM method, we use the following method in [15] to
approximate the continuous distributions by discrete ones.
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• Generate samples ωk
j , j = 1, 2, 3, 4, k = 1, 2, . . . , K, from their respective

99% confidence intervals (except for uniform distributions)

ωk
1 ∈ I1 = [−0.8, 0.8]

ωk
2 ∈ I2 = [0.0, 1.84]

ωk
3 ∈ I3 = [−30.91, 30.91]

ωk
4 ∈ I4 = [−23.18, 23.18].

• For each j, divide Ij into mj subintervals Ij,i, i = 1, 2, . . . , mj, with equal
length.

• For each (j, i), calculate the mean vj,i of samples ωk
j that belong to the

subinterval Ij,i.

• For each (j, i), estimate the probability of vj,i as pj,i = kj,i/K, where kj,i is
the number of samples ωk

j ∈ Ij,i.

• Let N = m1 × m2 × m3 × m4 and set the joint distribution {(ω`, p`), ` =
1, 2, . . . , N} as

ω` =











v1,i1

v2,i2

v3,i3

v4,i4











, p` = p1,i1p2,i2p3,i3p4,i4

for i1 = 1, . . . , m1, i2 = 1, . . . , m2, i3 = 1, . . . , m3, i4 = 1, . . . , m4.

With these preparations, we obtain an (approximate) ERM problem

min
x≥0

fK(x) :=
N
∑

`=1

p`‖(min(M (ω`)x+ q(ω`), x)‖2. (4.7)

Note that the objective function fK depends onK, the number of sample data used
to construct the approximate ERM problem (4.7). In our numerical experiments,
we solved problem (4.7) with various values of K by using fmincon in the Matlab
(version 6.1) tool box for constrained optimization. We examined the following
two cases:

Case 1: ω1 ≡ 0, ω2 ≡ 0.4, m3 = 15, m4 = 15

Case 2: m1 = 5, m2 = 9, m3 = 7, m4 = 11.

Table 1 and Table 2 show the solutions, denoted xK , of problems (4.7) for K =
10i, i = 2, . . . , 6, along with the corresponding objective values fK(xK) and the
empirical reliability relK(xK), that is, the probability for the solution x to be
feasible for the constraints (4.2)–(4.3), which is defined by

relK(x) =
N
∑

`=1

relK` (x),
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Table 1: Case 1: ω1 ≡ 0, ω2 ≡ 0.4,m3 = 15,m4 = 15

K xK fK(xK) relK(xK) fK(x̄) relK(x̄)
102 (46.5948, 40.6903, 0, 0.2773, 0.4289) 0.2824 0.99 214.8772 0.2710
103 (45.9339, 42.3753, 0, 0.2752, 0.4339) 0.2861 0.99 215.4773 0.2861
104 (46.5239, 41.0382, 0, 0.2751, 0.4340) 0.2861 0.99 214.5933 0.2388
105 (46.6777, 41.0575, 0, 0.2752, 0.4337) 0.2859 0.99 213.2355 0.2212
106 (46.6268, 41.0411, 0, 0.2753, 0.4337) 0.2859 0.99 212.9540 0.2700

Table 2: Case 2: m1 = 5,m2 = 9,m3 = 7,m4 = 11

K xK fK(xK) relK(xK) fK(x̄) relK(x̄)
102 (24.2152, 54.9518, 0, 0.2675, 0.4444) 0.3017 0.99 311.7898 0.2905
103 (25.2186, 53.9342, 0, 0.2701, 0.4399) 0.3016 0.99 313.8778 0.2996
104 (22.9901, 54.9858, 0, 0.2698, 0.4404) 0.3020 0.99 336.0607 0.2945
105 (21.9258, 56.2509, 0, 0.2699, 0.4404) 0.3019 0.99 339.6021 0.2972
106 (21.9272, 56.2320, 0, 0.2700, 0.4404) 0.3018 0.99 337.2366 0.2980

where

relK` (x) =







p` if B(ω`)u ≥ d(y, ω`)

0 otherwise.

Table 1 and Table 2 also show the values of fK(x) and relK(x) for K = 10i,
i = 2, . . . , 6, evaluated at the solution x̄ = (36, 18, 0.0, 0.25, 0.5)T of the LCP
(4.6) in the expected value method. We may observe that x̄ has a rather large
residual value for each K and it satisfies the stochastic constraints (4.2)–(4.3) with
probability no more than 0.3.

Our preliminary numerical results for the oil refinery problem indicate that
the proposed ERM formulation yields a reasonable solution of the stochastic LCP
(4.5). In particular, it has desirable properties with regard to the reliability for
the random demand requirement constraints, as B(ω)u ≥ d(y, ω) holds with prob-
ability 0.99 for all cases. We note that the ERM problem has the nonnegativity
constraints x ≥ 0 only, and hence may be solved efficiently, although its objective
function is nonlinear.

It is known that for a fixed ω ∈ Ω, the residual ‖Φ(x, ω)‖ can be used to give
some quantitative information about the distance between x and the solution set
of the deterministic linear complementarity problem LCP(M(ω), q(ω)) [6, 21]. For
example, assume that M(ω`) is a P matrix. Then LCP(M(ω`), q(ω`)) has a unique
solution x`. By Proposition 5.10.5 in [6], we have an absolute error bound for
x ∈ Rn,

‖x` − x‖ ≤ n
1 + ‖M(ω`)‖∞
c(M(ω`))

‖Φ1(x, ω`)‖
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where the quantity

c(M(ω`)) = min
‖z‖∞=1

{max
1≤i≤n

zi(M(ω`)z)i} > 0

is well defined. If M(ω`) is a P matrix for every ω`, ` = 1, 2, . . . , N , then we obtain
a total absolute error bound for x ∈ Rn,

N
∑

`=1

p`‖x` − x‖ ≤ n
N
∑

`=1

p`

1 + ‖M(ω`)‖∞
c(M(ω`))

‖Φ1(x, ω`)‖

≤ n





N
∑

`=1

p`

(

1 + ‖M(ω`)‖∞
c(M(ω`))

)2




1

2
(

N
∑

`=1

p`‖Φ1(x, ω`)‖2

)

1

2

= L
√

fK(x),

where the second inequality follows from Cauchy-Schwarz inequality and

L := n





N
∑

`=1

p`

(

1 + ‖M(ω`)‖∞
c(M(ω`))

)2




1

2

.

This indicates that the value of fK(x) may quantify the total error of a given
point x to the SLCP. From the numerical results shown in Tabel 1 and Table 2, we
may observe that the solutions xK of the ERM formulations are expected to have
much smaller total absolute errors than the solution x̄ obtained by the expected
value method. By using Theorem 5.10.8 in [6], a similar observation may be made
concerning the total relative error.

5 Concluding remarks

We have proposed the ERM formulation for the stochastic complementarity prob-
lem and studied some properties of the ERM problem for the SLCP. This may be
considered an alternative to the expected value method, which is the only approach
currently available for stochastic complementarity problems. Then a natural ques-
tion arises: Which is superior, the ERM method or the expected value method?
Unfortunately, it does not seem possible to give a definitive answer to this question.
Each approach has the pros and cons. An obvious advantage of the expected value
method is that it only needs to solve complementarity problems, while the ERM
method is required to solve nonconvex optimization problems. Moreover, if the
random variable ω has small variance, then the expected value method is expected
to produce a reasonably good solution. On the other hand, if the variance of the
random variable is not small, a solution obtained by the expected value may consid-
erably violate the complementarity conditions for many realizations of the random
variable. In such cases, the ERM method is expected to produce a solution that
is more reliable in the sense that it satisfies the complementarity conditions more
accurately on the whole. This is because the method in itself attempts to minimize
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the residual for the complementarity conditions, which seems to be a reasonable
measure to quantify the goodness of a solution of the stochastic complementarity
problem.
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