# A Modified Relaxation Scheme for Mathematical Programs with Complementarity Constraints: <br> <br> Erratum 

 <br> <br> Erratum}

Gui-Hua Lin* and Masao Fukushima ${ }^{\dagger}$

April 20, 2006

In [1], a modified relaxation method was proposed for mathematical programs with complementarity constraints and some new sufficient conditions for M- or B-stationarity were shown. However, due to an ignored sign in the Lagrangian function of the relaxed problem, the proofs of Theorems 3.4 and 3.5 in [1] are incorrect. In what follows, we give the corrected proofs. Throughout, we use the same notations as in [1].

Theorem 3.4. Let $\left\{\epsilon_{k}\right\} \subseteq(0,+\infty)$ be convergent to 0 and $z^{k} \in \mathcal{F}_{\epsilon_{k}}$ be a stationary point of problem (3) with $\epsilon=\epsilon_{k}$ and multiplier vectors $\lambda^{k}, \mu^{k}, \delta^{k}$, and $\gamma^{k}$. Suppose that, for each $k$, $\nabla_{z}^{2} L_{\epsilon_{k}}\left(z^{k}, \lambda^{k}, \mu^{k}, \delta^{k}, \gamma^{k}\right)$ is bounded below with constant $\alpha_{k}$ on the corresponding tangent space $\mathcal{T}_{\epsilon_{k}}\left(z^{k}\right)$. Let $\bar{z}$ be an accumulation point of the sequence $\left\{z^{k}\right\}$. If the sequence $\left\{\alpha_{k}\right\}$ is bounded and the MPEC-LICQ holds at $\bar{z}$, then $\bar{z}$ is an M-stationary point of problem (1).

Proof. Assume that $\lim _{k \rightarrow \infty} z^{k}=\bar{z}$ without loss of generality. First of all, we note from Theorem 3.3 that $\bar{z}$ is a C-stationary point of problem (1). To prove the theorem, we assume to the contrary that $\bar{z}$ is not M-stationary to problem (1). Then, it follows from the definitions of C-stationarity and M-stationarity that there must exist an $i_{0} \in \mathcal{I}_{G}(\bar{z}) \cap \mathcal{I}_{H}(\bar{z})$ such that

$$
\begin{equation*}
\bar{u}_{i_{0}}<0, \quad \bar{v}_{i_{0}}<0 . \tag{49}
\end{equation*}
$$

By (39)-(40) and (45)-(46), we have

$$
i_{0} \in \mathcal{I}_{\Phi_{\epsilon_{k}}}\left(z^{k}\right) \cup \mathcal{I}_{\Psi_{\epsilon_{k}}}\left(z^{k}\right)
$$

for every sufficiently large $k$. We first claim that $i_{0} \notin \mathcal{I}_{\Phi_{\epsilon_{k}}}\left(z^{k}\right)$ for all $k$ sufficiently large. In fact, if there exists a subsequence $\left\{z^{k}\right\}_{k \in \mathcal{K}}$ such that $i_{0} \in \mathcal{I}_{\Phi_{\epsilon_{k}}}\left(z^{k}\right)$ for all $k \in \mathcal{K}$, then, by (39) and (40), we have from (49) that

$$
\begin{aligned}
& \bar{u}_{i_{0}}=\lim _{\substack{k \in \mathcal{K} \\
k \rightarrow \infty}} \delta_{i_{0}}^{k}\left(H_{i_{0}}\left(z^{k}\right)+\epsilon_{k}\right)<0, \\
& \bar{v}_{i_{0}}=\lim _{\substack{k \in \mathcal{K} \\
k \rightarrow \infty}} \delta_{i_{0}}^{k}\left(G_{i_{0}}\left(z^{k}\right)+\epsilon_{k}\right)<0 .
\end{aligned}
$$

Since $\delta_{i_{0}}^{k} \geq 0$ for each $k$, when $k \in \mathcal{K}$ is sufficiently large, there hold

$$
H_{i_{0}}\left(z^{k}\right)<-\epsilon_{k}, \quad G_{i_{0}}\left(z^{k}\right)<-\epsilon_{k}
$$

and hence $H_{i_{0}}\left(z^{k}\right) G_{i_{0}}\left(z^{k}\right)>\epsilon_{k}^{2}$. This contradicts the fact that, for each $k, z^{k}$ is a feasible point of problem (3) with $\epsilon=\epsilon_{k}$. Therefore, we have $i_{0} \notin \mathcal{I}_{\Phi_{\epsilon_{k}}}\left(z^{k}\right)$ for all sufficiently large $k$, which implies

$$
\begin{equation*}
i_{0} \in \mathcal{I}_{\Psi_{\epsilon_{k}}}\left(z^{k}\right) \tag{50}
\end{equation*}
$$

[^0]for all sufficiently large $k$. Then, by (39) and (40),
\[

$$
\begin{align*}
\bar{u}_{i_{0}} & =-\lim _{k \rightarrow \infty} \gamma_{i_{0}}^{k} H_{i_{0}}\left(z^{k}\right)<0,  \tag{51}\\
\bar{v}_{i_{0}} & =-\lim _{k \rightarrow \infty} \gamma_{i_{0}}^{k} G_{i_{0}}\left(z^{k}\right)<0, \tag{52}
\end{align*}
$$
\]

and so

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{H_{i_{0}}\left(z^{k}\right)}{G_{i_{0}}\left(z^{k}\right)}=\frac{\bar{u}_{i_{0}}}{\bar{v}_{i_{0}}}>0 . \tag{53}
\end{equation*}
$$

In what follows, we suppose that, for all sufficiently large $k$, (28)-(31), (35), and

$$
\frac{H_{i_{0}}\left(z^{k}\right)}{G_{i_{0}}\left(z^{k}\right)}>0
$$

hold and all the matrix functions $A_{i}(z, \epsilon), i=1, \cdots, N$, in (7) have full column rank at $\left(z^{k}, \epsilon_{k}\right)$. For such $k$, the matrix $A_{N_{k}}\left(z^{k}, \epsilon_{k}\right)$ whose columns consist of the vectors

$$
\begin{array}{ll}
\nabla g_{l}\left(z^{k}\right): \quad l \in \mathcal{I}_{g}(\bar{z}), \\
\nabla h_{r}\left(z^{k}\right): & r=1, \cdots, q, \\
\nabla G_{i}\left(z^{k}\right): \quad i \in\left(\mathcal{I}_{G}(\bar{z}) \cap \mathcal{I}_{H}(\bar{z})\right) \cup\left(\mathcal{I}_{G}(\bar{z}) \backslash\left(\mathcal{I}_{\Phi_{\epsilon_{k}}}\left(z^{k}\right) \cup \mathcal{I}_{\Psi_{\epsilon_{k}}}\left(z^{k}\right)\right)\right), \\
\nabla G_{i}\left(z^{k}\right)+\frac{G_{i}\left(z^{k}\right)+\epsilon_{k}}{H_{i}\left(z^{k}\right)+\epsilon_{k}} \nabla H_{i}\left(z^{k}\right): \quad i \in \mathcal{I}_{\Phi_{\epsilon_{k}}}\left(z^{k}\right) \backslash \mathcal{I}_{H}(\bar{z}), \\
\nabla G_{i}\left(z^{k}\right)+\frac{G_{i}\left(z^{k}\right)}{H_{i}\left(z^{k}\right)} \nabla H_{i}\left(z^{k}\right): \quad i \in \mathcal{I}_{\Psi_{\epsilon_{k}}}\left(z^{k}\right) \backslash \mathcal{I}_{H}(\bar{z}), \\
\nabla H_{j}\left(z^{k}\right): \quad j \in\left(\mathcal{I}_{G}(\bar{z}) \cap \mathcal{I}_{H}(\bar{z})\right) \cup\left(\mathcal{I}_{H}(\bar{z}) \backslash\left(\mathcal{I}_{\Phi_{\epsilon_{k}}}\left(z^{k}\right) \cup \mathcal{I}_{\Psi_{\epsilon_{k}}}\left(z^{k}\right)\right)\right), \\
\nabla H_{j}\left(z^{k}\right)+\frac{H_{j}\left(z^{k}\right)+\epsilon_{k}}{G_{j}\left(z^{k}\right)+\epsilon_{k}} \nabla G_{j}\left(z^{k}\right): \quad j \in \mathcal{I}_{\Phi_{\epsilon_{k}}}\left(z^{k}\right) \backslash \mathcal{I}_{G}(\bar{z}), \\
\nabla H_{j}\left(z^{k}\right)+\frac{H_{j}\left(z^{k}\right)}{G_{j}\left(z^{k}\right)} \nabla G_{j}\left(z^{k}\right): \quad j \in \mathcal{I}_{\Psi_{\epsilon_{k}}}\left(z^{k}\right) \backslash \mathcal{I}_{G}(\bar{z})
\end{array}
$$

has full column rank. Therefore, we can choose a vector $d^{k} \in R^{n}$ such that

$$
\begin{align*}
& \left(d^{k}\right)^{T} \nabla g_{l}\left(z^{k}\right)=0, \quad l \in \mathcal{I}_{g}(\bar{z}) ;  \tag{54}\\
& \left(d^{k}\right)^{T} \nabla h_{r}\left(z^{k}\right)=0, \quad r=1, \cdots, q ;  \tag{55}\\
& \left(d^{k}\right)^{T} \nabla G_{i}\left(z^{k}\right)=0, \quad i \in\left(\mathcal{I}_{G}(\bar{z}) \cap \mathcal{I}_{H}(\bar{z})\right) \cup\left(\mathcal{I}_{G}(\bar{z}) \backslash\left(\mathcal{I}_{\Phi_{\epsilon_{k}}}\left(z^{k}\right) \cup \mathcal{I}_{\Psi_{\epsilon_{k}}}\left(z^{k}\right)\right)\right), i \neq i_{0} ;  \tag{56}\\
& \left(d^{k}\right)^{T}\left(\nabla G_{i}\left(z^{k}\right)+\frac{G_{i}\left(z^{k}\right)+\epsilon_{k}}{H_{i}\left(z^{k}\right)+\epsilon_{k}} \nabla H_{i}\left(z^{k}\right)\right)=0, \quad i \in \mathcal{I}_{\Phi_{\epsilon_{k}}}\left(z^{k}\right) \backslash \mathcal{I}_{H}(\bar{z}) ;  \tag{57}\\
& \left(d^{k}\right)^{T}\left(\nabla G_{i}\left(z^{k}\right)+\frac{G_{i}\left(z^{k}\right)}{H_{i}\left(z^{k}\right)} \nabla H_{i}\left(z^{k}\right)\right)=0, \quad i \in \mathcal{I}_{\Psi_{\epsilon_{k}}}\left(z^{k}\right) \backslash \mathcal{I}_{H}(\bar{z}) ;  \tag{58}\\
& \left(d^{k}\right)^{T} \nabla H_{j}\left(z^{k}\right)=0, \quad j \in\left(\mathcal{I}_{G}(\bar{z}) \cap \mathcal{I}_{H}(\bar{z})\right) \cup\left(\mathcal{I}_{H}(\bar{z}) \backslash\left(\mathcal{I}_{\Phi_{\epsilon_{k}}}\left(z^{k}\right) \cup \mathcal{I}_{\Psi_{\epsilon_{k}}}\left(z^{k}\right)\right)\right), j \neq i_{0} ;  \tag{59}\\
& \left(d^{k}\right)^{T}\left(\nabla H_{j}\left(z^{k}\right)+\frac{H_{j}\left(z^{k}\right)+\epsilon_{k}}{G_{j}\left(z^{k}\right)+\epsilon_{k}} \nabla G_{j}\left(z^{k}\right)\right)=0, \quad j \in \mathcal{I}_{\Phi_{\epsilon_{k}}}\left(z^{k}\right) \backslash \mathcal{I}_{G}(\bar{z}) ;  \tag{60}\\
& \left(d^{k}\right)^{T}\left(\nabla H_{j}\left(z^{k}\right)+\frac{H_{j}\left(z^{k}\right)}{G_{j}\left(z^{k}\right)} \nabla G_{j}\left(z^{k}\right)\right)=0, \quad j \in \mathcal{I}_{\Psi_{\epsilon_{k}}}\left(z^{k}\right) \backslash \mathcal{I}_{G}(\bar{z}) ;  \tag{61}\\
& \left(d^{k}\right)^{T} \nabla G_{i_{0}}\left(z^{k}\right)=1 ;  \tag{62}\\
& \left(d^{k}\right)^{T} \nabla H_{i_{0}}\left(z^{k}\right)=-\frac{H_{i_{0}}\left(z^{k}\right)}{G_{i_{0}}\left(z^{k}\right)} .
\end{align*}
$$

Then for any $i \in \mathcal{I}_{\Phi_{\epsilon_{k}}}\left(z^{k}\right)$ and any $j \in \mathcal{I}_{\Psi_{\epsilon_{k}}}\left(z^{k}\right)$, since

$$
\begin{aligned}
\nabla \phi_{\epsilon_{k}, i}\left(z^{k}\right) & =\left(G_{i}\left(z^{k}\right)+\epsilon_{k}\right) \nabla H_{i}\left(z^{k}\right)+\left(H_{i}\left(z^{k}\right)+\epsilon_{k}\right) \nabla G_{i}\left(z^{k}\right), \\
\nabla \psi_{\epsilon_{k}, j}\left(z^{k}\right) & =H_{j}\left(z^{k}\right) \nabla G_{j}\left(z^{k}\right)+G_{j}\left(z^{k}\right) \nabla H_{j}\left(z^{k}\right),
\end{aligned}
$$

we have

$$
\begin{aligned}
& \left(d^{k}\right)^{T} \nabla \phi_{\epsilon_{k}, i}\left(z^{k}\right)=0, \quad i \in \mathcal{I}_{\Phi_{\epsilon_{k}}}\left(z^{k}\right), \\
& \left(d^{k}\right)^{T} \nabla \psi_{\epsilon_{k}, j}\left(z^{k}\right)=0, \quad j \in \mathcal{I}_{\Psi_{\epsilon_{k}}}\left(z^{k}\right),
\end{aligned}
$$

and so $d^{k} \in \mathcal{T}_{\epsilon_{k}}\left(z^{k}\right)$. Furthermore, we can choose the sequence $\left\{d^{k}\right\}$ to be bounded. Since $\nabla_{z}^{2} L_{\epsilon_{k}}\left(z^{k}, \lambda^{k}, \mu^{k}, \delta^{k}, \gamma^{k}\right)$ is bounded below with constant $\alpha_{k}$ on the corresponding tangent space $\mathcal{T}_{\epsilon_{k}}\left(z^{k}\right)$, we have from (48) that there exists a constant $C$ such that

$$
\begin{equation*}
\left(d^{k}\right)^{T} \nabla_{z}^{2} L_{\epsilon_{k}}\left(z^{k}, \lambda^{k}, \mu^{k}, \delta^{k}, \gamma^{k}\right) d^{k} \geq-\alpha_{k}\left\|d^{k}\right\|^{2} \geq C \tag{63}
\end{equation*}
$$

where the last inequality follows from the boundedness of the sequences $\left\{\alpha_{k}\right\}$ and $\left\{d^{k}\right\}$. Note that, by (32)-(34) and

$$
\begin{aligned}
\nabla^{2} \phi_{\epsilon_{k}, i}\left(z^{k}\right)= & \nabla G_{i}\left(z^{k}\right) \nabla H_{i}\left(z^{k}\right)^{T}+\nabla H_{i}\left(z^{k}\right) \nabla G_{i}\left(z^{k}\right)^{T} \\
& +\left(G_{i}\left(z^{k}\right)+\epsilon_{k}\right) \nabla^{2} H_{i}\left(z^{k}\right)+\left(H_{i}\left(z^{k}\right)+\epsilon_{k}\right) \nabla^{2} G_{i}\left(z^{k}\right), \\
\nabla^{2} \psi_{\epsilon_{k}, j}\left(z^{k}\right)= & \nabla G_{j}\left(z^{k}\right) \nabla H_{j}\left(z^{k}\right)^{T}+\nabla H_{j}\left(z^{k}\right) \nabla G_{j}\left(z^{k}\right)^{T} \\
& +G_{j}\left(z^{k}\right) \nabla^{2} H_{j}\left(z^{k}\right)+H_{j}\left(z^{k}\right) \nabla^{2} G_{j}\left(z^{k}\right),
\end{aligned}
$$

there holds

$$
\begin{aligned}
\nabla_{z}^{2} L_{\epsilon_{k}}\left(z^{k}, \lambda^{k}, \mu^{k}, \delta^{k}, \gamma^{k}\right)= & \nabla^{2} f\left(z^{k}\right)+\sum_{l=1}^{p} \lambda_{l}^{k} \nabla^{2} g_{l}\left(z^{k}\right)+\sum_{r=1}^{q} \mu_{r}^{k} \nabla^{2} h_{r}\left(z^{k}\right) \\
& -\sum_{i=1}^{m} \delta_{i}^{k} \nabla^{2} \phi_{\epsilon_{k}, i}\left(z^{k}\right)+\sum_{j=1}^{m} \gamma_{j}^{k} \nabla^{2} \psi_{\epsilon_{k}, j}\left(z^{k}\right) \\
= & \nabla^{2} f\left(z^{k}\right)+\sum_{l \in \mathcal{I}_{g}(z)} \lambda_{l}^{k} \nabla^{2} g_{l}\left(z^{k}\right)+\sum_{r=1}^{q} \mu_{r}^{k} \nabla^{2} h_{r}\left(z^{k}\right) \\
& -\sum_{i \in \mathcal{I}_{\Phi_{\epsilon_{k}}}\left(z^{k}\right)} \delta_{i}^{k} \nabla^{2} \phi_{\epsilon_{k}, i}\left(z^{k}\right)+\sum_{j \in \mathcal{I}_{\Psi_{\epsilon_{k}}}\left(z^{k}\right)} \gamma_{j}^{k} \nabla^{2} \psi_{\epsilon_{k}, j}\left(z^{k}\right) .
\end{aligned}
$$

We then have

$$
\begin{align*}
& \left(d^{k}\right)^{T} \nabla_{z}^{2} L_{\epsilon_{k}}\left(z^{k}, \lambda^{k}, \mu^{k}, \delta^{k}, \gamma^{k}\right) d^{k} \\
& =\left(d^{k}\right)^{T} \nabla^{2} f\left(z^{k}\right) d^{k}+\sum_{l \in \mathcal{I}_{g}(\bar{z})} \lambda_{l}^{k}\left(d^{k}\right)^{T} \nabla^{2} g_{l}\left(z^{k}\right) d^{k}+\sum_{r=1}^{q} \mu_{r}^{k}\left(d^{k}\right)^{T} \nabla^{2} h_{r}\left(z^{k}\right) d^{k} \\
& \quad-\sum_{i \in \mathcal{I}_{\Phi_{\epsilon_{k}}\left(z^{k}\right)}} \delta_{i}^{k}\left(\left(d^{k}\right)^{T} \nabla G_{i}\left(z^{k}\right) \nabla H_{i}\left(z^{k}\right)^{T} d^{k}+\left(d^{k}\right)^{T} \nabla H_{i}\left(z^{k}\right) \nabla G_{i}\left(z^{k}\right)^{T} d^{k}\right. \\
& \left.\quad \quad+\left(G_{i}\left(z^{k}\right)+\epsilon_{k}\right)\left(d^{k}\right)^{T} \nabla^{2} H_{i}\left(z^{k}\right) d^{k}+\left(H_{i}\left(z^{k}\right)+\epsilon_{k}\right)\left(d^{k}\right)^{T} \nabla^{2} G_{i}\left(z^{k}\right) d^{k}\right) \\
& \quad+\sum_{j \in \mathcal{I}_{\Psi_{\epsilon_{k}}}\left(z^{k}\right)} \gamma_{j}^{k}\left(\left(d^{k}\right)^{T} \nabla G_{j}\left(z^{k}\right) \nabla H_{j}\left(z^{k}\right)^{T} d^{k}+\left(d^{k}\right)^{T} \nabla H_{j}\left(z^{k}\right) \nabla G_{j}\left(z^{k}\right)^{T} d^{k}\right. \\
& \left.\quad \quad+G_{j}\left(z^{k}\right)\left(d^{k}\right)^{T} \nabla^{2} H_{j}\left(z^{k}\right) d^{k}+H_{j}\left(z^{k}\right)\left(d^{k}\right)^{T} \nabla^{2} G_{j}\left(z^{k}\right) d^{k}\right) . \tag{64}
\end{align*}
$$

By the twice continuous differentiability of the functions, the boundness of the sequence $\left\{d^{k}\right\}$, and the convergence of the sequences $\left\{z^{k}\right\},\left\{\lambda_{l}^{k}\right\}$ and $\left\{\mu_{r}^{k}\right\}$ (by (43)-(44)), the terms

$$
\left(d^{k}\right)^{T} \nabla^{2} f\left(z^{k}\right) d^{k}, \quad \sum_{l \in \mathcal{I}_{g}(\bar{z})} \lambda_{l}^{k}\left(d^{k}\right)^{T} \nabla^{2} g_{l}\left(z^{k}\right) d^{k}, \quad \sum_{r=1}^{q} \mu_{r}^{k}\left(d^{k}\right)^{T} \nabla^{2} h_{r}\left(z^{k}\right) d^{k}
$$

are all bounded. Consider arbitrary indices $i$ and $j$ such that $i \in \mathcal{I}_{\Phi_{\epsilon_{k}}}\left(z^{k}\right)$ for infinitely many $k$ and $j \in \mathcal{I}_{\Psi_{\epsilon_{k}}}\left(z^{k}\right) \backslash\left\{i_{0}\right\}$ for infinitely many $k$, respectively. If

$$
i \in \mathcal{I}_{G}(\bar{z}) \cap \mathcal{I}_{H}(\bar{z}) \quad \text { or } \quad j \in \mathcal{I}_{G}(\bar{z}) \cap \mathcal{I}_{H}(\bar{z}),
$$

then

$$
\left(d^{k}\right)^{T} \nabla G_{i}\left(z^{k}\right)=0 \quad \text { or } \quad\left(d^{k}\right)^{T} \nabla H_{j}\left(z^{k}\right)=0
$$

and, by (39)-(40) and (45)-(46), the sequences

$$
\left\{\delta_{i}^{k}\left(G_{i}\left(z^{k}\right)+\epsilon_{k}\right)\right\}, \quad\left\{\delta_{i}^{k}\left(H_{i}\left(z^{k}\right)+\epsilon_{k}\right)\right\},
$$

and

$$
\left\{\gamma_{j}^{k} G_{j}\left(z^{k}\right)\right\}, \quad\left\{\gamma_{j}^{k} H_{j}\left(z^{k}\right)\right\}
$$

are all convergent. If

$$
i, j \notin \mathcal{I}_{G}(\bar{z}) \cap \mathcal{I}_{H}(\bar{z}),
$$

then, also by (39)-(40) and (45)-(46), the sequences $\left\{\delta_{i}^{k}\right\}$ and $\left\{\gamma_{j}^{k}\right\}$ are convergent. Therefore, we have that the terms

$$
\begin{aligned}
& \sum_{i \in \mathcal{I}_{\Phi_{e_{k}}}\left(z^{k}\right)} \delta_{i}^{k}\left(\left(d^{k}\right)^{T} \nabla G_{i}\left(z^{k}\right) \nabla H_{i}\left(z^{k}\right)^{T} d^{k}+\left(d^{k}\right)^{T} \nabla H_{i}\left(z^{k}\right) \nabla G_{i}\left(z^{k}\right)^{T} d^{k}+\right. \\
& \left.\left(G_{i}\left(z^{k}\right)+\epsilon_{k}\right)\left(d^{k}\right)^{T} \nabla^{2} H_{i}\left(z^{k}\right) d^{k}+\left(H_{i}\left(z^{k}\right)+\epsilon_{k}\right)\left(d^{k}\right)^{T} \nabla^{2} G_{i}\left(z^{k}\right) d^{k}\right)
\end{aligned}
$$

and

$$
\begin{gathered}
\sum_{j \in \mathcal{I}_{\Psi_{\epsilon_{k}}}\left(z^{k}\right) \backslash\left\{i_{0}\right\}} \gamma_{j}^{k}\left(\left(d^{k}\right)^{T} \nabla G_{j}\left(z^{k}\right) \nabla H_{j}\left(z^{k}\right)^{T} d^{k}+\left(d^{k}\right)^{T} \nabla H_{j}\left(z^{k}\right) \nabla G_{j}\left(z^{k}\right)^{T} d^{k}+\right. \\
\left.G_{j}\left(z^{k}\right)\left(d^{k}\right)^{T} \nabla^{2} H_{j}\left(z^{k}\right) d^{k}+H_{j}\left(z^{k}\right)\left(d^{k}\right)^{T} \nabla^{2} G_{j}\left(z^{k}\right) d^{k}\right)
\end{gathered}
$$

are bounded. On the other hand, however, we have (50) for all sufficiently large $k$ and

$$
\begin{align*}
& \gamma_{i_{0}}^{k}\left(\left(d^{k}\right)^{T} \nabla G_{i_{0}}\left(z^{k}\right) \nabla H_{i_{0}}\left(z^{k}\right)^{T} d^{k}+\left(d^{k}\right)^{T} \nabla H_{i_{0}}\left(z^{k}\right) \nabla G_{i_{0}}\left(z^{k}\right)^{T} d^{k}\right. \\
& \left.+G_{i_{0}}\left(z^{k}\right)\left(d^{k}\right)^{T} \nabla^{2} H_{i_{0}}\left(z^{k}\right) d^{k}+H_{i_{0}}\left(z^{k}\right)\left(d^{k}\right)^{T} \nabla^{2} G_{i_{0}}\left(z^{k}\right) d^{k}\right)  \tag{65}\\
= & -\frac{2 \gamma_{i_{0}}^{k} H_{i_{0}}\left(z^{k}\right)}{G_{i_{0}}\left(z^{k}\right)}+\gamma_{i_{0}}^{k}\left(G_{i_{0}}\left(z^{k}\right)\left(d^{k}\right)^{T} \nabla^{2} H_{i_{0}}\left(z^{k}\right) d^{k}+H_{i_{0}}\left(z^{k}\right)\left(d^{k}\right)^{T} \nabla^{2} G_{i_{0}}\left(z^{k}\right) d^{k}\right) .
\end{align*}
$$

Since (53) holds and $\gamma_{i_{0}}^{k} \rightarrow+\infty$ as $k \rightarrow \infty$ by (29) and (51), we have

$$
-\frac{2 \gamma_{i_{0}}^{k} H_{i_{0}}\left(z^{k}\right)}{G_{i_{0}}\left(z^{k}\right)} \rightarrow-\infty
$$

as $k \rightarrow \infty$. Note that, by (51) and (52), the sequences

$$
\left\{\gamma_{i_{0}}^{k} G_{i_{0}}\left(z^{k}\right)\right\}, \quad\left\{\gamma_{i_{0}}^{k} H_{i_{0}}\left(z^{k}\right)\right\}
$$

are also convergent. We then have that the term (65) tends to $-\infty$ as $k \rightarrow \infty$. Therefore, it follows from (64) that

$$
\left(d^{k}\right)^{T} \nabla_{z}^{2} L_{\epsilon_{k}}\left(z^{k}, \lambda^{k}, \mu^{k}, \delta^{k}, \gamma^{k}\right) d^{k} \rightarrow-\infty
$$

as $k \rightarrow \infty$. This contradicts (63) and hence $\bar{z}$ is M-stationary to problem (1).
Theorem 3.5. Let $\left\{\epsilon_{k}\right\},\left\{z^{k}\right\}$, and $\bar{z}$ be the same as in Theorem 3.4 and $\lambda^{k}, \mu^{k}, \delta^{k}$, and $\gamma^{k}$ be the multiplier vectors corresponding to $z^{k}$. Let $\beta_{k}$ be the smallest eigenvalue of the matrix $\nabla_{z}^{2} L_{\epsilon_{k}}\left(z^{k}, \lambda^{k}, \mu^{k}, \delta^{k}, \gamma^{k}\right)$. If the sequence $\left\{\beta_{k}\right\}$ is bounded below and the MPEC-LICQ holds at $\bar{z}$, then $\bar{z}$ is a $B$-stationary point of problem (1).

Proof. It is easy to see that the assumptions of Theorem 3.4 are satisfied with $\alpha_{k}=\max \left\{-\beta_{k}, 0\right\}$ and so $\bar{z}$ is an M-stationary point of problem (1). Suppose that $\bar{z}$ is not B -stationary to problem (1). Then, by the definitions of B- and M-stationarity, there exists an $i_{0} \in \mathcal{I}_{G}(\bar{z}) \cap \mathcal{I}_{H}(\bar{z})$ such that

$$
\begin{equation*}
\bar{u}_{i_{0}}<0, \quad \bar{v}_{i_{0}}=0 \tag{66}
\end{equation*}
$$

or

$$
\bar{u}_{i_{0}}=0, \quad \bar{v}_{i_{0}}<0 .
$$

Without loss of generality, we assume that (66) holds. By (39)-(40) and (45)-(46), we have

$$
i_{0} \in \mathcal{I}_{\Phi_{\epsilon_{k}}}\left(z^{k}\right) \cup \mathcal{I}_{\Psi_{\epsilon_{k}}}\left(z^{k}\right)
$$

for every sufficiently large $k$. If there exists a subsequence $\left\{z^{k}\right\}_{k \in \mathcal{K}}$ such that $i_{0} \in \mathcal{I}_{\Phi_{\epsilon_{k}}}\left(z^{k}\right)$ for all $k \in \mathcal{K}$, we have from (39), (45), and (66) that $\bar{u}_{i_{0}}=\lim _{k \in \mathcal{K}, k \rightarrow \infty} \delta_{i_{0}}^{k}\left(H_{i_{0}}\left(z^{k}\right)+\epsilon_{k}\right)<0$, which implies $H_{i_{0}}\left(z^{k}\right)+\epsilon_{k}<0$ when $k \in \mathcal{K}$ is sufficiently large. Since $\left(H_{i_{0}}\left(z^{k}\right)+\epsilon_{k}\right)\left(G_{i_{0}}\left(z^{k}\right)+\epsilon_{k}\right) \geq \epsilon_{k}^{2}$ for each $k$, there also holds $G_{i_{0}}\left(z^{k}\right)+\epsilon_{k}<0$ for all $k \in \mathcal{K}$ sufficiently large. Thus, there must hold $H_{i_{0}}\left(z^{k}\right) G_{i_{0}}\left(z^{k}\right)>\epsilon_{k}^{2}$ when $k \in \mathcal{K}$ is sufficiently large, which contradicts the fact that $z^{k}$ is feasible to problem (3) with $\epsilon=\epsilon_{k}$ for each $k$. Therefore, we have $i_{0} \notin \mathcal{I}_{\Phi_{\epsilon_{k}}}\left(z^{k}\right)$ for all sufficiently large $k$, which yields

$$
\begin{equation*}
i_{0} \in \mathcal{I}_{\Psi_{\epsilon_{k}}}\left(z^{k}\right) \tag{67}
\end{equation*}
$$

for all sufficiently large $k$. Then, it follows from (39), (40), and (66) that

$$
\bar{u}_{i_{0}}=-\lim _{k \rightarrow \infty} \gamma_{i_{0}}^{k} H_{i_{0}}\left(z^{k}\right)<0
$$

and so, by (29), we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \gamma_{i_{0}}^{k}=+\infty \tag{68}
\end{equation*}
$$

Now we suppose that, for all sufficiently large $k$, (28)-(31) and (35) hold and the matrix $A_{N_{k}}\left(z^{k}, \epsilon_{k}\right)$ defined in the proof of Theorem 3.4 has full column rank. Therefore, we can choose a vector $d^{k} \in R^{n}$
such that

$$
\begin{aligned}
& \left(d^{k}\right)^{T} \nabla g_{l}\left(z^{k}\right)=0, \quad l \in \mathcal{I}_{g}(\bar{z}) ; \\
& \left(d^{k}\right)^{T} \nabla h_{r}\left(z^{k}\right)=0, \quad r=1, \cdots, q ; \\
& \left(d^{k}\right)^{T} \nabla G_{i}\left(z^{k}\right)=0, \quad i \in\left(\mathcal{I}_{G}(\bar{z}) \cap \mathcal{I}_{H}(\bar{z})\right) \cup\left(\mathcal{I}_{G}(\bar{z}) \backslash\left(\mathcal{I}_{\Phi_{\epsilon_{k}}}\left(z^{k}\right) \cup \mathcal{I}_{\Psi_{\epsilon_{k}}}\left(z^{k}\right)\right)\right), i \neq i_{0} ; \\
& \left(d^{k}\right)^{T}\left(\nabla G_{i}\left(z^{k}\right)+\frac{G_{i}\left(z^{k}\right)+\epsilon_{k}}{H_{i}\left(z^{k}\right)+\epsilon_{k}} \nabla H_{i}\left(z^{k}\right)\right)=0, \quad i \in \mathcal{I}_{\Phi_{\epsilon_{k}}}\left(z^{k}\right) \backslash \mathcal{I}_{H}(\bar{z}) ; \\
& \left(d^{k}\right)^{T}\left(\nabla G_{i}\left(z^{k}\right)+\frac{G_{i}\left(z^{k}\right)}{H_{i}\left(z^{k}\right)} \nabla H_{i}\left(z^{k}\right)\right)=0, \quad i \in \mathcal{I}_{\Psi_{\epsilon_{k}}}\left(z^{k}\right) \backslash \mathcal{I}_{H}(\bar{z}) ; \\
& \left(d^{k}\right)^{T} \nabla H_{j}\left(z^{k}\right)=0, \quad j \in\left(\mathcal{I}_{G}(\bar{z}) \cap \mathcal{I}_{H}(\bar{z})\right) \cup\left(\mathcal{I}_{H}(\bar{z}) \backslash\left(\mathcal{I}_{\Phi_{\epsilon_{k}}}\left(z^{k}\right) \cup \mathcal{I}_{\Psi_{\epsilon_{k}}}\left(z^{k}\right)\right)\right), j \neq i_{0} ; \\
& \left(d^{k}\right)^{T}\left(\nabla H_{j}\left(z^{k}\right)+\frac{H_{j}\left(z^{k}\right)+\epsilon_{k}}{G_{j}\left(z^{k}\right)+\epsilon_{k}} \nabla G_{j}\left(z^{k}\right)\right)=0, \quad j \in \mathcal{I}_{\Phi_{\epsilon_{k}}}\left(z^{k}\right) \backslash \mathcal{I}_{G}(\bar{z}) ; \\
& \left(d^{k}\right)^{T}\left(\nabla H_{j}\left(z^{k}\right)+\frac{H_{j}\left(z^{k}\right)}{G_{j}\left(z^{k}\right)} \nabla G_{j}\left(z^{k}\right)\right)=0, \\
& \left(d^{k}\right)^{T} \nabla G_{i_{0}}\left(z^{k}\right)=1 ; \\
& \left(d^{k}\right)^{T} \nabla H_{i_{0}}\left(z^{k}\right)=-1 .
\end{aligned}
$$

Furthermore, we can choose the sequence $\left\{d^{k}\right\}$ to be bounded. By the assumptions of the theorem, there exists a constant $C$ such that

$$
\begin{equation*}
\left(d^{k}\right)^{T} \nabla_{z}^{2} L_{\epsilon_{k}}\left(z^{k}, \lambda^{k}, \mu^{k}, \delta^{k}, \gamma^{k}\right) d^{k} \geq \beta_{k}\left\|d^{k}\right\|^{2} \geq C \tag{69}
\end{equation*}
$$

holds for all $k$. In a similar way to the proof of Theorem 3.4, we can show that all the terms on the right-hand side of (64) except

$$
\begin{aligned}
& \gamma_{i_{0}}^{k}\left(\left(d^{k}\right)^{T} \nabla G_{i_{0}}\left(z^{k}\right) \nabla H_{i_{0}}\left(z^{k}\right)^{T} d^{k}+\left(d^{k}\right)^{T} \nabla H_{i_{0}}\left(z^{k}\right) \nabla G_{i_{0}}\left(z^{k}\right)^{T} d^{k}\right. \\
& \left.+G_{i_{0}}\left(z^{k}\right)\left(d^{k}\right)^{T} \nabla^{2} H_{i_{0}}\left(z^{k}\right) d^{k}+H_{i_{0}}\left(z^{k}\right)\left(d^{k}\right)^{T} \nabla^{2} G_{i_{0}}\left(z^{k}\right) d^{k}\right)
\end{aligned}
$$

are bounded. On the other hand,

$$
\gamma_{i_{0}}^{k}\left(\left(d^{k}\right)^{T} \nabla G_{i_{0}}\left(z^{k}\right) \nabla H_{i_{0}}\left(z^{k}\right)^{T} d^{k}+\left(d^{k}\right)^{T} \nabla H_{i_{0}}\left(z^{k}\right) \nabla G_{i_{0}}\left(z^{k}\right)^{T} d^{k}\right)=-2 \gamma_{i_{0}}^{k} \rightarrow-\infty
$$

by the definition of $\left\{d^{k}\right\}$ and (68), and

$$
\gamma_{i_{0}}^{k}\left(G_{i_{0}}\left(z^{k}\right)\left(d^{k}\right)^{T} \nabla^{2} H_{i_{0}}\left(z^{k}\right) d^{k}+H_{i_{0}}\left(z^{k}\right)\left(d^{k}\right)^{T} \nabla^{2} G_{i_{0}}\left(z^{k}\right) d^{k}\right)
$$

is bounded by the convergence of the sequences

$$
\left\{\gamma_{i_{0}}^{k} G_{i_{0}}\left(z^{k}\right)\right\}, \quad\left\{\gamma_{i_{0}}^{k} H_{i_{0}}\left(z^{k}\right)\right\}
$$

In consequence, we have

$$
\left(d^{k}\right)^{T} \nabla_{z}^{2} L_{\epsilon_{k}}\left(z^{k}, \lambda^{k}, \mu^{k}, \delta^{k}, \gamma^{k}\right) d^{k} \rightarrow-\infty
$$

as $k \rightarrow \infty$. This contradicts (69) and hence $\bar{z}$ is B-stationary to problem (1).
Acknowledgements. The authors thank Liu Bing, who pointed out the inaccuracies in [1].

## References

[1] G.-H. Lin and M. Fukushima, A Modified Relaxation Scheme for Mathematical Programs with Complementarity Constraints, Annals of Operations Research, 133 (2005), 63-84.


[^0]:    ${ }^{*}$ Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, China (email: ghlin@amp.i.kyoto-u.ac.jp)
    ${ }^{\dagger}$ Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan (email: fuku@amp.i.kyoto-u.ac.jp)

