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Abstract

In the recent optimization world, mathematical pro-
grams with equilibrium constraints (MPECs) have been re-
celving much attention and there have been proposed a
number of methods for solving MPECSs. In this paper, we
provide a brief review of the recent achievements in the
MPEC field and, as further applications of MPECs, we also
mention the developments of the stochastic mathematical
programs with equilibrium constraints (SMPECS).

1. Introduction

M PEC is aconstrained opti mi zation problem whose con-
straints include some parametric variational inegualities:

fz,y)
(z,y) € Z, )
y solves VI(F(z,-), C(z)).

Here, Z is a subset of ®*T™, f . ™ - R F
grtm 5w C R = 2% are mappings, and
VI(F(z,-),C(x)) denotes the variational inequality prob-
lem defined by the pair (F(z,-),C(z)); that is, y solves
VI(F(z,-),C(x)) ifandonlyif y € C(x) and

(v—y)TF(z,y) >0, VoveCl(x).

Itiswell-known [12] that, for a given variational inequality
problem VI(G,Y), if the function G is the gradient map-
ping of a differentiable function g : R™ — R and the set
Y is convex in ®™, then VI(G,Y") is a restatement of the
first-order necessary conditions of optimality for the opti-
mization problem

minimize

subject to

minimize 9(y)
subject to yev.
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Therefore, MPEC (1) can be regarded as a generalization
of the so-called bilevel programming problem. Moreover,
MPEC isaso closely related to the well-known Stackelberg
game, see[29, 31].

When C(z) = R for dl x in problem (1), the paramet-
ric variational inequality constraints reduce to a parametric
complementarity system and then problem (1) is equivalent
to the following mathematical program with complementar-
ity constraints (MPCC):

minimize f(z,y)

subject to (x,y) € Z, 2
y =0, F(z,y) 20,
y"F(z,y) =0.

On the other hand, if the set-valued function C' in problem
(1) isgiven by

C(z) :=={y € R"| e(z,y) <0},

wherec : R*T™ — R¢ is continuoudly differentiable, then,
under some suitable conditions, the variational inequality
problemVI(F'(z,-), C(x)) hasan equivalent Karush-Kuhn-
Tucker representation [33]:

F(l‘,y) + V?Jc(xay)A = 0,
A>0, ez,y) <0, Ae(z,y) =0,

where X isthe Lagrange multiplier vector, and hence, prob-
lem (1) can be reformulated as a program like (2) un-
der some conditions, see the monograph [29] for details.
Hence, MPCCs constitute an important subclass of MPECs.
For this reason, we particularly concentrate on this kind of
MPECs.

MPEC plays a very important role in many fields such
as engineering design, economic equilibrium, multilevel
game, and mathematical programming theory itself. How-
ever, this problem is very difficult to deal with because,
from the geometric point of view, its feasible region is not
convex and not connected even in general, and in theory,



its constraints fail to satisfy a standard constraint qualifica-
tion such asthe linear independence constraint qualification
(LICQ) or the Mangasarian-Fromovitz constraint qualifica-
tion (MFCQ) at any feasible point [4]. As aresult, the de-
veloped nonlinear programming theory may not be applied
to MPEC class directly. At present, a natural and popular
approach is try to find some suitable approximations of an
MPEC so that it can be solved by solving a sequence of or-
dinary nonlinear programs. Along this way, many methods
have been developed in the literature. We will summarize
these methods in Section 3.

Recently, as further applications of MPECs, stochastic
mathematical programs with equilibrium constraints (SM-
PECs) have attracted peopl€’s attention. An SMPEC can be
formulated as follows:

(z,y) € Z, weQ, (©)
y solves VI(F(x, -, w), C(z,w)),

minimize

subject to

where Z is a subset of £77™, Q denotes the underlying
sample space, E, means expectation with respect to the
random variadblew € Q,and f : R x Q —» R F :
R Q= R™,C - R x @ — 2% aremappings. Ob-
vioudly, if Q is a singleton, then problem (3) reduces to an
ordinary MPEC, and so the SMPEC (3) can be thought as
a generaization of the MPEC (1). The SMPEC (3) is also
closely related to the so-called two-stage stochastic program
with recourse [36]:

minimize

subject to

p(z) + E,[Q(x, w)] (4)
z € X,

wherep : R - R, X C R, and @ : R" x Q2 — Ris
defined by

Q(z,w):= inf

yeY(z,w)

9(y,w)

WithY : 7 x Q = 2% andg : ™ x Q — R. Many
applications of problem (4) can be found in practice, espe-
cidly infinancial planning. See[2] for further details about
problem (4).

Since an MPEC isaready very hard to handle, SMPECs
may be more difficult to deal with because the number of
random events is usually very large in practice. The main
developments of SMPECs will be reported in Section 4.

2. Preliminaries

For two vectors v and v in %%, both min(u,v) and
max(u, v) are understood to be taken componentwise. For
a given function G : ®* — R* and a vector u € R*,
VG (u) isthe transposed Jacobian of G at u, whereas for a

real valued function g : ®* — R, Vg(u) denotes the gradi-
ent vector of ¢ at u. Moreover, we use

Zg(u) = {i| Gi(u) =0}

to stand for the active index set of G at u.
Consider the nonlinear programming problem

minimize f(z)
subject to ci(2) <0, i=1,---,1, (5)
Cz(z) :0’ i:l+]—7"',5,

where f : " — R andc : R" — R are twice continu-

oudly differentiable.

Definition 2.1 We say z to be a stationary point of prob-

lem (5) if it is feasible to (5) and there exists a Lagrange

multiplier vector A € R*® such that
Vf(z)+ Ve(z)A =0,
)\ZZO, )\ici(z)zo, izl,"',l.

Definition 2.2 Let 2z be a stationary point of problem (5)
and A be a Lagrange multiplier vector corresponding to
z. We say the weak second-order necessary condition
(WSONC) holds at z if we have

d7 (VQf(z) + Z Aiv%i(z))d >0

foranyd € T(z) :== {d € R | d"Ve¢i(z) =0, Vi€

IC(Z)}-
We next consider the MPCC
minimize f(z)
subjectto  g(z) <0, h(z) =0, (6)
G(2) >0, H(z) >0,

where f : " —» R, g : " - R, h : R* —» R, and
G,H : " —» R™ areall twice continuously differentiable
functions. Let F denote the feasible region of the above
problem.

Definition 2.3 The MPEC-linear independence constraint
qualification (MPEC-LICQ) issaid to hold at z € F if the
set of vectors

{Va(2), V. (2), VGi(2), VE;(2) |
1€T,(2), r=1,,q, i € Ta(?), j € Tu(2)}
islinearly independent.

This condition is not particularly stringent [41] and has
been assumed often in the literature on MPCCs [9, 13, 15,



22, 39]. Note that this definition is different from the stan-
dard definition of LICQ in nonlinear programming theory
that would require the gradient of the function G(z) T H (z)
be linearly independent of the above vectors, which cannot
happen in any case actually.

In the study of MPCCs, there are severa kinds of sta-
tionarity defined for problem (6) [38].

Definition 2.4 We say z € F to be a Bouligand or B-
stationary point of problem (6) if it satisfies

d"Vf(z) >0, Vde T(z,F),
where 7 (z, F) stands for the tangent cone of F at z.

Definition 25 (1) z € F is caled weakly stationary to
problem (6) if there exist multiplier vectors A € ®P, i €
R, andu,v € ™ such that

V£(2)+ Vg(Z)X + Vh(2)i
—VG(Z)a—VH(2)o =0, (7

A>0, Mgiz) =0, (8)
Ui = Oa i ¢ IG(2)7 (9)

(2) z € Fiscdled aClarke or C-stationary point of
problem (6) if there exist multiplier vectors A € RP, i €
R, and @, v € R™ such that (7)—(10) hold with

wv; >0, 1€ Zg(z2)NITu(Z)

and we say z is Mordukhovich or M-stationary to problem
(6) if, furthermore, either @; > 0, 7; > 0 or @;v; = 0 for
alieZg(z) NI (z).

(3) z € Fiscaled astrongly or Sstationary point of
problem (6) if there exist multiplier vectors A, ji, @, and o
such that (7)—(10) hold with

u; >0, 9, >0, i €Zg(Z)NTy(2).

It is well-known [38] that, if the MPEC-LICQ holds at
z, B-stationarity is equivalent to S-stationarity. In general,
in order to obtain a B-stationary point, some additional con-
ditions are always assumed. The following is one of these
conditions.

Definition 2.6 A weakly stationary point z € F of problem
(6) is said to satisfy the upper level strict complementarity
(ULSC) condition if there exist multiplier vectors \, i, i,
and o satisfying (7)—(10) and

w;0; #0, 1 € Zg(2) NITh(Z).

The ULSC condition is clearly weaker than the so-
called lower level strict complementarity (LLSC) condition
(which means Zg(2) N Zy(z) = 0 and in this case, 7z is
also said to be nondegenerate). Moreover, it is obvious
that any M-stationary point of problem (6) satisfying the
upper level strict complementarity condition must be a B-
stationary point.

3. Methods for MPECs

There have been proposed several approaches such as
relaxation approach, penalty function approach, active set
identification approach, sequential quadratic programming
(SQP) approach, interior point approach, and so on. Most
methods are presented for the MPCC (2) or (6).

3.1. Relaxation Approach

It is the complementarity constraints that cause the main
difficulties of an MPCC. In order to overcome this knotty
problem, we may introduce some parameters to smooth or
relax these constraints.

Consider the MPCC (6). Facchinei et al. [6] and
Fukushimaand Pang [9] make use of the smoothed Fischer-
Burmeister function

de(a,b) :==a+b—+a%+b>+2e (NN

to generate the following approximation of (6):

minimize f(z)

subject to g9(z) <0, h(z) =0, (12
¢€k (Gl(z)v HZ(Z ) =0,
i=1,--,m,

where ¢, > 0 is arelaxation parameter. It is obvious that
the function ¢, is differentiable everywhere and

¢, (a,0) =0 < a>0,b>0,ab=¢.
Thus, we obtain a smooth approximation of problem (6).
By letting €, — 0, we may expect to get a point with some
kind of stationarity to the original MPCC.

Theorem 3.1 [9] Let ¢, | 0, 2* be a stationary point of
problem (12), and the sequence {z*} convergeto z*. Sup-
pose that the WSONC holds at each z*, the MPEC-LICQ
holdsat z*, and {z*} is asymptotically weakly nondegener-
ate. Then z* is B-stationary to the MPCC (6).

Roughly speaking, the asymptotically weak nondegen-
eracy of {z*} meansthat, for eachi € Zg(2z*) N Zw(2*),
Gi(z*) and H;(z*) approach zeroin the same order of mag-
nitude, see [9]. This property is obviously weaker than the



LLSC condition and even weaker than the UL SC condition
[23].

Subseguently, some other relaxation methods are pre-
sented for solving (6). One is the regularization approxi-

mation suggested by Scholtes[39]:
minimize f(z)
subject to g(z) <0, h(z) =0,
G(2) <0, H(z) =0, (13)
Gi(2)H;(2) < €k,
1=1,---,m,

and another one was proposed by Lin and Fukushima [22]
who employ a bi-hyperbola approximation:

minimize f(2)

subjectto  g(z) <0, h(z) =0
() Hi(2) < & (14)
Gi(2) + er) (Hi(2) + ;) > €
1=1,---,m

The main convergence result given in [39] can be stated as
follows.

Theorem 3.2 [39] Let ¢, | 0, z* be a stationary point
of problem (13), and the sequence {z*} converge to z*.
Suppose the MPEC-LICQ holds at z*. Then z* is a C-
stationary point of (6). If furthermore, the WSONC holds at
each z* and the ULSC holds at z*, then z* is B-stationary.

This theorem remains valid for the method proposed in
[22]. In addition, [22] givesthe following result, where the
conditions WSONC and ULSC are replaced by some new
conditions which are new and relatively easy to verify in
practice.

Theorem 3.3 [22] Let ¢, | 0 and z* be a stationary
point of problem (14) with Lagrangian multiplier vector
(A5, XE MG, M), Let B be the smallest eigenvalue of
the matrix V2 Ly, (2%, X5, M AE, M), where Ly, isthe La-
grange function of problem (14). Suppose {z*} converge
to z* and the MPEC-LICQ holds at z*. Then z* isa B-
stationary point of problem (6).

On the other hand, Lin and Fukushima [25] study the
MPCC (2) from another point of view. They use an expan-
sive simplex instead of the nonnegative orthant involved in
the complementarity constraints. In other words, the com-
plementarity constraints are replaced by a variational in-
equality defined on an expansive simplex. It iswell known
that such a variational inequality problem can be repre-
sented by afinite number of inequalities. Based on this new
idea, a relaxation method has been presented. It has been
shown that the new method possesses similar properties to
the ones introduced above, see [25] for more detalls.

3.2. Penalty Function Approach

Another way to deal with the complementarity con-
straintsin (6) isto apply a penalty technique.
Noticing that problem (6) is equivalent to the problem

minimize f(z)

subjectto  g(z) <0, h(z) =0, (15)
¢(Gi(2), Hi(2)) =0,
L= ]-7 T, M,

where ¢ isthe Fischer-Burmeister function, i.e.,

¢(a,b) :==a+b— a2+, (16)

Huang et al [15] suggested a method that penalizes all the
congtraints in problem (15); that is, the subproblem is an
unconstrained optimization problem

2 S,
where
(@) = 1)+ o (Yo (max{gi(2).0))

and p; > 0 is a penalty parameter. In addition, Hu and
Ralph [13] proposed a method that penalizes the comple-
mentarity terms only; that is, the subproblem is a con-
strained optimization problem

minimize f(2) + prG(2)TH(z)
subjectto  g(z) <0, h(z) =0, a7
G(z) >0, H(z) >0

These two methods possess similar properties. As in the
standard nonlinear programming theory, a problem of the
penalty approachisthat the feasibility of alimit point to the
origina problem cannot be ensured in general. A compre-
hensiveinvestigation of thefeasibility of a point obtained by
solving a sequence of the problems (17) has been made in
[13]. Our computational experience shows that the penalty
approach is effective for solving MPCCs.

Other penalty methods can be found in [14, 27, 29, 40]
and the references therein.

3.3. Active Set I dentification Approach
Most existing methods for MPCCs require to solve an

infinite sequence of nonlinear programs. Recently, we pro-
posed some hybrid algorithms that enable us to compute a



solution or a point with some kind of stationarity to prob-
lem (6) by solving afinite number of nonlinear programsin
[23, 24].

Consider the MPCC (6). We employ the model (12) to
describe the method given in [23]. Suppose that €, | 0,
the sequence {z*} generated by solving (12) converges to
z*, and the MPEC-LICQ holds at z*. Our ideais based on
the fact that z* is B-stationary to (6) if and only if z* is
stationary to the relaxed problem

minimize f(2)

subject to

()20, Hi(z) =0, i €a(z*) (18)

i(2) =0, Hi(2) =0, i € B(z")

(2) =0, Hi(2) >0, i€v(z")

with nonnegative multipliers associated with the constraints
Gi(z) =0, Hi(2) =0, i€ p(z")

(see[11]), where

a(z®) = {i| Gi(z") >0, H;(z") =0},
B(z") = {i] Gi(z") =0, Hi(z") = 0},
v(z*) = {i]| Gi(z*) =0, Hi(z*) > 0}.

Problem (18) is no longer an MPCC and it is clear that,
if z* is an optimal solution of (6), then it must be an op-
timal solution of problem (18). Therefore, if we can ob-
tain the index sets a(z*), 8(z*) and v(z*), we may expect
to get z* by solving (18). So, our purpose is to identify
a(z*), B(z*),v(z*) infinite steps.

We try to construct some index sets a*, 3%, v* from
the current point z* such that (a*, %, +*) is a partition of
{1,---,n}and

ok = a(z*), B¥ = B(z*), ¥ =v(2") (19)

hold when k islarge enough. At each iteration, we solvethe
problem

minimize f(z)

subject to g(z) <0, h(z) =0,
Gi(2) >0, Hi(z) =0, iea*,  (20)
Gi(z) =0, Hi(2) =0, i € B,
Gi(2) =0, Hi(2) >0, i€~

Denote by 2* a stationary point of problem (20). If the La-
grange multipliers corresponding to the constraints

Gi(z) =0, Hi(2) 20

0, i€arnpih),
, i€ ph, (21)
, i€y npEh)

are all nonnegative, then 2* is a B-stationary point of prob-
lem (6) under the MPCC-LI1CQ assumption at the point.

The key to successis to define the index sets o*, 5% and
+* such that condition (19) holds when % sufficiently large.
To thisend, we employ an identification function p : ™ —
[0, +00) satisfying

lim p(z*) = 0 (22)
k—o0
and, for all k large enough,

iggl?ﬁ) {Gz(zk),Hz(Zk)} <p(z"), @

max {min{Gi(zk),Hi(zk)}} <pz"). (24)

i€a(z*)Uy(z*)

We present the following hybrid algorithm.
Algorithm H:

Step 0: Chooseep > 0 and set & := 0.

Step 1: Solve problem (12) and denote by z * one of its sta-
tionary points. Set

af = L] Gi(2") > p(zh), Hi(2")
pr = {i] Gi(Z*) < p(2¥), Hi(z")
7= L e\ (@ U Bb),

and go to Step 2.

(=)},
(=)},

<p
<p

Step 2: Solve problem (20) to get a Stationary point 2.
If the Lagrange multipliers corresponding to the con-
straints (21) are all nonnegative, then terminate. Else,
goto Step 3.

Step 3: If astopping ruleis satisfied at z*, terminate. Oth-
erwise, choosean €11 € (0,¢;) andlet k := k + 1.
Return to Step 1.

Theorem 3.4 [23] Suppose the sequence {z*} generated
by Algorithm H converges to z* and is asymptotically
weakly nondegenerate. For given 7 > 0 and o € (0,1),
let

p(z) = 7||min(G(2), H(2))||” or 7([®o(2)]|",
where

®o(2) == ((G1(2), Hi(2), -+, ¢(Gn(2), Hun(2))T-

Then conditions (22)—(24) are satisfied; i.e, p can serve
as an identification function. Furthermore, condition (19)
holds for all & large sufficiently.

Note that the subproblem (12) can be replaced by any
model s mentioned in the previous subsections.

Another two kinds of hybrid methods, one of which
makes use of an index addition strategy and the other adopts
an index subtraction strategy, have been presented in [24].
It has been shown that both can identify the correct index
sets without the asymptotically weakly nondegeneracy as-
sumption.



3.4. SQP Approach, etc.

SQP approach is another important way to modify
the complementarity structure in an MPCC. In particular,
Fukushima et al [8] consider the mathematical programs
with linear complementarity constraints. Based on a refor-
mulation of the complementarity constraints as a system of
semismooth equations by means of the Fischer-Burmeister
function (16), the authors proposed an SQP algorithm by
applying a penalty technique. Global convergence of the
algorithm has been established. Jiang and Ralph [18] con-
sider the ordinary MPCC (2) and, with the help of the
smoothed Fischer-Burmeister function (11), they also sug-
gested some globally convergent SQP algorithms. Morere-
cently, Fletcher et al [7] presented a locally superlinearly
convergent SQP method for an MPCC. In addition, a piece-
wise SQP approach can be found in [29].

Other methods proposed for MPCCs so far include the
implicit programming methods[3, 29], interior point meth-
ods [28, 29], implementable active-set method [11], and
nonsmooth methods [31].

4. Methods for SMPECs

Since in many practical problems, some elements may
involve uncertain data, it isimportant to study the SMPECs.
We next focus on the SMPCC subclass.

There are two kinds of SMPCCs studied in the literature:
Oneisthe lower-level wait-and-see model

Eu[f(z,y(w),w)]

(r,y(w)) € Z, w € N, (25)
y(w) 20, F(z,y(w),w) >0,

y(w) " F(z,y(w),w) =0,

minimize
subject to

in which the upper-level decision z is made at once and the
lower-level decision y may be made after arandom event is
observed. The other is the following here-and-now model
that requires usto make all decisions before arandom event
is observed:

E,le(z,y,w) +d" z(w)]

(z,y) € Z,

y>0, F(z,y,w) + z(w) >0, (26)
y"(F(z,y,w) + z(w)) = 0,

2(w) >0, we .

minimize

subject to

Here, ¢ : R"™™ x Q0 — R, z(w) isarecourse variable, and
d € ®™ isaconstant vector with positive elements. We are
particularly interested in the here-and-now decision model
because it seems more redlistic.

The lower-level wait-and-see model was first discussed
in[36], including the study on the existence of solutions, the

convexity and directional differentiability of theimplicit ob-
jective function, and the links between the model and two-
stage stochastic programs with recourse.

Linet a [20] discussed both the lower-level wait-and-see
and here-and-now decision problems. For the lower-level
wait-and-see problem (25), they proposed a smoothing im-
plicit programming method and established a comprehen-
sive convergence theory. With the help of a penalty tech-
nique, they also suggested a similar method for the here-
and-now decision problem (26).

Subsequently, [21, 26] consider the following specia
here-and-now problem:

L
f(xay) + prdTZf

=1
9(z,y) <0, h(z,y) =0,
y >0, Fe(z,y) +2¢>0, (27)
yT(Fg(l',y) + ZE) = 0,
25207 Zzla"'aLa

minimize

subject to

where p, means the probability of a random event w,. It
has been shown [21] that the stochastic complementarity
problem may be formulated as this kind of SMPECs. By
the duality theorem in nonlinear programming theory, we
can show that problem (27) is equivalent to

L

minimize flz,y) + ZPZQ!(%?J) (28)
=1

subjectto  g(z,y) <0, h(z,y) =0,y >0,

where, for each £, Q4 : R*+™ — [0, +-00] is defined by

Q¢(z,y) :== sup —(u—l—ty)TFg(:v,y),

=0, WY, b

and (28) is further equivalent to

L
minimize flz,y)+ ZpedT max(—Fy(z,y),0)

(=1
subjectto  g(z,y) <0, h(z,y) =0, y >0, (29
yiFf,i(way) S 07 Vla VZ,

see [21] for details. However, on the one hand, the func-
tion @, may be neither finite-valued nor differentiable ev-
erywhere in general, and on the other hand, the objective
function in problem (29) is not differentiable everywhere
and the problem has a great many constraints because L
is usually very large in practice. Therefore, both (28) and
(29) may not be easy to solve directly. In view of these
flaws, [21] presented a smoothing penalty approach based
on the reformulation (29) and [26] suggested a regulariza-
tion method based on the reformulation (28). Convergence
analysis has also been given.



5. Concluding Remarks

The methods reviewed in this paper primarily aim at
computing a local optimal solution. There have been pro-
posed a number of algorithms, typically based on a branch
and bound technique, for finding a global optimal solution.
Since MPEC is NP hard, such methods have limitations in
the size of problemsthey can handle. Neverthelessit is def-
initely important to develop practically useful methods for
finding aglobal optimal solution of MPEC.

The methods for SMPECs mentioned in Section 4 as-
sumethat random variables have discrete distribution. Even
in this case, the problem may not be very tractable when
the sample space contains a large number of events. More-
over, when a random variable has continuous distribution,
the approaches described in this paper cannot be applied di-
rectly. One may possibly use some Monte Carlo type sim-
ulation techniques to generate approximations to the SM-
PEC. Development of practically effective methodsfor SM-
PECs will certainly enhance the importance of SMPECs as
apractical modelling tool for real-world problems.

Recent development of methodsfor MPECs have mainly
been concerned with static models. In the context of game
theory, discrete or continuous time dynamic versions of
Stackelberg games or bilevel optimization problems have
been studied by anumber of authors, see[1]. From the com-
putational point of view, however, methods that can handle
more general dynamic Stackelberg games are rather scarce.
Moreover, the existing methods do not seem applicable to
the case where the lower level constraints are represented
asvariational inequalities, rather than an optimization prob-
lem. It does not seem easy at all to deal with such general
constraints, which brings us a very challenging subject.

Pang and Fukushima [35] have studied a multi-leader-
follower game where leaders play a non-cooperative game
while playing a Stackel berg-type game with followers. The
resulting problem may thus be regarded as an Equilibrium
Program with Equilibrium Constraints (EPEC). This prob-
lem may in general fail to have a solution because of its
inherent non-convexity. Therefore we need to introduce a
reasonabl e solution concept that enable usto characterize a
possible outcome of the game. Study on EPEC is still inits
infancy and so much remains to be done in this extremely
difficult but exciting problem.
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