
Hybrid simulated annealing and direct search method
for nonlinear unconstrained global Optimization∗

Abdel-Rahman Hedar and Masao Fukushima
Department of Applied Mathematics and Physics, Graduate School of Informatics,

Kyoto University, Kyoto 606-8501, Japan

December 11, 2001
Revised August 12, 2002

Abstract

In this paper, we give a new approach of hybrid direct search methods with meta-
heuristics of simulated annealing for finding a global minimum of a nonlinear function
with continuous variables. First, we suggest a Simple Direct Search (SDS) method,
which comes from some ideas of other well known direct search methods. Since our
goal is to find global minima and the SDS method is still a local search method,
we hybridize it with the standard simulated annealing to design a new method, called
Simplex Simulated Annealing (SSA) method, which is expected to have some ability to
look for a global minimum. To obtain faster convergence, we first accelerate the cooling
schedule in SSA, and in the final stage, we apply Kelley’s modification of the Nelder-
Mead method on the best solutions found by the accelerated SSA method to improve
the final results. We refer to this last method as the Direct Search Simulated Annealing
(DSSA) method. The performance of SSA and DSSA is reported through extensive
numerical experiments on some well known functions. Comparing their performance
with that of other meta-heuristics shows that SSA and DSSA are promising in practice.
Especially, DSSA is shown to be very efficient and robust.

Key words: Nonlinear unconstrained global optimization, direct search methods,
meta-heuristics, simulated annealing.

1 Introduction

In recent years there has been a great deal of interest in the development of optimization
algorithms that deal with the problem of finding a global minimum of a given continuous

∗This research was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of
Education, Science, Sports and Culture of Japan.

1

function [9, 10, 19, 20]. These algorithms were innovated to confront the rapid growth of
many optimization problems in science, economics and engineering. In this paper, we will
focus on the case of unconstrained minimization, i.e., the problem is

min
xεRn

f(x),

where f is a real valued function defined on Rn.
Meta-heuristics methods are considered to be acceptably good solvers of this problem

[18]. The power of meta-heuristic methods comes from the fact that they are robust and can
deal successfully with a wide range of problem areas. However, these methods, especially
when they are applied to complex problems, suffer from the high computational cost due
to their slow convergence. The main reason for this slow convergence is that these methods
explore the global search space by creating random movements without using much local
information about promising search direction [18]. In contrast, local search methods have
faster convergence due to their using local information to determine the most promising
search direction by creating logical movements. However, local search methods can easily
be entrapped in local minima.

One approach that recently has drawn much attention is to combine meta-heuristic meth-
ods with local search methods to design more efficient methods with relatively faster con-
vergence than the pure meta-heuristic methods. Moreover, these hybrid methods are not
easily entrapped in local minima because they still maintain the merits of the meta-heuristic
methods. Direct search methods, as local search methods, have got much attention in these
combinations. For instance, Nelder-Mead method [17] was hybridized with genetic algorithm
in [6, 25] and with Tabu search in [7]. In addition, Kvasnicka and Pospichal [14] proposed
a hybrid of controlled random search method, which is a generalization of the Nelder-Mead
method, and simulated annealing. Moreover, Tabu search was combined with another direct
search method called Hooke-Jeeves method in [1].

In this paper, we will hybridize simulated annealing (SA), as a meta-heuristic method,
and direct search methods, as local search methods. First, we suggest a simple direct search
(SDS) method, which comes from some ideas of other well known direct search methods.
Since our goal is to find global minima and the SDS method is still a local search method, we
hybridize it with the standard simulated annealing to design a new method, called simplex
simulated annealing (SSA) method, which is expected to have some ability to look for global
minima. The final method, called the direct search simulated annealing (DSSA) method,
can be obtained by modifying SSA. To obtain faster convergence, we first accelerate the
cooling schedule in SSA, and in the final stage, we apply Kelley’s modification of the Nelder-
Mead method [11, 12] on the best solutions found by the accelerated SSA to improve the
final results. These two modifications on SSA will comprise the final method DSSA. The
performance of SSA and DSSA is reported through extensive numerical experiments on
some well known functions. Comparing their performance with that of other meta-heuristics
methods shows that SSA and DSSA are promising in practice. Especially, DSSA is shown
to be very efficient and robust.

2

To the authors’ knowledge, there are two main previous results on hybridizing simulated
annealing with simplex methods. Press and Teukolsky [21] add a positive logarithmically
distributed variable, proportional to the control annealing temperature T , to the function
associated with every vertex of the simplex. Likewise, they subtract a similar random
variable from the function value at every new replacement point. Then, their method may
accept a new simplex whose actual function values at its vertices are not better than those
at the previous simplex. This method was subsequently studied by Cardoso et al. [3,
4]. The other main results was presented by Kvasnicka and Pospichal [14]. Their method
depends on the use of the simulated annealing acceptance in a controlled random search
method. More precisely, the controlled random search uses a simplex method on randomly
selected simplex sets from the population. So, to avoid being entrapped in local minima,
they applied simulated annealing acceptance on the updating procedure. The common
idea underlying these hybrid approaches and also our approach is to use simplex method to
generate new logical movements while applying simulated annealing. However, the approach
proposed in this paper is different from the above mentioned approaches. We try to fix some
disadvantages of simulated annealing like its slowness and its wandering near the global
minimum in the final stage of search. So, we use a new simplex method to generate the
movements trying to explore the function domain more carefully while applying accelerated
simulated annealing and also use another simplex method to accelerate the final stage in the
search.

The paper is organized as follows. In Section 2, we state the description of the proposed
methods. Experimental results along with the initialization of some parameters and the
setting of the control parameters of the proposed methods are discussed in Section 3. The
conclusion makes up Section 4.

2 The description of the proposed methods

In this section, we describe the SDS, SSA and DSSA methods and introduce the initial and
control parameters that are required by these methods. The values of these parameters used
in the experiments will be given in Section 3.

2.1 Simple direct search (SDS)

Before we state the steps of the SDS method, we will introduce the main ideas which SDS
comes from. The most famous simplex based direct search method was proposed by Nelder
and Mead [17] in 1965. Nelder-Mead method has been studied extensively. In 1991, Dennis
and Torczon [8] proposed a new form of direct search method, called the multidirectional
search method, which can be considered an effective modification of Nelder-Mead method
in the parallel computing environment. The main difference between Nelder-Mead method
and the multidirectional search method is that the number of points used in the reflection
step equals n in the latter method and equals one in Nelder-Mead method. Recently, Tseng

3

[23] proposed a general framework of the simplex based direct search method which con-
tains Nelder-Mead and the multidirectional search methods as subclasses and uses a varying
number of reflected points in a flexible manner.

In the SDS method, we will start with an initial simplex with n + 1 vertices. Then, we
will try to get a better movement by reflecting the worst vertex in this simplex with respect
to the remaining vertices. If the new vertex is not better than the worst one, we reflect the
two worst vertices. If it fails to get a better point, then we reflect the three worst vertices
and so on. If we reach the case of reflecting the n worst vertices and we still fail to get any
better movement, then we will shrink the simplex.

Algorithm 2.1 below is a formal description of the SDS method. We require that the
initial simplex S be a non-degenerate simplex with vertices x1, x2, . . . , xn+1. We assume
throughout that the vertices are sorted according to the objective function values

f(x1) ≤ f(x2) ≤ · · · ≤ f(xn+1). (1)

We will refer to x1 as the best vertex and xn+1 as the worst. Two scalar parameters ρ and
σ that represent coefficients of reflection and shrinkage, respectively, must be specified to
define the SDS method. We suppose that these parameters satisfy

ρ > 0, 0 < σ < 1. (2)

Algorithm 2.1. SDS(S, f, ε)

0. Choose parameters ρ and σ satisfying (2). Select an initial simplex S with vertices
x1, x2, . . . , xn+1. Choose a sufficiently small number ε > 0.

1. Order. Order and re-label the vertices of S so that (1) holds.

2. If f(xn+1)− f(x1) ≤ ε, then terminate. Otherwise, go to step 3.

3. Let k := 1. (k is the number of reflected points.)

4. If k ≤ n, then go to step 5 to perform the reflection. Otherwise, go to step 6 to perform
the shrinkage.

5. Reflect. Compute the k reflected points {xr
i}n+1

i=n−k+2 by

xr
i := x + ρ(x− xi), i = n + 1, n, . . . , n− k + 2,

where x is the centroid of the set {x1, x2, . . . , xn−k+1}, i.e.,

x :=
1

n− k + 1

n−k+1∑

i=1

xi. (3)

Evaluate f(xr
i), i = n + 1, n, . . . , n − k + 2. If minn−k+2≤i≤n+1{f(xr

i)} < f(x1), then
put xi := xr

i , i = n + 1, n, . . . , n − k + 2, and go to step 1. Otherwise, let k := k + 1
and go to step 4.

4

6. Shrink. Evaluate the function f at the n new vertices

xi := x1 + σ(xi − x1), i = 2, 3, . . . , n + 1. (4)

Go to step 1.

The coefficient of reflection ρ, in Algorithm 2.1, can be randomly chosen from the in-
terval (0.9, 1.1) to make more effective exploration. Algorithm 2.1 terminates when the
function values at all the vertices become close to each other. However, if the number of
iterations exceeds the predetermined allowed number of iterations, then we may terminate
the algorithm.

Simplex methods maintain at each iteration a nondegenerate simplex and the function
values at the vertices. When one or more test points, along with their function values,
are computed, we proceed to the next iteration with a new simplex. A most general ap-
proach of simplex methods was proposed by Tseng [23]. In this general approach, an integer
m (1 ≤ m ≤ n) is chosen to specify the number of “good” vertices to be retained in con-
structing the initial trial simplices. The other vertices will be reflected, and then either
expanded or contracted, at each iteration. If it fails to get a better point, then the whole
simplex will be shrunk with respect to the best vertex. However, in Algorithm 2.1, we sim-
ply intensify the search by only repeating the reflection step in many directions and if it
fails to get a better point, then we shrink the simplex with respect to the best vertex. It is
noteworthy that the main aim of SDS is to enhance the exploration role to be a good seed
to generate the global optimization methods SSA and DSSA. So, we will not compare the
behavior of SDS with the other simplex based direct search methods in this paper.

2.2 Simplex simulated annealing (SSA)

Since the SDS method is still a local search method, we hybridize it with the standard SA to
perform simplex simulated annealing (SSA) method, which is expected to have the ability to
look for a global minimum. The basic idea of the standard SA is that it tries to avoid being
trapped in local minima by making uphill move with the probability p = exp(−∆E/T),
where ∆E is the amount of increase in the objective value caused by the uphill move and T
is a parameter referred to as “annealing temperature”. To avoid accepting large uphill move
in the later stage of the search, the parameter T will be decreased over time by a schedule
which is called “the cooling schedule”. We will apply this SA acceptance condition on the
reflected points in the SDS method to obtain SSA method. In other words, we allow the
possibility of accepting reflected points which do not include any better solution. Algorithm
2.2 describes the steps of SSA method and shows how we apply the simulated annealing
acceptance and the cooling schedule with the lower limit temperature Tmin.

Algorithm 2.2. SSA(S, f, ε, Tmin,M)

5

0. Choose parameter σ ∈ (0, 1). Select an initial simplex S with vertices x1, x2, . . . , xn+1.
Set the parameters of the cooling schedule: the initial temperature T, Tmin and M.
Choose a sufficiently small number ε > 0.

1. Order. Order and re-label the vertices of S so that (1) holds.

2. If f(xn+1)− f(x1) ≤ ε or T < Tmin, then terminate. Otherwise, go to step 3.

3. Repeat the following steps 3.1-3.5 M times.

3.1 Let k := 1.

3.2 If k ≤ n, then go to step 3.3 to perform the reflection. Otherwise, go to step 3.4
to perform the shrinkage.

3.3 Reflect. Compute the k reflected points {xr
i}n+1

i=n−k+2 by

xr
i := x + ρ(x− xi), i = n + 1, n, . . . , n− k + 2,

where ρ is randomly chosen from the interval (0.9, 1.1) and x is defined by (3). Evaluate
f(xr

i), i = n + 1, n, . . . , n− k + 2, and put f̂ := minn−k+2≤i≤n+1{f(xr
i)}.

3.3.1 If f̂ < f(x1), then go to step 3.3.3.

3.3.2 Compute p := exp{−(f̂ − f(x1))/T} and choose U randomly from the interval
(0, 1). If p ≥ U, then go to step 3.3.3. Otherwise, let k := k + 1 and go to step 3.2.

3.3.3 Set xi := xr
i , i = n + 1, n, . . . , n− k + 2. Go to step 3.5.

3.4 Shrink. Shrink the simplex by determining n vertices by (4). Go to step 3.5

3.5 Sort. Sort the vertices of S so that (1) holds.

4. Reduce the temperature T and go to step 2.

In Algorithm 2.2, the coefficient of reflection ρ is determined by choosing a random
number from the interval (0.9, 1.1) . SSA method terminates when the function values at
the vertices are close to each other or the cooling schedule is completed. The main role of
M, the number of inner iterations per each temperature, is to get closer to the equilibrium
because it has been proved [13, 15] that when M is sufficiently large and the temperature T
is slowly reduced, the solution x will eventually be frozen at the global minimum.

6

2.3 Direct search simulated annealing (DSSA)

It is known that the standard SA may quickly approach the neighborhood of the global
minimum but has a difficulty in obtaining some required accuracy. So, it is suitable to finish
the algorithm with a faster convergent method. According to this idea, we modify SSA
method to obtain the DSSA method as follows:

1. Accelerate the cooling schedule in SSA, i.e., use a smaller reduction factor for the
temperature T.

2. Set the coefficient of shrinkage σ equals one to maintain the size of the initial simplex
large enough. Actually, setting 0 < σ < 1 is effective for achieving good behavior near
a minimum in SSA, especially, in the final stage of search. However, in DSSA, the
situation is different because we use the simplex simulated annealing part in exploring
the whole domain and storing the best visited point in a list. So, perfect behavior
near a minimum is not pursued in this part but it will be considered in the last part of
DSSA using a complete local search method starting from each point in the best point
list. In fact, it is known that local search methods have much better behavior near a
minimum than global methods.

3. Store the best solutions found by the accelerated SSA in a list called “best list” as
mentioned earlier and apply another local search method starting from each element
of the best list to improve further these best solutions.

According to these modifications of SSA, we can state the steps of the DSSA method in
Algorithm 2.3.

Algorithm 2.3. DSSA(S, f, ε, Tmin,M)

0. Select an initial simplex S with vertices x1, x2, . . . , xn+1. Set the parameters of the
cooling schedule: the initial temperature T, Tmin and M. Set the size of the best list.
Choose a sufficiently small number ε > 0.

1. Order. Order and re-label the vertices of S so that (1) holds.

2. Best list. Store the m best points in the best list.

3. If f(xn+1)− f(x1) ≤ ε or T < Tmin, then go to step 5. Otherwise, go to step 4.

4. Repeat the following steps 4.1-4.4 M times.

4.1 Let k := 1.

4.2 Reflect. Compute the k reflected points {xr
i}n+1

i=n−k+2 by

xr
i := x + ρ(x− xi), i = n + 1, n, . . . , n− k + 2,

where ρ is randomly chosen from the interval (0.9, 1.1) and x is defined by (3). Evaluate
f(xr

i), i = n + 1, n, . . . , n− k + 2, and put f̂ := minn−k+2≤i≤n+1{f(xr
i)}.

7

4.2.1 If f̂ < f(x1), then go to step 4.2.3.

4.2.2 Compute p := exp{−(f̂ − f(x1))/T} and choose U randomly from the interval
(0, 1). If p ≥ U, then go to step 4.2.3. Otherwise, let k := k + 1 and go to step 4.4.

4.2.3 Set xi := xr
i , i = n + 1, n, . . . , n− k + 2. Go to step 4.3.

4.3 Sort. Sort the vertices of S so that (1) holds and update the best list.

4.4 If k ≤ n, then go to step 4.2.

4. Reduce the temperature T and go to step 2.

5. From each point in the best list, construct a smaller simplex. Then, apply Kelley’s
modification of the Nelder-Mead method on each of these simplices.

In the DSSA method, we use the Kelley’s modification [11] of the Nelder-Mead method to
refine the points stored in the best list. We prefer to use this method instead of the original
Nelder-Mead method because after more than thirty years of studying and applying the
Nelder-Mead method, McKinnon [16] shows that the Nelder-Mead algorithm can stagnate
and converge to a nonoptimal point even for very simple problems. However, Kelley [11,
12] proposes a test for sufficient decrease which, if passed for all iterations, will guarantee
convergence of the Nelder-Mead iteration to a stationary point under some appropriate
conditions.

3 Experimental results

The performance of SDS, SSA and DSSA methods has been evaluated to show how simulated
annealing can affect the local search method SDS toward its generalization in global opti-
mization. Moreover, the comparison between the results of SSA and DSSA shows the effect
of the acceleration of convergence to improve the final results. Finally, the performance of
our final method DSSA has been compared with some other meta-heuristics methods. The
comparison was made using a set of some well known functions, which are listed in Appendix
A.

3.1 Setting of parameters

Some initial parameters and control parameters must be specified to define the complete
implementation of the methods SDS, SSA and DSSA.

8

3.1.1 Choosing the initial simplex

First, we randomly choose an initial orientation x1 from some predetermined range of initial
points for each function. Then, we take a step in each coordinate direction, called the
edge of the simplex, to construct a right-angled simplex with vertices x1, x2, . . . , xn+1. The
edge length of the simplex is chosen to befit the range of initial points for each function.
For all test functions the edge length is varied from 0.125 to 4 depending on the range of
initial points of each function. Moreover, we start with some suitable edge length and if the
difference of the functional values at the simplex vertices is very small, then this edge length
will be doubled until we get an improvement on the condition of the initial simplex or reach
the maximum allowed edge length. This method of choosing the initial simplex is applied
on all methods SDS, SSA and DSSA.

3.1.2 The cooling schedule

The cooling schedule consists of the initial temperature Tmax, the cooling function, the epoch
length M and the stopping condition. As in Kirkparick et al. [13], we choose the value of
Tmax large enough to make the initial probability of accepting transition close to 1. We set
the initial probability equal to 0.9. Then, Tmax is calculated from the equation

Tmax = −f(xn+1)− f(x1)

ln(0.9)
.

The temperature is reduced with a so-called cooling function F, i.e., the temperature at
the kth epoch is determined with Tk = F (Tk−1). In the standard SA, this equation will be
Tk = αTk−1, where α ∈ [0.5, 0.99] is a parameter called cooling ratio. In SSA algorithm,
we set α = 0.9. Since the DSSA algorithm is designed by accelerating SSA, we set α = 0.5,
and the computational experience shows that this value of α gives good results for most of
the test functions. However, for some hard functions; Shekel functions, Shubert function
and Griewank function, we have observed that it is more effective to slow down the cooling
schedule by setting α = 0.7. Epoch length M is the number of trials allowed at each
temperature and we set it equal to 10n in SSA and n in DSSA. Finally, the stopping condition
is comprised of the minimum allowed temperature Tmin which equals 10−5 · Tmax in both
methods SSA and DSSA.

3.1.3 Termination criteria

The termination criteria of SDS, SSA and DSSA algorithms are intended to reflect the
progress of these algorithms. So, we terminate these algorithms when the function values at
all the vertices become close to each other, i.e.,

f(xn+1)− f(x1) ≤ ε,

where the tolerance ε is a small positive number and we set it 10−6 in SDS, SSA and 10−8 in
DSSA. Moreover, SSA algorithm and the simulated annealing part of the DSSA algorithm

9

can also be terminated if the cooling schedule is completed. However, if the number of
iterations exceeds the predetermined allowed number of iterations, then we may terminate
the algorithms. This maximum number equals 50n in SDS and DSSA and equals 1000n
in SSA. We remark that, for Easom function, DSSA has had some difficulty in finding its
minimum because it lies in a very narrow hole and outside this narrow hole the graph the
function is almost flat. Termination before reaching this narrow hole could be avoided by
repeating the algorithm with reducing the edge length of the simplex in each time until we
get a very small edge length equal to 10−4.

3.1.4 Best list

The remaining parameter is the number of the best points stored during the search in the
DSSA method. This parameter is set equal to n except for the two types hard functions,
Shekel functions and Griewank function, for which we set it equal to 2n.

3.2 Numerical results

To examine the performance of our algorithms, we tested them on some well known functions
[3, 5, 24]. The behavior of these test functions varies; we have functions with some studded
local minima such as Goldstein and Price function, functions with many crowded local
minima such as Shubert function, functions with a global minimum lying in a very narrow
hole such as Easom function, functions with a narrow valley such as Rosenbrock function,
and smooth functions such as De Joung function and Zakharov function. For each function
we made 100 trials with different starting points. The average number of function evaluations
and the average error are related to only successful trials.

First, to demonstrate the effect of hybridizing simulated annealing with SDS to design
SSA and DSSA, we show in Table 1 the percentage of successful trials. From Table 1, we see
that the rate of success for SSA is generally better than that for SDS. However, the behavior
of SDS for Zakharov function Z5 is better than that of SSA due to the fixed cooling schedule
in SSA for all functions. We note that the behavior of these methods has changed drastically
when the dimension n of function Zn is increased to 10. Moreover, Table 1 clearly shows
that the behavior of DSSA is the best of the three methods in terms of the rate of success.

In Table 2, we show the effect of accelerating the cooling schedule in SSA and applying
a local search method on the final results obtained by the accelerated SSA to design DSSA.
The results in Table 2 reveal that the acceleration procedure successfully affects the rate of
success, the number of function evaluations, and the average error.

10

Table 1: Percentage of successful trials for SDS, SSA and DSSA

Function SDS SSA DSSA Function SDS SSA DSSA
RC 100 99 100 S4,5 14 61 81
ES 12 68 93 S4,7 19 60 84
GP 41 91 100 S4,10 15 59 77
RT 76 100 100 R5 4 67 100
HM 100 100 100 Z5 100 87 100
SH 59 57 94 H6,4 52 49 92
R2 12 93 100 GR 36 82 90
Z2 100 99 100 R10 0 78 100
DJ 100 100 100 Z10 0 66 100
H3,4 88 86 100

Table 2: Results of SSA and DSSA
Average number of

Rate of success function evaluations Average error
Function SSA DSSA SSA DSSA SSA DSSA
RC 99 100 12225 118 9E-3 4E-7
ES 68 93 4318 1442 4E-3 3E-9
GP 91 100 11238 261 5E-3 4E-9
RT 100 100 4564 252 7E-3 5E-9
HM 100 100 10157 225 0.01 5E-8
SH 57 94 10237 457 0.1 9E-6
R2 93 100 7387 306 3E-3 4E-9
Z2 99 100 5868 186 8E-3 4E-9
DJ 100 100 6743 273 3E-3 5E-9
H3,4 86 100 17756 572 0.1 2E-6
S4,5 61 81 7856 993 6E-3 2E-6
S4,7 60 84 9047 932 0.01 6E-7
S4,10 59 77 9062 992 0.01 1E-5
R5 67 100 11115 2685 0.03 3E-9
Z5 87 100 11527 914 0.03 5E-9
H6,4 49 92 37467 1737 0.02 2E-6
GR 82 90 12208 1830 0.1 5E-9
R10 78 100 22306 16785 0.02 7E-9
Z10 66 100 23883 12501 0.04 7E-9

11

Table 3: Average number of function evaluations in DSSA and other simplex SA methods

Function DSSA SIMPSA NE-SIMPSA
R2 306 10780 4508
R4 1682 21177 (99%) 3053 (94%)
CV 1592 22615 3443
DX 6941 52556 (93%) 8613 (94)

To show to what extent DSSA succeed in accelerating SA, we compare its results with
other simplex SA method like SIMPSA and NE-SIMPSA [3]. Table 3 shows the average
number of function evaluations obtained by each method starting from the same starting
point as in [3]. The data for SIMPSA and NE-SIMPSA are taken from [3]. Actually, the
reference [3] reports many results for SIMPSA and NE-SIMPSA depending on the search
domain but we prefer to make our method more general without any constrains during the
search. Moreover, we have chosen the best results obtained by SIMPSA and NE-SIMPSA
from Table 3 in [3] to make the comparison simpler and fair.

Next we compare the DSSA method with three other meta-heuristics methods based on
simulated annealing, Tabu search, and genetic algorithm. These methods are:

1. Enhanced Continuous Tabu Search (ECTS) [5].

2. Enhanced Simulated Annealing (ESA) [22].

3. Real-value Coding Genetic Algorithm (RCGA) [2].

Table 4 shows the average number of function evaluations needed by each algorithm.
The results of ECTS, ESA and RCGA are taken from their original papers [2, 5, 22]. For
all test functions, we use the same condition as that used by ECTS [5] to judge the success
of a trial which is given by

|f ∗ − fDSSA| < ε1 |f ∗|+ ε2, (5)

where fDSSA refers to the best function value obtained by DSSA and f ∗ refers to the exact
global minimum. We set ε1 = 10−4 and ε2 = 10−6. The ESA method used the same condition
for testing the successful trials with smaller ε1 and ε2. However, for the results marked by
(⊗) in Table 4, their original corresponding data in Table 2 in [5] and Table I in [22] seem to
contain some inconsistencies. Since the authors of [5] used the same condition as (5) to test
the successful trials, the average errors for the functions R2, R5 and Z5 must be less than 10−6

because f ∗ = 0 for all these functions. However, the average errors corresponding to these
functions are reported to be greater than 10−6. For instance, the average error corresponding
to the function R5 in Table 2 in [5] is 0.08, i.e., there are some trials that did not satisfy

12

Table 4: Average number of function evaluations in DSSA and other meta-heuristics

Function DSSA ECTS ESA RCGA
RC 118 245⊗ - 490
ES 1442 (93%) 1284⊗ - 642
GP 261 231⊗ 783⊗ 270
SH 457 (94%) 370 - 946
R2 306 480⊗ 796 596
Z2 186 195 15820 437
DJ 273 338 - 395
H3,4 572 548⊗ 698⊗ 324
S4,5 993 (81%) 825 (75%) 1137⊗ (54%) 1158 (62%)
S4,7 932 (84%) 910 (80%) 1223⊗ (54%) 1143 (70%)
S4,10 992 (77%) 989 (75%) 1189⊗ (50%) 1235 (58%)
R5 2685 2142⊗ 5364 4150 (60%)
Z5 914 2254⊗ 96799 1115
H6,4 1737 (92%) 1520⊗ 2638⊗ 937
R10 16785 15720 (85%) 12403⊗ 8100 (70%)
Z10 12501 4630 15820⊗ 2190

the successful trial condition but the authors reported that the rate of success equals 100%.
Moreover, the results corresponding to the functions RC, ES, GP, H3,4 and H6,4 in Table 2
in [5] also contain the same kind of inconsistencies. For the same reasons, the ESA results
marked by (⊗) suffer from the same inconsistencies.

The comparison given in Table 4 shows the DSSA outperforms the others for some func-
tions and has similar behavior for other functions. However, Table 5 shows that DSSA
generally produces more accurate solutions than the others. It is noteworthy that the ef-
ficiency of the simplex method dwindles with dimensionality, which explains the greatest
margin of superiority for DSSA on Z5 while it does not outperform the others on Z10.

4 Conclusion

The simulated annealing method usually suffers from slow convergence due to its random na-
ture of movements. Moreover, simulated annealing also suffers from the difficulty in obtaining
some required accuracy although it may quickly approach the neighborhood of the global
minimum. In this paper, we have focused on the importance of creating direct-search-based
logical movements while applying simulated annealing and the importance of accelerating

13

Table 5: Average errors in function value in DSSA and other meta-heuristics

Function DSSA ECTS ESA RCGA
RC 4E-7 5E-2 - 3E-3
ES 3E-9 1E-2 - 3E-9
GP 4E-9 2E-3 9E-3 1E-9
SH 9E-6 1E-3 - 6E-4
R2 4E-9 2E-2 - 1E-12
Z2 4E-9 2E-7 - 1E-10
DJ 5E-9 3E-8 - 6E-4
H3,4 2E-6 9E-2 5E-4 7E-3
S4,5 2E-6 1E-2 4E-3 1E-3
S4,7 6E-7 1E-2 8E-3 1E-4
S4,10 1E-5 1E-2 4E-2 4E-3
R5 3E-9 8E-2 - 1E-1
Z5 5E-9 4E-6 - 9E-4
H6,4 2E-6 5E-2 6E-2 3E-2
R10 7E-9 2E-2 4E-2 1E-1
Z10 7E-9 2E-7 2E-3 3E-3

the final stage of simulated annealing by using a faster convergent method. The obtained
results demonstrate that these two concepts can be successfully realized by effectively com-
bining direct search methods with simulated annealing. Moreover, the experimental results
show that the DSSA method is very efficient and robust.

A List of test functions

A.1 Branin RCOS function (RC)

• Number of variables: n = 2.

• Definition: RC(x1, x2) = (x2 − 5.1
4π2 x

2
1 + 5

π
x1 − 6)2 + 10(1− 1

8π
) cos(x1) + 10.

• Range of initial points: −5 < x1 < 10, 0 < x2 < 15.

• Number of local minima: no local minimum.

• Global minima: (x1, x2)
∗ = (−π, 12.275), (π, 2.275), (9.42478, 2.475);

RC((x1, x2)
∗) = 0.397887.

14

A.2 Easom function (ES)

• Number of variables: n = 2.

• Definition: ES(x1, x2) = − cos(x1) cos(x2) exp(−(x1 − π)2 − (x2 − π)2).

• Range of initial points: −10 < xj < 10, j = 1, 2.

• Number of local minima: several local minima.

• The global minimum: (x1, x2)
∗ = (π, π); ES((x1, x2)

∗) = −1.

A.3 Goldstein and Price function (GP)

• Number of variables: n = 2.

• Definition: GP (x1, x2) = u ∗ v,

where u = 1 + (x1 + x2 + 1)2 (19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2) ,
and v = 30 + (2x1 − 3x2)

2 (18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2) .

• Range of initial points: −2 < xj < 2, j = 1, 2.

• Number of local minima: 4 local minima.

• The global minimum: (x1, x2)
∗ = (0,−1); GP ((x1, x2)

∗) = 3.

A.4 Rastrigin function (RT)

• Number of variables: n = 2.

• Definition: RT (x1, x2) = x2
1 + 2x2

2 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7.

• Range of initial points: −1 < xj < 1, j = 1, 2.

• Number of local minima: many local minima.

• The global minimum: (x1, x2)
∗ = (0, 0); RT ((x1, x2)

∗) = 0.

A.5 Hump function (HM)

• Number of variables: n = 2.

• Definition: HM(x1, x2) = 1.0316285 + 4x2
1 − 2.1x4

1 + 1
3
x6

1 + x1x2 − 4x2
2 + 4x4

2.

• Range of initial points: −5 < xj < 5, j = 1, 2.

• Number of local minima: no local minima.

15

• Global minima: (x1, x2)
∗ = (0.0898,−0.7126), (−0.0898, 0.7126);

HM((x1, x2)
∗) = 0.

A.6 Shubert function (SH)

• Number of variables: n = 2.

• Definition:SH(x1, x2) =
(∑5

j=1 j cos ((j + 1) x1 + j)
) (∑5

j=1 j cos ((j + 1) x2 + j)
)
.

• Range of initial points: −10 < xj < 10, j = 1, 2.

• Number of local minima: 760 local minima.

• Global minima: 18 global minima and SH((x1, x2)
∗) = −186.7309.

A.7 De Joung function (DJ)

• Number of variables: n = 3.

• Definition: DJ(x1, x2, x3) = x2
1 + x2

2 + x2
3.

• Range of initial points: −5 < xj < 5, j = 1, 2, 3.

• Number of local minima: no local minima.

• The global minimum: (x1, x2, x3)
∗ = (0, 0, 0); DJ((x1, x2, x3)

∗) = 0.

A.8 Hartmann function (H3,4)

• Number of variables: n = 3.

• Definition:H3,4(x) = −∑4
i=1 ci exp

[
−∑3

j=1 aij (xj − pij)
2
]
.

• Range of initial points: 0 < xj < 1, j = 1, 2, 3.

• Number of local minima: 4 local minima.

• The global minimum: x∗ = (0.114614, 0.555649, 0.852547); H3,4(x
∗) = −3.86278.

i aij ci pij

1
2
3
4

3.0 10.0 30.0
0.1 10.0 35.0
3.0 10.0 30.0
0.1 10.0 35.0

1.0
1.2
3.0
3.2

0.689 0.1170 0.2673
0.4699 0.4387 0.7470
0.1091 0.8732 0.5547
0.0381 0.5743 0.8828

16

A.9 Colville function (CV)

• Number of variables: n = 4.

• Definition: CV (x) = 100(x2
1 − x2)

2 + (x1 − 1)2 + (x3 − 1)2 + 90(x2
3 − x4)

2

+10.1 ((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1)

• The global minimum: x∗ = (1, 1, 1, 1); CV (x∗) = 0.

A.10 Shekel functions (S4,m)

• Number of variables: n = 4.

• Definition: S4,m(x) = −∑m
i=1

[∑4
i=1 (xi − ai)

2 + ci

]−1
.

• Three functions were considered: S4,5, S4,7 and S4,10.

• Range of initial points: 0 < xj < 10, j = 1, . . . , 4.

• Number of local minima: m local minima.

• Same global minimum for three functions S4,5, S4,7 and S4,10: x∗ = (4, 4, 4, 4);

S4,5(x
∗) = −10.1532, S4,7(x

∗) = −10.4029 and S4,10(x
∗) = −10.5364.

i aij ci

1
2
3
4
5
6
7
8
9
10

4.0 4.0 4.0 4.0
1.0 1.0 1.0 1.0
8.0 8.0 8.0 8.0
6.0 6.0 6.0 6.0
3.0 7.0 3.0 7.0
2.0 9.0 2.0 9.0
5.0 5.0 3.0 3.0
8.0 1.0 8.0 1.0
6.0 2.0 6.0 2.0
7.0 3.6 7.0 3.6

0.1
0.2
0.2
0.4
0.4
0.6
0.3
0.7
0.5
0.5

A.11 Hartmann function (H6,4)

• Number of variables: n = 6.

• Definition: H6,4(x) = −∑4
i=1 ci exp

[
−∑6

j=1 aij (xj − pij)
2
]
.

• Range of initial points: 0 < xj < 1, j = 1, . . . , 6.

17

• Number of local minima: 6 local minima.

• The global minimum:

x∗ = (0.201690, 0.150011, 0.476874, 0.275332, 0.311652, 0.657300);
H6,4(x

∗) = −3.32237.

i aij ci

1
2
3
4

10.00 3.00 17.00 3.50 1.70 8.00
0.05 10.00 17.00 0.10 8.00 14.00
3.00 3.50 1.70 10.0 17.00 8.00
17.00 8.00 0.05 10.00 0.10 14.00

1.0
1.2
3.0
3.2

i pij

1
2
3
4

0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

A.12 Griewank function (GR)

• Number of variables: n = 6.

• Definition: GR(x) =
∑6

j=1

x2
j

4000
−∏6

j=1 cos
(

xj√
j

)
+ 1.

• Range of initial points: −1 < xj < 1, j = 1, 2, . . . , 6.

• Number of local minima: many local minima.

• The global minimum: x∗ = (0, . . . , 0), GR(x∗) = 0.

A.13 Dixon function (DX)

• Number of variables: n = 10.

• Definition: DX(x) = (1− x1)
2 + (1− x10)

2 +
∑9

j=1(x
2
i − xi+1)

2

• The global minimum: x∗ = (1, 1, 1, 1); DX(x∗) = 0.

A.14 Rosenbrock functions (Rn)

• Number of variables: n = 2, 5, 10.

• Definition: Rn(x) =
∑n−1

j=1

[
100

(
x2

j − xj+1

)2
+ (xj − 1)2

]
.

• Range of initial points: −5 < xj < 10, j = 1, 2, . . . , n.

18

• Number of local minima: no local minimum.

• The global minimum: x∗ = (1, . . . , 1), Rn(x∗) = 0.

A.15 Zakharov functions (Zn)

• Number of variables: n = 2, 5, 10.

• Definition: Zn(x) =
∑n

j=1 x2
j +

(∑n
j=1 0.5jxj

)2
+

(∑n
j=1 0.5jxj

)4
.

• Range of initial points: −5 < xj < 10, j = 1, 2, . . . , n.

• Number of local minima: no local minimum.

• The global minimum: x∗ = (0, . . . , 0), Zn(x∗) = 0.

References

[1] K.S. Al-Sultan and M. A. Al-Fawzan, (1997) A tabu search Hooke and Jeeves algorithm
for unconstrained optimization, European J. of Operational Research, 103, 198-208.

[2] M. Bessaou and P. Siarry, (2001) A genetic algorithm with real-value coding to optimize
multimodal continuous functions, Struct Multidisc Optim, 23, 63-74.

[3] M. F. Cardoso, R. L. Salcedo and S. F. de Azevedo, (1996) The simplex-simulated
annealing approach to continuous non-linear optimization, Comput. Chem. Eng., 20,
1065-1080.

[4] M. F. Cardoso, R. L. Salcedo, S. F. de Azevedo and D. Barbosa, (1997) A simulated
annealing approach to the solution of minlp problems, Comput. Chem. Eng., 21, 1349-
1364.

[5] R. Chelouah and P. Siarry, (2000) Tabu search applied to global optimization, European
J. of Operational Reasearch, 123, 256-270.

[6] R. Chelouah and P. Siarry, An hybrid method using genetic algorithm and Nelder-Mead
simplex algorithms for the global optimization, submitted.

[7] R. Chelouah and P. Siarry, An hybrid method combining continuous Tabu Search and
Nelder-Mead simplex algorithms for the global optimization of multiminima functions,
submitted.

[8] J. E. Dennis and V. Torczon, (1991) Direct search methods on parallel machines, SIAM
J. Optim., 1, 448–474.

19

[9] C. A. Floudas and P. M. Pardalos (editors), (1992) Recent Advances in Global Opti-
mization, Princeton University Press, Princeton, NJ.

[10] R. Horst and P. M. Pardalos (editors), (1995) Handbook of Global Optimization, Kluwer
Academic Publishers, Boston, MA.

[11] C. T. Kelley, (1999) Detection and remediation of stagnation in the Nelder-Mead algo-
rithm using a sufficient decrease condition, SIAM J. Optim., 10, 43-55.

[12] C. T. Kelley, (1999) Iterative Methods for Optimization, Frontiers Appl. Math. 18,
SIAM, Philadelphia, PA.

[13] S. Kirkpatrick, C.D. Gelatt Jr. and M.P. Vecchi, (1983) Optimisation by simulated
annealing, Science, 220, 671-680.

[14] V. Kvasnicka and J. Pospichal, (1997) A hybrid of simplex method and simulated an-
nealing, Chemometrics and Intelligent Laboratory Systems, 39, 161-173.

[15] P. J. Laarhoven and E. H. Aarts, (1987) Simulated Annealing: Theory and Applications,
D. Reidel Publishing Company, Dordrecht, Holland.

[16] K. I. M. McKinnon, (1999) Convergence of the Nelder-Mead simplex method to a non-
stationary point, SIAM J. Optim., 9, 148-158.

[17] J. A. Nelder and R. Mead, (1965) A simplex method for function minimization, Comput.
J., 7, 308-313.

[18] I. H. Osman and J. P. Kelly, (1996) Meta-Heuristics: Theory and Applications, Kluwer
Academic Publishers, Boston, MA.

[19] P. M. Pardalos and H. E. Romeijn (editors), (2002) Handbook of Global Optimization,
Kluwer Academic Publishers, Boston, MA.

[20] P. M. Pardalos and M. G. C. Resende (editors), (2002) Handbook of Applied Optimiza-
tion, Oxford University Press, Oxford.

[21] W. H. Press and S. A. Teukolsky, (1991) Simulated annealing optimization over contin-
uous spaces, Comput. Phys., 5, 426-429.

[22] P. Siarry, G. Berthiau, F. Durbin and J. Haussy, (1997) Enhanced simulated annealing
for globally minimizing functions of many continuous variables, ACM Transactions on
Mathematical Software, 23, 209-228.

[23] P. Tseng, (1999) Fortified-descent simplicial search method: A general approach, SIAM
J. Optim., 10, 269-288.

20

[24] P. P. Wang and D. S. Chen, (1996) Continuous optimization by a variant of simulated
annealing, Computational Optimization and Applications, 6, 59-71.

[25] J. Yen, J. C. Liao, B. Lee and D. Randolph, (1998) A hybrid approach to modeling
metabolic systems using a genetic algorithm and simplex method, IEEE Trans. on Syst.,
Man, and Cybern. B, 28, 173-191.

21

