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Abstract. In this paper, we present a new relaxation method for math-
ematical programs with complementarity constraints. Based on the fact
that a variational inequality problem defined on a simplex can be rep-
resented by a finite number of inequalities, we use an expansive simplex
instead of the nonnegative orthant involved in the complementarity
constraints. We then remove some inequalities and obtain a standard
nonlinear program. We show that the linear independence constraint
qualification or the Mangasarian–Fromovitz constraint qualification
holds for the relaxed problem under some mild conditions. We consider
also a limiting behavior of the relaxed problem. We prove that any
accumulation point of stationary points of the relaxed problems is a
weakly stationary point of the original problem and that, if the function
involved in the complementarity constraints does not vanish at this
point, it is C-stationary. We obtain also some sufficient conditions of
B-stationarity for a feasible point of the original problem. In particular,
some conditions described by the eigenvalues of the Hessian matrices
of the Lagrangian functions of the relaxed problems are new and can
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1. Introduction

A mathematical program with equilibrium constraints (MPEC) is a
constrained optimization problem in which the essential constraints are
defined by a parametric variational inequality or complementarity system.
This problem plays an important role in many fields such as engineering
design, economic equilibrium, and multilevel games (see Ref. 1) and has
attracted much attention in the recent literature (see Refs. 2–15).

The MPEC considered in this paper is a mathematical program with
complementarity constraints,

min f (x, y), (1a)

s.t. g(x, y)⁄0, h(x, y)G0, (1b)

F (x, y)¤0, y¤0, (1c)

yTF (x, y)G0, (1d)

where

f: RnCm→R, g: RnCm→Rp, h: RnCm→Rq, F: RnCm→Rm

are all twice continuously differentiable functions. The major difficulty in
solving (1) is that its constraints fail to satisfy a standard constraint qualifi-
cation at any feasible point (Ref. 16), which is necessary for the regularity
of a nonlinear program, so that standard methods are likely to fail for this
problem. There have been proposed several approaches such as sequential
quadratic programming (SQP) approach, implicit programming approach,
penalty function approach, and reformulation approach (Refs. 2–10). In
particular, Fukushima and Pang (Ref. 2) considered a smoothing continu-
ation method and showed that, under the MPEC linear independence con-
straint qualification and an additional condition called asymptotic weak
nondegeneracy, an accumulation point of KKT points satisfying the second-
order necessary conditions for the perturbed problems is a B-stationary
point of the original problem. Subsequently, Scholtes (Ref. 3) presented a
regularization scheme and proved, under the MPEC linear independence
constraint qualification and the upper level strict complementarity con-
dition, that an accumulation point of stationary points satisfying the
second-order necessary conditions for the relaxed problems is a B-stationary
point of the original problem. In addition, Fukushima, Luo, and Pang (Ref.
4) proposed a SQP algorithm and gave their convergence result under non-
degeneracy. Recently, Fletcher et al. (Ref. 5) observed that SQP solvers can
be applied effectively to solve MPECs and showed that the convergence is
superlinear near a strongly stationary point under reasonable assumptions.
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In this paper, we study problem (1) from another point of view. We
use an expansive simplex instead of the nonnegative orthant involved in
the complementarity constraints. In other words, our method replaces the
complementarity constraints by a variational inequality defined on an
expansive simplex. It is well known that such a variational inequality prob-
lem can be represented by a finite number of inequalities. We remove some
inequalities and obtain a standard nonlinear program. We will show that the
linear independence constraint qualification (LICQ) or the Mangasarian–
Fromovitz constraint qualification (MFCQ) holds for the relaxed problem
under some mild conditions. We consider also a limiting behavior of the
relaxed problem. We will prove that any accumulation point of stationary
points of the relaxed problems is a weakly stationary point of the original
problem and, if the function F does not vanish at this point, it is C-station-
ary. Furthermore, if the Hessian matrices of the Lagrangian functions of
the relaxed problems are uniformly bounded below on the corresponding
tangent space, it is M-stationary. We obtain also some sufficient conditions
of B-stationarity for a feasible point of the original problem. In particular,
some conditions described by the eigenvalues of the Hessian matrices men-
tioned above are new and can be verified easily.

The rest of this paper is organized as follows. In Section 2, we present
the relaxed problem for problem (1) and establish the convergence of global
optimal solutions of the relaxed problems. In Section 3, we give some results
about constraint qualifications and the convergence of stationary points of
the relaxed problems. We report some numerical results in Section 4; then,
in Section 5, we make some remarks to conclude the paper.

2. Relaxed Problem and Some Properties

Let

eG(1, 1, . . . , 1)T.

For iG1, 2, . . . , m, ei∈Rm denotes the ith column of the mBm identity
matrix. Also, we let e0∈Rm denote the zero vector, i.e.,

e0G(0, 0, . . . , 0)T.

Then, the expansive simplex mentioned in Section 1 is defined by

ΩkGco{ek
0 , e

k
1 , . . . , e

k
m},

where co stands for the convex hull, k is a positive integer, and

ek
i G(1�k)eCkei , iG0, 1, . . . , m. (2)
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For a fixed x∈Rn, the variational inequality problem VI(F (x, · ),Ωk) is to
find a vector y∈Ωk such that

(y′Ay)TF (x, y)¤0, ∀y′∈Ωk ,

which is equivalent to finding a y∈Rm such that

y∈Ωk , (ek
iAy)TF (x, y)¤0, iG0, 1, . . . , m,

or equivalently,

∑
jG1

m

yj⁄m�kCk, yi¤1�k, (ek
iAy)TF (x, y)¤0,

iG0, 1, . . . , m.

In order to simplify the relaxed problem, we replace the condition y∈Ωk

by y¤0 and consider the following problem as an approximation of prob-
lem (1):

min f (x, y), (3a)

s.t. g(x, y)⁄0, h(x, y)G0, y¤0, (3b)

(ek
iAy)TF (x, y)¤0, iG0, 1, . . . , m. (3c)

Let F and Fk denote the feasible sets of problems (1) and (3), respectively,
and let

φ k
i (x, y)G(ek

iAy)TF (x, y), iG0, 1, . . . , m. (4)

By (2), we have

φ k
i (x, y)Gφ k

0 (x, y)CkFi (x, y), iG1, 2, . . . , m. (5)

Then, we have the following results.

Theorem 2.1. For problems (1) and (3), the following statements hold:

(i) for any k, F ⊆FkC1 ⊆Fk ;

(ii) F G)
S

kG1Fk ; together with the continuity of the functions
involved, this implies that any accumulation point of a sequence
{(xk, yk): (xk, yk)∈Fk} belongs to F .

Proof.

(i) The fact that F ⊆FkC1 is clear. Let (x, y)∈FkC1 . Then, since for
each iG0, 1, . . . , m, ek

i can be represented as

ek
i G ∑

jG0

m

tije
kC1
j , ∑

jG0

m

tijG1, tij¤0, jG0, 1, . . . , m,
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we have

(ek
iAy)TF (x, y)G ∑

jG0

m

tij (e
kC1
j Ay)TF (x, y)¤0, iG0, 1, . . . , m,

i.e., (x, y)∈Fk . Hence, FkC1 ⊆Fk .
(ii) From (i), we need only to prove that )

S

kG1Fk ⊆F . Let
(x, y)∈)

S

kG1Fk . Then, we have

g(x, y)⁄0, h(x, y)G0, y¤0

and, for every iG1, 2, . . . , m,

φ k
i (x, y)G((1�k)eCkeiAy)TF (x, y)¤0, ∀k,

which implies

((1�k2)eCeiA(1�k)y)TF (x, y)¤0, ∀k. (6)

Letting k→S in (6), we have

Fi (x, y)GeT
i F (x, y)¤0,

and hence F (x, y)¤0. On the other hand,

(ek
0Ay)TF (x, y)¤0, ∀k,

implies

AyTF (x, y)¤0.

So, we have

yTF (x, y)G0.

Therefore, (x, y)∈F and so )
S

kG1Fk ⊆F . This completes the proof. �

Theorem 2.2. Suppose that (xk, yk) is a global optimal solution of
problem (3) and that (x*, y*) is an accumulation point of the sequence
{(xk, yk)} as k→S. Then, (x*, y*) is a global optimal solution of problem
(1).

Proof. Taking a subsequence if necessary, we assume without loss of
generality that

lim
k→S

(xk, yk)G(x*, y*).

By Theorem 2.1, (x*, y*)∈F . Since F ⊆Fk for all k, then

f (xk, yk)⁄ f (x, y), ∀(x, y)∈F , ∀k.
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Letting k→S, we have from the continuity of f that

f (x*, y*)⁄ f (x, y), ∀(x, y)∈F ;

i.e., (x*, y*) is a global optimal solution of problem (1). �

In a similar way, we can prove the next theorem.

Theorem 2.3. Let {(k}⊆ (0,+S) be convergent to 0 and let
(xk, yk)∈Fk be an approximate solution of problem (3) satisfying

f (xk, yk)A(k⁄ f (x, y), ∀(x, y)∈Fk .

Then, any accumulation point of {(xk, yk)} is a global optimal solution of
problem (1).

The following result shows that problem (3) may satisfy some con-
straint qualification at its feasible points. This is in contrast with problem
(1), for which a standard contraint qualification fails to hold at any feasible
point.

Theorem 2.4. For any (x̄, ȳ)∈F with F (x̄, ȳ) ≠ 0, we have

φ k
i (x̄, ȳ)H0, iG0, 1, . . . , m, ∀k,

and so they are inactive constraints at (x̄, ȳ) in problem (3). In this case, if
the system

g(x, y)⁄0, h(x, y)G0, y¤0

satisfies some constraint qualification such as LICQ or MFCQ at (x̄, ȳ),
then for any fixed k, there exists a neighborhood Uk (x̄, ȳ) of (x̄, ȳ) such that
problem (3) satisfies the same constraint qualification at any point
(x, y)∈Uk (x̄, ȳ).

Proof. We obtain the first part from the definition (4) of φ k
i and

ek
i H0, 0 ≠ F (x̄, ȳ)¤0, ȳTF (x̄, ȳ)G0,

immediately. The second part follows from the continuity of g, h,
φ k

i , iG0, 1, . . . , m, and their gradients directly. �

3. Limiting Behavior of Stationary Points

In this section, we consider the behavior of a stationary point of prob-
lem (3) as k→S. We let G(x, y)Gy and

φ k(x, y)G(φ k
0 (x, y), φ k

1 (x, y), . . . , φ k
m (x, y))T,
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where φ k
i are defined by (4). As in the previous section, we denote the feas-

ible sets of problems (1) and (3) by F and Fk , respectively. Note that the
gradients of Gj , jG1, . . . , m, are constant vectors. Nevertheless, we will
often write ∇Gj (x, y), etc., to specify the point under consideration. In
addition, for a function H: RnCm→Rm and a fixed vector z∈RnCm, we let

IH (z)G{i: Hi (z)G0}

denote the active index set of H at z.

Theorem 3.1. For any (x̄, ȳ)∈F , if the set of vectors

{∇Fi (x̄, ȳ), ∇Gi (x̄, ȳ), ∇gl (x̄, ȳ), ∇hr (x̄, ȳ):

iG1, 2, . . . , m, l∈Ig (x̄, ȳ), rG1, 2, . . . , q}

is linearly independent, then there exist a neighborhood U(x̄, ȳ) of (x̄, ȳ) and
a positive integer K such that, for any (x, y)∈U(x̄, ȳ) and any k¤K, the
following conditions hold:

(i) IF (x, y)⊆ IF (x̄, ȳ), IG (x, y)⊆ IG (x̄, ȳ), Ig (x, y)⊆ Ig (x̄, ȳ);
(ii) the set of vectors {∇Fi (x, y), ∇Gi (x, y), ∇gl (x, y), ∇hr (x, y):

iG1, 2, . . . , m, l∈Ig (x̄, ȳ), rG1, 2, . . . , q} is linearly independent;
(iii) Iφ k(x, y)⊆ {0}∪IF (x̄, ȳ).

Proof. It is obvious that there exists a neighborhood U1(x̄, ȳ) such
that conditions (i) and (ii) hold for any (x, y)∈U1(x̄, ȳ) by the continuity of
F, G, g, ∇F, ∇g, ∇h. Now, we show that there exist a neighborhood
U2(x̄, ȳ) and a positive integer K satisfying condition (iii) for any (x, y)∈
U2(x̄, ȳ) and any k¤K. Otherwise, there must be an i0∉ {0}∪ IF (x̄, ȳ), a
subsequence {kj} of {k}, and a sequence {(x j, y j)} converging to (x̄, ȳ) such
that

φ kj
i0 (x

j, y j)G0, ∀j.

Since

(1�kj)φ kj
i0 (x

j, y j)

GFi0(x
j, y j)C(1�k2

j) ∑
iG1

m

Fi (x
j, y j)A(1�kj)(y

j)TF (x j, y j),

we have

lim
j→S

(1�kj)φ kj
i0 (x

j, y j)GFi0(x̄, ȳ)H0.
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This implies that

lim
j→S

φ kj
i0 (x

j, y j)G+S.

This is a contradiction and so the neighborhood U2(x̄, ȳ) and positive
integer K mentioned above exist. Let

U(x̄, ȳ)GU1(x̄, ȳ)∩U2(x̄, ȳ).

Then, conditions (i)–(iii) hold for any (x, y)∈U(x̄, ȳ) and any k¤K. �

As we mentioned in Section 1, the nondegeneracy condition has often
been assumed in the literature on MPECs. In general, a point (x, y)∈F is
said to be nondegenerate if

IF (x, y)∩IG (x, y)G∅.

Then, we have the following result about constraint qualifications.

Theorem 3.2. Let (x̄, ȳ)∈F be nondegenerate and satisfy

F (x̄, ȳ) ≠ 0. (7)

If the set of vectors

{∇Fi (x̄, ȳ), ∇Gi (x̄, ȳ), ∇gl (x̄, ȳ), ∇hr (x̄, ȳ):

iG1, 2, . . . , m, l∈Ig (x̄, ȳ), rG1, 2, . . . , q}

is linearly independent, then there exists a neighborhood U(x̄, ȳ) of (x̄, ȳ)
such that, for any sufficiently large k, problem (3) satisfies the standard
LICQ at any point (x, y)∈U(x̄, ȳ)∩Fk .

Proof. By Theorem 3.1, there exist a neighborhood U(x̄, ȳ) and a posi-
tive integer K such that Theorem 3.1 (i)–(iii) hold for any (x, y)∈U(x̄, ȳ)
and any k¤K. Now, we let k¤K and choose an arbitrary point
(x, y)∈U(x̄, ȳ)∩Fk .

Suppose that the LICQ does not hold at (x, y) for problem (3). This
means that the set of vectors

{∇φ k
i (x, y), ∇Gj (x, y), ∇gl (x, y), ∇hr (x, y):

i∈Iφ k(x, y), j∈IG (x, y), l∈Ig (x, y), rG1, 2, . . . , q},

which is, by (5),

{∇φ k
0 (x, y), k∇Fi (x, y)C∇φ k

0 (x, y), ∇Gj (x, y), ∇gl (x, y), ∇hr (x, y):

0 ≠ i∈Iφ k(x, y), j∈IG (x, y), l∈Ig (x, y), rG1, 2, . . . , q},



JOTA: VOL. 118, NO. 1, JULY 2003 89

in the case where 0∈Iφ k(x, y), or

{k∇Fi (x, y)C∇φ k
0 (x, y), ∇Gj (x, y), ∇gl (x, y), ∇hr (x, y):

i∈Iφ k(x, y), j∈IG (x, y), l∈Ig (x, y), rG1, 2, . . . , q},

in the case where 0∉Iφ k(x, y), is linearly dependent. Hence, by Theorem 3.1
(ii), ∇φ k

0 (x, y) can be represented as a linear combination of the vectors

{∇Fi (x, y), ∇Gj (x, y), ∇gl (x, y), ∇hr (x, y):

i∈Iφ k(x, y) \{0}, j∈IG (x, y), l∈Ig (x, y), rG1, 2, . . . , q}.

Therefore, there exist numbers

{λ i , µ j , ul , ûr : i∈Iφ k(x, y) \{0}, j∈IG (x, y), l∈Ig (x, y), rG1, 2, . . . , q}

such that

∇φ k
0 (x, y)G ∑

i∈Iφk(x, y) \{0}

λ i∇Fi (x, y)C ∑
j∈I G(x, y)

µ j∇Gj (x, y)

C ∑
l∈I g(x, y)

ul∇gl (x, y)C ∑
rG1

q

ûr∇hr (x, y).

Since

φ k
0 (x, y)G((1�k)eAy)TF (x, y),

we then have

∑
i∈Iφk(x, y) \{0}

(yiA1�kCλ i) ∇Fi (x, y)C ∑
i∉Iφk(x, y) \{0}

(yiA1�k) ∇Fi (x, y)

C ∑
j∈I G(x, y)

(µ jCFj (x, y)) ∇Gj (x, y)C ∑
j∉I G(x, y)

Fj (x, y) ∇Gj (x, y)

C ∑
l∈I g(x, y)

ul∇gl (x, y)C ∑
rG1

q

ûr∇hr (x, y)G0.

By Theorem 3.1 (ii), we have

yiG�1�kAλ i i∈Iφ k(x, y) \{0},

1�k, i∉Iφ k(x, y) \{0},
(8)

and

Fi (x, y)G0, i∉IG (x, y). (9)

Suppose that φ k
0 (x, y)G0. Then, we have by (9) that

φ k
i (x, y)Gk Fi (x, y)Cφ k

0 (x, y)G0, i∉IG (x, y). (10)
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On the other hand, we have

IG (x, y)GIG (x̄, ȳ). (11)

Otherwise, since

IG (x, y)⊆ IG (x̄, ȳ),

there exists an i0∈IG (x̄, ȳ) \IG (x, y). Then, we must have φ k
i0(x, y)G0 by

(10). But, by the nondegenerate property of (x̄, ȳ), i0∈IG (x̄, ȳ) means
i0∉IF (x̄, ȳ). So, by Theorem 3.1 (iii), we have φ k

i0(x, y)H0. This is a contra-
diction, and so (11) holds. This means that

yiG0, i∈IG (x̄, ȳ). (12)

Note that IG (x̄, ȳ) ≠∅ by (7). So, if i∈IG (x̄, ȳ), then i∉IF (x̄, ȳ) by the

nondegeneracy assumption and so i∉Iφ k(x, y) \{0} by Theorem 3.1 (iii).
Hence, from (8), we have yiG1�k. This contradicts (12). Therefore, we have
φ k

0 (x, y) ≠ 0 and so, by (9),

φ k
i (x, y)GkFi (x, y)Cφ k

0 (x, y) ≠ 0, i∉IG (x, y). (13)

By Theorem 3.1 (iii) and the fact that 0∉Iφ k(x, y), φ k
i (x, y)G0 means that

i∈IF (x̄, ȳ). On the other hand, for any i∈IF (x̄, ȳ), by the nondegeneracy
of (x̄, ȳ), we have i∉IG (x̄, ȳ) and so i∉IG (x, y) by Theorem 3.1 (i), which
implies φ k

i (x, y) ≠ 0 by (13). Hence, Iφ k(x, y)G∅; i.e., the last mC1
inequality constraints in problem (3) are all inactive at (x, y) and so, by
Theorem 3.1 (ii), the LICQ holds at (x, y). This also contradicts our assump-
tion. Therefore, the LICQ holds at (x, y) for problem (3). This completes
the proof. �

Now, we consider the limiting behavior of stationary points of problem
(3). We will use the standard definition of stationarity for problem (3), i.e.,
(xk, yk)∈Fk is a stationary point of problem (3) if there exist Lagrange
multiplier vectors λ k, µk, δ k, and γ k such that

∇f (xk, yk)A ∑
i∈Iφk(xk, yk)

λ k
i ∇φ k

i (x
k, yk)A ∑

j∈I G(xk, yk)

µk
j∇Gj (x

k, yk)

C ∑
l∈I g(x

k, yk)

δ k
l ∇gl (x

k, yk)C ∑
rG1

q

γ k
r∇hr (x

k, yk)G0 (14)

and

λ k¤0, µk¤0, δ k¤0. (15)
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For problem (1), (x̄, ȳ)∈F is said to be a B-stationary point if it satisfies

dT∇f (x̄, ȳ)¤0, ∀d∈T ((x̄, ȳ), F ), (16)

where T ((x̄, ȳ), F ) stands for the tangent cone of F at (x̄, ȳ). As in Ref.
3, a feasible point (x̄, ȳ) is called weakly stationary to problem (1) if there
exist multiplier vectors λ̄ , µ̄, γ̄ , δ̄¤0 such that

∇f (x̄, ȳ)A ∑
i∈I F(x̄, ȳ)

λ̄ i∇Fi (x̄, ȳ)A ∑
j∈I G(x̄, ȳ)

µ̄ j∇Gj (x̄, ȳ)

C ∑
l∈I g(x̄, ȳ)

δ̄ l∇gl (x̄, ȳ)C ∑
rG1

q

γ̄ r∇hr (x̄, ȳ)G0. (17)

If the MPEC–LICQ holds at (x̄, ȳ), which means that the set of vectors

{∇Fi (x̄, ȳ), ∇Gj (x̄, ȳ), ∇gl (x̄, ȳ), ∇hr (x̄, ȳ):

i∈IF (x̄, ȳ), j∈IG (x̄, ȳ), l∈Ig (x̄, ȳ), rG1, 2, . . . , q}

is linearly independent, then the B-stationarity (16) is equivalent to the
strong stationarity to problem (1). In general, (x̄, ȳ) is said to be a strongly
stationary point of problem (1) if there exist multiplier vectors λ̄ , µ̄, γ̄ , δ̄¤
0 such that (17) holds with

λ̄ i¤0, µ̄i¤0, i∈IF (x̄, ȳ)∩IG (x̄, ȳ). (18)

Two other kinds of stationarity concepts for MPECs, called C-stationarity
and M-stationarity (Ref. 15), which are weaker than B-stationarity, are
employed also often. We say (x̄, ȳ) is C-stationary to problem (1) if there
exist multiplier vectors λ̄ , µ̄, γ̄ , δ̄¤0 such that (17) holds and

λ̄ i µ̄i¤0, i∈IF (x̄, ȳ)∩IG (x̄, ȳ), (19)

and we say (x̄, ȳ) is M-stationary to problem (1) if, furthermore, either

λ̄ iH0, µ̄iH0 or λ̄ i µ̄iG0 for all i∈IF (x̄, ȳ)∩IG (x̄, ȳ). In addition, a weakly

stationary point (x̄, ȳ)∈F of problem (1) is said to satisfy the upper level
strict complementarity condition if there exist multiplier vectors λ̄ , µ̄, γ̄ ,
δ̄¤0 satisfying (17) and

λ̄ i µ̄i ≠ 0, i∈IF (x̄, ȳ)∩IG (x̄, ȳ). (20)

Theorem 3.3. Let (xk, yk)∈Fk be a stationary point of problem (3)
with Lagrange multiplier vectors λ k, µk, δ k, γ k satisfying (14)–(15), and let
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(x̄, ȳ) be an accumulation point of the sequence {(xk, yk)}. Suppose that the
set of vectors

{∇Fi (x̄, ȳ), ∇Gi (x̄, ȳ), ∇gl (x̄, ȳ), ∇hr (x̄, ȳ):

iG1, 2, . . . , m, l∈Ig (x̄, ȳ), rG1, 2, . . . , q}

is linearly independent. Then, we have the following statements.

(a) (x̄, ȳ) is a weakly stationary point of problem (1) and, if
F (x̄, ȳ) ≠ 0, (x̄, ȳ) is C-stationary. Especially, if (x̄, ȳ) is non-
degenerate, it is B-stationary.

(b) If (xk, yk)∈F for some k, then (xk, yk) is B-stationary to problem
(1) and, if (xk, yk)∈F for infinitely many k, (x̄, ȳ) is B-stationary.

(c) If 0∉Iφ k(xk, yk) for infinitely many k, then (x̄, ȳ) is a B-stationary
point to problem (1).

Proof. Without loss of generality, we assume that

lim
k→S

(xk, yk)G(x̄, ȳ). (21)

Then, by Theorem 2.1, we have (x̄, ȳ)∈F . By Theorem 3.1, for any suffi-
ciently large k, we have

IF (xk, yk)⊆ IF (x̄, ȳ), IG (xk, yk)⊆ IG (x̄, ȳ),

Ig (x
k, yk)⊆ Ig (x̄, ȳ), Iφ k(xk, yk)⊆ {0}∪IF (x̄, ȳ),

and the set of vectors

{∇Fi (x
k, yk), ∇Gi (x

k, yk), ∇gl (x
k, yk), ∇hr (x

k, yk):

iG1, 2, . . . , m, l∈Ig (x̄, ȳ), rG1, 2, . . . , q}

is linearly independent. Note that the MPEC–LICQ holds at (x̄, ȳ) for prob-
lem (1).

Since

∇φ k
i (x

k, yk)G∇φ k
0 (x

k, yk)Ck∇Fi (x
k, yk), iG1, 2, . . . , m,

and

∇φ k
0 (x

k, yk)G ∑
iG1

m

(1�kAyk
i ) ∇Fi (x

k, yk)

A ∑
jG1

m

Fj (x
k, yk) ∇Gj (x

k, yk), (22)
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we have from (14) that

∇f (xk, yk)

G ∑
i∈Iφk (xk ,yk)

λ k
i ∇φ k

i (x
k, yk)C ∑

j∈I G(xk, yk)

µk
j∇Gj (x

k, yk)

A ∑
l∈I g(x

k, yk)

δ k
l ∇gl (x

k, yk)A ∑
rG1

q

γ k
r∇hr (x

k, yk)

G ∑
0 ≠ i∈Iφk(xk, yk)

kλ k
i ∇Fi (x

k, yk)Cak∇φ k
0 (x

k, yk)C ∑
j∈I G(xk, yk)

µk
j∇Gj (x

k, yk)

A ∑
l∈I g(x

k, yk)

δ k
l ∇gl (x

k, yk)A ∑
rG1

q

γ k
r∇hr (x

k, yk) (23)

G ∑
i∈I F(x̄, ȳ)

uk
i ∇Fi (x

k, yk)C ∑
i∉I F(x̄, ȳ)

ak (1�kAyk
i )∇Fi (x

k, yk)

C ∑
j∈I G(x̄, ȳ)

ûk
j∇Gj (x

k, yk)A ∑
j∉I G(x̄, ȳ)

akFj (x
k, yk)∇Gj (x

k, yk)

A ∑
l∈I g(x̄, ȳ)

wk
l ∇gl (x

k, yk)A ∑
rG1

q

γ k
r∇hr (x

k, yk), (24)

where

akG� ∑
i∈Iφk(xk,yk)

λ k
i , Iφ k(xk, yk) ≠∅,

0, Iφ k(xk, yk)G∅,

(25)

uk
i G�kλ

k
iCak (1�kAyk

i ), 0 ≠ i∈Iφ k(xk, yk),

ak (1�kAyk
i ), i∈IF (x̄, ȳ) \Iφ k(xk, yk),

(26)

ûk
j G�µ

k
jAakFj (x

k, yk), j∈IG (xk, yk),

−akFj (x
k, yk), j∈IG (x̄, ȳ) \IG (xk, yk),

(27)

and

wk
l G�δ

k
l , l∈Ig (x

k, yk),

0, l∈Ig (x̄, ȳ) \Ig (x
k, yk).

Since the set of vectors

{∇Fi (x̄, ȳ), ∇Gi (x̄, ȳ), ∇gl (x̄, ȳ), ∇hr (x̄, ȳ):

iG1, 2, . . . , m, l∈Ig (x̄, ȳ), rG1, 2, . . . , q}
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is linearly independent, it follows from (21) and (24) that the multiplier
sequences

{uk
i : i∈IF (x̄, ȳ)}, {ûk

j : j∈IG (x̄, ȳ)}, (28a)

{ak (1�kAyk
i ): i∉IF (x̄, ȳ)}, (28b)

{−akFj (x
k, yk): j∉IG (x̄, ȳ)}, {wk

l :l∈Ig (x̄, ȳ)}, (28c)

{γ k
r :rG1, 2, . . . , q} (28d)

are convergent. Next, we will consider several cases to prove statements
(a)–(c).

(I) First, we show that, if (xk, yk)∈F for some k, then it is a B-
stationary point of problem (1). In fact, if F (xk, yk) ≠ 0, then, from Theorem
2.4, Iφ k(xk, yk)G∅ and so (14)–(15) mean that (xk, yk) is a B-stationary
point of problem (1). If F (xk, yk)G0, then Iφ k(xk, yk)G{0, 1, . . . , m} and
so, it follows from (22) and (23) that

0G∇f (xk, yk)A ∑
iG1

m

kλ k
i ∇Fi (x

k, yk)Aak∇φ k
0 (x

k, yk)

A ∑
j∈I G(xk, yk)

µk
j∇Gj (x

k, yk)C ∑
l∈I g(x

k, yk)

δ k
l ∇gl (x

k, yk)

C ∑
rG1

q

γ k
r∇hr (x

k, yk)

G∇f (xk, yk)A ∑
i∈I F(x

k, yk)

(ak (1�kAyk
i )Ckλ k

i )∇Fi (x
k, yk)

A ∑
j∈I G(xk,yk)

µk
j∇Gj (x

k, yk)C ∑
l∈I g(x

k,yk)

δ k
l ∇gl (x

k, yk)

C ∑
rG1

q

γ k
r∇hr (x

k, yk).

For i∈IF (xk, yk)∩IG (xk, yk), we have from (15) and (25) that

ak (1�kAyk
i )Ckλ k

i G(1�k)akCkλ k
i ¤0, µk

i ¤0,

and hence, comparing with (17) and (18), we see that (xk, yk) is a B-station-
ary point of problem (1). This shows the first half of statement (b). Next,
we suppose that (xk′, yk′)∈F for infinitely many k′ and show that (x̄, ȳ) is
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a B-stationary point of problem (1). In fact, since for any sufficiently large
k′,

IF (xk′, yk′)⊆ IF (x̄, ȳ), IG (xk′, yk′)⊆ IG (x̄, ȳ),

Ig (x
k′, yk′)⊆ Ig (x̄, ȳ),

we have

∇f (xk′, yk′)G ∑
i∈I F(x̄, ȳ)

ûk′
i ∇Fi (x

k′, yk′)C ∑
j∈I G(x̄, ȳ)

û̂k′
j ∇Gj (x

k′, yk′)

A ∑
l∈I g(x̄, ȳ)

ŵk′
l ∇gl (x

k′, yk′)A ∑
rG1

q

γ̂ k′
r ∇hr (x

k′, yk′).

By the assumptions of the theorem, the multiplier sequences converge. Let-
ting k′→S, we have the B-stationarity of (x̄, ȳ). This shows the second half
of statement (b).

(II) Next, we assume that (xk, yk)∉F for all sufficiently large k.

(IIa) We consider the case where IF (x̄, ȳ) ≠∅.
(i) We first prove statement (c); i.e., if there is a subsequence {kl}

of {k} such that 0∉Iφ kl(xkl, ykl) for all l, then (x̄, ȳ) is a B-stationary point
of problem (1). In fact, noting that, by (25) and (26),

∑
i∈I F (x̄, ȳ)

ukl
i G ∑

i∈Iφkl(xkl, ykl)

(klλ kl
i Cakl(1�klAykl

i ))

C ∑
i∈I F (x̄, ȳ) \Iφkl(xkl, ykl )

akl(1�klAykl
i )

Gakl�klC ∑
i∈I F(x̄, ȳ)

(1�klAykl
i )� ,

and that

lim
l→S

∑
i∈I F(x̄, ȳ)

ukl
i exists,

lim
l→S

�klC ∑
i∈I F(x̄, ȳ)

(1�klAykl
i )�G+S,

we have that

lim
l→S

aklG0. (29)

Therefore, we obtain

lim
k→S

ak (1�kAyk
i )G lim

l→S

akl(1�klAykl
i )G0, i∉IF (x̄, ȳ), (30)
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and

lim
k→S

akFj (x
k, yk)G lim

l→S

aklFj (x
kl, ykl)G0, j∉IG (x̄, ȳ). (31)

On the other hand, by (15), (29), and (26)–(27), we have

lim
k→S

uk
i ¤0, lim

k→S

ûk
i ¤0, i∈IG (x̄, ȳ)∩IF (x̄, ȳ). (32)

It then follows from (24) and (30)–(32) that conditions (17) and (18) hold.
Therefore, (x̄, ȳ) is a B-stationary point of problem (1). This shows state-
ment (c). The rest of the proof will be devoted to showing statement (a).

(ii) Suppose that 0∈Iφ k(xk, yk) for all sufficiently large k. Then, it
follows from (5) that

Iφ k(xk, yk)G{0}∪IF (xk, yk). (33)

(iia) If there exist a subsequence {kl} of {k} and an index i0 such that

i0∉IG (x̄, ȳ), i0∈IF (x̄, ȳ) \IF (xkl, ykl), ∀l,

or

i0∉IF (x̄, ȳ), i0∈IG (x̄, ȳ) \IG (xkl, ykl), ∀l,

then, by (26) and (27),

ukl
i0Gakl(1�klAykl

i0), ∀l, (34)

or

ûkl
i0G−aklFi0(x

kl, ykl), ∀l, (35)

holds. Since

lim
l→S

(1�klAykl
i0)G−ȳi0F0,

in the former case, or

lim
l→S

Fi0(x
kl, ykl)GFi0(x̄, ȳ)H0,

in the latter case, it follows from (34) or (35) that {akl} converges. Then, we
also have (30)–(32) and hence (x̄, ȳ) is a B-stationary point of problem (1).

(iib) Now, suppose that

{1, 2, . . . , m}\IF (x̄, ȳ)⊆ IG (xk, yk), (36)

{1, 2, . . . , m}\IG (x̄, ȳ)⊆ IF (xk, yk), (37)
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for all sufficiently large k. Then, since Fj (x
k, yk)G0 for any j∉IG (x̄, ȳ) and

yk
i G0 for any i∉IF (x̄, ȳ), (24) yields

∇f (xk, yk)G ∑
i∈I F (x̄, ȳ)

uk
i ∇Fi (x

k, yk)C ∑
j∈I G (x̄, ȳ)

ûk
j∇Gj (x

k, yk)

C ∑
i∉I F (x̄, ȳ)

ak�k∇Fi (x
k, yk)A ∑

l∈I g (x̄, ȳ)

wk
l ∇gl (x

k, yk)

A ∑
rG1

q

γ k
r∇hr (x

k, yk), (38)

for all sufficiently large k. If F (x̄, ȳ)G0, i.e., IF (x̄, ȳ)G{1, 2, . . . , m}, then
(38) implies that the limit (x̄, ȳ) of {(xk, yk)} satisfies the weak stationarity
condition (17) for problem (1). If F (x̄, ȳ) ≠ 0, then there exists an index i
such that Fi (x̄, ȳ)H0 and ȳiG0, which implies

IG (x̄, ȳ) \IF (x̄, ȳ) ≠∅,

and

∑
i∈I G (x̄, ȳ) \I F (x̄, ȳ)

Fi (x̄, ȳ)H0. (39)

By (36) and (37), for all sufficiently large k, we have

0Gφ k
0 (x

k, yk)

G ∑
iG1

m

(1�kAyk
i )Fi (x

k, yk)

G ∑
i∈I G (x̄, ȳ)

(1�kAyk
i )Fi (x

k, yk)

G ∑
i∈I G (x̄, ȳ)∩I F (x̄, ȳ)

(1�kAyk
i )Fi (x

k, yk)

C ∑
i∈I G (x̄, ȳ) \I F (x̄, ȳ)

(1�k)Fi (x
k, yk). (40)

For any i∈IF (x̄, ȳ)∩IG (x̄, ȳ), it follows from (26) and (33) that

�ak (1�kAyk
i )Fi (x

k, yk) �

G�0, i∈IF (xk, yk),

�uk
i Fi (x

k, yk) �, i∈IF (x̄, ȳ) \IF (xk, yk),

⁄ �uk
i Fi (x

k, yk) �,

and so,

lim
k→S

ak (1�kAyk
i )Fi (x

k, yk)G0. (41)
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Hence, by (39), (40), and (41), we have

lim
k→S

ak�kG− lim
k→S

Nk�DkG0, (42)

where

NkG ∑
i∈I G (x̄, ȳ)∩I F (x̄, ȳ)

ak (1�kAyk
i )Fi (x

k, yk),

DkG ∑
i∈I G (x̄, ȳ) \I F (x̄, ȳ)

Fi (x
k, yk).

Therefore, taking a limit in (38), we obtain (17) from (42). Now, we proceed

to showing (19), i.e., (x̄, ȳ) is C-stationary. Let i∈IF (x̄, ȳ)∩IG (x̄, ȳ). Note
that, by the assumption of (ii),

kFi (x
k, yk)Gφ k

i (x
k, yk)Aφ k

0 (x
k, yk)

Gφ k
i (x

k, yk)¤0, iG1, 2, . . . , m,

i.e.,

F (xk, yk)¤0, (43)

for all sufficiently large k. Suppose that there exists a subsequence {kl} of
{k} such that

ykl
i Fi (x

kl, ykl) ≠ 0, ∀l.

It follows from (26) and (27) that

ukl
i Gakl(1�klAykl

i ), ûkl
i G−aklFi (x

kl, ykl).

By (42) and (43), we have

lim
k→S

uk
i û

k
i G lim

l→S

ukl
i û

kl
i

G lim
l→S

a2
kly

kl
i Fi (x

kl, ykl)¤0. (44)

Next, we suppose that

yk
i Fi (x

k, yk)G0, (45)

for all sufficiently large k. First, consider the case where there exists a sub-
sequence {kl} of {k} such that

ykl
i ≠ 0, ∀l.

Then, by (45) and (27), Fi (x
kl, ykl)G0 and hence ûkl

i G0 for any sufficiently
large l. So, we obtain

lim
k→S

uk
i û

k
i G lim

l→S

ukl
i û

kl
i G0. (46)
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Next, consider the case where yk
i G0 for all sufficiently large k. If there exists

a subsequence {kl} of {k} such that

Fi (x
kl, ykl) ≠ 0, ∀l,

then, by (26) and (42), we have

lim
l→S

ukl
i G lim

l→S

akl�klG0,

and so (46) also holds. If, for any sufficiently large k,

yk
i G0, Fi (x

k, yk)G0,

then, by (15), (26)–(27), and (42),

lim
k→S

uk
i û

k
i G lim

k→S

µk
i (kλ k

iCak�k)

G lim
k→S

kλ k
i µk

i ¤0.

Therefore, we always have

lim
k→S

uk
i û

k
i ¤0,

i.e., (x̄, ȳ) is a C-stationary point of problem (1). Moreover, if (x̄, ȳ) is non-
degenerate, then it follows readily from the definitions of the weak stationar-
ity and nondegeneracy that (x̄, ȳ) is B-stationary to problem (1).

(IIb) Consider the case where IF (x̄, ȳ)G∅. Then, IG (x̄, ȳ)G
{1, 2, . . . , m} and so (x̄, ȳ) is nondegenerate. Moreover, (24) becomes

∇f (xk, yk)G ∑
iG1

m

ak (1�kAyk
i )∇Fi (x

k, yk)C ∑
jG1

m

ûk
j∇Gj (x

k, yk)

A ∑
l∈I g(x̄, ȳ)

wk
l ∇gl (x

k, yk)A ∑
rG1

q

γ k
r∇hr (x

k, yk). (47)

For any sufficiently large k, since (xk, yk)∉F , there exists an index

j∈IG (x̄, ȳ) \IG (xk, yk). Therefore, we can choose an index j0 and a sub-
sequence {kl} of {k} such that

j0∈IG (x̄, ȳ) \IG (xkl, ykl), ∀l;

i.e., by (27),

ûkl
j0G−aklFj0 (x

kl, ykl), ∀l.

Since {ûkl
j0} converges and, by IF (x̄, ȳ)G∅,

lim
l→S

Fj0 (x
kl, ykl)H0,
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it follows that the sequence {akl} is convergent. Noticing that {yk} tends to
ȳG0 as k→S, we have that, for each j,

lim
k→S

ak (1�kAyk
j )G lim

l→S

akl(1�klAykl
j )G0.

Letting k→S in (47) and denoting

û̄ jG lim
k→S

ûk
j , w̄lG lim

k→S

wk
l , γ̄ rG lim

k→S

γ k
r ,

we obtain

∇f (x̄, ȳ)G ∑
jG1

m

û̄ j∇Gj (x̄, ȳ)A ∑
l∈I g (x̄, ȳ)

w̄l∇gl (x̄, ȳ)

A ∑
rG1

q

γ̄ r∇hr (x̄, ȳ).

This, together with

IF (x̄, ȳ)∩IG (x̄, ȳ)G∅,

implies that (x̄, ȳ) is a B-stationary point of problem (1).
Combining Case IIa(ii) and Case IIb shows that statement (a) holds.

This completes the proof. �

For a sequence {(xk, yk)} of stationary points of problem (3), let us
define

I1G{i:yk
i H0 for infinitely many k},

I2G{i:Fi (x
k, yk) ≠ 0 for infinitely many k}.

Then, we have

{1, 2, . . . , m}\IG (x̄, ȳ)⊆ I1∩IF (x̄, ȳ),

{1, 2, . . . , m}\IF (x̄, ȳ)⊆ I2∩IG (x̄, ȳ).

From the proof of Theorem 3.3, we have the next corollary immediately.

Corollary 3.1. Let the assumptions in Theorem 3.3 be satisfied. If
I1 \IF (x̄, ȳ) ≠∅ or I2 \IG (x̄, ȳ) ≠∅, then (x̄, ȳ) is a B-stationary point of
problem (1).

Next, we consider some other sufficient conditions on M-stationarity
and B-stationarity for problem (1). We say (xk, yk)∈Fk satisfies the second-
order necessary conditions if there exist multiplier vectors λ k∈RmC1,
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µk∈Rm, γ k∈Rq, δ k∈Rp such that

λ k¤0, µk¤0, δ k¤0, (48)

(λ k)Tφ k(xk, yk)G0, (µk)TG(xk, yk)G0, (δ k)Tg(xk, yk)G0, (49)

∇(x, y)Lk (x
k, yk, λ k, µk, δ k, γ k)G0, (50)

dT∇2
(x, y)Lk (x

k, yk, λ k, µk, δ k, γ k)d¤0, ∀d∈T k (x
k, yk), (51)

where

Lk (x, y, λ , µ, δ , γ )

Gf (x, y)AλTφ k(x, y)AµTG(x, y)CδTg(x, y)Cγ Th(x, y)

stands for the Lagrangian of problem (3) and, for (x, y)∈Fk ,

T k (x, y)G{d∈RnCm: dT∇φ k
i (x, y)G0, i∈Iφ k(x, y),

dT∇Gj (x, y)G0, j∈IG (x, y),

dT∇gl (x, y)G0, l∈Ig (x, y),

dT∇hr (x, y)G0, rG1, 2, . . . , q}.

We next introduce a new kind of conditions weaker than the second-order
necessary conditions for problem (3). Suppose that αk is a nonnegative num-
ber. We say that, at a stationary point (xk, yk) of problem (3), the matrix
∇2

(x,y)Lk (x
k, yk, λ k, µk, δ k, γ k) is bounded below with constant αk on the cor-

responding tangent space T k (x
k, yk) if

dT∇2
(x, y)Lk (x

k, yk, λ k, µk, δ k, γ k)d¤Aαk ��d��2, ∀d∈T k (x
k, yk). (52)

Condition (52) is clearly weaker than (51). In fact, for the matrix
∇2

(x,y)Lk (x
k, yk, λ k, µk, δ k, γ k), there must exist a number αk such that (52)

hold. For example, any nonnegative number α such that Aα is less than the
smallest eigenvalue of ∇2

(x,y)Lk (x
k, yk, λ k, µk, δ k, γ k) must satisfy (52). How-

ever, condition (51) means that the matrix ∇2
(x,y)Lk (x

k, yk, λ k, µk, δ k, γ k)
should have some kind of semidefiniteness on the tangent space T k (x

k, yk).
Note that, in (52), the constant Aαk may be larger than the smallest eigen-
value mentioned above.

Theorem 3.4. Let (xk, yk)∈Fk be a stationary point of problem (3)
with multiplier vectors λ k, µk, δ k, γ k satisfying conditions (48)–(50) and, for
each k, let ∇2

(x,y)Lk (x
k, yk, λ k, µk, δ k, γ k) be bounded below with constant αk

on the corresponding tangent space T k (x
k, yk). Suppose that (x̄, ȳ) is an
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accumulation point of the sequence {(xk, yk)} with F (x̄, ȳ) ≠ 0, the sequence
{αk} is bounded, and the set of vectors

{∇Fi (x̄, ȳ), ∇Gi (x̄, ȳ), ∇gl (x̄, ȳ), ∇hr (x̄, ȳ):

iG1, 2, . . . , m, l∈Ig (x̄, ȳ), rG1, 2, . . . , q}

is linearly independent. Then, (x̄, ȳ) is an M-stationary point of problem
(1). Furthermore, if (x̄, ȳ) satisfies the upper level strict complementarity
condition (20), it is B-stationary to problem (1).

Proof. Since (48)–(50) are equivalent to (14) and (15), it follows from
Theorem 3.3 (a) that (x̄, ȳ) is a C-stationary point of problem (1). By the
proof of Theorem 3.3, (x̄, ȳ) is not B-stationary only in the case IIa(iib);
i.e., for all sufficiently large k,

(xk, yk)∉F , IF (x̄, ȳ) ≠∅, (53)

Iφ k(xk, yk)G{0}∪IF (xk, yk), (54)

{1, 2, . . . , m}\IF (x̄, ȳ)⊆ IG (xk, yk), (55)

{1, 2, . . . , m}\IG (x̄, ȳ)⊆ IF (xk, yk). (56)

In the rest of the proof, we therefore assume (53)–(56) and use the same
setting as in the proof of Theorem 3.3. Then, (24) holds with (25)–(27).
Suppose that (x̄, ȳ) is not an M-stationary point of problem (1). Then, by
the definitions of C-stationarity and M-stationarity, there exists an

i0∈IF (x̄, ȳ)∩IG (x̄, ȳ) such that

ūi0G lim
k→S

uk
i0F0, û̄i0G lim

k→S

ûk
i0F0, (57)

where we use the fact that both the sequences {uk
i0} and {ûk

i0} are convergent.
We claim that

yk
i0Fi0(x

k, yk) ≠ 0, (58)

for all sufficiently large k. In fact, if there exists a subsequence {kl} of {k}
such that

ykl
i0Fi0(x

kl, ykl)G0, ∀l,

namely,

ykl
i0G0 or Fi0(x

kl, ykl)G0, ∀l, (59)

then we have from (26)–(27) and (59) that

ukl
i0¤0 or ûkl

i0¤0, ∀l.
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This contradicts (57), and so (58) holds for all sufficiently large k. Then,
(57) becomes

ūi0G lim
k→S

uk
i0

G lim
k→S

ak (1�kAyk
i0)F0, (60)

û̄i0G lim
k→S

ûk
i0

G− lim
k→S

akFi0(x
k, yk)F0, (61)

by (26) and (27). By Theorem 3.1 (ii), we may suppose that k is sufficiently
large so that, for any k, the set of vectors

{∇Fi (x
k, yk), ∇Gi (x

k, yk), ∇gl (x
k, yk), ∇hr (x

k, yk):

iG1, 2, . . . , m, l∈Ig (x̄, ȳ), rG1, 2, . . . , q}

is linearly independent. Note that

lim
k→S

(1�kAyk
i0)�Fi0(x

k, yk)G−ūi0�û̄i0F0, (62)

by (60) and (61). Therefore, we can choose a bounded sequence
{dk}⊆RnCm such that, for all sufficiently large k,

(dk)T∇Fi (x
k, yk)G0, iG1, . . . , m, i ≠ i0 , (63)

(dk)T∇Gj (x
k, yk)G0, jG1, . . . , m, j ≠ i0 , (64)

(dk)T∇Fi0(x
k, yk)G1, (65)

(dk)T∇Gi0(x
k, yk)G(1�kAyk

i0)�Fi0(x
k, yk), (66)

(dk)T∇gl (x
k, yk)G0, l∈Ig (x̄, ȳ), (67)

(dk)T∇hr (x
k, yk)G0, rG1, 2, . . . , q. (68)

Since

∇φ k
0 (x

k, yk)G ∑
iG1

m

(1�kAyk
i )∇Fi (x

k, yk)

A ∑
jG1

m

Fj (x
k, yk)∇Gj (x

k, yk), (69)
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we have from (63)–(66) that

(dk)T∇φ k
0 (x

k, yk)G ∑
iG1

m

(1�kAyk
i )(d

k)T∇Fi (x
k, yk)

A ∑
jG1

m

Fj (x
k, yk)(dk)T∇Gj (x

k, yk)G0. (70)

On the other hand, noting that i0∉IF (xk, yk)∩IG (xk, yk) for all sufficiently
large k by (58), we have from (5), (63), and (70) that

(dk)T∇φ k
i (x

k, yk)

G(dk)T∇φ k
0 (x

k, yk)C(dk)T∇Fi (x
k, yk)G0, 0 ≠ i∈Iφ k(xk, yk). (71)

It follows from (64), (66)–(68), and (70)–(71) that

dk∈T k (x
k, yk), (72)

for all sufficiently large k. By (69), we have

∇2φ k
0 (x

k, yk)G ∑
iG1

m

(1�kAyk
i )∇2Fi (x

k, yk)

A ∑
iG1

m

∇Fi (x
k, yk)Gi (x

k, yk)T

A ∑
jG1

m

∇Gj (x
k, yk)∇Fj (x

k, yk)T, (73)

where we use the fact that ∇Gj (x
k, yk), jG1, · · ·, m, are constant vectors. On

the other hand, we can write

∇(x, y)Lk (x
k, yk, λ k, µk, δ k, γ k)

G∇f (xk, yk)A ∑
iG0

m

λ k
i ∇φ k

i (x
k, yk)A ∑

jG1

m

µk
j∇Gj (x

k, yk)

C ∑
lG1

p

δ k
l ∇gl (x

k, yk)C ∑
rG1

q

γ k
r∇hr (x

k, yk)

G∇f (xk, yk)Aak∇φ k
0 (x

k, yk)

A ∑
iG1

m

kλ k
i ∇Fi (x

k, yk)A ∑
jG1

m

µk
j∇Gj (x

k, yk)

C ∑
lG1

p

δ k
l ∇gl (x

k, yk)C ∑
rG1

q

γ k
r∇hr (x

k, yk),
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where

akG ∑
iG0

m

λ k
i

is the same as that in the proof of Theorem 3.3, and so we have from (73)
that

∇2
(x,y)Lk (x

k, yk, λ k, µk, δ k, γ k)

G∇2f (xk, yk)Aak∇2φ k
0 (x

k, yk)A ∑
iG1

m

kλ k
i ∇2Fi (x

k, yk)

C ∑
lG1

p

δ k
l ∇2gl (x

k, yk)C ∑
rG1

q

γ k
r∇2hr (x

k, yk)

G∇2f (xk, yk)Cak ∑
iG1

m

∇Fi (x
k, yk) Gi (x

k, yk)T

Cak ∑
jG1

m

∇Gj (x
k, yk) ∇Fj (x

k, yk)T

A ∑
iG1

m

(kλ k
iCak (1�kAyk

i ))∇2Fi (x
k, yk)

C ∑
lG1

p

δ k
l ∇2gl (x

k, yk)C ∑
rG1

q

γ k
r∇2hr (x

k, yk).

Since ∇2
(x, y)Lk (x

k, yk, λ k, µk, δ k, γ k) is bounded below with constant αk on
the corresponding tangent space T k (x

k, yk), we have from (52) and (72)
that there exists a constant C such that

(dk)T∇2
(x, y)Lk (x

k, yk, λ k, µk, δ k, γ k)dk¤Aαk ��dk��2¤C, (74)

where the last inequality follows from the boundedness of the sequences
{αk} and {dk}. Note that

(dk)T∇2
(x, y)Lk (x

k, yk, λ k, µk, δ k, γ k)dk

G(dk)T∇2f (xk, yk)dkCak ∑
iG1

m

(dk)T∇Fi (x
k, yk)Gi (x

k, yk)Tdk

Cak ∑
jG1

m

(dk)T∇Gj (x
k, yk)∇Fj (x

k, yk)Tdk

A ∑
iG1

m

[kλ k
iCak (1�kAyk

i )](d
k)T∇2Fi (x

k, yk)dk

C ∑
lG1

p

δ k
l (d

k)T∇2gl (x
k, yk)dkC ∑

rG1

q

γ k
r (d

k)T∇2hr (x
k, yk) dk
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G(dk)T∇2f (xk, yk)dkC2ak (1�kAyk
i0)�Fi0(x

k, yk)

A ∑
iG1

m

[kλ k
iCak (1�kAyk

i )](d
k)T∇2Fi (x

k, yk)dk

C ∑
lG1

p

δ k
l (d

k)T∇2gl (x
k, yk)dkC ∑

rG1

q

γ k
r (d

k)T∇2hr (x
k, yk)dk. (75)

By the twice continuous differentiability of the functions involved, the
boundedness of the sequence {dk}, and the convergence of the sequences
{(xk, yk)}, {δ k

l }, and {γ k
r }, the terms

(dk)T∇2f (xk, yk)dk, ∑
lG1

p

δ k
l (d

k)T∇2gl (x
k, yk)dk,

∑
rG1

q

γ k
r (d

k)T∇2hr (x
k, yk)dk

are all bounded. Noticing that, for all sufficiently large k, i∉IF (xk, yk)

implies i∉Iφ k(xk, yk) by (54) and so λ k
i G0 by (48) and (49), we have from

the convergence of the sequences in (28) and the definition (26) of uk
i that

the sequence {kλ k
iCak (1�kAyk

i )} is bounded for any iG1, 2, . . . , m. Hence,
the term

∑
iG1

m

[kλ k
iCak (1�kAyk

i )](d
k)T∇2Fi (x

k, yk)dk

is also bounded. However, since

lim
k→S

yk
i0Gȳi0G0,

we have ak→+S by (60) and so

2ak (1�kAyk
i0)�Fi0(x

k, yk)→−S,

as k→S by (62). Therefore, it follows from (75) that

(dk)T∇2
(x, y)Lk (x

k, yk, λ k, µk, δ k, γ k)dk→−S,

as k→S. This contradicts (74) and hence (x̄, ȳ) is M-stationary to problem
(1). This completes the proof of the first part of the theorem. The second
part of the theorem follows from the definitions of M-stationarity and the
upper level strict complementarity immediately. �

Corollary 3.2. Let {(xk, yk)} and (x̄, ȳ) be the same as in Theorem 3.4.
If (xk, yk) together with the corresponding multiplier vectors λ k, µk, δ k, γ k
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satisfies the second-order necessary conditions (48)–(51) and the set of
vectors

{∇Fi (x̄, ȳ), ∇Gi (x̄, ȳ), ∇gl (x̄, ȳ), ∇hr (x̄, ȳ):

iG1, 2, . . . , m, l∈Ig (x̄, ȳ), rG1, 2, . . . , q}

is linearly independent, then the conclusion of Theorem 3.4 remains true.
Corollary 3.2 establishes convergence to a B-stationary point under the

second-order necessary conditions and the upper level strict complemen-
tarity. These or similar conditions have also been assumed in Refs. 2–3, but
they are somewhat restrictive and may be difficult to verify in practice. The
next theorem provides a new condition for convergence to a B-stationary
point, which can be dealt with more easily. We note that, unlike Refs. 2–3,
it relies on neither upper level strict complementarity nor asymptotic weak
nondegeneracy.

Theorem 3.5. Let {(xk, yk)} and (x̄, ȳ) be the same as in Theorem 3.4
and let λ k, µk, δ k, γ k be the multiplier vectors corresponding to (xk, yk)
with (48)–(51). Let βk be the smallest eigenvalue of the matrix
∇2

(x, y)Lk (x
k, yk, λ k, µk, δ k, γ k). If the sequence {βk} is bounded below and if

the set of vectors

{∇Fi (x̄, ȳ), ∇Gi (x̄, ȳ), ∇gl (x̄, ȳ), ∇hr (x̄, ȳ):

iG1, 2, . . . , m, l∈Ig (x̄, ȳ), rG1, 2, . . . , q}

is linearly independent, then (x̄, ȳ) is a B-stationary point of problem (1).

Proof. It is easy to see that the assumptions of Theorem 3.4 are satis-
fied with αkGmax{−βk , 0} and so (x̄, ȳ) is an M-stationary point of prob-
lem (1). Suppose that (x̄, ȳ) is not B-stationary to problem (1). As mentioned
at the beginning of the proof of Theorem 3.4, this occurs only in the case
where (53)–(56) hold for all sufficiently large k. By the definitions of B-
stationarity and M-stationarity, there exists an i0∈IF (x̄, ȳ) ∩IG (x̄, ȳ) such
that

ūi0G lim
k→S

uk
i0F0, û̄i0G lim

k→S

ûk
i0G0, (76)

or

ūi0G lim
k→S

uk
i0G0, û̄i0G lim

k→S

ûk
i0F0. (77)

From (25)–(27) and (48), we know that either of (76) and (77) implies

lim
k→S

akG+S. (78)
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By Theorem 3.1, we may suppose that k is large enough so that (53)–(56)
hold,

IF (xk, yk)⊆ IF (x̄, ȳ), IG (xk, yk)⊆ IG (x̄, ȳ),

Ig (x
k, yk)⊆ Ig (x̄, ȳ),

and the set of vectors

{∇Fi (x
k, yk), ∇Gi (x

k, yk), ∇gl (x
k, yk), ∇hr (x

k, yk):

iG1, 2, . . . , m, l∈Ig (x̄, ȳ), rG1, 2, . . . , q}

is linearly independent. Therefore, we can choose a vector dk∈RnCm such
that (63)–(64) and (67)–(68) hold and

(dk)T∇Fi0(x
k, yk)G1, (dk)T∇Gi0(x

k, yk)G−1.

Furthermore, we can choose the sequence {dk} to be bounded. By the
assumptions of the theorem, there exists a constant C such that

(dk)T∇2
(x, y)Lk (x

k, yk, λ k, µk, δ k, γ k)dk¤βk ��dk��2¤C (79)

holds for all sufficiently large k. Note that, by the definition of dk and (75),

(dk)T∇2
(x, y)Lk (x

k, yk, λ k, µk, δ k, γ k)dk

G(dk)T∇2f (xk, yk)dkA2ak

A ∑
iG1

m

[kλ k
iCak (1�kAyk

i )](d
k)T∇2Fi (x

k, yk)dk

C ∑
lG1

p

δ k
l (d

k)T∇2gl (x
k, yk)dk

C ∑
rG1

q

γ k
r (d

k)T∇2hr (x
k, yk)dk. (80)

In a way similar to Theorem 3.4, we can show that all the terms on the
right-hand side of (80) except the term −2ak are bounded. This, together
with (78), implies that

(dk)T∇2
(x, y)Lk (x

k, yk, λ k, µk, δ k, γ k)dk→−S,

as k→S. This contradicts (79) and hence (x̄, ȳ) is B-stationary to problem
(1). This completes the proof. �
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4. Computational Results

We have tested the method on various small scale examples of MPECs,
which have been used to test other methods in the literature. We applied
the MATLAB 6.0 built-in solver function fmincon to problem (3) with vari-
ous values of k. The computational results are summarized in Tables 1–4,
which indicate that the proposed method produces good approximate solu-
tions of (1) in a small number of iterations. In the tables, (xk, yk) is the
(approximate) solution of (1) produced by solving (3), Ite stands for the
number of iterations spent by fmincon, and r(xk, yk) denotes the residual
for the constraints in problem (3) at (xk, yk), i.e.,

r(xk, yk)G ∑
lG1

p

(gl (x
k, yk))CC ∑

rG1

q

�hr (x
k, yk) �C ∑

jG1

m

(−yk
j )C

C ∑
iG1

m

(−Fi (x
k, yk))CC� (yk)TF (xk, yk) �,

where (u)CGmax{0, u} for a scalar u.

Problem 4.1. This problem is given in Ref. 11, which has two upper-
level variables (x1 , x2)∈R2 and one lower-level variable y∈R:

min x2
1C10(x2A1)2C(yC1)2,

s.t. x2¤0, x1Aex2Aey¤0,

y¤0, y(x1Aex2Aey)G0.

Table 1. Computational results for
Problem 4.1 (kG10, 102).

Size ( p, m, n) (1, 1, 2)
Initial point (3, 0, 0)
(xk, yk) (2.7101, 0.5365, 0)
Ite 7
f (xk, yk) 10.4925
r(xk, yk) 0

Table 2. Computational results for Problem 4.2 (kG10,
102, 104).

Size (m, n, p, q) (2, 4, 4, 2)
Initial point (1, 1, 1, 1, 0, 0)
(xk, yk) (0.5000, 0.5000, 0.5000, 0.5000, 0, 0)
Ite 2
f (xk, yk) −1.0000
r(xk, yk) 0



JOTA: VOL. 118, NO. 1, JULY 2003110

Table 3. Computational results for Problem 4.3.

Size ( p, m, n) (3, 6, 2)
Initial point (0, 0, 1.60, 0.20, 0.44, 1.36, 0, 0)
kG102 (xk, yk) (0, 2, 1.9034, 0.9276, 0, 1.2689, 0, 0)

Ite 7
f (xk, yk) −12.7533
r(xk, yk) 0.0703

kG104 (xk, yk) (0, 2, 1.8753, 0.9065, 0, 1.2502, 0, 0)
Ite 6
f (xk, yk) −12.6795
r(xk, yk) 0.0007

kG106, 108 (xk, yk) (0, 2, 1.8750, 0.9063, 0, 1.2500, 0, 0)
Ite 6
f (xk, yk) −12.6787
r(xk, yk) 0.0004

Table 4. Computational results for Problem 4.4.

Size (m, n, p, q) (12,8,9,4)
x0 (0, 0, 0, 0, 0, 0, 0, 0)

kG102 xk (6.9858, 2.9766, 12.0064, 18.0312, −0.0173, 10.0143, 30.0896, −0.0173)
Ite 19
f (xk, yk) −6.6097eC003
r(xk, yk) 0.5500

kG104 xk (7.0369, 3.0553, 11.9632, 17.9447, 0.0921, 10.0000, 29.9079, 0)
Ite 20
f (xk, yk) −6.6000eC003
r(xk, yk) 0.1953eA004

kG106 xk (6.4449, 2.7621, 12.3172, 18.4758, 0, 9.2069, 30.7930, 0.0001)
Ite 7
f (xk, yk) −6.5987eC003
r(xk, yk) 0.1200eA003

kG108 xk (6.4447, 2.7620, 12.3173, 18.4758, 0, 9.2068, 30.7932, 0)
Ite 7
f (xk, yk) −6.5987eC003
r(xk, yk) 0.1200eA005

Problem 4.2. This is equivalent to Problem 5 in Ref. 7 and goes back
to Ref. 12:

min x2
1A2x1Cx2

2A2x2Cx2
3Cx2

4 ,

s.t. 0⁄x1⁄2, 0⁄x2⁄2,

x3Ax1Cx3y1Ay1G0,

x4Ax2Cx4y2Ay2G0,
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y1¤0, y2¤0,

F (x, y)¤0, yTF (x, y)G0,

where

F (x, y)G�0.25A(x3A1)2

0.25A(x4A1)2� .

Problem 4.3. This is Problem 11 in Ref. 7, which is equivalent to the
following MPEC:

min Ax2
1A3x2A4y1Cy2

2 ,

s.t. y¤0, F (x, y)¤0, yTF (x, y)G0,

x2
1C2x2⁄4, x1¤0, x2¤0,

where

F (x, y)G�
2y1C2y3A3y4Ay5

−5Ay3C4y4Ay6

x2
1A2x1Cx2

2A2y1Cy2C3

x2C3y1A4y2A4

y1

y2

�.

Problem 4.4. This is equivalent to Problem 10 in Ref. 7:

min (x5Cx7A200)(x5Cx7)C(x6Cx8A160)(x6Cx8),

s.t. 0⁄x1⁄10, 0⁄x2⁄5,

0⁄x3⁄15, 0⁄x4⁄20,

x1Cx2Cx3Cx4⁄40,

x5A4C0.4y1C0.6y2Ay3Cy4G0,

x6A13C0.7y1C0.3y2Ay5Cy6G0,

x7A35C0.4y7C0.6y8Ay9Cy10G0,

x8A2C0.7y7C0.3y8Ay11Cy12G0,

y¤0, F (x, y)¤0, yTF (x, y)G0,
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where

F (x, y)G�
x1A0.4x5A0.7x6

x2A0.6x5A0.3x6

x5

−x5C20
x6

−x6C20
x3A0.4x7A0.7x8

x4A0.6x7A0.3x8

x7

−x7C40
x8

−x8C40

� .

Since y stands for the Lagrangian multiplier vector in the original problem
(Ref. 7), we list only the values of x in Table 4.

5. Concluding Remarks

Suppose that the condition

∑
jG1

m

yj⁄m�kCk

is retained in the constraints of problem (3), i.e., problem (3) is replaced by
the problem

min f (x, y), (81a)

s.t. g(x, y)⁄0, h(x, y)G0, (81b)

y¤0, ∑
jG1

m

yj⁄m�kCk, (81c)

(ek
iAy)TF (x, y)¤0, iG0, 1, . . . , m. (81d)

Then, since the constraint

∑
jG1

m

yj⁄m�kCk

eventually becomes inactive at any fixed point as k tends to S, all the results
established in the previous sections remain true except that the results in
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Theorem 2.1 are replaced by

F G lim
k→S

Fk .

When the set

ZG{z∈RnCm:g(z)⁄0, h(z)G0}

is bounded, problem (81) has a compact feasible region and so it is solvable
for any k as long as it is feasible.

In addition, we remark that the term (1�k)e in (2) is necessary for prob-
lem (3) to have desirable properties. In fact, the problem

min f (x, y), (82a)

s.t. g(x, y)⁄0, h(x, y)G0, y¤0, (82b)

(k eiAy)TF (x, y)¤0, iG0, 1, . . . , m, (82c)

is difficult to handle because problem (82) does not satisfy the MFCQ at

any point (x̄, ȳ)∈F for all sufficiently large k. For simplicity, we assume
that the constraints g(x, y)⁄0 and h(x, y)G0 are absent and let

G(x, y)Gy, ψ k
i (x, y)G(keiAy)TF (x, y), iG0, 1, . . . , m. (83)

Note that

ψ k
i (x, y)GkFi (x, y)Cψ k

0 (x, y), iG1, 2, . . . , m. (84)

At (x̄, ȳ)∈F , the set of active constraints is

{ψ k
0 ,ψ k

i , Gj : i∈IF (x̄, ȳ), j∈IG (x̄, ȳ)}.

Suppose the MFCQ holds at (x̄, ȳ) for problem (82). Then, there exists a
vector (x, y)∈RnCm such that

∇ψ k
0 (x̄, ȳ)T�xy�H0, (85)

∇ψ k
i (x̄, ȳ)T�xy�H0, i∈IF (x̄, ȳ), (86)

yjG∇Gj (x̄, ȳ)T�xy�H0, j∈IG (x̄, ȳ). (87)

(i) Assume that IF (x̄, ȳ) ≠∅ and k is large enough to satisfy

1A(1�k) ∑
i∈I F(x̄, ȳ)

ȳiH0. (88)
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By (84) and (86), we have

A∇Fi (x̄, ȳ)T�xy�F(1�k)∇ψ k
0 (x̄, ȳ)T�xy� , i∈IF (x̄, ȳ). (89)

It then follows from (83), (87), and (89) that

∇ψ k
0 (x̄, ȳ)T�xy�G− ∑iG1

m

ȳi∇Fi (x̄, ȳ)T�xy�
A ∑

jG1

m

Fj (x̄, ȳ)yj

G− ∑
i∈I F(x̄, ȳ)

ȳi∇Fi (x̄, ȳ)T�xy�
A ∑

j∈I G(x̄, ȳ)

Fj (x̄, ȳ)yj

⁄ ((1�k) ∑
i∈I F(x̄, ȳ)

ȳi) ∇ψ k
0 (x̄, ȳ)T�xy� ,

i.e.,

(1A(1�k) ∑
i∈I F(x̄, ȳ)

ȳi)∇ψ k
0 (x̄, ȳ)T�xy�⁄0.

By (88), we have

∇ψ k
0 (x̄, ȳ)T�xy�⁄0.

This contradicts (85) and hence the MFCQ does not hold at (x̄, ȳ) for prob-
lem (82) when k is sufficiently large.

(ii) Suppose that IF (x̄, ȳ)G∅. Then, we have

ȳG0, F (x̄, ȳ)H0,

and by (87), yH0. It follows that

∇ψ k
0 (x̄, ȳ)T�xy�G− ∑iG1

m

ȳi∇Fi (x̄, ȳ)T�xy�
A ∑

jG1

m

Fj (x̄, ȳ)yj

G− ∑
jG1

m

Fj (x̄, ȳ)yjF0,
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which also contradicts (85) and then the MFCQ does not hold at (x̄, ȳ) for
problem (82).
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