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Abstract In this paper, we consider the stochastic mathematical program with equilibrium
constraints (SMPEC), which can be thought as a generalization of the mathematical program
with equilibrium constraints. Many decision problems can be formulated as SMPECs in practice.
We discuss both here-and-now and lower-level wait-and-see decision problems. In particular,
with the help of a penalty technique, we propose a combined smoothing implicit programming
and penalty method for the here-and-now decision problem and a comprehensive convergence
theory is also included. Furthermore, we remark that similar discussion applies to the lower-level
wait-and-see model as well.
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1 Introduction

Mathematical program with equilibrium constraints (MPEC) is a constrained optimization prob-
lem in which the essential constraints are defined by a parametric variational inequality:

minimize f(x, y)

subject to x ∈ X, (1.1)

y solves VI(F (x, ·), C(x)).

Here, X is a subset of <n, f : <n+m → <, F : <n+m → <m, C : <n → 2<m
are mappings, and

VI(F (x, ·), C(x)) denotes the variational inequality problem defined by the pair (F (x, ·), C(x)),
i.e., y solves VI(F (x, ·), C(x)) if and only if y ∈ C(x) and

(v − y)T F (x, y) ≥ 0 ∀v ∈ C(x).

Problem (1.1) can be regarded as a generalization of a bilevel programming problem and it
therefore plays an important role in many fields such as engineering design, economic equilib-
rium, multilevel game, and mathematical programming itself. In the recent optimization study,
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MPECs have been receiving much attention, see the monograph of Luo et al. [11] and the
attached references.

Stochastic programming is another important branch of mathematical programming that
deals with problems in which optimal decisions are sought under uncertainty. Modelling the
uncertainty by random objects may lead to diverse stochastic programming problems, a special
case of which is the so-called two-stage stochastic program with recourse:

minimize p(x) + Eω[Q(x, ω)] (1.2)

subject to x ∈ X,

where p : <n → <, Eω means expectation with respect to the random variable ω ∈ Ω, and

Q(x, ω) := inf
y∈Y (x,ω)

g(y, ω)

with Y : <n × Ω → 2<m
and g : <m × Ω → <. Problem (1.2) minimizes the sum of the cost

of the master decision and the expected cost of the recourse decision, where “recourse” means
the ability to take corrective action after random events have taken place. Many applications
of such problems can be found in practice, especially in financial planning. For further details,
see [2].

This paper deals with stochastic mathematical programs with equilibrium constraints (SM-
PECs). Our purpose is two-fold. The first is to give two formulations of SMPECs formally. The
second is to present an approach for solving SMPECs and study its convergence properties.

The bilevel nature of MPECs allows the uncertainty to enter at different levels. In our first
formulation, only the upper-level decision is made under an uncertain circumstance, and the
lower-level decision is made after the random event ω is observed. This results in the following
problem, which we call the lower-level wait-and-see model:

minimize Eω[f(x, y(ω), ω)]

subject to x ∈ X, (1.3)

y(ω) solves VI(F (x, ·, ω), C(x, ω)) ∀ω ∈ Ω,

where X ⊆ <n, f : <n+m × Ω → <, F : <n+m × Ω → <m, and C : <n × Ω → 2<m
. This type

of SMPEC was studied by Patriksson and Wynter [15], in which the existence of solutions, the
convexity and directional differentiability of an implicit objective function, and links between
(1.3) and bilevel models have been investigated. Note that the wait-and-see model [17] in the
classical stochstic programming study is not an optimization problem. However, the lower-level
wait-and-see model (1.3) of SMPEC is an optimization problem in which essential variables
consist of the upper-level decision x.

When C(x, ω) ≡ <m
+ for any x ∈ X and any ω ∈ Ω in problem (1.3), the variational inequality

constraints reduce to the complementarity constraints and problem (1.3) is equivalent to the
following stochastic mathematical program with complementarity constraints (SMPCC):

minimize Eω[f(x, y(ω), ω)]

subject to x ∈ X, (1.4)

y(ω) ≥ 0, F (x, y(ω), ω) ≥ 0,

y(ω)T F (x, y(ω), ω) = 0 ∀ω ∈ Ω.
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On the other hand, if the set-valued function C in problem (1.3) is defined by

C(x, ω) := {y ∈ <m| c(x, y, ω) ≤ 0},

where c(·, ·, ω) is continuously differentiable, then, under some suitable conditions, the variational
inequality problem VI(F (x, ·, ω), C(x, ω)) has an equivalent Karush-Kuhn-Tucker representation

F (x, y(ω), ω) +∇yc(x, y(ω), ω)λ(x, ω) = 0,

λ(x, ω) ≥ 0, c(x, y(ω), ω) ≤ 0, λ(x, ω)T c(x, y(ω), ω) = 0,

where λ(x, ω) is the Lagrange multiplier vector [14]. As a result, problem (1.3) can be reformu-
lated as a program like (1.4) under some conditions, see [11] for more details. Hence, problem
(1.4) constitutes an important subclass of SMPECs.

Another formulation that we are particularly interested in is the following problem that
requires us to make all decisions at once, before ω is observed:

minimize Eω[f(x, y, ω) + dT z(ω)]

subject to x ∈ X,

y ≥ 0, F (x, y, ω) + z(ω) ≥ 0, (1.5)

yT (F (x, y, ω) + z(ω)) = 0,

z(ω) ≥ 0 ∀ω ∈ Ω.

Here, both the decisions x and y are independent of the random variable ω, z(ω) is called a
recourse variable, and d ∈ <m is a vector with positive elements. We call (1.5) a here-and-now
model. Compared with the lower-level wait-and-see model (1.4), the here-and-now model (1.5)
involves more variables and hence seems more difficult to deal with. Moreover, a feasible vector
y in (1.5) is required to satisfy the complementarity condition for all ω ∈ Ω, which is different
from the ordinary complementarity condition if Ω has more than one realization. Because of this
restriction, some results for MPECs cannot be applied to (1.5) directly. Special new treatment
has to be developed. In this paper, we will mainly be concerned with the here-and-now model
(1.5), as the obtained results may be applied to the model (1.4) by suitable modification.

The following example illustrates the two models.

Example 1.1 There are a food company who makes picnic lunches and a vendor who sells
lunches to hikers on every Sunday. The company and the vendor have the following contract:

C1: The vendor buys lunches from the company at the price x ∈ [a, b] determined by the
company, where a and b are two positive constants.

C2: The vendor decides the amount y of lunches that he buys from the company, where y must
be no less than the minimum amount c > 0.

C3: The vendor pays the company for the whole lunches he buys, i.e., the vendor pays xy to
the company.

C4: The vendor sells lunches to hikers at the price 2x and get the proceeds for the total number
of lunches actually sold.

C5: Even if there are any unsold lunches, the vendor cannot return them to the company but
he can dispose of the unsold lunches with no cost.
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We suppose that the demand of lunches depends on the price and the weather on that day. Since
the weather is uncertain, we may treat it as a random variable. More specifically, we suppose
that the demand is given by the function

φ(x, ω) := D(ω)− d(ω)x, ω ∈ Ω,

where D(ω) ≥ 0 and d(ω) ≥ 0 are random variables. Therefore, the actual amount of lunches
sold is given by min(y, φ(x, ω)), which also depends on the weather on that day.

The decisions by the company and the vendor are x and y, respectively. The company’s
objective is to maximize its total earnings xy, while the vendor’s objective is to maximize its
total earnings 2xmin(y, φ(x, ω))− xy. The latter problem may be written as

maximizey,t x(2t− y)

subject to y ≥ c, y − t ≥ 0,

D(ω)− d(ω)x− t ≥ 0,

whose optimality conditions are stated as
(

x
−2x

)
− u

(
1
0

)
− v

(
1
−1

)
− w

(
0
−1

)
= 0, (1.6)

0 ≤ u ⊥ (y − c) ≥ 0,

0 ≤ v ⊥ (y − t) ≥ 0,

0 ≤ w ⊥ (D(ω)− d(ω)x− t) ≥ 0. (1.7)

Here, λ⊥µ means λµ = 0. It follows from (1.6) that

u = x− v, w = 2x− v.

This implies that w = x + u ≥ a > 0, which together with (1.7) yields t = D(ω)− d(ω)x. Thus
the above optimality conditions may further be rewritten as

0 ≤ (x− v) ⊥ (y − c) ≥ 0,
0 ≤ v ⊥ (y −D(ω) + d(ω)x) ≥ 0.

(1.8)

Then the company’s problem may be written as the following stochastic MPEC:

minimize −xy
subject to a ≤ x ≤ b, ω ∈ Ω,

0 ≤ (x− v) ⊥ (y − c) ≥ 0,
0 ≤ v ⊥ (y −D(ω) + d(ω)x) ≥ 0.

Now there are two cases.
Here-and-now model: Suppose that both the company and the vendor have to make decision
on Saturday, without knowing the weather of Sunday. In this case, there is no (x, v) satisfying
(1.8) for all ω ∈ Ω in general. So, by introducing the recourse variables, the company’s problem
is represented as the following model:

minimize −xy + βEω[ z(ω) ]
subject to a ≤ x ≤ b,

0 ≤ (x− v) ⊥ (y − c) ≥ 0,
0 ≤ v ⊥ (y −D(ω) + d(ω)x + z(ω)) ≥ 0,
z(ω) ≥ 0 ∀ω ∈ Ω,
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where β > 0 is a constant.
Lower-level wait-and-see model: Suppose that the company makes a decision on Saturday,
but the vendor can make a decision on Sunday morning after knowing the weather of that
day. In this case, the vendor’s decision may depend on the observation of ω, which is given by
(y(ω), v(ω)) that satisfies

0 ≤ (x− v(ω)) ⊥ (y(ω)− c) ≥ 0,
0 ≤ v(ω) ⊥ (y(ω)−D(ω) + d(ω)x) ≥ 0

for each ω ∈ Ω. Therefore the company’s problem is represented as the following model:

minimize EΩ[−y(ω)x ]
subject to a ≤ x ≤ b,

0 ≤ (x− v(ω)) ⊥ (y(ω)− c) ≥ 0,
0 ≤ v(ω) ⊥ (y(ω)−D(ω) + d(ω)x) ≥ 0 ∀ω ∈ Ω.

Organization of the paper: In Section 3, we apply a penalty technique and present a smooth-
ing implicit programming method for the discrete here-and-now problem and, in Section 4, we
employ a quasi-Monte Carlo method for numerical integration to discretize the here-and-now
problem with a continuous random variable. Comprehensive convergence theory is also included.
In Section 5, we make some remarks to conclude the paper. Especially, we mention that the
proposed approach for here-and-now models can be extended to the lower-level wait-and-see
problems.

Notation used in the paper: Throughout, all vectors are thought as column vectors and x[i]
stands for the ith coordinate of x ∈ <n, whereas for a matrix M , we denote by M [i] the vector
whose elements consist of the ith row of M . If K is an index set, we let M [K] be the principal
submatrix of M whose elements consist of those of M indexed by K. For any vectors u and v

of the same dimension, we denote u⊥v to mean uT v = 0. For a given function F : <n → <m

and a vector x ∈ <n, ∇F (x) is the transposed Jacobian of F at x and IF (x) := {i | Fi(x) = 0}
stands for the active index set of F at x. In addition, ei denotes the unit vector with ei[i] = 1;
I and O denote the identity matrix and the zero matrix with suitable dimension, respectively.

2 Preliminaries

In this section, we recall some basic concepts and properties that will be used later on. First we
consider the standard smooth nonlinear programming problem:

minimize f(z)

subject to ci(z) ≤ 0, i = 1, · · · , t, (2.1)

ci(z) = 0, i = t + 1, · · · , ν.

We will use the standard definition of stationarity, i.e., a feasible point z is said to be stationary
to (2.1) if there exists a Lagrange multiplier vector λ ∈ <ν satisfying the Karush-Kuhn-Tucker
conditions

∇f(z) +∇c(z)λ = 0,

λ[i] ≥ 0, λ[i]ci(z) = 0, i = 1, · · · , t.
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We next consider the mathematical program with complementarity constraints:

minimize f(z)

subject to g(z) ≤ 0, h(z) = 0, (2.2)

G(z) ≥ 0, H(z) ≥ 0,

G(z)T H(z) = 0,

where f : <s → <, g : <s → <p, h : <s → <q, and G,H : <s → <t are all continuously
differentiable functions. Let Z denote the feasible region of the MPEC (2.2).

It is well-known that the MPEC (2.2) fails to satisfy a standard constraint qualification (CQ)
at any feasible point [4], which causes a difficulty in dealing with MPECs by a conventional
nonlinear programming approach. The following special CQ turns out to be useful in the study
of MPECs.

Definition 2.1 The MPEC-linear independence constraint qualification (MPEC-LICQ) is said
to hold at z̄ ∈ Z if the set of vectors

{
∇gl(z̄),∇hr(z̄),∇Gi(z̄),∇Hj(z̄)

∣∣∣ l ∈ Ig(z̄), r = 1, · · · , q, i ∈ IG(z̄), j ∈ IH(z̄)
}

is linearly independent.

Definition 2.2 [16] (1) z̄ ∈ Z is called a Clarke or C-stationary point of problem (2.2) if there
exist multiplier vectors λ̄ ∈ <p, µ̄ ∈ <q, and ū, v̄ ∈ <t such that λ̄ ≥ 0 and

∇f(z̄) +
∑

i∈Ig(z̄)

λ̄[i]∇gi(z̄) +
q∑

i=1

µ̄[i]∇hi(z̄)−
∑

i∈IG(z̄)

ū[i]∇Gi(z̄)−
∑

i∈IH(z̄)

v̄[i]∇Hi(z̄) = 0, (2.3)

ū[i]v̄[i] ≥ 0, i ∈ IG(z̄) ∩ IH(z̄). (2.4)

(2) z̄ ∈ Z is called a strongly or S-stationary point of problem (2.2) if there exist multiplier
vectors λ̄, µ̄, ū, and v̄ such that (2.3) holds with

ūi ≥ 0, v̄i ≥ 0, i ∈ IG(z̄) ∩ IH(z̄).

It is easy to see that S-stationarity implies C-stationarity. Moreover, under the strict com-
plementarity condition (namely, IG(z̄) ∩ IH(z̄) = ∅), they are equivalent.

Definition 2.3 [5] Suppose that M is an m × m matrix. We call M a P-matrix if all the
principal minors of M are positive, or equivalently,

max
1≤i≤m

y[i](My)[i] > 0, 0 6= ∀y ∈ <m,

and we call M a P0-matrix if all the principal minors of M are nonnegative, or equivalently,

max
1≤i≤m

y[i](My)[i] ≥ 0, ∀y ∈ <m.

It is obvious that a P-matrix must be a P0-matrix. However, the converse does not hold. In
addition, if M is a P0-matrix and µ is a positive number, then the matrix M +µI is a P-matrix.
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Definition 2.4 [5] A square matrix is said to be nondegenerate if all of its principal submatrices
are nonsingular.

It is easy to see that a P-matrix is nondegenerate.
For given N ∈ <m×n, M ∈ <m×m, q ∈ <m, and two positive numbers ε and µ, we define the

function

Φε,µ(x, y, w; N,M, q) :=




Nx + (M + εI)y + q − w
φµ(y[1], w[1])

...
φµ(y[m], w[m])


 , (2.5)

where φµ : <2 → < is the perturbed Fischer-Burmeister function

φµ(a, b) := a + b−
√

a2 + b2 + 2µ2 .

Then we have the following well-known result [3, 9].

Theorem 2.1 Suppose that M is a P0-matrix. Then, for given x ∈ <n, ε > 0, and µ > 0, we
have the following statements:

(i) The function Φε,µ defined by (2.5) is continuously differentiable with respect to (y, w)
and the Jacobian matrix ∇(y,w)Φε,µ(x, y, w; N, M, q) is nonsingular everywhere;

(ii) The equation Φε,µ(x, y, w; N,M, q) = 0 has a unique solution (y(x, ε, µ), w(x, ε, µ)), which
is continuously differentiable with respect to x and satisfies

y(x, ε, µ) > 0, w(x, ε, µ) > 0,

y(x, ε, µ)[i]w(x, ε, µ)[i] = µ2, i = 1, · · · ,m.

In the rest of the paper, to mitigate the notational complication, we assume ε = µ and denote
Φε,µ, y(x, ε, µ), and w(x, ε, µ) by Φµ, y(x, µ), and w(x, µ), respectively. Our analysis will remain
valid, however, even though the two parameters are treated independently.

Suppose that M is a P0-matrix and µ > 0. Theorem 2.1 indicates that the smooth equation

Φµ(x, y, w; N, M, q) = 0 (2.6)

gives two smooth functions y(·, µ) and w(·, µ). Note that

φµ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = µ2.

As a result, the equation (2.6) is equivalent to the system

y ≥ 0, Nx + (M + µI)y + q ≥ 0, (2.7)

y[i]
(
Nx + (M + µI)y + q

)
[i] = µ2, i = 1, · · · ,m

in the sense that y(x, µ) solves (2.7) if and only if

Φµ(x, y(x, µ), w(x, µ);N,M, q) = 0

with

w(x, µ) := Nx + (M + µI)y(x, µ) + q .
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Since (2.7) with µ = 0 reduces to the linear complementarity problem

y ≥ 0, Nx + My + q ≥ 0, yT (Nx + My + q) = 0, (2.8)

we see that y(x, µ) tends to a solution of (2.8) as µ → 0, provided that it is convergent.
In our analysis, we will assume that y(x, µ) is bounded as µ → 0. In particular, if M is a

P-matrix, then (2.8) has a unique solution for any x and it can be shown that y(x, µ) actually
converges to it as µ → 0, even without using the regularization term µI in (2.7), see [3].

3 Combined Smoothing Implicit Programming and Penalty Method
for Discrete Here-and-Now Problems

In this section, we consider the following here-and-now problem:

minimize
L∑

`=1

p`

(
f(x, y, ω`) + dT z`

)

subject to g(x) ≤ 0, h(x) = 0,

y ≥ 0, N`x + M`y + q` + z` ≥ 0, (3.1)

yT (N`x + M`y + q` + z`) = 0,

z` ≥ 0, ` = 1, · · · , L,

which corresponds to the discrete case where Ω := {ω1, ω2, · · · , ωL}. Here, p` denotes the
probability of the random event ω` ∈ Ω, the functions f : <n+m → <, g : <n → <s1 , h : <n → <s2

are all continuously differentiable, N` ∈ <m×n, M` ∈ <m×m, q` ∈ <m are realizations of the
random coefficients, d is a constant vector with positive elements, and z` is the recourse variable
corresponding to ω`. Throughout we assume p` > 0 for all ` = 1, · · · , L.

It is easy to see that problem (3.1) can be rewritten as

minimize
L∑

`=1

p`

(
f(x, y, ω`) + dT z`

)

subject to g(x) ≤ 0, h(x) = 0, z` ≥ 0,

N`x + M`y + q` + z` ≥ 0, ` = 1, · · · , L, (3.2)

y ≥ 0, Nx + My + q +
∑L

l=1zl ≥ 0,

yT (Nx + My + q +
∑L

l=1zl) = 0

with N :=
∑L

l=1 Nl, M :=
∑L

l=1 Ml, and q :=
∑L

l=1 ql, or equivalently,

minimize
L∑

`=1

p`f(x, y, ω`) + dTz

subject to g(x) ≤ 0, h(x) = 0,

y −Dy = 0, z ≥ 0, (3.3)

y ≥ 0, Nx + My + q + z ≥ 0,

yT (Nx + My + q + z) = 0,

where

y :=




y1
...

yL


 , z :=




z1
...

zL


 , d :=




p1d
...

pLd


 , D :=




I
...
I


 , (3.4)
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and

N :=




N1
...

NL


 , M :=




M1 O
. . .

O ML


 , q :=




q1
...

qL


 .

Note that both problems (3.2) and (3.3) are different from ordinary MPECs, because they
require y1 = y2 = · · · = yL. This restriction makes the problems harder to deal with than
ordinary MPECs. In particular, for any feasible point (x, y, z1, · · · , zL) of problem (3.2), (Nx +
My + q +

∑L
l=1zl)[i] = 0 implies that (N`x + M`y + q` + z`)[i] = 0 holds for every `. This

indicates that the MPEC-LICQ does not hold for problem (3.2) in general. On the other hand,
since L is usually very large in practice, problem (3.3) is a large-scale program with variables
(x, y,y, z) ∈ <n+(1+2L)m so that some methods for MPECs may cause more computational
difficulties. In this section, we will develop a combined smoothing implicit programming and
penalty method for solving the ill-posed MPEC (3.2) directly.

A similar smoothing method for ordinary MPECs with linear complementarity constraints
has been considered in [3]. However, several differences should be emphasized here: (a) In [3],
the matrix M is assumed to be a P-matrix, whereas in this paper, we assume it to be a P0-matrix
only; (b) In order to make the new method applicable, in addition to smoothing, we employ a
regularization technique and a penalty technique. We will investigate the limiting behavior of
local optimal solutions and stationary points.

In addition, as mentioned above, the MPEC-LICQ does not hold for problem (3.2) in general.
From now on, the MPEC-LICQ means the one for problem (3.3). On the other hand, because
the complementarity constraints in problem (3.2) are lower dimensional, we use them to generate
the subproblems.

3.1 SIPP method

Suppose that the matrix M in problem (3.2) is a P0-matrix. We denote by Λ the matrix
(I, · · · , I) ∈ <m×mL. For each (x, z) and µk > 0, let y(x,Λz, µk) and w(x,Λz, µk) solve

Φµk

(
x, y(x,Λz, µk), w(x,Λz, µk);N, M, q + Λz

)
= 0. (3.5)

The existence and differentiability of the above implicit functions follow from Theorem 2.1. Note
that the implicit functions are denoted by y(x,Λz, µk) and w(x,Λz, µk), rather than y(x, z, µk)
and w(x, z, µk), respectively. We then obtain an approximation of problem (3.2)

minimize
L∑

`=1

p`

(
f(x, y(x,Λz, µk), ω`) + dT z`

)

subject to g(x) ≤ 0, h(x) = 0, (3.6)

N`x + M`y(x,Λz, µk) + q` + z` ≥ 0,

z` ≥ 0, ` = 1, · · · , L.

Since the feasible region of problem (3.6) is dependent on µk, (3.6) may not be easy to solve.
Therefore, we apply a penalty technique to this problem and have the following approximation:

minimize θk(x, z) (3.7)

subject to g(x) ≤ 0, h(x) = 0, z ≥ 0,
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where

θk(x, z) :=
L∑

`=1

p`f(x, y(x,Λz, µk), ω`) + dTz

+ρk

L∑

`=1

ψ
(
− (N`x + M`y(x,Λz, µk) + q` + z`)

)
, (3.8)

ρk is a positive parameter, ψ : <m → [0, +∞) is a smooth penalty function, and z` := (z[(` −
1)m + 1], · · · , z[`m])T for each `. Some specific penalty functions will be given later. Note that,
unlike problem (3.6), the feasible region of problem (3.7) is common for all k.

Now we present our method, called combined smoothing implicit programming and penalty
method (SIPP), for problem (3.2): Choose two sequences {µk} and {ρk} of positive numbers
satisfying

lim
k→∞

µk = 0, lim
k→∞

ρk = +∞, lim
k→∞

µkρk = 0. (3.9)

We then solve the problems (3.7) to get a sequence {(x(k), z(k))} and let

y(k) := y(x(k), Λz(k), µk).

Note that, by Theorem 2.1, problem (3.7) is a smooth mathematical program. Moreover,
under some suitable conditions, (3.7) is a convex program, see Chen and Fukushima (2003)
for details. Therefore, we may expect that problem (3.7) may be relatively easy to deal with,
provided the evaluation of the function y`(x, µk) is not very expensive.

In what follows, we denote by F and X the feasible regions of problems (3.2) and (3.7), respec-
tively. Moreover, particular sequences generated by the method will be denoted by {x(k)}, {y(k)},
etc., while general sequences will be denoted by {xk}, {yk}, etc. Also, we use (3.4) to generate
some related vectors such as y(k),y∗, z(k), z∗, and so on.

3.2 Convergence results

We investigate the limiting behavior of a sequence generated by SIPP in this subsection. The
following lemma will be used later.

Lemma 3.1 Suppose the matrix M in (3.2) is a P0-matrix and, for any bounded sequence
{(xk, zk)} in X , {y(xk,Λzk, µk)} is bounded. If (x∗, y∗, z∗) ∈ F and the submatrix M [K∗] is
nondegenerate, where K∗ := { i | (Nx∗+My∗+q+Λz∗)[i] = 0}, then there exist a neighborhood
U∗ of (x∗, y∗, z∗) and a positive constant π∗ such that

‖y(x,Λz, µk)− y‖ ≤ µkπ
∗(‖y‖+

√
m) (3.10)

holds for any (x, y, z) ∈ U∗ ∩ F and any k.
A proof of this lemma is given in Appendix A. Now, we discuss the limiting behavior of the

sequence of local optimal solutions of problems (3.7).

Theorem 3.1 Let the matrix M in (3.2) be a P0-matrix, ψ : <m → [0, +∞) be a continuously
differentiable function satisfying

ψ(0) = 0, ψ(y) ≤ ψ(y′) for any y′ ≥ y in <m, (3.11)
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and, for each bounded sequence {(xk, zk)} in X , {y(xk, Λzk, µk)} be bounded. Suppose that the
sequence {(x(k), y(k), z(k))} generated by SIPP with (x(k), z(k)) being a local optimal solution of
problem (3.7) is convergent to (x∗, y∗, z∗) ∈ F . If there exists a neighborhood V ∗ of (x∗, y∗, z∗)
such that (x(k), z(k)) minimizes θk over V ∗|X := {(x, z) ∈ X | ∃ y s.t. (x, y, z) ∈ V ∗} for all k

large enough and the submatrix M [K∗] is nondegenerate with K∗ being the same as in Lemma
3.1, then (x∗, y∗, z∗) is a local optimal solution of problem (3.2).

Proof. By Lemma 3.1, there exist a closed sphere B ⊆ V ∗ centered at the point (x∗, y∗, z∗)
with positive radius and a positive number π∗ such that (3.10) holds for any (x, y, z) ∈ F ∩ B
and every k. Since F ∩ B is a nonempty compact set, the problem

minimize
L∑

`=1

p`f(x, y, ω`) + dTz (3.12)

subject to (x, y, z) ∈ F ∩ B

has an optimal solution, say (x̄, ȳ, z̄).
Suppose (x, y, z) ∈ F ∩ B. We then have from (3.8) and the mean-value theorem that

θk(x, z) =
L∑

`=1

p`

(
f(x, y, ω`) + (y(x,Λz, µk)− y)T∇yf(x, (1− t)y(x,Λz, µk) + ty, ω`)

)

+dTz + ρk

L∑

`=1

ψ
(
− (N`x + M`y(x,Λz, µk) + q` + z`)

)
, (3.13)

where t ∈ [0, 1]. Note that, by (3.10),

‖(1− t)y(x,Λz, µk) + ty‖ = ‖(1− t)(y(x,Λz, µk)− y) + y‖
≤ ‖y(x,Λz, µk)− y‖+ ‖y‖
≤ µkπ

∗(‖y‖+
√

m) + ‖y‖.

This indicates that the set

{(x, (1− t)y(x,Λz, µk) + ty)
∣∣∣ (x, y, z) ∈ F ∩ B, t ∈ [0, 1], k = 1, 2, · · ·}

is bounded. Similarly, we see that

{(x, tM`(y − y(x,Λz, µk)))
∣∣∣ (x, y, z) ∈ F ∩ B, ` = 1, · · · , L, t ∈ [0, 1], k = 1, 2, · · ·}

is also bounded. Then, by the continuous differentiability of both f and ψ, there exists a constant
τ > 0 such that, for ` = 1, · · · , L,

‖∇yf(x, (1− t)y(x,Λz, µk) + ty, ω`)‖ ≤ τ, (3.14)

‖∇ψ
(
tM`(y − y(x,Λz, µk))

)
‖ ≤ τ (3.15)

hold for any (x, y, z) ∈ F ∩ B, t ∈ [0, 1], and every k. Noticing that (x, y, z) ∈ F ∩ B implies
N`x + M`y + q` + z` ≥ 0 for each `, we have from (3.11) and (3.15) that

ψ
(
− (N`x + M`y(x,Λz, µk) + q` + z`)

)
≤ ψ

(
M`(y − y(x,Λz, µk))

)

= ψ
(
M`(y − y(x,Λz, µk))

)
− ψ(0)

= ∇ψ
(
t′M`(y − y(x,Λz, µk))

)T
M`

(
y − y(x,Λz, µk)

)

≤ τ‖M`‖ ‖y − y(x,Λz, µk)‖,
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where t′ ∈ [0, 1] and the second equality follows from the mean-value theorem. This, together
with (3.13)–(3.14) and (3.10), yields

∣∣∣θk(x, z)−
L∑

`=1

p`f(x, y, ω`)− dTz
∣∣∣ ≤ τ‖y(x,Λz, µk)− y‖+

(
τρk

L∑

`=1

‖M`‖
)
‖y − y(x,Λz, µk)‖

≤ π∗τ
(
µk + µkρk

L∑

`=1

‖M`‖
)
(‖y‖+

√
m)

for any (x, y, z) ∈ F ∩ B and k. In particular,

∣∣∣θk(x̄, z̄)−
L∑

`=1

p`f(x̄, ȳ, ω`)− dT z̄
∣∣∣ ≤ π∗τ

(
µk + µkρk

L∑

`=1

‖M`‖
)
(‖ȳ‖+

√
m). (3.16)

Moreover, since ψ is always nonnegative, we have from the continuity of f that

lim
k→∞

θk(x(k), z(k)) ≥ lim
k→∞

( L∑

`=1

p`f(x(k), y(k), ω`) + dTz(k)
)

=
L∑

`=1

p`f(x∗, y∗, ω`) + dTz∗. (3.17)

Note that, by the fact that F ∩ B ⊆ V ∗, (x(k), z(k)) is an optimal solution of the problem

minimize θk(x, z)

subject to (x, z) ∈ X1 := { (x, z) ∈ X | ∃ y s.t. (x, y, z) ∈ F ∩ B },

provided k is large enough, and (x̄, z̄) is a feasible point of this problem. We then have from
(3.16) that, for every k sufficiently large,

θk(x(k), z(k)) ≤ θk(x̄, z̄)

≤
L∑

`=1

p`f(x̄, ȳ, ω`) + dT z̄ + π∗τ
(
µk + µkρk

L∑

`=1

‖M`‖
)
(‖ȳ‖+

√
m). (3.18)

Therefore, taking into account the equality (3.17) and the assumption (3.9), we have by letting
k →∞ in (3.18) that

L∑

`=1

p`f(x∗, y∗, ω`) + dTz∗ ≤
L∑

`=1

p`f(x̄, ȳ, ω`) + dT z̄,

while the converse inequality immediately follows from the fact that (x̄, ȳ, z̄) is an optimal
solution of problem (3.12). As a result, we have

L∑

`=1

p`f(x∗, y∗, ω`) + dTz∗ =
L∑

`=1

p`f(x̄, ȳ, ω`) + dT z̄,

namely, (x∗, y∗, z∗) is an optimal solution of problem (3.12) and hence it is a local optimal
solution of problem (3.2). This completes the proof. 2

It is not difficult to see that the function

ψ(y) :=
m∑

i=1

(
max(y[i], 0)

)σ
, (3.19)
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where σ ≥ 2 is a positive integer, satisfies the conditions assumed in Theorem 3.1. This function
is often employed for solving constrained optimization problems. For more details, see [1].

We have discussed the convergence of local optimal solutions of problems (3.7). In practice,
it may not be easy to obtain an optimal solution, whereas computation of stationary points may
be relatively easy. Therefore, it is necessary to study the limiting behavior of stationary points
of subproblems (3.7).

Theorem 3.2 Suppose the matrix M in (3.2) is a P0-matrix, the function ψ : <m → [0, +∞)
is given by (3.19) with σ = 2, and (x(k), z(k)) is a stationary point of (3.7) for each k. Let
(x∗, y∗, z∗) ∈ F be an accumulation point of the sequence {(x(k), y(k), z(k))} generated by SIPP.
If the MPEC-LICQ is satisfied at (x∗, y∗,y∗, z∗) in the MPEC (3.3), then (x∗, y∗, z∗) is a C-
stationary point of problem (3.2). Furthermore, if y∗ satisfies the strict complementarity condi-
tion, then (x∗, y∗, z∗) is S-stationary to (3.2).

Although the results established in this theorem are interesting and important, its proof is
somewhat lengthy and technical. To avoid disturbing the readability, we therefore give a detailed
proof of the theorem in Appendix B.

4 Here-and-Now Problems with Continuous Random Variable

In this section, we consider the here-and-now problem

minimize Eω[f(x, y, ω) + dT z(ω)]

subject to g(x) ≤ 0, h(x) = 0,

0 ≤ y ⊥ (N(ω)x + M(ω)y + q(ω) + z(ω)) ≥ 0, (4.1)

z(ω) ≥ 0 ∀ω ∈ Ω,

x ∈ <n, y ∈ <m, z(·) ∈ C(Ω),

where ω is a continuous random variable, Ω := [a1, b1] × · · · × [aν , bν ] ⊂ <ν , and C(Ω) is the
family of continuous functions from Ω into <m. Here, g, h, d are the same as in Section 3,
f : <n+m × Ω → < is uniformly continuous with respect to (x, y) and continuous with respect
to ω, N : Ω → <m×n, M : Ω → <m×m, and q : Ω → <m are all continuous. Without loss
of generality, we assume that Ω := [0, 1]ν . Let ζ : Ω → [0, +∞) be the continuous probability
density function of ω. Then we have

Eω[f(x, y, ω) + dT z(ω)] =
∫

Ω

(
f(x, y, ω) + dT z(ω)

)
ζ(ω)dω.

We next employ a quasi-Monte Carlo method [12] for numerical integration to discretize
problem (4.1). This method uses an uniformly distributed infinite sequence Ω∞ := {ω1, ω2, · · ·} ⊆
Ω, i.e., for any subinterval S of Ω, there holds

lim
L→∞

1
L

L∑

`=1

δS(ω`) = L(S), (4.2)

where δS denotes the characteristic function of the set S and L(S) means the Lebesgue measure
of S. Since the Lebesgue measure of any nonempty open set is positive, it is easy to see from (4.2)
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that Ω∞ is dense in Ω. Therefore, the following problem is an appropriate discrete approximation
of problem (4.1): For a given integer L > 0 and a given subset ΩL := {ω1, · · · , ωL} ⊆ Ω∞,

minimize
1
L

L∑

`=1

ζ(ω`)
(
f(x, y, ω`) + dT z(ω`)

)

subject to g(x) ≤ 0, h(x) = 0, (4.3)

0 ≤ y ⊥ (N(ω`)x + M(ω`)y + q(ω`) + z(ω`)) ≥ 0,

z(ω`) ≥ 0, ` = 1, · · · , L.

This problem has been discussed in the last section.
Suppose that (xL, yL, zL(ω1), · · · , zL(ωL)) is an optimal solution of problem (4.3) for each L

and the sequence {(xL, yL)} converges to a point (x∗, y∗) as L → +∞. Let us define

z̃L(ω`) := max
{
− (N(ω`)xL + M(ω`)yL + q(ω`)), 0

}
, ` = 1, · · · , L, (4.4)

z∗(ω) := max
{
− (N(ω)x∗ + M(ω)y∗ + q(ω)), 0

}
, ω ∈ Ω. (4.5)

Since ΩL ⊆ ΩL′ for all L ≤ L′, we have

lim
L→∞

z̃L(ω`) = z∗(ω`) (4.6)

for any fixed ω`. Moreover, there holds

1
L

L∑

`=1

ζ(ω`)
(
f(xL, yL, ω`) + dT zL(ω`)

)
− 1

L

L∑

`=1

ζ(ω`)
(
f(xL, yL, ω`) + dT z̃L(ω`)

)

=
1
L

L∑

`=1

ζ(ω`)dT
(
zL(ω`)− z̃L(ω`)

)

=
1
L

L∑

`=1

ζ(ω`)dT min
{
N(ω`)xL + M(ω`)yL + q(ω`) + zL(ω`), zL(ω`)

}
≥ 0,

where the second equality follows from (4.4) and the inequality follows from the feasibility
of (xL, yL, zL(ω1), · · · , zL(ωL)) in (4.3). Thus, (xL, yL, z̃L(ω1), · · · , z̃L(ωL)) is also an optimal
solution of problem (4.3). We next show that (x∗, y∗) together with z∗(·) is an optimal solution
of problem (4.1). Note that z∗(·) ∈ C(Ω) by the definition (4.5). Moreover, since Ω = [0, 1]ν ,
any continuous function must be integrable on Ω.

Lemma 4.1 Suppose the function ξ : Ω → < is continuous. Then we have

lim
L→∞

1
L

L∑

`=1

ξ(ω`)ζ(ω`) =
∫

Ω
ξ(ω)ζ(ω)dω.

It is not difficult to prove this lemma by the results given in Chapter 2 of [12]. We then have
from Lemma 4.1 immediately that, for any z(·) ∈ C(Ω),

lim
L→∞

1
L

L∑

`=1

ζ(ω`)
(
f(x, y, ω`) + dT z(ω`)

)
=

∫

Ω

(
f(x, y, ω) + dT z(ω)

)
ζ(ω)dω (4.7)

and particularly,

lim
L→∞

1
L

L∑

`=1

ζ(ω`) =
∫

Ω
ζ(ω)dω = 1. (4.8)
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Theorem 4.1 The point (x∗, y∗) together with z∗(·) is an optimal solution of problem (4.1).

Proof. We first prove that (x∗, y∗, z∗(·)) is feasible to problem (4.1). To this end, since
N(ω)x∗ + M(ω)y∗ + q(ω) + z∗(ω) ≥ 0 holds by the definition (4.5), it is sufficient to show that

(y∗)T
(
N(ω)x∗ + M(ω)y∗ + q(ω) + z∗(ω)

)
= 0 ∀ω ∈ Ω. (4.9)

In fact, by the feasibility of (xL, yL, z̃L(ω1), · · · , z̃L(ωL)) to problem (4.3) for each L, there holds

(yL)T
(
N(ω`)xL + M(ω`)yL + q(ω`) + z̃L(ω`)

)
= 0, ` ≤ L.

In consequence, letting L → +∞ and noting that (4.6) holds for each fixed ω`, we have

(y∗)T
(
N(ω`)x∗ + M(ω`)y∗ + q(ω`) + z∗(ω`)

)
= 0. (4.10)

Since the sequence {ω`} is dense in Ω and N(·),M(·), q(·), z∗(·) are all continuous, we obtain
(4.9) from (4.10) immediately.

Let (x, y, z(·)) be an arbitrary feasible solution of (4.1). It is obvious that (x, y, z(ω1), · · · , z(ωL))
is feasible to problem (4.3) for any L. Since (xL, yL, z̃L(ω1), · · · , z̃L(ωL)) is an optimal solution
of (4.3) as shown earlier, we have

1
L

L∑

`=1

ζ(ω`)
(
f(x∗, y∗, ω`) + dT z∗(ω`)

)
− 1

L

L∑

`=1

ζ(ω`)
(
f(x, y, ω`) + dT z(ω`)

)

≤ 1
L

L∑

`=1

ζ(ω`)
(
f(x∗, y∗, ω`) + dT z∗(ω`)

)
− 1

L

L∑

`=1

ζ(ω`)
(
f(xL, yL, ω`) + dT z̃L(ω`)

)

=
1
L

L∑

`=1

ζ(ω`)
[(

f(x∗, y∗, ω`)− f(xL, yL, ω`)
)

+ dT
(
z∗(ω`)− z̃L(ω`)

)]

≤ 1
L

L∑

`=1

ζ(ω`)
(∣∣∣f(x∗, y∗, ω`)− f(xL, yL, ω`)

∣∣∣ +
∣∣∣dT

(
z∗(ω`)− z̃L(ω`)

)∣∣∣
)

. (4.11)

Note that f is uniformly continuous with respect to (x, y) and, by (4.8), the sequence { 1
L

∑L
`=1 ζ(ω`)}

is bounded. This yields

lim
L→∞

1
L

L∑

`=1

ζ(ω`)
∣∣∣f(x∗, y∗, ω`)− f(xL, yL, ω`)

∣∣∣ = 0. (4.12)

On the other hand, it is easy to see from the definitions (4.4) and (4.5) that
∣∣∣dT

(
z∗(ω`)− z̃L(ω`)

)∣∣∣ ≤
∣∣∣dT

(
N(ω`)(x∗ − xL) + M(ω`)(y∗ − yL)

)∣∣∣, ` = 1, · · · , L.

By the boundedness of the functions N(·) and M(·) and the sequence { 1
L

∑L
`=1 ζ(ω`)}, we have

lim
L→∞

1
L

L∑

`=1

ζ(ω`)
∣∣∣dT

(
z∗(ω`)− z̃L(ω`)

)∣∣∣ = 0. (4.13)

Thus, by letting L → +∞ in (4.11) and taking (4.7) and (4.12)–(4.13) into account, we obtain
∫

Ω

(
f(x∗, y∗, ω) + dT z∗(ω)

)
ζ(ω)dω ≤

∫

Ω

(
f(x, y, ω) + dT z(ω)

)
ζ(ω)dω, (4.14)

which means

Eω[f(x∗, y∗, ω) + dT z∗(ω)] ≤ Eω[f(x, y, ω) + dT z(ω)].

This implies that the point (x∗, y∗) together with z∗(·) constitutes an optimal solution of problem
(4.1). 2
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5 Concluding Remarks

We have presented a combined smoothing implicit programming and penalty method for the
here-and-now problems with linear complementarity constraints. For the lower-level wait-and-
see problems, we may consider a similar but somewhat simpler approach. In particular, for the
discrete model

minimize
L∑

`=1

p`f(x, y`)

subject to g(x) ≤ 0, h(x) = 0, (5.1)

y` ≥ 0, N`x + M`y` + q` ≥ 0,

yT
` (N`x + M`y` + q`) = 0, ` = 1, · · · , L

with p`, N`, M`, and q` being the same as in Section 3, the subproblem corresponding to (3.7)
becomes

minimize
L∑

`=1

p`f(x, y`(x, µk))

subject to g(x) ≤ 0, h(x) = 0,

where y`(x, µ) satisfies the equation Φµ(x, y`(x, µ), w`(x, µ);N`,M`, q`) = 0 with w`(x, µ) =
N`x + (M` + µI)y`(x, µ) + q` for each `. Therefore, we do not need the penalty steps for (5.1).

On the other hand, recall that SMPECs contain the ordinary MPECs as a special subclass.
As a result, all the conclusions remain true for standard MPECs. Comparing with the results
given in the literature, the assumptions employed in this paper are relatively weak.
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Appendix A: Proof of Lemma 3.1. For any (x, y, z) ∈ <n+m+mL, we denote w := Nx +
My + q + Λz. Since (x, y, z) ∈ F implies

Φ0(x, y, w; N,M, q + Λz) = 0, (A.1)

we have from (3.5) and (A.1) that

0 = Φµk
(x, y(x,Λz, µk), w(x,Λz, µk);N,M, q + Λz)− Φ0(x, y, w; N, M, q + Λz)

=

(
M + µkI −I

I −D(x, z, µk) D(x, z, µk)

) (
y(x,Λz, µk)− y
w(x,Λz, µk)− w

)
− µk

(
−y

2µka
k

)
. (A.2)

Here, D(x, z, µk) := diag
(
ak[i](y(x,Λz, µk)[i] + y[i])

)
and

ak[i] :=
1√

(y(x,Λz, µk)[i])2 + (w(x,Λz, µk)[i])2 + 2µ2
k +

√
(y[i])2 + (w[i])2

=
1

y(x,Λz, µk)[i] + w(x,Λz, µk)[i] + y[i] + w[i]
, (A.3)

where the last equality follows from (3.5) and (A.1). Moreover, it is easy to see that, for any i

and k,

0 < ak[i](y(x,Λz, µk)[i] + y[i]) < 1.
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We next prove that there exist a neighborhood U∗ of (x∗, y∗, z∗) and a positive constant π∗ such
that

∥∥∥∥∥

(
M + µkI −I

I −D(x, z, µk) D(x, z, µk)

)−1 ∥∥∥∥∥ ≤ π∗ (A.4)

holds for any (x, y, z) ∈ U∗ ∩F and any k. Otherwise, there must be a subsequence {kj} of {k}
and a sequence {(xj , yj , zj)} ⊂ F such that

lim
j→∞

(xj , yj , zj) = (x∗, y∗, z∗),

lim
j→∞

(
M + µkjI −I

I −D(xj , zj , µkj
) D(xj , zj , µkj

)

)
=

(
M −I

I − D̂ D̂

)
:= H,

where D̂ := diag(d̂[1], · · · , d̂[m]) satisfies 0 ≤ d̂[i] ≤ 1 for each i and the matrix H is singular.
Note that, by (A.3),

d̂[i] = lim
j→∞

y(xj , Λzj , µkj )[i] + yj [i]
y(xj , Λzj , µkj

)[i] + w(xj , Λzj , µkj
)[i] + yj [i] + wj [i]

.

By the assumptions of the lemma, the sequence {y(xj ,Λzj , µkj )} is bounded and then so is the
sequence {w(xj , Λzj , µkj )}. It is not difficult to see that

d̂[i] = 1 ⇒ lim
j→∞

(
w(xj , Λzj , µkj )[i] + wj [i]

)
= 0 ⇒ lim

j→∞
wj [i] = 0.

This indicates that K∗ ⊇ K̂ := { i | d̂[i] = 1}. Taking into account the assumption that the
submatrix M [K∗] is nondegenerate, we deduce that the submatrix M [K̂] is nonsingular and
then it is not difficult to show that H is nonsingular. This is a contradiction and hence we
obtain (A.4).

Moreover, we have from Theorem 2.1(ii) that, for each k and i,

2µka
k[i] ≤ 2µk√

(y(x,Λz, µk)[i])2 + (w(x,Λz, µk)[i])2 + 2µ2
k

≤ 2µk√
2y(x,Λz, µk)[i]w(x,Λz, µk)[i] + 2µ2

k

(A.5)

= 1.

Thus, it follows from (A.2), (A.4), and (A.5) that

‖y(x,Λz, µk)− y‖ ≤
∥∥∥∥

(
y(x,Λz, µk)− y
w(x,Λz, µk)− w

) ∥∥∥∥

= µk

∥∥∥∥∥

(
M + µkI −I

I −D(x, z, µk) D(x, z, µk)

)−1 (
−y

2µka
k

) ∥∥∥∥∥
≤ µkπ

∗(‖y‖+
√

m).

This completes the proof of Lemma 3.1. 2

Appendix B: Proof of Theorem 3.2. Assume without loss of generality that the sequence
{(x(k), y(k), z(k))} converges to (x∗, y∗, z∗). By the MPEC-LICQ assumption, problem (3.7)
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satisfies the standard LICQ at (x(k), z(k)) for all k sufficiently large and so, by the stationarity of

(x(k), z(k)), there exist unique Lagrange multiplier vectors λk, γk, and αk :=
(
(αk

1)
T , · · · , (αk

L)T
)T

such that

∇θk(x(k), z(k)) +




∇g(x(k))
O
...
O




λk +




∇h(x(k))
O
...
O




γk −




O · · · O
I · · · O
...

. . .
...

O · · · I




αk = 0, (B.1)

h(x(k)) = 0, 0 ≤ λk ⊥
(
− g(x(k))

)
≥ 0, 0 ≤ αk ⊥ z(k) ≥ 0. (B.2)

In the rest of the proof, we suppose k is large enough so that (B.1)–(B.2) and

Ig(x(k)) ⊆ Ig(x∗) (B.3)

are satisfied and furthermore, for each ` = 1, · · · , L, there hold

Ik
Z`

:=
{
i

∣∣∣ z
(k)
` [i] = 0

}
⊆ I∗Z`

:=
{
i

∣∣∣ z∗` [i] = 0
}
, (B.4)

Ik
W`

:=
{
i

∣∣∣
(
N`x

(k) + M`y
(k) + q` + z

(k)
`

)
[i] = 0

}

⊆ I∗W`
:=

{
i

∣∣∣ (N`x
∗ + M`y

∗ + q` + z∗` )[i] = 0
}
, (B.5)

Ik
Y :=

{
i

∣∣∣ y(k)[i] = 0
}
⊆ I∗Y :=

{
i

∣∣∣ y∗[i] = 0
}
, (B.6)

Ik
W :=

{
i

∣∣∣
(
Nx(k) + My(k) + q + Λz(k)

)
[i] = 0

}

⊆ I∗W :=
{
i

∣∣∣ (Nx∗ + My∗ + q + Λz∗)[i] = 0
}
. (B.7)

It is clear that

I∗W = ∩L
`=1I∗W`

. (B.8)

Note that Φµk
(x, y(x,Λz, µk), w(x,Λz, µk);N, M, q + Λz) = 0 is satisfied. By the implicit func-

tion theorem [13], we have
(
∇(x,z)y(x(k),Λz(k), µk)T

∇(x,z)w(x(k), Λz(k), µk)T

)

= −
(
∇yΦµk

(x(k), y(k), w(k); N,M, q + Λz(k))
∇wΦµk

(x(k), y(k), w(k); N,M, q + Λz(k))

)−T

∇(x,z)Φµk
(x(k), y(k), w(k); N, M, q + Λz(k))T

= −
(

M + µkI −I
I −Dk Dk

)−1 (
N I
O O

)
, (B.9)

where

w(k) := Nx(k) + My(k) + q + Λz(k),

Dk := diag

(
y(k)[1]

y(k)[1] + w(k)[1]
, · · · , y(k)[m]

y(k)[m] + w(k)[m]

)
,

and the existence of the inverse matrix follows from Theorem 2.1. Furthermore, since
(

M + µkI −I
I −Dk Dk

)−1

=

(
EkDk Ek

−I + (M + µkI)EkDk (M + µkI)Ek

)
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with Ek :=
(
DkM + I − (1− µk)Dk

)−1
, it follows from (B.9) that

∇(x,z)y(x(k),Λz(k), µk) = −
(

NT Dk(Ek)T

Dk(Ek)T

)
.

As a result, we have

∇xy(x(k), Λz(k), µk) = −NT Dk(Ek)T , (B.10)

∇zy(x(k), Λz(k), µk) = −Dk(Ek)T . (B.11)

Thus, from the definition of θk, (B.10)–(B.11), and by a straightforward calculus, (B.1) becomes

0 =




∑L
`=1 p`(∇xf(x(k), y(k), ω`)−NT Dk(Ek)T∇yf(x(k), y(k), ω`))

p1d−
∑L

`=1 p`D
k(Ek)T∇yf(x(k), y(k), ω`)

...
pLd−∑L

`=1 p`D
k(Ek)T∇yf(x(k), y(k), ω`)




−




NT
1 −NT Dk(Ek)T MT

1 · · · NT
L −NT Dk(Ek)T MT

L

I −Dk(Ek)T MT
1 · · · −Dk(Ek)T MT

L

−Dk(Ek)T MT
1 · · · −Dk(Ek)T MT

L
...

...
...

−Dk(Ek)T MT
1 · · · I −Dk(Ek)T MT

L




βk

+




∇g(x(k))
O
...
O




λk +




∇h(x(k))
O
...
O




γk −




O · · · O
I · · · O
...

. . .
...

O · · · I




αk.

Here, βk ∈ <mL is given by βk :=
(
(βk

1 )T , · · · , (βk
L)T

)T
with

βk
` := 2ρk max

(
− (N`x

(k) + M`y
(k) + q` + z

(k)
` ), 0

)

for each `. We then have

0 =




∑L
`=1 p`∇xf(x(k), y(k), ω`)

p1d
...

pLd




+




∇g(x(k))
O
...
O




λk +




∇h(x(k))
O
...
O




γk

−




O · · · O
I · · · O
...

. . .
...

O · · · I




αk −




NT
1 · · · NT

L

I · · · O
...

. . .
...

O · · · I




βk −




NT

I
...
I




vk, (B.12)

where vk is defined by

vk := Dk(Ek)T
L∑

`=1

(
p`∇yf(x(k), y(k), ω`)−MT

` βk
`

)
. (B.13)

Furthermore, by letting

L∑

`=1

p`∇yf(x(k), y(k), ω`)−
L∑

`=1

MT
` βk

` − uk −MT vk = 0, (B.14)
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we have

uk =
L∑

`=1

(
p`∇yf(x(k), y(k), ω`)−MT

` βk
`

)
−MT vk

=
(
(Ek)−T −MT Dk

)
(Ek)T

L∑

`=1

(
p`∇yf(x(k), y(k), ω`)−MT

` βk
`

)

=
(
I − (1− µk)Dk

)
(Ek)T

L∑

`=1

(
p`∇yf(x(k), y(k), ω`)−MT

` βk
`

)
, (B.15)

where the second equality follows from (B.13). Combining (B.12) and (B.14) yields

0 =




∑L
`=1 p`∇xf(x(k), y(k), ω`)∑L
`=1 p`∇yf(x(k), y(k), ω`)

p1d
...

pLd




+




∇g(x(k))
O
O
...
O




λk +




∇h(x(k))
O
O
...
O




γk

−




O · · · O
O · · · O
I · · · O
...

. . .
...

O · · · I




αk −




NT
1 · · · NT

L

MT
1 · · · MT

L

I · · · O
...

. . .
...

O · · · I




βk −




O
I
O
...
O




uk −




NT

MT

I
...
I




vk. (B.16)

We can show that, when k is large sufficiently,

βk
` [i] = 0 as long as i /∈ I∗W`

. (B.17)

In fact, if i /∈ I∗W`
, namely, (N`x

∗ + M`y
∗ + q` + z∗` )[i] > 0, then, when k is large enough, there

must hold (N`x
(k) + M`y

(k) + q` + z
(k)
` )[i] > 0 and hence

βk
` [i] = 2ρk max

{
− (N`x

(k) + M`y
(k) + q` + z

(k)
` )[i], 0

}
= 0.

Taking into account (B.2)–(B.7), we can rewrite (B.16) as



∑L
`=1 p`∇xf(x(k), y(k), ω`)∑L
`=1 p`∇yf(x(k), y(k), ω`)

p1d
...

pLd



−

∑

i/∈I∗Y
uk[i]




0
ei

0
...
0



−

∑

i/∈I∗W
vk[i]




N [i]
M [i]
ei
...
ei




= −
∑

i∈Ig(x∗)

λk[i]




∇gi(x(k))
0
...
0



−

s2∑

i=1

γk[i]




∇hi(x(k))
0
...
0




+
L∑

`=1

∑

i∈I∗Z`

αk
` [i]




0
...
ei
...
0




+
L∑

`=1

∑

i∈I∗W`

βk
` [i]




N`[i]
M`[i]

...
ei
...
0




+
∑

i∈I∗Y
uk[i]




0
ei

0
...
0




+
∑

i∈I∗W
vk[i]




N [i]
M [i]
ei
...
ei




. (B.18)
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We next prove

i /∈ I∗Y ⇒ lim
k→∞

uk[i] = 0, (B.19)

i /∈ I∗W ⇒ lim
k→∞

vk[i] = 0. (B.20)

To this end, since (B.15) and (B.13) imply that

uk[i] =
µky

(k)[i] + w(k)[i]
y(k)[i] + w(k)[i]

eT
i (Ek)T

L∑

`=1

(
p`∇yf(x(k), y(k), ω`)−MT

` βk
`

)
, (B.21)

vk[i] =
y(k)[i]

y(k)[i] + w(k)[i]
eT
i (Ek)T

L∑

`=1

(
p`∇yf(x(k), y(k), ω`)−MT

` βk
`

)
, (B.22)

it is enough to show that the sequence

{∥∥∥(Ek)T
L∑

`=1

(
p`∇yf(x(k), y(k), ω`)−MT

` βk
`

)∥∥∥
}

is bounded. For the purpose of contradiction, taking a further subsequence if necessary, we
assume

lim
k→∞

∥∥∥(Ek)T
L∑

`=1

(
p`∇yf(x(k), y(k), ω`)−MT

` βk
`

)∥∥∥ = +∞. (B.23)

Note that (B.21) implies

|uk[i]| ≤ µky
(k)[i] + w(k)[i]

y(k)[i] + w(k)[i]

∥∥∥(Ek)T
L∑

`=1

(
p`∇yf(x(k), y(k), ω`)−MT

` βk
`

)∥∥∥

for each i and k. In consequence, we have

i /∈ I∗Y ⇒ lim
k→∞

µky
(k)[i] + w(k)[i]

y(k)[i] + w(k)[i]
= 0

⇒ lim
k→∞

|uk[i]|
‖(Ek)T

∑L
`=1

(
p`∇yf(x(k), y(k), ω`)−MT

` βk
`

)
‖

= 0. (B.24)

Similarly, we can show that

i /∈ I∗W ⇒ lim
k→∞

|vk[i]|
‖(Ek)T

∑L
`=1

(
p`∇yf(x(k), y(k), ω`)−MT

` βk
`

)
‖

= 0. (B.25)

Let dk denote the vector on the right-hand side of equality (B.18). It then follows from (B.18)
and (B.23)–(B.25) that

lim
k→∞

dk

‖(Ek)T
∑L

`=1

(
p`∇yf(x(k), y(k), ω`)−MT

` βk
`

)
‖

= 0. (B.26)

Since the MPEC-LICQ holds at (x∗, y∗,y∗, z∗) in problem (3.3), the vectors on the right-hand
side of (B.18) are linearly independent when k is sufficiently large and so, by (B.26), all the
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sequences generated by dividing the multipliers that appear on the right-hand side of (B.18) by
the number ∥∥∥(Ek)T

L∑

`=1

(
p`∇yf(x(k), y(k), ω`)−MT

` βk
`

)∥∥∥

are convergent to 0 as k →∞. This fact, together with (B.24) and (B.25), implies that

lim
k→∞

uk[i]

‖(Ek)T
∑L

`=1

(
p`∇yf(x(k), y(k), ω`)−MT

` βk
`

)
‖

= 0, (B.27)

lim
k→∞

vk[i]

‖(Ek)T
∑L

`=1

(
p`∇yf(x(k), y(k), ω`)−MT

` βk
`

)
‖

= 0 (B.28)

hold for any i. However, noticing that

uk[i] + vk[i]

‖(Ek)T
∑L

`=1

(
p`∇yf(x(k), y(k), ω`)−MT

` βk
`

)
‖

=
(
1 +

µky
(k)[i]

y(k)[i] + w(k)[i]

)eT
i (Ek)T ∑L

`=1

(
p`∇yf(x(k), y(k), ω`)−MT

` βk
`

)

‖(Ek)T
∑L

`=1

(
p`∇yf(x(k), y(k), ω`)−MT

` βk
`

)
‖

holds for any i and k, there exists an index î such that

lim
k→∞

|uk [̂i] + vk [̂i]|
‖(Ek)T

∑L
`=1

(
p`∇yf(x(k), y(k), ω`)−MT

` βk
`

)
‖
≥ 1√

m
lim

k→∞

(
1 +

µky
(k) [̂i]

y(k) [̂i] + w(k) [̂i]

)
=

1√
m

> 0.

This contradicts (B.27) and (B.28). As a result, the implications (B.19) and (B.20) are true.
Consider equality (B.18) again. By (B.19) and (B.20), the left-hand side of equality (B.18)

is convergent. Moreover, from the assumption that the MPEC-LICQ holds at (x∗, y∗,y∗, z∗), we
can prove that all the sequences of the multipliers that appear on the right-hand side of (B.18)
are bounded. In fact, by letting uk

` :=
(
I − (1 − µk)Dk

)
(Ek)T

(
p`∇yf(x(k), y(k), ω`) −MT

` βk
`

)

for ` = 1, · · · , L,

vk :=




vk

...
vk


 ∈ <mL, uk :=




uk
1
...

uk
L


 ,

and

ak := uk + MT (βk + vk),

bk := uk,

ck := βk + vk,

we obtain from (B.16) that

0 =




∑L
`=1 p`∇xf(x(k), y(k), ω`)∑L
`=1 p`∇yf(x(k), y(k), ω`)

0
d


 +




∇g(x(k))
O
O
O


 λk +




∇h(x(k))
O
O
O


 γk

−




O
O
O
I


 αk +




O
−DT

I
O


ak −




O
O
I
O


bk −




NT

O
MT

I


 ck. (B.29)
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Applying (B.19) and (B.20), it is not difficult to show that

y∗[i] > 0 ⇒ lim
k→∞

uk[i] = 0,

(Nx∗ + My∗ + q + z∗)[i] > 0 ⇒ lim
k→∞

vk[i] = 0.

From (B.8), (B.17), and the MPEC-LICQ assumption, we see that all the sequences of the mul-
tiplier vectors in (B.29) are bounded, which implies the boundedness of the multiplier sequences
that appear on the right-hand side of (B.18). In consequence, assuming these vector sequences
are all convergent without loss of generality and letting k →∞ in (B.18), we obtain the equality
corresponding to (2.3).

In addition, since both y(k)[i] and w(k)[i] are positive, we have from (B.21) and (B.22) that

uk[i]vk[i] ≥ 0, i = 1, · · · ,m.

This yields the results corresponding to (2.4). Therefore, (x∗, y∗, z∗) is a C-stationary point of
problem (3.1). If, in addition, y∗ satisfies the strict complementarity condition, then (x∗, y∗, z∗)
is a S-stationary point by the definitions of C-stationarity and S-stationarity. This completes
the proof of Theorem 3.2. 2
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