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Abstract

In this paper, a simulated-annealing-based method called Filter Simulated An-
nealing (FSA) method is proposed to deal with the constrained global optimization
problem. The considered problem is reformulated so as to take the form of optimizing
two functions, the objective function and the constraint violation function. Then, the
FSA method is applied to solve the reformulated problem. The FSA method invokes a
multi-start diversification scheme in order to achieve an efficient exploration process.
To deal with the considered problem, a filter-set-based procedure is built in the FSA
structure. Finally, an intensification scheme is applied as a final stage of the pro-
posed method in order to overcome the slow convergence of SA-based methods. The
computational results obtained by the FSA method are promising and show a supe-
rior performance of the proposed method, which is a point-to-point method, against
population-based methods.

Key words: Constrained global optimization, Metaheuristics, Simulated anneal-
ing, Filter Set, Approximate descent direction

1 Introduction

Simulated Annealing (SA) is one of the most applicable metaheuristics in the optimization
community. One of the most powerful features of SA is its ability of escaping from be-
ing trapped in local minima by accepting up-hill moves through a probabilistic procedure
especially in the earlier stages of the search. For the continuous unconstrained optimiza-
tion problem, SA has intensively been studied in the forms of pure methods [1] and hybrid
methods [10, 12]. However, implementing SA on the continuous constrained optimization
problem is still very limited in comparison with some other metaheuristics like the Evolu-
tionary Algorithms (EAs). The SA approaches for constrained global optimization problems
have been proposed by Wah, Wang and Chen, see [3, 31, 32, 33]. Another SA approach has
been proposed by Romeijn and Smith [28]. These approaches are regarded as a pure SA. In
this paper we propose a hybrid SA approach which invokes some intelligent concepts from
other metaheuristics and local search methods. Specifically, we propose an SA-based ap-
proach called Filter Simulated Annealing (FSA) method for the following general nonlinear
programming problem in the continuous space:

1This research was supported in part by a Grant-in-Aid for Scientific Research from Japan Society for
the Promotion of Science.
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min
x

f (x)

s.t. gi (x) ≤ 0, i = 1, . . . , l,
hj (x) = 0, j = 1, . . . ,m,
x ∈ S,

(P )

where f , gi and hj are real-valued functions defined on the search space S ⊆ Rn. Usually, the
search space S is defined as {x ∈ Rn : xi ∈ [li, ui] , i = 1, . . . , n} . The feasible region defined
by the constraints is denoted by F ⊆ S.

Most of the metaheuristics which have been proposed to solve problem (P ) are Evolution-
ary Algorithms (EAs). The optimization methods can be classified in two categories, namely,
the point-to-point methods which SA belongs to, and the population-based methods which
EAs belong to. Metaheuristics from both categories have successfully been applied to the
continuous unconstrained optimization problem. For example, some population-based meth-
ods such as genetic algorithms and scatter search methods have been proposed, see [11, 21]
and references therein. As to point-to-point methods, tabu search, as well as SA, has also
been invoked to deal with the continuous unconstrained optimization problem, see [13] and
references therein. However, invoking point-to-point methods to deal with continuous con-
strained optimization problems is still very limited in comparison with the population-based
methods. The main reason for the unpopularity of SA for constrained global optimization
problems, as well as most of the point-to-point methods, is its difficulty in keeping diver-
sity. Especially, when the feasible region consists of several separate sub-regions, it is not
so easy for a point-to-point method without a guidance of a diversification scheme to ex-
plore such regions effectively. Moreover, the point-to-point methods can be divided in two
classes, single-start methods and multi-start methods. The latter methods have shown effi-
cient performance when applied to difficult optimization problems [23, 24, 30]. The standard
SA belongs to the class of single-start methods. Therefore, there is a need to modify the
standard SA in order to obtain an efficient method that can deal with the general case of
problem (P ).

In order to compose a powerful point-to-point-based method for solving problem (P ), it
is necessary to consider the following things:

• In order to achieve efficient exploration of the space of interest, the designed method
should consist of multi-start stages with a guidance of an effective diversification
scheme. Otherwise, in the case of having separate feasible sub-regions, the method
may be trapped in the first hit feasible sub-region.

• An efficient exploration process should also invoke a search procedure which has the
ability to explore both feasible and infeasible regions, rather than exploring the feasible
region only. This is needed to reach a global solution especially in the following cases:

- The global solution lies on the boundary of the feasible region,

- The global solution lies in a feasible sub-region which differs from the one currently
searched.

• In constrained optimization problems like problem (P ), optimal solutions usually lie on
the boundary of the feasible region. In order to explore the region near the boundary of
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the feasible region effectively, the designed method should invoke a solution generation
procedure which is able to intensify the solution generation process.

• An elite-based intensification scheme should be used in the final stage in order to
refine the best solution found so far. Especially, if the method is SA-based, a quicker
intensification scheme is needed as a remedy of the slow convergence of SA in its final
stage.

We have considered all the above in designing the FSA method. So the FSA method is a
multi-start method with a diversification scheme. The FSA method uses the filter set concept
[7] in accepting new trial solutions, which gives it the ability to explore both feasible and
infeasible regions. Moreover, the FSA method generates more trial solutions whenever the
region near the constraint boundary is reached. Finally, two types of intensification schemes
are applied in order to refine the best solution visited so far. Thus, the FSA method is a
hybrid method which takes advantage of low computational cost of point-to-point methods
and efficient exploration of population-based methods. In other words, the FSA method is
an attempt to design a point-to-point method that behaves like a population-based method
without spending high computational cost.

The numerical results shown later indicate that the proposed FSA method is very promis-
ing in terms of the quality of obtained solutions as well as the computational costs especially
for dealing with constraints. In particular, the numerical results also show that the FSA
method is competitive with the population-based methods in the quality of solution and it
is much cheaper than them in the computational costs. In the next section, we give some
preliminaries needed throughout the paper. In Section 3, we highlight the main components
of the proposed FSA method. The study of the FSA parameters is given in Section 4. In
Sections 5 and 6, we report numerical results for the FSA method. Finally, the conclusion
makes up Section 7.

2 Preliminaries

This section highlights the idea of reformulating problem (P ) as a multiobjective optimiza-
tion problem and the concepts of filter set and filtered points. To achieve that, the concept
of Pareto dominance in multiobjective optimization should be defined first.

2.1 Pareto Dominance

Pareto Dominance is the most common concept of optimality in multiobjective optimization.
Multiobjective optimization seeks to optimize a vector of objective functions over a feasible
region in the space of decision variables. For the multiobjective minimization problem with
the objective functions ϕ1 (x) , . . . , ϕq (x) , defined on the search space SM ⊆ Rn, the Pareto
Dominance is defined as follows.

Definition 1 An objective vector Φ(y) = (ϕ1 (y) , . . . , ϕq (y)) is said to dominate another
objective vector Φ(z) = (ϕ1 (z) , . . . , ϕq (z)) if and only if ϕi (y) ≤ ϕi (z) for all i = 1, . . . , q
and there exists at least one j ∈ {1, . . . , q} such that ϕj (y) < ϕj (z) .

3



We denote Φ(y) ≺ Φ(z) if Φ(y) dominates Φ(y). Moreover, we write Φ(y) � Φ(z) to
indicate that either Φ(y) ≺ Φ(z) or Φ(y) = Φ(z) holds. In the rest of the paper, we will
simply write y ≺ z and y � z instead of Φ(y) ≺ Φ(z) and Φ(y) � Φ(z), respectively.

2.2 Problem Reformulation

An effective approach to handle constraints is to use multiobjective optimization techniques,
see for example [4, 5]. Such approaches reformulate the constrained problem as a multiob-
jective problem involving the original objective function and constraint violation functions.
More specifically, by introducing the constraint violation functions

Gi (x) = (max [0, gi (x)])α , i = 1, . . . , l,

Gl+j (x) = |hj (x)|α , j = 1, . . . ,m, (1)

where α is usually chosen to be 1 or 2, problem (P ) can be reformulated as the following
multiobjective optimization problem:

min
x∈S

[f (x) , G1 (x) , . . . , Gm+l (x)] . (PM)

Alternatively, we may consider the following bi-objective optimization problem as another
reformulation of problem (P ):

min
x∈S

[f (x) , G (x)] , (PB)

where G (x) =
∑

m+l
i=1 Gi (x). The method proposed in this paper will deal with problem (P )

through the reformulated problem (PB). In particular, we will denote x ≺ y if x dominates
y with respect to the vector function Φ(x) = (f(x), G(x)).

2.3 Filter Set and Filtered Points

The filter set F is defined as a finite set of infeasible2 points in S such that x ≺ y does not
hold for any x and y in F. The point xF with the minimum function value f(x) found so far
in the feasible region F = {x ∈ S : G(x) = 0} is saved and treated separately as a single
filter point. This definition is taken from [2] which differs slightly from the original definition
in [7]. A point y is called a filtered point [2], if one of the following holds:

• y � x for some x ∈ F.

• G(y) ≥ Gmax, where Gmax > 0 is the maximum tolerance allowed to the constraint
violation.

• G(y) = 0 and f(y) ≥ fF , where fF = f(xF ) is the minimum function value found so
far in the feasible region.

2Throughout the paper, the feasibility is related only to problem (P ) rather than PM or PB , that is, we
call a point x ∈ S feasible if G(x) = 0, and infeasible if G(x) > 0.
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In other words, we have three kinds of filtered point sets:

F̄I = {y ∈ S : y � x for some x ∈ F} ,
F̄II = {y ∈ S : G(y) ≥ Gmax} ,
F̄III =

{
y ∈ S : G(y) = 0, f(y) ≥ fF

}
.

Therefore, the set of all filtered points is defined as F̄ = F̄I ∪ F̄II ∪ F̄III. Unfiltered points are
used to update F̄ by adding them and deleting the old ones which are dominated by the new
added points.

3 The FSA method

The FSA method starts with a diversification generation procedure to generate a set of
diverse solutions called DivSet. The initial solution is chosen from the DivSet. Then, the
DivSet stands by to provide the search with a diverse solution whenever further diversifica-
tion is needed. In the FSA method, we introduce a ranking procedure for comparing and
ordering solutions. This ranking procedure is based on the filter set as well as objective
function and constraint violation function values.

The scenario in the FSA method can be described as follows. Let the current trial
solution be Sol. Using the FSA ranking procedure, Sol is initialized to be the best ranked
one in DivSet. Then, trial solutions are generated in a neighborhood of Sol using a trial
solution generation procedure based on the approximate descent direction (ADD) method
proposed in [12]. The trial solution generation procedure generates trial solutions in such a
way that the objective function value is likely to decrease if Sol is feasible, and the constraint
violation function value is likely to decrease if Sol is infeasible. Moreover, the trial solution
generation procedure intensifies the solution generation process if Sol is close to the boundary
of the feasible region. We try to update Sol with one of the generated trial solutions using
the simulated annealing acceptance concept. Specifically, if an unfiltered trial solution is
obtained, we accept it with probability 1. Otherwise, a trial solution is accepted with a
certain probability determined by the temperature parameter. The temperature is controlled
by some cooling schedule, which consists of the initial temperature, the rule of lowering
the temperature, and the epoch length, i.e., the number of iterations at each temperature
level. Whenever the number of consecutive iterations without accepting a new trial solution
exceeds a predetermined maximum number, a new diverse solution is chosen from DivSet
and the re-annealing process is applied, i.e., the temperature is re-initialized. While the
search proceeds, DivSet is updated by removing any of its elements if one of the generated
trial solutions reaches a region close to this element. We terminate this main stage of the
FSA method when the cooling schedule is completed with the empty DivSet. Finally, two
intensification schemes are invoked to refine the best solution found so far. The best solution
is defined to be the best feasible solution if the feasible region is reached. Otherwise, the best
solution is defined to be the infeasible solution with the least constraint violation function
value. The temperature parameter at the best solution found so far in the previous search
stage is used in the first intensification scheme which applies an annealing process with slower
cooling schedule and smaller step sizes. The second intensification scheme applies a greedy
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Figure 1: Outline of the FSA method.
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local search method on a penalty function of problem (P ) starting from the best solution
found so far.

Figure 1 shows the outline of the FSA method. Below, we describe the details of the FSA
main steps sketched above and state the FSA algorithm formally at the end of this section.

3.1 Diversification Generation Procedure

In the FSA method, we use the scatter search diversification generation method [21, 22]
to generate a diverse solution set DivSet. In that method, the interval (ui − li) of each
variable is divided into 4 sub-intervals of equal size. For each sub-interval of each variable, a
frequency count is defined as the number of solutions previously chosen in this sub-interval.
To generate a new solution to be added to DivSet, one has to

• choose one sub-interval for each variable randomly with a probability inversely pro-
portional to its frequency count, and

• choose a random value for each variable that lies in the corresponding selected sub-
interval.

While the search proceeds, the DivSet is updated by eliminating any of its elements lying
close to a visited solution. Specifically, when the current solution is x, the DivSet is updated
through the rule

DivSet = DivSet \ {y ∈ DivSet :

n∑

i=1

(xi − yi)
2

H2
i

≤ 1}, (2)

where HDiv := (H1, . . . , Hn) is a predetermined constant vector with positive components.
When the diversification is needed, the solution with the largest distance from the current

solution is chosen from the DivSet to be a new diverse solution.

3.2 Ranking Procedure

To order the solutions in a set S = {x1, x2, . . . , xµ}, we introduce the following ranking
procedure. The solutions are ordered based on three rank functions as given below.

1. Dominance Rank (rd): The best feasible point xF is given the rank value rd = 1, and
other feasible points are given the rank value rd = 2. The points in F are given the
rank value rd = 1, and any other infeasible point x is given the rank value rd = ν + 1,
where ν is the number of points in F which dominate x.

2. f -value Rank (rf ): According to their objective function values f (xi) , xi ∈ S, the
best point is given the rank value rf = 1, the second best point is given the rank value
rf = 2, and so on.

3. G-value Rank (rG): According to their constraint violation function valuesG (xi) , xi ∈
S, the best point is given the rank value rG = 1, the second best point is given the
rank value rG = 2, and so on.
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In each ranking described above, ties are broken arbitrarily. Then, the total ranking
function r is defined by

r(xi) = rd(xi) +
λ

µ
rf (xi) +

(1 − λ)

µ
rG(xi), xi ∈ S, (3)

where λ ∈ [0, 1] . The solutions in S are ordered and relabeled such that

r (x1) ≤ r (x2) ≤ · · · ≤ r (xµ) . (4)

The main role of the parameter λ is to control the priority in the ranking between the
objective function value and the feasibility. Actually, the ranking function r is basically
based on the dominance rank rd and, within the same dominance rank, the parameter λ gives
a greater value to either of the ranking values rf and rG. Specifically, setting λ ∈ [0, 0.5)
gives some priority to feasible points and setting λ ∈ (0.5, 1] gives some priority to points
with lower objective function values. In the FSA method, the value of λ is chosen to be less
than 1/µ in order to accept a better feasible solution when it is found. Moreover, in this
ranking procedure, a new infeasible solution which reduces the constraint violation function
is more likely to be accepted than a new feasible solution which is worse than the best
feasible solution found so far. This makes the search process effective in exploring near the
boundary of the feasible region.

3.3 Trial Solution Generation Procedure

We use Approximate Descent Direction (ADD) method [12] to generate trial solutions in
the FSA method. The ADD method has proved to have high ability of producing a descent
direction, see [12, 13]. So we invoke the ADD procedure in generating trial solutions instead
of generating them randomly as in the standard SA.

First, we summarize the ADD method before stating the trial solution generation pro-
cedure. The ADD method is a derivative-free procedure which uses several points around a
given point x ∈ Rn to generate an approximate descent direction of a function ψ at x. More
specifically, the ADD method chooses p points close to x, called exploring points, in order
to generate an approximate descent direction v ∈ Rn of ψ at x, where p is some positive
integer. The exploring points, say {yi}p

i=1 , are used to compute the direction v as follows:

v =

p∑

i=1

wiei, (5)

where

wi =
∆ψi∑p

j=1 |∆ψj|
, i = 1, 2, . . . , p,

ei = − yi − x

‖yi − x‖ , i = 1, 2, . . . , p,

∆ψi = ψ(yi) − ψ(x), i = 1, 2, . . . , p.

By means of (5), the direction v is composed toward the vectors −sign (∆ψi) (yi − x) with
weights proportional to |∆ψi| , i = 1, 2, . . . , p. Figure 2 shows an example of composing an
ADD in two dimensions. Given a point x ∈ R2, the ADD v is composed in Figure 2 toward
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x

y2 y1

v
ψ(y1) ≥ ψ(x)

ψ(y2) < ψ(x)

Figure 2: An ADD example in R2.

• the vector − (y1 − x) , since the inequality ψ (y1) ≥ ψ (x) suggests that the function
value is not likely to decrease along the direction y1 − x, and

• the vector y2 − x, since the inequality ψ (y2) < ψ (x) suggests that the function value
is likely to decrease along the direction y2 − x.

In the FSA method, we use the ADD method to generate a search direction d at a given
solution x, and then use it to generate new trial solutions in a neighborhood of x. Specifically,
we first generate p exploring points close to x and generate a search direction as follows:

1. If x is feasible, we apply the ADD method using the generated exploring points to
compute an approximate descent direction vf of f at x. Then, we set the search
direction d := vf/ ‖vf‖ .

2. If x is infeasible, we apply the ADD method using the generated exploring points
to compute an approximate descent direction vG of G at x. Then, we set the search
direction d := vG/ ‖vG‖ .

Trial solutions can be generated along the search direction d with suitable step sizes.
Moreover, it is known that, in most cases, optimal solutions can be found on the boundary
of the feasible region. So, in order to encourage the search to explore the region near the
boundary effectively, more trial solutions should be generated whenever the current solution
is close to the boundary. To implement this idea in the FSA method, another trial solution
will be generated between the current solution and the trial solution if the feasibility status
changes between them. Figure 3 shows an example of the two types of generating trial
solutions in the neighborhood of a current solution x. In Figure 3(a), a trial solution y is
generated along the search direction d and since x and y are both feasible, no more trial
solution will be generated. However, in Figure 3(b), x is feasible but y is infeasible, and
so another trial solution y′ is generated between x and y. Formally, we can define the trial
solution set as

TS(x) = {y : y = x+ δi∆d, i ∈ I}, (6)

where ∆ is a step size and δi are random numbers. The set I is given by I = {1} if the
feasibility status at x + δ1∆d is the same as that at x, i.e., G(x + δ1∆d) = G(x) = 0, or
G(x + ∆d) > 0 and G(x) > 0, and I = {1, 2}, otherwise. The random numbers δi give
the search some stochastic behavior to achieve more efficient exploration. For example, we
may let δ1 be uniformly distributed in the interval (0, 1) and δ2 be normally distributed with
mean 1/2 and a suitable variance σ2.
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Figure 3: An example of generating trial solutions.

3.4 Intensification

In the FSA method, we compose two stages of intensification process. The first one is an SA-
based procedure, called SA Intensification, in which up-hill movements may be accepted in
order to avoid the case where the region around the best solution visited so far is prematurely
explored in the previous search stages. The other stage of intensification is a greedy process
that accepts only down-hill movements, which we call Local Search Intensification. This
greedy-type intensification is needed since it has been reported that the SA can reach a
region near global minima, however, it may wander around the optimal solution if high
accuracy is required [12, 34]. The outline of these intensification stages is given below.

• SA Intensification. In the previous stage of the search, we save the temperature
parameter value recorded at the best solution found so far. Then, in order to refine
that solution, a slower cooling schedule, i.e., a schedule with a higher cooling ratio, is
started from the saved value of the temperature parameter. Moreover, the step size
used in generating trial solutions is reduced to refine the search steps for more accurate
exploration.

• Local Search Intensification. A direct search method is applied, starting from the
best solution found so far, to minimize the penalty function

p(x) = f(x) + ρG(x), (7)

where ρ > 0 is a penalty parameter. Kelley’s modification [15, 16] of the Nelder-
Mead method [27] is used to minimize the function p(x) in N consecutive times using
gradually increasing penalty parameters ρ1 < ρ2 < · · · < ρN .

3.5 FSA Algorithm

The formal description of the FSA method is given below.

Algorithm FSA

1. Initialization. Construct DivSet using the diversification generation proce-
dure. Set the best ranked point in DivSet to be the initial point x0. Choose
the cooling schedule parameters: initial temperature Tmax, final temperature
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Tmin and cooling ratio γ ∈ (0, 1), and the epoch length M and set T := Tmax.
Set F0 to be empty, set xbest := x0, choose a step size ∆ > 0, choose a positive
integer Kmax, and set k := 0.

2. Main Loop.

2.1. Compute a trial solution set TS(xk) as in (6) with the step size ∆. Set
yk equal to the best ranked point in TS(xk).
2.2. The trial point yk is accepted with the probability

p =

{
1, if yk /∈ F̄k,
min{1, exp (−∆fG/T )}, otherwise,

(8)

where ∆fG := max {f (yk) − f (xk) , G (yk) −G (xk)} .
2.3. If yk is accepted, then set xk+1 := yk; otherwise, set xk+1 := xk. Update
Fk, x

best and DivSet, and set k := k + 1.
2.4. Diversification. If the number of consecutive iterations without accepting
a new solution exceeds Kmax, and DivSet 6= φ, then choose xk ∈ DivSet, set
T := Tmax, set Fk to be empty, and go to Step 2.1. Otherwise, go to Step 2.5.
2.5. If the epoch length M is attained, then go to Step 2.6. Otherwise, go to
Step 2.1.
2.6. If T > Tmin, then set T := γT and go to Step 2.1. Otherwise, go to Step
3.

3. Intensification.

3.1. SA Intensification. Set xk equal to xbest, set T equal to the saved
temperature at that point, and set a final temperature T ′

min, an epoch length
M ′ and a cooling ratio γ′ > γ.
3.1.1 Compute a trial solution set TS(xk) as in (6) with the step size ∆. Set
yk equal to the best ranked point in TS(xk).
3.1.2 Accept yk with the probability p given by (8). Set xk+1 := yk if yk is
accepted; otherwise, set xk+1 := xk. Update Fk and xbest, and set k := k + 1.
3.1.3 If the epoch length M ′ is attained, then go to Step 3.1.4. Otherwise,
go to Step 3.1.1.
3.1.4 If T > T ′

min, then set T := γ′T and go to Step 3.1.1. Otherwise, go to
Step 3.2.
3.2. Local Search Intensification. For ρ = ρ1, ρ2, . . . , ρN , do the following:
3.2.1 Apply a local search method to the function f(x)+ρG(x) starting from
xbest.
3.2.2 Update xbest and go to Step 3.2.1.

4 Setting FSA Parameters

In this section, setting the FSA parameters is discussed to complete the description of the
FSA algorithm stated in the previous section. These parameters can be classified as shown
in Table 1, which contains all FSA parameters and their definitions. Some preliminary
numerical experiments have been done in order to find proper values of these parameters.
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Table 1: The FSA parameters

Parameter Group Parameter Definition
Constraint Violation α Power factor used in (1)
Function ε Small positive number used for

reformulating equality constraints

Diversification |DivSet| Size of DivSet
HDiv Distance vector used to update DivSet
Kmax Maximum number of iterations allowed

without acceptance

Cooling Schedule Tmax, Tmin Initial and final temperatures
M Epoch length
γ Cooling ratio

Trial Solutions p Number of exploring points used in ADD
r Neighborhood radius used in ADD
∆ Step size used in (6)
σ2 Variance of the normal distribution of δ2
λ Rank ordering parameter
Gmax Maximum value allowed on G (x)

Intensification T ′
min Final temperature in SA Intensification
M ′ Epoch length
γ′ Cooling ratio in SA Intensification
ρ1, ρ2, . . . , ρN Penalty parameters

Moreover, these experiments of tuning parameters aim to obtain a standard setting of pa-
rameters which is problem-independent as much as possible. Some parameters are set to
their standard values reported in the literature. Below, we state the suggested values of the
FSA parameters as well as the conclusion of what we got from the experiments of tuning
parameters.

4.1 Constraint Violation Function Parameters

The power factor α used in (1) is set equal to 2, since using this value showed notably
better performance of the FSA method than that of using the value 1. Treating the equality
constraints as in (1) does not seem efficient in the practical implementation. It was observed
that reformulating the equality constraint h(x) = 0 as the inequality constraint |h(x)| − ε ≤
0, where ε is a small positive number, yielded a better performance of the FSA method.
Moreover, using a large value of ε in the early stage of the search and reducing its value in the
intensification stage gave better results. Therefore, we set ε equal to 10−3 in reformulating
all equality constraints in all FSA search stages except in the local search intensification
stage in which ε is set equal to 10−6.
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4.2 Diversification Parameters

The size of DivSet depends on many factors such as the width of the search space, the
number of separate feasible sub-regions, and the multimodality of the objective function.
We observed that setting the size of DivSet equal to 50 fits almost all of the considered
problems. The distance vector HDiv = (H1, . . . , Hn) used to update the DivSet is set so
as to fit the size of the search space. Specifically, we set Hi = ui−li

|DivSet|/n
, i = 1, . . . , n,

where the denominator represents the average line density of the solutions of DivSet along
each coordinate direction, so that the value of Hi represents the average distance along the
coordinate direction i between two neighboring diverse solutions. The maximum number
Kmax of iterations allowed without accepting new trial solutions is set equal to 10.

4.3 Cooling Schedule Parameters

The initial temperature Tmax is set large enough to make the initial probability of accept-
ing transition close to 1. Besides the initial point x0, another point x̃0 is generated in a
neighborhood of x0 to calculate Tmax as

Tmax := − 1

ln(0.9)
|f(x̃0) − f(x0)| .

At the beginning of each re-annealing process, a new Tmax is computed in a similar manner.
The cooling ratio γ is normally chosen from the interval (0.9, 0.99) [19]. In our experiments,
we set γ equal to 0.9 and a higher value is used in the intensification stage as we will state
later. A common choice of the epoch length M is to let it depend on the size of the problem
[17, 20]. In our experiments, we set M equal to 2n. The cooling schedule is terminated when
the temperature reaches a fixed minimum temperature Tmin. We observed that setting Tmin

equal to min (10−5, 10−5Tmax) could give a complete cooling schedule in the sense that the
acceptance probability at the end is almost zero.

4.4 Trial Solutions Parameters

The parameters used in computing the search directions vf and vG are the number p of
exploring points, and the radius r of the neighborhood in which the exploring points are
generated. We set p = 2 and r = 10−3 as suggested in [12]. The ranking parameter
λ is set equal to 0.5/µ, where µ is the number of solutions to be ranked or compared.
This setting allows the best feasible solution to have the highest rank, whenever it exists,
among the compared solutions. Setting a proper value of step size ∆ is very effective in
the performance of the FSA algorithm, because setting too big a value for ∆ may yield a
premature termination of the algorithm and setting too small a value for ∆ will not yield
an efficient exploration process for the whole search space. We tested many values of ∆ and
found that the value ∆ = min (0.05

∑n
i=1(ui − li)/n, 10) gave the best performance. As to

the variance σ2 of the normal distribution of δ2 in (6), the values σ = 1/2, 1/3, 1/4 have
been tested. We observed that setting σ = 1/3 gave a slightly better performance than
setting the other values. The filter set contains only one parameter, i.e., the maximum value
Gmax allowed to the constraint violation function G (x). In the original reference [7] of the
filter method, the value of Gmax is set equal to max(1.25G(x0), 100), where x0 is the initial
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solution. However, in the FSA algorithm, we use a higher value, since our goal is to explore
the whole search space effectively and reaching a global minimum, which differs from the
goal of [7], i.e., finding a local minimum. So we set Gmax equal to 10max(1.25GDiv

max, 100),
where GDiv

max is the maximum value of the constraint violation function G(x) computed at
each point in the DivSet.

4.5 Intensification Parameters

As to the SA Intensification Parameters, the final temperature T ′
min, the epoch length M ′

and the cooling ratio γ′ are set equal to 10−5Tbest, 2n and 0.99, respectively, where Tbest

is the temperature saved at the best solution found so far. The number N of times the
local search method is applied in the local search intensification stage is set equal to 4. The
penalty parameters used in these local searches are ρ1 = 10β+2, ρ1 = 10β+4, ρ1 = 10β+6 and
ρ1 = 10β+10, where β is the number that appears in the floating point form α1.α2α3 · · ·×10β

of the best point found so far.

5 Numerical Results

In this section, we report the performance of the FSA algorithm on 13 well-known test
problems G1–G13 [14, 18, 26], which are shown in the Appendix. The characteristics of
those test problems are diverse enough to cover many kinds of difficulties that constrained
global optimization problems face. More experimental results on three other application
problems will be shown in the next section.

The FSA code was applied to solve each problem 30 times with different starting solutions.
For all test problems, the values of the FSA parameters remained constant at those values
which have been presented in the previous section. Table 2 summarizes the FSA results
obtained for each test problem as well as the best known objective function value for each
problem. Problems G2, G3 and G8 are maximization problems originally, so they were solved
by converting them to minimization problems. In Table 2, the best and the worst objective
function values obtained from 30 runs are reported for each test problem. In order to show
more details concerning the quality of the obtained solutions, the average and the standard
deviation of the obtained objective function values are also reported in Table 2. Moreover,
the average numbers Av. f -evals. and Av. c-evals. of objective and constraint functions
evaluations, respectively, are shown in the last two columns of Table 2. It is noteworthy that
the FSA method is very economical in computing the constraint function values as shown
in Table 2.

The results obtained by the FSA method are quite satisfactory, except for problem G2
which has the highest dimension among all test problems G1–G13. On the other hand, the
results for problem G12 are very promising since the feasible region of this problem consists
of 93 separate spheres with radius 0.25. The FSA method could successfully find global
minima in all runs with low computational costs as shown in Table 2. This indicates the
success of the multi-start diversification scheme invoked in the FSA method. For problem
G11, the FSA method reached a point with objective function value 0.7499990 for all 30 runs.
However, by decreasing the parameter ε, which is used to convert the equality constraint to
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Table 2: FSA results for problems G1–G13

Pr. Type Best Known Best Av. Worst S.D. Av. f -evals. Av. c-evals.

G1 min –15 –14.999105 –14.993316 –14.979977 0.004813 205,748 87,701

G2 max 0.803619 0.7549125 0.3717081 0.2713110 0.098023 227,832 101,903

G3∗ max 1 1.0000015 0.9991874 0.9915186 0.001653 314,938 118,404

G4 min –30665.539 –30665.5380 –30665.4665 –30664.6880 0.173218 86,154 37,000

G5∗ min 5126.4981 5126.4981 5126.4981 5126.4981 0.000000 47,661 17,757

G6 min –6961.81388 –6961.81388 –6961.81388 –6961.81388 0.000000 44,538 15,817

G7 min 24.3062091 24.310571 24.3795271 24.644397 0.071635 404.501 171,299

G8 max 0.095825 0.095825 0.095825 0.095825 0.000000 56,476 23,219

G9 min 680.6300573 680.63008 680.63642 680.69832 0.014517 324,569 147,035

G10 min 7049.3307 7059.86350 7509.32104 9398.64920 542.3421 243,520 93,667

G11∗ min 0.75 0.7499990 0.7499990 0.7499990 0.000000 23,722 8,485

G12 min –1 –1.0000000 –1.0000000 –1.0000000 0.000000 59,355 25,818

G13∗ min 0.0539498 0.0539498 0.2977204 0.4388511 0.188652 120,268 42,268

∗ Problems contain equality constraints.

the inequality one, from 10−6 to 10−10 in the local search intensification, the FSA method
easily reached the exact global minimum with objective function value 0.75 in all runs.

To complete examining the performance of the FSA method, its results are compared
with those of other EA-based methods proposed for dealing with problem (P ). The EA-based
methods that we used in the comparison are

1. Homomorphous Mappings (HM) method [18],

2. Stochastic Ranking (SR) method [29],

3. Adaptive Segregational Constraint Handling EA (ASCHEA) method [9],

4. Simple Multimembered Evolution Strategy (SMES) method [25].

The challenge that the FSA method faces is to what extent a point-to-point method behaves
like a population-based method or even better. To examine this issue, two measurements,
solution qualities and computational costs, are considered. First, we discuss the solution
qualities and, later at the end of this section, we will discuss computational costs. The results
of the compared methods, which are taken from their original references [9, 18, 25, 29], as well
as those of the FSA method are reported in Table 3 to show the solution qualities obtained
by them. It is not easy to draw a definite conclusion from the comparison due to different
accuracies used in the respective results. However, we state below some comments on the
results reported in Table 3. All the results in Table 3 are obtained from 30 runs of each
method except those of the HM method, which are obtained from 20 runs. The HM method
could obtain the optimal solution in all runs for problem G11 only. The other methods,
i.e., SR, ASCHEA, and SMES, could obtain the optimal solutions in all runs for problems
{G1,G3,G4,G8,G11,G12}, {G4,G6,G8,G11} and {G1,G4,G8,G12}, respectively. The FSA
method could obtain the optimal solutions in all runs for problems {G5,G6,G8,G11,G12}. It
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is noteworthy that the FSA method could obtain the optimal solution in all runs for problem
G5, whereas the other methods failed to obtain it even in a single run. Moreover, the FSA
method could obtain the optimal solution of problem G13 in 7 out of 30 runs, while the
other methods failed to obtain it.

The computational costs of the above EA-based methods are extremely high compared
with those of the FSA method. Since there is no automatic termination criteria for those
EA-based methods, they were terminated when the number of generations exceeds a pre-
determined maximum number. Therefore, the computational costs of these methods are
problem-independent, i.e., the number of objective and constraint functions evaluations re-
mains constant for each test problem. Specifically, computational costs of HM, SR, ASCHEA
and SMES for each test problem, which are taken from their original references [9, 18, 25, 29],
are 1400000, 350000, 1500000 and 250000 fitness function evaluations, respectively, and each
fitness function evaluation requires one evaluation of the objective function and one eval-
uation of each constraint function. The main reason for these high computational costs is
that EAs are not equipped with automatic termination criteria and this is a main drawback
of EAs. For some of the test problems, the considered EA-based methods could obtain an
optimal solution in an early stage of the search, but they were not learned enough to judge
whether they could terminate. On the other hand, the EA-based methods have generally
less parameters than SA-based methods. However, in the FSA method as well as SA-based
methods, some preliminary experiments for tuning parameters will let them learn applicable
termination criteria.

6 More Numerical Experiments

In this section, we discuss the results of the FSA method on some application problems.
Three problems from the engineering optimization area are considered.

6.1 Welded Beam Design Problem

The welded beam design problem [5, 6] yields an optimization problem which has four design
variables x = (x1, x2, x3, x4) and takes the following form:

min
x

f(x) = 1.10471x2
1x2 + 0.04811x3x4(14 + x2)

s.t. g1(x) = τ(x) − 13000 ≤ 0,
g2(x) = σ(x) − 30000 ≤ 0,
g3(x) = x1 − x4 ≤ 0,
g4(x) = 6000 − Pc(x) ≤ 0,
g5(x) = δ(x) − 0.25 ≤ 0,
0.125 ≤ x1 ≤ 10, 0.1 ≤ x2, x3, x4 ≤ 10,
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Table 3: Results of FSA and other EA-based methods for problems G1–G13

Pr. Type Best Known HM SR ASCHEA SMES FSA

Best –14.7864 –15 –15 –15 –14.999105

G1 min –15 Av. –14.7082 –15 –14.84 –15 –14.993316

Worst –14.6154 –15 N.A. –15 –14.979977

Best 0.79953 0.803515 0.785 0.803601 0.7549125

G2 max 0.803619 Av. 0.79671 0.781975 0.59 0.785238 0.3717081

Worst 0.79119 0.726288 N.A. 0.751322 0.2713110

Best 0.9997 1.000 1 1.001038 1.0000015

G3∗ max 1 Av. 0.9989 1.000 0.99989 1.000989 0.9991874

Worst 0.9978 1.000 N.A. 1.000579 0.9915186

Best –30664.5 –30665.539 –30665.5 –30665.539062 –30665.5380

G4 min –30665.539 Av. –30655.3 –30665.539 –30665.5 –30665.539062 –30665.4665

Worst –30645.9 –30665.539 N.A. –30665.539062 –30664.6880

Best – 5126.497 5126.5 5126.599609 5126.4981

G5∗ min 5126.4981 Av. – 5128.881 5141.65 5174.492301 5126.4981

Worst – 5142.472 N.A. 5304.166992 5126.4981

Best –6952.1 –6961.814 –6961.81 –6961.813965 –6961.81388

G6 min –6961.81388 Av. –6342.6 –6875.940 –6961.81 –6961.283984 –6961.81388

Worst –5473.9 –6350.262 N.A. –6961.481934 –6961.81388

Best 24.620 24.307 24.3323 24.326715 24.310571

G7 min 24.3062091 Av. 24.826 24.374 24.6636 24.474926 24.3795271

Worst 25.069 24.642 N.A. 24.842829 24.644397

Best 0.0958250 0.095825 0.09582 0.095826 0.095825

G8 max 0.095825 Av. 0.0891568 0.095825 0.09582 0.095826 0.095825

Worst 0.0291438 0.095825 N.A. 0.095826 0.095825

Best 680.91 680.630 680.630 680.631592 680.63008

G9 min 680.6300573 Av. 681.16 680.656 680.641 680.643410 680.63642

Worst 683.18 680.763 N.A. 680.719299 680.69832

Best 7147.9 7054.316 7061.13 7051.902832 7059.86350

G10 min 7049.3307 Av. 8163.6 7559.192 7497.434 7253.047005 7509.32104

Worst 9659.3 8835.655 N.A. 7638.366211 9398.64920

Best 0.75 0.750 0.75 0.749090 0.7499990

G11∗ min 0.75 Av. 0.75 0.750 0.75 0.749358 0.7499990

Worst 0.75 0.750 N.A. 0.749830 0.7499990

Best –0.999999857 –1.000000 N.A. –1.000000 –1.000000

G12 min –1 Av. –0.999134613 –1.000000 N.A. –1.000000 –1.000000

Worst –0.991950498 –1.000000 N.A. –1.000000 –1.000000

Best N.A. 0.053957 N.A. 0.053986 0.0539498

G13∗ min 0.0539498 Av. N.A. 0.057006 N.A. 0.166385 0.2977204

Worst N.A. 0.216915 N.A. 0.468294 0.4388511

∗ Problems contain equality constraints.
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Table 4: Results for the welded beam design problem

Method Best Av. Worst S.D. Av. f -evals. Av. c-evals.

GA [5] 1.728226 1.792654 1.993408 0.074713 80,000 80,000

FSA 1.7250022 1.7564428 1.8843960 0.0424175 58,238 24,971

where

τ(x) =

√
(τ1(x))2 + (τ2(x))2 + x2τ1(x)τ2(x)√

0.25[x2
2+(x1+x3)2]

,

τ1(x) = 6000√
2x1x2

, τ2(x) =
6000(14+0.5x2)

√
0.25[x2

2+(x1+x3)2]

2[0.707x1x2(x
2
2/12+0.25(x1+x3)2)]

,

σ(x) = 504000
x2
3x4

, Pc(x) = 64746.022(1 − 0.0282346x3)x3x
3
4, δ(x) = 2.1952

x3
3x4

.

This problem has been well studied, see [5, 6] and references therein. However, the FSA
method was able to find a new solution which is better than the one known in the literature.
Specifically, the FSA method obtained the solution

x∗ = (0.20564426101885, 3.47257874213172, 9.03662391018928, 0.20572963979791)

with the objective function value 1.7250022, while the known solution has the objective
function value 1.728226 as reported in [5]. Moreover, the performance of the FSA method is
compared with the GA-based method [5] which found the previously known solution. The
best, the average, the worst and the standard deviation of objective function values obtained
by 30 runs of both methods are reported in Table 4. Moreover, the average numbers of
objective and constraint functions evaluations, i.e., Av. f -evals. and Av. c-evals., are also
shown in Table 4. The results related to the GA-based method are taken from the original
reference [5]. Table 4 shows the superior performance of the FSA method.

6.2 Pressure Vessel Design Problem

The optimization problem derived from the pressure vessel design problem [5] has four design
variables x = (x1, x2, x3, x4). This problem can be stated as follows:

min
x

f(x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3

s.t. g1(x) = −x1 + 0.0193x3 ≤ 0,
g2(x) = −x2 + 0.00954x3 ≤ 0,
g3(x) = −πx2

3x4 − 4
3
πx3

3 + 1296000 ≤ 0,
g4(x) = x4 − 240 ≤ 0.

The FSA code was run 30 times to solve this problem and the obtained results are sum-
marized in Table 5. The results contain the best, the average, the worst and the standard
deviation of objective function values, and the average numbers of objective and constraint
functions evaluations. The corresponding results of the GA-based method in Table 5 are
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Table 5: Results for the pressure vessel design problem

Method Best Av. Worst S.D. Av. f -evals. Av. c-evals.

GA [5] 6059.946341 6177.253268 6469.322010 130.929702 80,000 80,000

FSA 5868.764836 6164.585867 6804.328100 257.473670 108,883 49,253

Table 6: Results for the tension-compression string problem

Method Best Av. Worst S.D. Av. f -evals. Av. c-evals.

GA [5] 0.012681 0.012742 0.012973 0.000059 80,000 80,000

FSA 0.012665285 0.012665299 0.012665338 0.000000022 49,531 18,802

taken from the original reference [5]. The FSA method could obtain a better solution for
this problem at

x∗ = (0.768325709391, 0.379783796302, 39.809622248187, 207.225559518596)

with the objective function value 5868.764836.

6.3 Tension-Compression String Problem

The problem of minimizing the weight of a tension-compression string [5] can be expressed
as the following optimization problem with three design variables x = (x1, x2, x3):

min
x

f(x) = x2
1x2(x3 + 2)

s.t. g1(x) = 1 − x3
2x3

71,785x4
1

≤ 0,

g2(x) =
4x2

2−x1x2

12,566x3
1(x2−x1)

+ 1
5,108x2

1

− 1 ≤ 0,

g3(x) = 1 − 140.45x1

x3x2
2

≤ 0,

g4(x) = x1+x2

1.5
− 1 ≤ 0.

The FSA code was called 30 times with different starting solutions in order to examine the
performance of the FSA method. The results obtained in all runs, as well as those of the
GA-based method [5], are reported in Table 6. The results of the GA-based method are
borrowed from the original reference [5]. The FSA method could obtain the better solution

x∗ = (0.05174250340926, 0.35800478345599, 11.21390736278739)

with the objective function value 0.012665285. The figures in Table 6 show that the results
obtained by the FSA method are stable for this problem. Moreover, the worst solution
obtained by the FSA method is still better than the best one obtained by the GA-based
method [5]. Finally, the computational costs of the FSA method are much lower than those
of the GA-based method [5].
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7 Conclusion

The hybrid multi-start point-to-point FSA method has been proposed in this paper. The
structure of the FSA method stands on simulated annealing, the filter set concept, a new
solution generation procedure, and diversification and intensification schemes. These strate-
gies are hybridized in the FSA method in such a way that a point-to-point method behaves
like a population-based method without spending high computational cost. The compu-
tational results for 13 well-known test problems as well as three application problems are
shown to demonstrate the efficiency of the FSA method. A superior behavior of the proposed
method over population-based methods in saving the computational costs especially for the
constraint function evaluations has been observed.

A List of test problems

A.1 Problem G13

min
x

f (x) = 5
∑4

i=1 xi − 5
∑4

i=1 x
2
i −

∑13
i=5 xi

s.t. g1 (x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0,
g2 (x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0,
g3 (x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0,
g4 (x) = −8x1 + x10 ≤ 0,
g5 (x) = −8x2 + x11 ≤ 0,
g6 (x) = −8x3 + x12 ≤ 0,
g7 (x) = −2x4 − x5 + x10 ≤ 0,
g8 (x) = −2x6 − x7 + x11 ≤ 0,
g9 (x) = −2x8 − x9 + x12 ≤ 0,
xi ≥ 0, i = 1, . . . , 13,
xi ≤ 1, i = 1, . . . , 9, 13.

The bounds: U = (1, 1, 1, 1, 1, 1, 1, 1, 1, 100, 100, 100, 1) and L = (0, . . . , 0).
Global minimum: x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) , f (x∗) = −15.

A.2 Problem G2

max
x

f (x) = |
P

n

i=1 cos4(xi)−2
Q

n

i=1 cos2(xi)√
P

n

i=1 ix2
i

|
s.t. g1 (x) = −

∏n
i=1 xi + 0.75 ≤ 0,

g2 (x) =
∑n

i=1 xi − 7.5n ≤ 0.

The bounds: U = (10, . . . , 10) and L = (0, . . . , 0).
Best known value: f (x∗) = 0.803619, for n = 20.

3The formula of G1 is presented as its common form in the literature [8]. However, variable x13 can be
eliminated since its value at the global solution, which is x13 = 1, can be easily derived.
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A.3 Problem G3

max
x

f (x) = (
√
n)

n ∏n
i=1 xi

s.t. h1 (x) =
∑n

i=1 x
2
i − 1 = 0.

The bounds: U = (1, . . . , 1) and L = (0, . . . , 0).

Global maximum: x∗ =
(

1√
n
, . . . , 1√

n

)
, f (x∗) = 1.

A.4 Problem G4

min
x

f (x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141

s.t. g1 (x) = u (x) − 92 ≤ 0,
g2 (x) = −u (x) ≤ 0,
g3 (x) = v (x) − 110 ≤ 0,
g4 (x) = −v (x) + 90 ≤ 0,
g5 (x) = w (x) − 25 ≤ 0,
g6 (x) = −w (x) + 20 ≤ 0,

where

u (x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5,

v (x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2
3,

w (x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4.

The bounds: U = (102, 45, 45, 45, 45) and L = (78, 33, 27, 27, 27).
Global minimum: x∗ = (78, 33, 29.995256025682, 45, 36.775812905788) , f (x∗) = −30665.539.

A.5 Problem G5

min
x

f (x) = 3x1 + 10−6x3
1 + 2x2 + 2

3
× 10−6x3

2

s.t. g1 (x) = x3 − x4 − 0.55 ≤ 0,
g2 (x) = x4 − x3 − 0.55 ≤ 0,
h1 (x) = 1000 [sin (−x3 − 0.25) + sin (−x4 − 0.25)] + 894.8 − x1 = 0,
h2 (x) = 1000 [sin (x3 − 0.25) + sin (x3 − x4 − 0.25)] + 894.8 − x2 = 0,
h3 (x) = 1000 [sin (x4 − 0.25) + sin (x4 − x3 − 0.25)] + 1294.8 = 0.

The bounds: U = (1200, 1200, 0.55, 0.55) and L = (0, 0,−0.55,−0.55).
Best known solution: x∗ = (679.9453, 1026, 0.118876,−0.3962336) , f (x∗) = 5126.4981.

A.6 Problem G6

min
x

f (x) = (x1 − 10)3 + (x2 − 20)3

s.t. g1 (x) = (x1 − 5)2 + (x2 − 5)2 + 100 ≤ 0,

g2 (x) = (x1 − 5)2 + (x2 − 5)2 − 82.81 ≤ 0.

The bounds: U = (100, 100) and L = (13, 0).
Global minimum: x∗ = (14.095, 0.84296) , f (x∗) = −6961.81388.
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A.7 Problem G7

min
x

f (x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45

s.t. g1 (x) = 4x1 + 5x2 − 3x7 + 9x8 − 105 ≤ 0,
g2 (x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0,
g3 (x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0,
g4 (x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2

3 − 7x4 − 120 ≤ 0,
g5 (x) = 5x2

1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0,
g6 (x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2

5 − x6 − 30 ≤ 0,
g7 (x) = x2

1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0,
g8 (x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0.

The bounds: U = (10, . . . , 10) and L = (−10, . . . ,−10).
Global minimum: x∗ = (2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 1.430574,
1.321644, 9.828726, 8.280092, 8.375927), f (x∗) = 24.3062091.

A.8 Problem G8

max
x

f (x) = sin3(2πx1) sin(2πx2)

x3
1(x1+x2)

s.t. g1 (x) = x2
1 − x2 + 1 ≤ 0,

g2 (x) = 1 − x1 + (x2 − 4)2 ≤ 0.

The bounds: U = (10, 10) and L = (0, 0).
Global maximum: x∗ = (1.2279713, 4.2453733) , f (x∗) = 0.095825.

A.9 Problem G9

min
x

f (x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2 + 10x6

5 + 7x2
6 + x4

7 − 4x6x7

−10x6 − 8x7

s.t. g1 (x) = 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 − 127 ≤ 0,

g2 (x) = 7x1 + 3x2 + 10x2
3 + x4 − x5 − 282 ≤ 0,

g3 (x) = 23x1 + x2
2 + 6x2

6 − 8x7 − 196 ≤ 0,
g4 (x) = 4x2

1 + x2
2 − 3x1x2 + 2x2

3 + 5x6 − 11x7 ≤ 0.

The bounds: U = (10, . . . , 10) and L = (−10, . . . ,−10).
Global minimum: x∗ = (2.330499, 1.951372,−0.4775414, 4.365726,−0.6244870, 1.038131,
1.594227), f (x∗) = 680.6300573.

A.10 Problem G10

min
x

f (x) = x1 + x2 + x3

s.t. g1 (x) = −1 + 0.0025(x4 + x6) ≤ 0,
g2 (x) = −1 + 0.0025(−x4 + x5 + x7) ≤ 0,
g3 (x) = −1 + 0.01(−x5 + x8) ≤ 0,
g4 (x) = 100x1 − x1x6 + 833.33252x4 − 83333.333 ≤ 0,
g5 (x) = x2x4 − x2x7 − 1250x4 + 1250x5 ≤ 0,
g6 (x) = x3x5 − x3x8 − 2500x5 + 1250000 ≤ 0.
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The bounds: U = (10000, 10000, 10000, 1000, 1000, 1000, 1000, 1000) and
L = (100, 1000, 1000, 10, 10, 10, 10, 10).
Global minimum: x∗ = (579.3167, 1359.943, 5110.071, 182.0174, 295.5985, 217.9799, 286.4162,
395.5979), f (x∗) = 7049.3307.

A.11 Problem G11

min
x

f (x) = x2
1 + (x2 − 1)2

s.t. h1 (x) = x2 − x2
1 = 0.

The bounds: U = (1, 1) and L = (−1,−1).

Global minima: x∗ =
(
± 1√

2
, 1

2

)
, f (x∗) = 0.75.

A.12 Problem G12

min
x

f (x) = 1 − 0.01[(x1 − 5)2 + (x2 − 5)2 + (x3 − 5)2]

s.t. gi,j,k (x) = (x1 − i)2 + (x2 − j)2 + (x3 − k)2 − 0.0625 ≤ 0, i, j, k = 1, 2, . . . , 9.

The bounds: U = (10, 10, 10) and L = (0, 0, 0).
Global minimum: x∗ = (5, 5, 5) , f (x∗) = 1.

A.13 Problem G13

min
x

f (x) = ex1x2x3x4x5

s.t. h1 (x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10 = 0,

h2 (x) = x2x3 − 5x4x5 = 0,
h3 (x) = x3

1 + x3
2 + 1 = 0.

The bounds: U = (2.3, 2.3, 3.2, 3.2, 3.2) and L = (−2.3,−2.3,−3.2,−3.2,−3.2).
Global minimum: x∗ = (−1.717143, 1.595709, 1.827247,−0.7636413,−0.763645) , f (x∗) =
0.0539498.
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