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Abstract In this paper we consider a bimatrix game in which the players can neither evaluate

their cost functions exactly nor estimate their opponents’ strategies accurately. To formulate such a

game, we introduce the concept of robust Nash equilibrium that results from robust optimization by

each player, and prove its existence under some mild conditions. Moreover, we show that a robust

Nash equilibrium in the bimatrix game can be characterized as a solution of a second-order cone

complementarity problem (SOCCP). Some numerical results are presented to illustrate the behavior

of robust Nash equilibria.
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1 Introduction

We consider a bimatrix game where two players attempt to minimize their own costs. Let y ∈ <n

and z ∈ <m denote strategies of Players 1 and 2, respectively. Moreover, let Player 1’s cost function

be given by f1(y, z) := yT Az with cost matrix A ∈ <n×m, and Player 2’s cost function be given by

f2(y, z) := yTBz with cost matrix B ∈ <n×m. We suppose that the two players choose their strategies

y and z from the nonempty closed convex sets S1 ⊆ <n and S2 ⊆ <m, respectively. Then, the

players determine their strategies by solving the following minimization problems with the opponents’

strategies fixed:

minimize
y

yT Az subject to y ∈ S1,

minimize
z

yT Bz subject to z ∈ S2.
(1)

A point (y, z) satisfying y ∈ argminy∈S1
yT Az and z ∈ argminz∈S2

yT Bz is called a Nash equilib-

rium [2]. Since the minimization problems (1) are convex, the problem of finding a Nash equilibrium

can be formulated as a variational inequality problem (VIP) [12]. Moreover, if S1 and S2 are given

by S1 = {y ∈ <n | gi(y) ≤ 0, i = 1, . . . , N} and S2 = {z ∈ <m |hj(z) ≤ 0, j = 1, . . . ,M} with some

convex functions gi : <n → < and hj : <m → <, respectively, then the VIP is further reformulated as

a mixed complementarity problem (MCP), which is also called a box-constrained variational problem.

Recently, MCP has been extensively studied and many efficient algorithms have been developed for

solving it [7, 8, 25].

The concept of Nash equilibrium is premised on the accurate estimation of opponent’s strategy and

the exact evaluation of player’s own cost function. Thus Nash equilibrium may hardly represent the
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actual situation when those operations are subject to errors. To deal with such situations, we introduce

the concept of robust Nash equilibrium, which is parallel to that of robust optimization [3, 4, 5, 11].

In the field of game theory, there has been much study on games with incomplete information and

the robustness of equilibria. Harsanyi [14, 15, 16] defines a game with incomplete information as a

game where each player’s payoff function is given in a stochastic manner with its probability distri-

bution. This is one of the most popular formulations of games with incomplete information. Kajii

and Morris [20] adopt Harsanyi’s formulation to define a concept of robust equilibria to incomplete

information. Especially, they show that games with strict equilibria do not necessarily have robust

equilibria, and the unique correlated equilibrium of a game is robust. Moreover, they introduce the

notion of p-dominance, and show that a p-dominant equilibrium is robust under an appropriate as-

sumption. Ui [26] considers the robustness of equilibria of potential games, which is a class of games

involving Monderer and Shapley’s potential function [22]. He shows that the action profile uniquely

maximizing a potential function is robust. Recently, Morris and Ui [24] have unified the above discus-

sions for p-dominant equilibria and equilibria of potential games. They define a generalized potential

function that contains Monderer and Shapley’s potential function [22] and Morris’s characteristic po-

tential function [23], and show that an action maximizing the generalized potential function is a robust

equilibrium to incomplete information.

In the above-mentioned references, the “robustness” means that an equilibrium is stable with

respect to estimation errors. On the other hand, the robust Nash equilibrium introduced in this paper

is an equilibrium that results from robust optimization [3, 4, 5, 11] by each player. More precisely,

our formulation is premised on the conditions (I) – (III) in the next section. Indeed, these conditions

are applicable to several actual problems such as dynamic economic systems based on duopolistic

competition with random disturbances, traffic equilibrium problems with incomplete information on

travel costs, etc. We note that the concept of robustness in this paper is different from those considered

in [20, 24, 26].

In what follows, we first define a robust Nash equilibrium for a bimatrix game, and discuss its

existence. Then, we show that, under certain assumptions, the robust Nash equilibrium problem can

be formulated as a second-order cone complementarity problem (SOCCP). The SOCCP is a class

of complementarity problems where the complementarity condition is associated with the Cartesian

product of second-order cones. Several methods for solving SOCCPs have been proposed recently [6,

9, 13, 17, 18]．

Throughout the paper, we use the following notations. For a set X, P(X) denotes the set of

all subsets of X. For a function f : <n × <m → <, f(·, z) : <n → < and f(y, ·) : <m → <
denote the functions with z and y, respectively, being fixed. <n

+ denotes the nonnegative orthant

in <n, that is, <n
+ := {x ∈ <n |x ≥ 0}. For a vector x ∈ <n, ‖x‖ denotes the Euclidean norm

defined by ‖x‖ :=
√

xT x. For a matrix M ∈ <n×m, ‖M‖F denotes the Frobenius norm defined by

‖M‖F := (
∑n

i=1

∑m
j=1(Mij)

2)1/2. In ∈ <n×n denotes the identity matrix, and en ∈ <n denotes the

vector of ones. For a matrix M ∈ <n×m, M r
i denotes the i-th row vector and M c

i denotes the i-th

column vector.

2 Robust Nash equilibria and its existence

In this section, we define the robust Nash equilibrium of a bimatrix game, and give sufficient conditions

for its existence.
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Throughout the paper, we assume that the following three statements hold for each player i (i =

1, 2):

(I) Player 1 cannot estimate Player 2’s strategy z exactly, but can only estimate that it belongs to

a set Z(z) ⊆ <m containing z. Similarly, Player 2 cannot estimate Player 1’s strategy y exactly,

but can only estimate that it belongs to a set Y (y) ⊆ <n containing y.

(II) Player 1 cannot estimate his/her cost matrix exactly, but can only estimate that it belongs to a

nonempty set DA ⊆ <n×m. Player 2 cannot estimate his/her cost matrix exactly, but can only

estimate that it belongs to a nonempty set DB ⊆ <n×m.

(III) Each player tries to minimize his/her worst cost under (I) and (II).

Now, we define the robust Nash equilibrium under the above three assumptions. To realize (III), we

define functions f̃i : <n ×<m → < (i = 1, 2) by

f̃1(y, z) := max
{

yT Âẑ
∣

∣

∣ Â ∈ DA, ẑ ∈ Z(z)
}

,

f̃2(y, z) := max
{

ŷT B̂z
∣

∣

∣ B̂ ∈ DB, ŷ ∈ Y (y)
}

.
(2)

The functions f̃1(·, z) and f̃2(y, ·) represent Player 1’s and Player 2’s worst costs, respectively, under

uncertainty as assumed in (I) and (II). Players 1 and 2 then solve the following minimization problems,

respectively:

minimize
y

f̃1(y, z) subject to y ∈ S1,

minimize
z

f̃2(y, z) subject to z ∈ S2.
(3)

Now, we are in a position to define the robust Nash equilibrium.

Definition 1 Let functions f̃1 and f̃2 be defined by (2). If yr ∈ argminy∈S1
f̃1(y, zr) and zr ∈

argminz∈S2
f̃2(y

r, z), that is, (yr, zr) is a Nash equilibrium of game (3), then (yr, zr) is called a robust

Nash equilibrium of game (1).

Next, we give a condition for the existence of a robust Nash equilibrium of game (1). Note that

Y (·) and Z(·) given in (I) can be regarded as set-valued mappings. In what follows, we suppose that

Y (·), Z(·), DA and DB in (I) and (II) satisfy the following assumption.

Assumption A

(a) Set-valued mappings Y : <n → P(<n) and Z : <m → P(<m) are continuous, and

Y (y) and Z(z) are nonempty compact for any y ∈ <n and z ∈ <m.

(b) DA ⊆ <n×m and DB ⊆ <n×m are nonempty and compact sets.

The functions f̃1 and f̃2 defined by (2) are well-defined under this assumption. By simple arguments

on continuity, we can show that f̃1 and f̃2 are continuous everywhere. Furthermore, we have the

following lemma on the convexity of f̃1(·, z) and f̃2(y, ·). We omit the proof since it is trivial.

Lemma 1 Suppose that Assumption A holds. Let f̃1 and f̃2 be defined by (2). Then, for any fixed

z ∈ <m and y ∈ <n, the functions f̃1(·, z) and f̃2(y, ·) are convex.

The next lemma is a fundamental result for noncooperative n-person game [2, Theorem 9.1.1].
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Lemma 2 Consider a noncooperative two-person game where cost functions are given by θ1 : <n ×
<m → < and θ2 : <n × <m → <. Suppose that functions θ1 and θ2 are continuous at any (y, z), and

that functions θ1(·, z) and θ2(y, ·) are convex. Suppose that S1 and S2 are nonempty compact convex

sets. Then, the game has a Nash equilibrium.

By the above lemmas, we obtain the following theorem for the existence of a robust Nash equilibrium

of game (1)

Theorem 1 Suppose that Assumption A holds, and that S1 and S2 are nonempty compact convex

sets. Then, game (1) has a robust Nash equilibrium.

Proof. By Lemma 1, the functions f̃1(·, z) and f̃2(y, ·) are convex. Moreover, as pointed out earlier,

f̃1 and f̃2 are continuous everywhere. Therefore, from Lemma 2, game (3) has a Nash equilibrium.

This means, by Definition 1, that game (1) has a robust Nash equilibrium.

3 SOCCP formulation of robust Nash equilibrium

In this section, we focus on the bimatrix game where each player takes a mixed strategy, that is,

S1 = {y | y ≥ 0, eT
ny = 1} and S2 = {z | z ≥ 0, eT

mz = 1}, and show that the robust Nash equilibrium

problem reduces to an SOCCP.

The SOCCP is to find a vector (ξ, η, ζ) ∈ <` ×<` ×<ν satisfying the conditions

K 3 ξ ⊥ η ∈ K, G(ξ, η, ζ) = 0, (4)

where G : <`×<`×<ν → <`×<ν is a given function, ξ ⊥ η denotes ξT η = 0, and K is a closed convex

cone defined by K = K`1 ×K`2 × · · · × K`m with `j-dimensional second-order cones K`j = {(ζ1, ζ2) ∈
<×<`j−1 | ‖ζ2‖ ≤ ζ1}. Since K1 is the set of nonnegative reals, the nonlinear complementarity problem

(NCP) is a special case of SOCCP(4) with K = K1 × · · · × K1 and G(ξ, η, ζ) := F (ξ) − η for a given

function F : <` → <`.

Consider the bimatrix game where Players 1 and 2 solve the following minimization problems (5)

and (6), respectively:

minimize
y

yT Az subject to y ≥ 0, eT
ny = 1, (5)

minimize
z

yT Bz subject to z ≥ 0, eT
mz = 1. (6)

It is well known that a Nash equilibrium of this game is given as a solution of a mixed linear com-

plementarity problem. In fact, since z and y are fixed in (5) and (6), respectively, both problems are

linear programming problems, and their KKT conditions are given by

0 ≤ y ⊥ Az + ens ≥ 0, eT
ny = 1,

0 ≤ z ⊥ BT y + emt ≥ 0, eT
mz = 1, (7)

where s ∈ < and t ∈ < are Lagrange multipliers associated with the equality constraints in (5) and

(6), respectively. Thus, if some (y, z) satisfies the above two KKT conditions simultaneously, then

it is a Nash equilibrium of the bimatrix game. The problem of finding such a (y, z) can be further

formulated as a linear complementarity problem (LCP) [10]．
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Now, we consider bimatrix games involving several types of uncertainty, and show that the robust

Nash equilibrium problem corresponding to each game reduces to an SOCCP of the form

K 3 Mζ + q ⊥ Nζ + r ∈ K, Cζ = d (8)

with variable ζ ∈ <`+τ and constants M,N ∈ <`×(`+τ), q, r ∈ <`, C ∈ <τ×(`+τ) and d ∈ <τ . Note

that, by introducing new variables ξ ∈ <` and η ∈ <`, problem (8) reduces to SOCCP(4) with ν = `+τ

and G : <3`+τ → <2`+τ defined by

G(ξ, η, ζ) :=







ξ − Mζ − q

η − Nζ − r

Cζ − d






.

3.1 Uncertainty in the opponent’s strategy

In this subsection, we consider the case where each player estimates the cost matrix exactly but

opponent’s strategy uncertainly. More specifically, we make the following assumption.

Assumption 1

(a) Y (y) := {y + δy ∈ <n | ‖δy‖ ≤ ρy, eT
n δy = 0} and Z(z) := {z + δz ∈ <m | ‖δz‖ ≤ ρz, eT

mδz = 0},
where ρy and ρz are given positive constants.

(b) DA = {A} and DB = {B}, where A ∈ <n×m and B ∈ <n×m are given constant matrices.

Here, the conditions eT
n δy = eT

mδz = 0 in the definitions of Y (y) and Z(z) are provided so that

eT
n (y+ δy) = eT

m(z + δz) = 1 holds from eT
ny = eT

mz = 1. Under this assumption, the following theorem

holds.

Theorem 2 If Assumption 1 holds, then the bimatrix game has a robust Nash equilibrium.

Proof. It is easily seen that Assumptions 1(a) and 1(b) imply Assumptions A(a) and A(b), respec-

tively. Hence, the theorem readily follows from Theorem 1.

We now show that the robust Nash equilibrium problem can be formulated as SOCCP(8) under

Assumption 1. Player 1 solves the following minimization problem to determine his/her strategy:

minimize
y

max
{

yT A(z + δz)
∣

∣

∣ ‖δz‖ ≤ ρz, eT
mδz = 0

}

subject to eT
ny = 1, y ≥ 0. (9)

Since the projection of vector AT y onto hyperplane π := {z | eT
mz = 0} can be represented as (Im −

m−1emeT
m)AT y, the cost function can be written as

f̃1(y, z) = max
{

yT A(z + δz)
∣

∣

∣ ‖δz‖ ≤ ρz, eT
mδz = 0

}

= yT Az + max
{

yT Aδz
∣

∣

∣ ‖δz‖ ≤ ρz, eT
mδz = 0

}

= yT Az + ρz‖ÃT y‖,

where Ã := A(Im − m−1emeT
m). Hence, by introducing an auxiliary variable y0 ∈ <, problem (9) can

be reduced to the following convex minimization problem:

minimize
y0, y

yT Az + ρzy0

subject to ‖ÃT y‖ ≤ y0, y ≥ 0, eT
ny = 1.
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This is a second-order cone programming problem [1, 21] and its KKT conditions can be written as

the following SOCCP:

Km+1 3
(

λ0

λ

)

⊥
(

1 0

0 ÃT

)(

y0

y

)

∈ Km+1,

<n
+ 3 y ⊥ Az − Ãλ + ens ∈ <n

+, eT
ny = 1, λ0 = ρz,

where λ ∈ <m and s ∈ < are Lagrange multipliers, and λ0 ∈ < is an auxiliary variable. In a similar

manner, the KKT conditions for Player 2 can be written as

Kn+1 3
(

µ0

µ

)

⊥
(

1 0

0 B̃

)(

z0

z

)

∈ Kn+1,

<m
+ 3 z ⊥ BTy − B̃T µ + emt ∈ <m

+ , eT
mz = 1, µ0 = ρy,

where µ ∈ <n and t ∈ < are Lagrange multipliers, and µ0 ∈ < is an auxiliary variable. Consequently,

the problem to find (y, z) satisfying the above two KKT conditions simultaneously can be reformulated

as SOCCP(8) with ` = 2m + 2n + 2, τ = 4, K = Kn+1 ×Km+1 ×<m
+ ×<n

+,

ζ =





































y0

y

z0

z

λ0

λ

µ0

µ

s

t





































, M =























0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 Im 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 In 0 0

0 In 0 0 0 0 0 0 0 0

0 0 0 Im 0 0 0 0 0 0























, q =























0

0

0

0

0

0























,

N =























1 0 0 0 0 0 0 0 0 0

0 ÃT 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 B̃ 0 0 0 0 0 0

0 0 0 A 0 −Ã 0 0 en 0

0 BT 0 0 0 0 0 −B̃T 0 em























, r =























0

0

0

0

0

0























,

C =













0 eT
n 0 0 0 0 0 0 0 0

0 0 0 eT
m 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0













, d =













1

1

ρz

ρy













.

3.2 Component-wise uncertainty in the cost matrices

In the following three subsections 3.2, 3.3 and 3.4, we consider the case where each player estimates the

opponent’s strategy exactly but his/her own cost matrix uncertainly. In this subsection, we particularly

focus on the case where the uncertainty in each cost matrix occurs component-wise independently.

That is, we make the following assumption.

Assumption 2

(a) Y (y) = {y} and Z(z) = {z}.
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(b) DA := {A + δA ∈ <n×m | |δAij | ≤ (ΓA)ij (i = 1, . . . , n, j = 1, . . . ,m)} and DB := {B + δB ∈
<n×m | |δBij | ≤ (ΓB)ij (i = 1, . . . , n, j = 1, . . . ,m)} with given constant matrices A ∈ <n×m and

B ∈ <n×m and positive constant matrices ΓA ∈ <n×m and ΓB ∈ <n×m.

Under this assumption, we have the following theorem. We omit the proof, since it is similar to that

of Theorem 2.

Theorem 3 If Assumption 2 holds, then the bimatrix game has a robust Nash equilibrium.

From Assumption 2, together with the constraints y ≥ 0 and z ≥ 0, the cost function f̃1 can be

represented as

f̃1(y, z) = max
{

yT Âz
∣

∣

∣ Â ∈ DA

}

= yT Az + max
|δAij |≤(ΓA)ij

n
∑

i=1

m
∑

j=1

δAijyizj

= yT Az +
n
∑

i=1

m
∑

j=1

(ΓA)ijyizj

= yT (A + ΓA)z.

Analogously, we have f̃2(y, z) = yT (B + ΓB)z. Hence, the robust Nash equilibrium problem is simply

the problem of finding a Nash equilibrium of the bimatrix game with cost matrices A+ΓA and B+ΓB.

This problem reduces to the MCP (7) with A and B replaced by A + ΓA and B + ΓB , respectively.

3.3 Column/row-wise uncertainty in the cost matrices

In this subsection, we focus on the case where the uncertainty in matrices A and B respectively occur

row-wise independently and column-wise independently. That is, we make the following assumption.

Assumption 3

(a) Y (y) = {y} and Z(z) = {z}.

(b) DA := {A + δA | ‖δAc
j‖ ≤ (γA)j (j = 1, . . . ,m)} and DB := {B + δB | ‖δBr

i ‖ ≤ (γB)i (i =

1, . . . , n)} with given constant matrices A ∈ <n×m and B ∈ <n×m and positive constant vectors

γA ∈ <m and γB ∈ <n.

This assumption implies that the degree of uncertainty in each player’s cost depends on the opponent’s

each pure strategy. Under this assumption, we have the following theorem. We omit the proof, since

it is similar to that of Theorem 2.

Theorem 4 If Assumption 3 holds, then the bimatrix game has a robust Nash equilibrium.

Next, we formulate the Nash equilibrium problem as an SOCCP. From Assumption 3, we have

f̃1(y, z) = max
Â∈DA

yT Âz

= yT Az + max
‖δAc

j
‖≤(γA)j

m
∑

j=1

zj yTδAc
j

= yT Az +
m
∑

j=1

zj‖y‖(γA)j

= yT Az + γT
Az‖y‖
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and γT
Az ≥ 0. Hence, by introducing an auxiliary variable y0 ∈ <, Player 1’s problem can be written

as

minimize
y0, y

yT Az + (γT
Az)y0

subject to ‖y‖ ≤ y0, y ≥ 0, eT
ny = 1.

This is a second-order cone programming problem, and its KKT conditions are given by

Kn+1 3
(

y0

y

)

⊥
(

γT
Az

Az + ens − λ

)

∈ Kn+1

<n
+ 3 λ ⊥ y ∈ <n

+, eT
ny = 1

with Lagrange multipliers λ ∈ <n and s ∈ <.

In a similar way, the KKT conditions for Player 2’s minimization problem are given by

Km+1 3
(

z0

z

)

⊥
(

γT
By

BT y + emt − µ

)

∈ Km+1

<m
+ 3 µ ⊥ z ∈ <m

+ , eT
mz = 1,

where µ ∈ <m and t ∈ < are Lagrange multipliers. Combining the above two KKT conditions, we

obtain SOCCP(8) with ` = 2m + 2n + 2, τ = 2, K := Kn+1 ×Km+1 ×<n
+ ×<m

+ ,

ζ =





























y0

y

z0

z

λ

µ

s

t





























, M =























1 0 0 0 0 0 0 0

0 In 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 Im 0 0 0 0

0 0 0 0 In 0 0 0

0 0 0 0 0 Im 0 0























, q =























0

0

0

0

0

0























,

N =























0 0 0 γT
A 0 0 0 0

0 0 0 A −In 0 en 0

0 γT
B 0 0 0 0 0 0

0 BT 0 0 0 −Im 0 em

0 In 0 0 0 0 0 0

0 0 0 Im 0 0 0 0























, r =























0

0

0

0

0

0























,

C =

(

0 eT
n 0 0 0 0 0 0

0 0 0 eT
m 0 0 0 0

)

, d =

(

1

1

)

.

3.4 General uncertainty in the cost matrices

In this subsection, we consider the general case of uncertainty in each cost matrix. That is, we make

the following assumption.

Assumption 4

(a) Y (y) = {y} and Z(z) = {z}.

(b) DA := {A + δA ∈ <n×m | ‖δA‖F ≤ ρA} and DB := {B + δB ∈ <n×m | ‖δB‖F ≤ ρB} with given

constant matrices A ∈ <n×m and B ∈ <n×m and positive scalars ρA and ρB.
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Under this assumption, we also have the following theorem.

Theorem 5 If Assumption 4 holds, then the bimatrix game has a robust Nash equilibrium.

Next, we consider the SOCCP formulation of the game. First note that

f̃(y, z) = max{yT Âz | Â ∈ DA} = yT Az + max
‖δA‖F ≤ρA

yT (δA)z.

Moreover, we have

max
‖δA‖F ≤ρA

yT (δA)z = max
‖δA‖F ≤ρA

(z ⊗ y)T vec(δA) = ‖z ⊗ y‖ρA = ρA‖y‖‖z‖,

where vec(·) denotes the vec operator that creates an nm-dimensional vector ((pc
1)

T , . . . , (pc
m)T )T from

a matrix P ∈ <n×m with column vectors pc
1, . . . , p

c
m, and ⊗ denotes Kronecker product (see Sections

4.2 and 4.3 in [19])．Hence, by introducing an auxiliary variable y0 ∈ <, Player 1’s minimization

problem reduces to the following problem:

minimize
y0, y

yTAz + ρA‖z‖y0

subject to ‖y‖ ≤ y0, eT
ny = 1, y ≥ 0.

Again, this is a second-order cone programming problem, and its KKT conditions are given by

Kn+1 3
(

y0

y

)

⊥
(

ρA‖z‖
Az + ens − λ

)

∈ Kn+1,

<n
+ 3 λ ⊥ y ∈ <n

+ eT
ny = 1,

where λ ∈ <n and s ∈ < are Lagrange multipliers. Moreover, we can show that this SOCCP is

rewritten as the following SOCCP:

Kn+1 3
(

y0

y

)

⊥
(

ρAz1

Az + ens − λ

)

∈ Kn+1, eT
ny = 1,

Km+1 3
(

z1

z

)

⊥
(

y0

u

)

∈ Km+1, <n
+ 3 λ ⊥ y ∈ <n

+ (10)

with an auxiliary variable u ∈ <m. To see this, it suffices to notice that the complementarity condition

Km+1 3
(

z1

z

)

⊥
(

y0

u

)

∈ Km+1 (11)

in (10) implies ‖z‖ = z1. This fact can be verified as follows: On one hand,
(z1

z

)

∈ Km+1 implies

‖z‖ ≤ z1. On the other hand, it holds that 0 = z1y0 + zT u ≥ z1y0 −‖z‖‖u‖ ≥ z1y0 −‖z‖y0, where the

equality follows from the perpendicularity in (11), the first inequality follows from the Cauchy-Schwarz

inequality, and the last inequality follows from the condition
(y0

u

)

∈ Km+1 in (11). Moreover, eT
ny = 1

and
(y0

y

)

∈ Kn+1 imply y0 > 0. Hence, we have ‖z‖ ≥ z1.

In a similar way, the KKT conditions for Player 2’s problem are given by

Km+1 3
(

z0

z

)

⊥
(

ρBy1

BTy + emt − µ

)

∈ Km+1, eT
mz = 1,

Kn+1 3
(

y1

y

)

⊥
(

z0

v

)

∈ Kn+1, <m
+ 3 µ ⊥ z ∈ <m

+ ,
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where t ∈ <, µ ∈ <m and v ∈ <n are auxiliary variables. Combining the above two KKT conditions,

we obtain SOCCP(8) with ` = 3m + 3n + 4, τ = 2, K = Kn+1 ×Kn+1 ×Km+1 ×Km+1 ×<n
+ ×<m

+ ,

ζ =















































y0

y

y1

v

z0

z

z1

u

λ

µ

s

t















































, M =











































1 0 0 0 0 0 0 0 0 0 0 0

0 In 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 In 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 Im 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 Im 0 0 0 0 0 0

0 0 0 0 0 0 0 0 In 0 0 0

0 0 0 0 0 0 0 0 0 Im 0 0











































, q =











































0

0

0

0

0

0

0

0

0

0











































,

N =











































0 0 0 0 0 0 ρA 0 0 0 0 0

0 0 0 0 0 A 0 0 −In 0 en 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 In 0 0 0 0 0 0 0 0

0 0 ρB 0 0 0 0 0 0 0 0 0

0 BT 0 0 0 0 0 0 0 −In 0 em

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 Im 0 0 0 0

0 In 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 Im 0 0 0 0 0 0











































, r =











































0

0

0

0

0

0

0

0

0

0











































C =

(

0 eT
n 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 eT
m 0 0 0 0 0 0

)

, d =

(

1

1

)

.

As shown thus far, the robust Nash equilibrium problems under Assumptions 1, 3 and 4 are

transformed into SOCCPs, while the robust Nash equilibrium problem under Assumption 2 reduces

to an LCP. This is a natural consequence of the fact that the Euclidean norm is used in Assumptions

1, 3 and 4 to describe the uncertainty and the absolute value is used in Assumption 2.

4 Numerical examples of robust Nash equilibria

In the previous section, we have shown that some robust Nash equilibrium problems for bimatrix

games reduce to SOCCPs. In this section, we present some numerical examples for the robust Nash

equilibria. Several methods have been proposed for solving SOCCPs. Among them, one of the most

popular approaches is to reformulate the SOCCP as an equivalent nondifferentiable minimization

problem and solve it by Newton-type method combined with a smoothing technique [6, 9, 13, 18]．In

our numerical experiments, we use an algorithm based on the methods proposed in [18].

4.1 Uncertainty in opponent’s strategy

We first study the case where only the opponents’ strategies involve uncertainty, that is, Assumption

1 holds.
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We consider the bimatrix game with cost matrices:

A1 =







−1 −9 11

10 −1 4

3 10 1






, B1 =







−5 −4 −8

−1 0 5

3 1 4






. (12)

The Nash equilibrium of the game is given by y = (0.4815, 0.1852, 0.3333) and z = (0.1699, 0.2628,

0.5673). Robust Nash equilibria (yr, zr) for various values of (ρy, ρz) are shown in Table 1, where

fi(y
r, zr) denotes the cost value of each player i = 1, 2 at a robust Nash equilibrium. From the table,

we see that robust Nash equilibria (yr, zr) approach the Nash equilibrium (y, z) as both ρy and ρz

tend to 0. Note that Players 1 and 2 estimate the opponents’ strategies more precisely as ρz and ρy

become smaller. However, the costs of both players for (ρy, ρz) = (0.5, 0.5) are smaller than those for

(ρy, ρz) = (0.01, 0.01). This implies that an equilibrium may not necessarily be favorable for either of

the players even if the estimation is more precise.

Next, we consider the bimatrix game with cost matrices:

A2 =







5 7 8

2 3 0

−1 −3 −2






, B2 =







8 2 −7

5 3 −3

9 1 −4






. (13)

In this case, the Nash equilibrium comprises y = (0, 0, 1) and z = (0, 0, 1), and for any pair (ρy, ρz) ∈
{0.5, 0.1, 0.01} × {0.5, 0.1, 0.01}, robust Nash equilibrium (yr, zr) remains the same, that is, yr = y

and zr = z. From this result, we may expect that, if the Nash equilibrium is a pure strategy, then the

robust Nash equilibrium remains unchanged even if there is uncertainty to some extent.

4.2 Uncertainty in cost matrices

We next study the general case where the players’ cost matrices involve uncertainty, that is, Assump-

tion 4 holds.

First we consider the bimatrix game with the cost matrices A1 and B1 defined by (12). Robust

Nash equilibria for various values of (ρA, ρB) are shown in Table 2, where fi(y
r, zr) denotes the cost

value of robust Nash equilibrium. As in the previous case, we see from the table that precise estimation

for cost matrices does not necessarily reduce the cost at an equilibrium.

Next we consider the bimatrix game with cost matrices A2 and B2 defined by (13). Robust Nash

equilibria for various values of (ρA, ρB) are shown in Table 3, which reveals that yr = y and zr = z

hold when ρA and ρB are sufficiently small. We also see from the table that precise estimation for

cost matrices does not always result in the reduction of the players’ costs at an equilibrium.

5 Concluding remarks

In this paper, we have defined the concept of robust Nash equilibrium, and studied a sufficient condition

for its existence. Moreover, we have shown that some robust Nash equilibrium problems can be

reformulated as SOCCPs. To investigate the behavior of robust Nash equilibria, we have carried out

some numerical examples.

Our study is still in the infancy, and many issues remain to be addressed. (1) One is to extend

the concept of robust Nash equilibrium to the general N -person game. For the 2-person bimatrix

game studied in this paper, it is sufficient to consider the uncertainty in the cost matrices and the
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opponent’s strategy. To discuss general N -person games, more complicated structure should be dealt

with. (2) Another issue is to find other sufficient conditions for the existence of robust Nash equilibria.

For instance, it may be possible to consider the existence of robust Nash equilibria without assuming

the boundedness of strategy sets. (3) Theoretical study on the relation between Nash equilibrium and

robust Nash equilibrium is also worthwhile. For example, it is not known whether the uniqueness of

Nash equilibrium is inherited to robust Nash equilibrium. (4) In this paper, we have formulated several

robust Nash equilibrium problems as SOCCPs. However, we have only considered the cases where

either the cost matrices or the opponent’s strategy is uncertain for each player. It seems interesting to

study the case where both of them are uncertain, or the structure of uncertainty is more complicated.

(5) In our numerical experiments, we employed an existing algorithm for solving SOCCPs. But, there

is room for improvement of solution methods. It may be useful to develop a specialized method for

solving robust Nash equilibrium problems.

Table 1: Robust Nash equilibria for various values of ρy and ρz

ρy ρz yr zr f1(y
r, zr) f2(y

r, zr)

0.01 0.01 (0.4896, 0.1814, 0.3290) (0.1702, 0.2697, 0.5601) 3.650 −1.668

0.1 0.1 (0.5630, 0.1482, 0.2888) (0.1758, 0.3304, 0.4938) 3.039 −2.305

0.1 0.5 (0.5621, 0.1560, 0.2819) (0.1948, 0.6032, 0.2019) 0.345 −2.122

0.5 0.1 (0.8891, 0.0011, 0.1098) (0.1812, 0.3272, 0.4916) 2.506 −5.152

0.5 0.5 (0.8840, 0.0432, 0.0729) (0.2129, 0.5929, 0.1942) −2.424 −4.232

Table 2: Robust Nash equilibria for various values of ρA and ρB (cost matrices A1 and B1)

ρA ρB yr zr f1(y
r, zr) f2(y

r, zr)

0.1 0.1 (0.4841, 0.1797, 0.3362) (0.1721, 0.2623, 0.5656) 3.700 −1.615

1 1 (0.5097, 0.1376, 0.3527) (0.1969, 0.2552, 0.5479) 3.640 −1.835

1 10 (1.0000, 0.0000, 0.0000) (0.2931, 0.2326, 0.4743) 2.830 −6.190

10 1 (0.5083, 0.1950, 0.2967) (0.3497, 0.2453, 0.4050) 3.074 −1.843

10 10 (0.5934, 0.1961, 0.2105) (0.3326, 0.3002, 0.3672) 2.396 −2.565

Table 3: Robust Nash equilibria for various values of ρA and ρB (cost matrices A2 and B2)

ρA ρB yr zr f1(y
r, zr) f2(y

r, zr)

0.1 0.1 (0.0000, 0.0000, 1.0000) (0.0000, 0.0000, 1.0000) −2.000 −4.000

1 1 (0.0000, 0.0000, 1.0000) (0.0000, 0.0000, 1.0000) −2.000 −4.000

1 10 (0.0000, 0.0000, 1.0000) (0.0000, 0.3110, 0.6890) −2.311 −2.445

10 1 (0.0000, 0.4286, 0.5714) (0.0000, 0.0000, 1.0000) −1.143 −3.571

10 10 (0.0000, 0.3783, 0.6217) (0.0000, 0.1935, 0.8065) −1.144 −2.581
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