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Abstract

In this paper, we present a new approach of hybrid simulated annealing method for
minimizing multimodel functions called the simulated annealing heuristic pattern search
(SAHPS) method. Two subsidiary methods are proposed to achieve the final form of
the global search method SAHPS. First, we introduce the approximate descent direction
(ADD) method, which is a derivative-free procedure with high ability of producing a
descent direction. Then, the ADD method is combined with a pattern search method
with direction pruning to construct the heuristic pattern search (HPS) method. The
last method is hybridized with simulated annealing to obtain the SAHPS method. The
experimental results through well-known test functions are shown to demonstrate the
efficiency of the proposed method SAHPS.

Keywords: Unconstrained global optimization, Descent direction, Pattern search,
Metaheuristics, Simulated annealing

1 Introduction

Optimizing multimodal functions has been fascinating over the two decades coincidental with
the great interest of the metaheuristics. Metaheuristics have primarily been applied to com-
binatorial optimization problems [16, 18]. However, during the past decade metaheuristics
have extended their coverage to continuous global optimization problems. Global optimiza-
tion refers to finding the extreme value of a given nonconvex function in a certain feasible
region [7, 17]. In this paper, we will focus on the case of unconstrained global minimization,
i.e., our problem is

min
xǫRn

f(x),

where f is a real valued function defined on Rn.
Simulated annealing (SA) [1, 10, 13, 14] is one of the most effective metaheuristics not

only for combinatorial optimization but also for continuous global optimization. The SA
algorithm successively generates a trial point in a neighborhood of the current solution and
determines whether or not the current solution is replaced by the trial point based on a
probability depending on the difference between their function values. Convergence to an
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optimal solution can theoretically be guaranteed only after an infinite number of iterations
controlled by the procedure so-called cooling schedule. A proper cooling schedule is needed
in the finite-time implementation to simulate the asymptotic convergence behavior of the
SA. For that reason, SA suffers from slow convergence and also it may wander around the
optimal solution if high accuracy is needed.

In continuous optimization, combining SA with direct search methods is a practical rem-
edy to overcome the slow convergence of SA. Recently, there have been a number of attempts
in the combined use of SA and direct search methods. Nelder-Mead method [15], which is a
popular simplex-based direct search method, has received much attention in designing such
hybrid methods [3, 4, 6, 12]. In this paper, we present a hybrid method that combines SA
with a new pattern search method. Pattern search (PS) methods constitute a subclass of
direct search methods, in which exploratory moves from the current solution to trial points
are made along pattern directions with a certain step size. If these exploratory moves give
no improvement, then the step size is decreased to refine the search [11, 20].

We will make use of two new ideas to form the main parts of the hybrid algorithm. We
first introduce a derivative-free heuristic method to produce an approximate descent direction
at the current solution, which we call the Approximate Descent Direction (ADD) method.
Some preliminary numerical results show that the ADD method has a high ability to obtain
a descent direction. Next, we use the ADD method to design a new PS method called the
Heuristic Pattern Search (HPS) method. In the HPS method, the ADD method is recalled
to obtain an approximate descent direction v at the current iterate. If no improvement is
obtained along the vector v, then we use v to prune the set of pattern search directions to
generate other exploratory moves. Finally, we hybridize SA and HPS to construct a global
search method, called the Simulated Annealing Heuristic Pattern Search (SAHPS) method.
The SAHPS tries to get better movements through the SA acceptance procedure or by using
the HPS procedure. More specifically, we first introduce a new exploring neighborhood search
to generate a number of SA trial points. If some of these trail points can be accepted by the
SA acceptance procedure, this means the search can go further and there is no need to use
a local search method. Otherwise, we apply some iterations of the HPS method to generate
more local exploratory trial points. In the final stage of the search, we apply a direct search
method to refine the best solution obtained so far. Numerical results with 19 well-known test
functions indicate that the SAHPS exhibits a very promising performance to obtain global
minima of multimodal functions.

The paper is organized as follows. We introduce the ADD and the HPS methods with
some numerical results to show their performance in Section 2 and Section 3, respectively.
The description of the main SAHPS method is given in Section 4. In Section 5, we discuss
the experimental results along with the initialization of some parameters and the setting of
the control parameters of the SAHPS method. Finally, the conclusion makes up Section 6.

2 Approximate Descent Direction

In this section, we present the ADD method in which we use m close exploring points to
generate an approximate descent direction. Given a point p ∈ Rn, we want to obtain an
approximate descent direction v ∈ Rn of f at p. We randomly generate m points {yi}

m
i=1

close to p and compute the direction v at p as follows:

v =
m∑

i=1

wiei, (1)
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where

wi =
∆fi∑m

j=1 |∆fj|
, i = 1, 2, . . . ,m, (2)

ei = −
(yi − p)

‖yi − p‖
, i = 1, 2, . . . ,m,

∆fi = f(yi) − f(p), i = 1, 2, . . . ,m.

We can show some theoretical results concerning the descent property of the direction v
in the following two special cases.

The linear case. If f is a linear function, i.e., f (x) = cT x + b, c ∈ Rn, b ∈ R, then the
vector v in (1) can be written as

v =
−1∑m

j=1 |∆fj|

m∑

i=1

∆fi
(yi − p)

‖yi − p‖

=
−1

∑m
j=1 |∆fj|

m∑

i=1

cT (yi − p)
(yi − p)

‖yi − p‖

=
−1

∑m
j=1 |∆fj|

(
m∑

i=1

(yi − p) (yi − p)T

‖yi − p‖

)
c

= −γAc,

where γ = 1/
∑m

j=1 |∆fj| and A =
∑m

i=1 (yi − p) (yi − p)T / ‖yi − p‖ . Note that matrix A

is positive semidefinite, since xT Ax =
∑m

i=1

(
(yi − p)T x

)2
/ ‖yi − p‖ ≥ 0 for any x ∈ Rn.

Therefore, it holds that ∇f (p)T v = −γcT Ac ≤ 0, i.e., v is a descent direction.
The nonlinear case. If f is a differentiable nonlinear function, we can approximate

f around point p as f (x) ∼= f (p) + ∇f(p)T (x − p) ,∀x ∈ N (p) , where N (p) is a small
neighborhood of p. Therefore, if points yi, i = 1, . . . ,m, are chosen from the neighborhood
N (p) , then the vector v in (1) can be represented approximately as

v =
−1

∑m
j=1 |∆fj|

m∑

i=1

∆fi
(yi − p)

‖yi − p‖

∼=
−1

∑m
j=1 |∆fj|

m∑

i=1

∇f (p)T (yi − p)
(yi − p)

‖yi − p‖

=
−1∑m

j=1 |∆fj|

(
m∑

i=1

(yi − p) (yi − p)T

‖yi − p‖

)
∇f (p) (3)

= −γA∇f (p) , (4)

where A and γ are defined as before. Since A is positive semidefinite, we obtain ∇f (p)T v ∼=
−γ∇f (p)T A∇f (p) ≤ 0, i.e., v is expected to be a descent direction.

Remark 1 The vector −∇f (p) , which is referred to as the steepest descent direction of f
at p, provides the direction along which the function f decreases most rapidly. Since our
aim is to minimize f , it is therefore plausible to try to obtain a direction v that imitates
−∇f (p). Actually, we can show that the vector v in (1) can simulate the steepest descent
direction −∇f (p) under some conditions. Specifically, the vector v becomes approximately
proportional to −∇f (p) by setting m = n and choosing the points {yi}

n
i=1 so as to meet the

following conditions:
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• The points {yi}
n
i=1 are in equal distance from p, i.e., ‖yi − p‖ = ǫ, i = 1, 2, . . . , n, for

some ǫ > 0;

• the vectors {(yi − p)}n
i=1 are orthogonal to each other.

In fact, by letting ui = (yi − p) / ‖yi − p‖ for i = 1, . . . , n, we may rewrite the formula (3) as
follows:

v ∼=
−ǫ∑n

j=1 |∆fj|

(
n∑

i=1

uiu
T
i

)
∇f (p)

=
−ǫ

∑n
j=1 |∆fj|

Q ∇f(p),

where Q =
∑

n
i=1uiu

T
i . Since Qui = ui, i = 1, . . . , n, we can readily see Q = In, and this

shows that v is approximately proportional to −∇f(p). This result provides a controlled way
to generate the exploring points {yi}

m
i=1 rather than a complete random choice of them. Both

of these two ways of generating the points {yi}
m
i=1 are tested numerically at the end of this

section.

Remark 2 In general, it is not easy to know how small the neighborhood N(p) should be
in order to ensure the validity of approximation (4). Let N(p) = {x : ‖x − p‖ ≤ ǫ} and
M = sup{∇2f(ζ) : ζ ∈ N(p)}. Then we have for any x ∈ N(p)

∣∣∣f (x) − f(p) −∇f(p)T (x − p)
∣∣∣ =

∣∣∣∣
1

2
(x − p)T∇2f(p + θ (x − p))(x − p)

∣∣∣∣ ≤
1

2
Mǫ2

where θ ∈ (0, 1) . This estimate may suggest a proper choice of radius ǫ of the neighbor-
hood. However, a priori knowledge of M is not available except for some special cases. Our
numerical experiments reported below suggest that the choice ǫ = 10−3 practically works well.

The previous theoretical analysis uses an approximation of f in the nonlinear case. Here
we give some numerical results to show the effectiveness of the ADD method in obtaining
a descent direction. We test this procedure using Easom (ES), Goldstein and Price (GP ),
Griewank (GR) and Rosenbrock (Rn, n = 2, 4, 10, 20, 50) functions, as shown in Table 1. See
the Appendix for the analytical formulae and search domains for these test functions. For
each test function, three different test points pj, j = 1, 2, 3, are randomly chosen from its
search domains. In addition, three test points pj, j = 4, 5, 6, are chosen to be close to the
global minimum x∗ for each test function such that p4 = x∗ − 0.1e, p5 = x∗ − 0.01e and
p6 = x∗ − 0.001e, where e ∈ Rn is the vector of ones. An approximate descent direction v
is computed 100 times for each point using different exploring points {yi}

m
i=1 in each trial.

The success rate for obtaining a descent direction in these 100 trials are reported in Table 1.
The following two methods are used to generate the exploring points {yi}

m
i=1 close to each

point p = pj , j = 1, . . . , 6 :

1. Random: Let m = 2 and choose points {yi}
2
i=1 randomly from the neighborhood

N (p, ǫ) = {x ∈ Rn : ‖p − x‖ ≤ ǫ} .

2. Orthogonal: Let m = n and choose points {yi}
n
i=1 such that {(yi − p)}n

i=1 are parallel
to the coordinate axes and ‖yi − p‖ = ǫ, i = 1, . . . , n, for some ǫ > 0.
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Table 1: Success rates of obtaining descent direction for the test functions

f ǫ p1 p2 p3 p4 p5 p6

10−1 100% 100% 100% 100% 55%/49% 45%/46%
R2 10−3 100% 100% 100% 100% 100% 100%

10−5 100% 100% 100% 100% 100% 100%

10−1 100% 100% 100% 96%/100% 54%/63% 42%/35%
R4 10−3 100% 100% 100% 100% 100% 96%/100%

10−5 100% 100% 100% 100% 100% 100%

10−1 100% 100% 100% 94%/100% 55%/47% 51%/55%
R10 10−3 100% 100% 100% 100% 100% 95%/100%

10−5 100% 100% 100% 100% 100% 100%

10−1 100% 100% 100% 95%/100% 52%/52% 57%/38%
R20 10−3 100% 100% 100% 100% 99%/100% 98%/100%

10−5 100% 100% 100% 100% 100% 100%

10−1 100% 100% 100% 92%/100% 56%/57% 48%/31%
R50 10−3 100% 100% 100% 100% 100% 97%/100%

10−5 100% 100% 100% 100% 100% 100%

10−1 100% 100% 100% 99%/100% 90%/70% 58%/76%
ES 10−3 100% 100% 100% 100% 100% 99%/100%

10−5 100% 100% 100% 100% 100% 100%

10−1 100% 100% 87%/48% 100% 52%/45% 52%/48%
GP 10−3 100% 100% 100% 100% 100% 99%/100%

10−5 100% 100% 100% 100% 100% 100%

10−1 93%/100% 96%/100% 87%/100% 89%/100% 80%/65% 51%/48%
GR 10−3 94%/100% 96%/100% 83%/100% 92%/100% 91%/100% 89%/100%

10−5 95%/100% 97%/100% 89%/100% 95%/100% 87%/100% 90%/100%

As to the neighborhood radius ǫ, smaller value of ǫ is expected to yield higher possibility of
obtaining a descent direction. To examine how small ǫ is enough to achieve this goal, we have
tested three values of ǫ, which are 10−1, 10−3and 10−5. If two percentages are reported in
the same space in Table 1, the first one is related to Random and the second one is related to
Orthogonal. If only one percentage is reported, this means both of them have this percentage.

The results in Table 1 show that using the neighborhood radius ǫ = 10−3 or 10−5 is very
effective in obtaining a descent direction even in a vicinity of the global minimum. Moreover,
there is no significant difference between the results obtained using these two values of ǫ. It
is noteworthy that although the Random method uses only two random exploring points, it
succeeds to obtain a descent direction with a high rate even for higher dimensional functions.

3 Heuristic Pattern Search

In this section, we describe the details of the new pattern search method HPS. At the iteration
k with iterate xk ∈ Rn, the HPS uses the ADD method to generate a direction v at xk. If we
could obtain a better movement along direction v with a certain step size, then we proceed
to the next iteration by updating the current iterate. Otherwise, the HPS, like conventional
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pattern search (PS) algorithms [20], uses a finite set D of positive spanning directions in Rn

to generate a mesh of points. To avoid searching randomly in all these direction, we prune
the positive spanning direction set D, by using a control parameter β ∈ (−1, 1), to select
only those directions which lie within the angle cos−1 (β) from vector v or −v, depending on
whether v is a descent direction or not, respectively. Thus, we have the following two cases:

1. If v is a descent direction, we prune the positive spanning direction set D to obtain the
pruned direction set Dp

k as

Dp
k =

{
d ∈ D : dT v ≥ β ‖d‖ ‖v‖

}
. (5)

2. If v is not a descent direction, the pruned direction set Dp
k is obtained as

Dp
k =

{
d ∈ D : dT v ≤ −β ‖d‖ ‖v‖

}
. (6)

Since we do not want to evaluate the (computationally expensive) gradient of f, we judge
whether or not v is a descent direction by using a sufficiently small step size α > 0. That is,
if f (xk + αv) < f (xk) , we consider v a descent direction. Otherwise, we do not consider v
a descent direction. It is noteworthy that Abramson et al. [2] use the gradient to prune the
positive spanning direction set D by means of (5) with v = −∇f (xk) and β = 0. The use of
gradients, however, may not be appropriate in the case where they are computationally so
expensive that a derivative-free method such as a PS method becomes a method of choice.

Algorithm 3.1 below describes the steps of the HPS method. In the ADD step, we
may use either the Random method or the Orthogonal method described in the previous
section. In practice, we prefer to use the Random method since the Orthogonal method is
computationally more expensive. Moreover, the positive spanning direction set D used in
the PS step can be set either {e1, . . . , en,−e1, . . . ,−en} or {e1, . . . , en,−e} , where ei ∈ Rn

is the ith unit vector in Rn and e ∈ Rn is the vector of ones.

Algorithm 3.1. HPS(f, x0,∆0, α, σ)

1. Initialization. Choose an initial solution x0, fix an initial mesh size ∆0 > 0,
choose the shrinkage coefficient σ of the mesh size from (0, 1), fix a sufficiently
small step size α > 0, set the pruning control parameter β ∈ (−1, 1) , and set the
iteration counter k := 0.

2. ADD. Calculate the vector v at xk as in (1). If f (xk + ∆kv) < f (xk) , then
set xk+1 := xk + ∆kv, and go to Step 5.

3. PS. If f (xk + αv) < f (xk) , then use (5) to obtain Dp
k. Otherwise, use (6)

to obtain Dp
k. Evaluate f on the trial points

{
pj = xk + ∆kdj : dj ∈ Dp

k, j = 1, . . . ,
∣∣Dp

k

∣∣} .

4. Parameter Update. If min1≤j≤|Dp

k|
f(pj) < f (xk) , then set xk+1 :=

arg min1≤j≤|Dp

k|
f(pj). Otherwise, decrease ∆k through the rule ∆k+1 := σ∆k.

5. If the stopping condition is satisfied, then terminate. Otherwise, let k := k+1
and return to step 2.

To implement Algorithm 3.1, we have to determine a proper value of the pruning control
parameter β. We use the standard 2n directions, D = {e1, . . . , en, −e1, . . . ,−en, } as a posi-
tive spanning direction set. In this case, a proper value for β can be chosen from (−1, 1√

n
)
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Figure 1: The HPS performance for Zakharov function Z2.

to guarantee that the pruned direction set Dp
k contains at least one direction. Since the idea

of using the parameter β is first presented in this paper and there is no similar computa-
tional result we can refer to it, we study the tuning of parameter β through some numerical
experiments. Four values β = 1√

n
, 1

2
√

n
, 0, −1

2
√

n
have been chosen to make some numerical

simulations using Rosenbrock function R2, De Joung function DJ, and Zakharov functions
Zn, n = 2, 4, 10, 20, see the Appendix for the analytical formulae of these test functions. Note
that the global minimum values of all these functions are 0. Figures 1–6 show that β = 1√

n

generally gives faster convergence toward the global minima than the other values of β. It is
notable from these figures that the performance of the HPS method for the function R2 is
different from that for other functions. Figure 2 shows that the HPS method with β = 1√

n

works well in the early stage of the search, while it suffers from slow convergence in the later
stage compared with the method using other values. However, this difference in performance
is expected since the HPS method uses the ADD method and descent-type methods usually
suffer from slow convergence when applied to R2.

A question that arises when we test the performance of the HPS method is to what extent
the ADD used in HPS helps the PS to get better results. To examine this issue, we compare
the HPS method with the plain PS method on Zakharov functions Zn, n = 2, 4, 10, 20. We use
the standard 2n directions, D = {e1, . . . , en,−e1, . . . ,−en} , to generate the pattern search
directions in each method. Table 2 shows the best function value (Best f value) and the
number of function evaluations (No. f -evals.) achieved by each method. We use the same
starting points for all methods. Since there is no random step in the PS method, it was run
only once for each problem. On the other hand, the HPS method was run 100 times and the
Best f value and the No. f -evals. are the average of these 100 trials. The pruning control
parameter β was set equal to 1√

n
. Moreover, the shrinkage coefficient σ is set equal to 0.5,

which is the standard value of the shrinkage coefficient in direct search methods. The initial
mesh size should be chosen big enough for more efficient local search, so that we set ∆0
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Figure 2: The HPS performance for Rosenbrock function R2.
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Figure 4: The HPS performance for Zakharov function Z4.
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Figure 5: The HPS performance for Zakharov function Z10.
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Figure 6: The HPS performance for Zakharov function Z20.

Table 2: Results of PS and HPS for Zakharov functions

No. f -evals. Best f value
f

Z2

Z4

Z10

Z20

PS HPS

97 132
353 234
7821 1547

50000+ 11140

PS HPS

3.0E–9 2.6E–8
9.1E–9 3.1E–7
2.6E–6 8.4E–5
4.4E–2 1.7E–3

equal to 1. The step size α is set equal to 10−3, which is small enough to avoid misleading
the search especially in the vicinity of a local minimum. The iteration was terminated in
Step 5 when the mesh size became smaller than 10−4, or the number of function evaluations
exceeded 50, 000.

From the results shown in Table 2, we may observe that using the ADD in the HPS
method can reduce the number of function evaluations in the plain PS method especially for
higher dimensional problems.

4 Simulated Annealing HPS

In this section we give the details of our main hybrid pattern search method SAHPS. The SA
approach is combined with the HPS to form the hybrid method SAHPS, which is expected
to have a higher ability to detect global minima. At each major iteration of the SAHPS
method, we first repeat the simulated annealing acceptance trials m1 times. In each time, a
trial point is generated by using an exploring point to guide the SA search along a promising
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direction and to avoid making a blind random search. Specifically, we generate an exploring
point zk close to the current iterate xk and a SA trial is generated along the direction
sign(f(xk)− f(zk))(zk − xk), with a certain step size. If more than mac out of m1 trials are
accepted, then we immediately proceed to the next major iteration of SAHPS. Otherwise,
within the same major iteration, we repeat the HPS iterations m2 times. In the early stage of
the search, the diversification is more needed than the intensification, however, the converse
is needed in the final stage of the search. Since the HPS represents the intensification part
of the SAHPS, it is better to initialize the value of m2 at a moderate value and increase it
while the search is going on. In the end of the search, we complete the algorithm by applying
a fast local search method to refine the best point obtained by the search so far. We prefer
to use the Kelley’s modification [8, 9] of the Nelder-Mead method [15] in this final step.

More detailed and formal description of the SAHPS method is shown in the following
Algorithm 4.1. The setting of parameters used in this algorithm will be discussed later in
Section 5.

Algorithm 4.1. SAHPS(f, x0,∆0, r, α, ǫ)

1. Initialization. Choose an initial solution x0, fix an initial mesh size ∆0 > 0,
choose the shrinkage coefficient σ of the mesh size from (0, 1), fix the SA trial
point radius r, fix a sufficiently small step size α > 0, and fix a sufficiently
small neighborhood radius ǫ > 0. Fix the cooling schedule parameters; initial
temperature Tmax, epoch length M, cooling reduction ratio λ ∈ (0.5, 0.99), and
minimum temperature Tmin. Set the temperature T := Tmax.

2. The main iteration. Repeat the following Global SA Search (Step 2.1) m1

times. If more than mac out of m1 trial points are accepted, then skip the Local
HPS (Step 2.2) and proceed to Step 3.

2.1 Global SA search. Given the current iterate xk, generate an exploring
point zk randomly in the neighborhood of xk with radius ǫ. Generate a trial
point xSA in the neighborhood of the current solution xk by

xSA =

{
xk + ηr (zk − xk) / ‖zk − xk‖ , if f (zk) ≤ f (xk) ,
xk − ηr (zk − xk) / ‖zk − xk‖ , otherwise,

where η is a random number in (0.1, 1). Evaluate f on the trial point xSA, and
accept it, i.e. xk+1 := xSA, if

i. ∆f := f(xSA) − f(xk) < 0, or

ii. ∆f ≥ 0, and p = exp
(
−∆f

T

)
≥ u, where u is a random number in (0, 1) .

2.2. Local HPS. Repeat the following procedure m2 times.

2.2.a. ADD. Calculate the vector v at xk as in (1). If f (xk + ∆kv) < f (xk) ,
then set xk+1 := xk + ∆kv, and proceed to the next iteration of the Local HPS
loop.

2.2.b. PS. If f (xk + αv) < f (xk) , then use (5) to obtain Dp
k. Otherwise, use (6)

to obtain Dp
k. Evaluate f on the trial points

{
pj := xk + ∆kdj : dj ∈ Dp

k, j = 1, . . . ,
∣∣Dp

k

∣∣} .

2.2.c. Parameter update. If min1≤j≤|Dp

k|
f(pj) < f (xk) , then set xk+1 :=

arg min1≤j≤|Dp

k|
f(pj). Otherwise, decrease ∆k through the following rule:

∆k+1 := σ∆k. (7)
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3. If the epoch length, which corresponds to M iterations of Global SA Search,
is not achieved, then go to Step 2.

4. If the cooling schedule is completed (T ≤ Tmin) or the function values of
two consecutive improvement trials become close to each other or the number of
iterations exceeds 50n, then go to Step 5. Otherwise, decrease the temperature
by setting T := λT , increase m2 slightly, decrease r slightly, and go to Step 2.

5. From the best point found, apply the modified Nelder-Mead method [8, 9].

5 Experimental Results

Below we elaborate on the implementation of Algorithm 4.1.
Initial trial. The initial point x0 is chosen randomly from the predetermined range

[L,U ] of the initial points for each test function, where

[L,U ] = {x ∈ Rn : li ≤ xi ≤ ui, i = 1, . . . , n} .

Cooling schedule. Generally, choosing a proper cooling schedule is not a trivial task.
Our cooling schedule is designed based on some common choice of parameters suggested in
the literature, or according to our observation gained through some preliminary numerical
experiments. First, the initial temperature Tmax is set large enough to make the initial
probability of accepting transition close to 1. Beside the initial point x0, another point x̃0 is
generated in a neighborhood of x0 to calculate Tmax as

Tmax := −
1

ln(0.9)
|f(x̃0) − f(x0)| .

The cooling ratio λ is normally chosen to be between 0.9 and 0.99 [13]. Actually, in the
original SA method, Kirkpatrick et al. [10] suggested λ = 0.95, which has become a common
choice. However, in our experiments, we observed that the results obtained with λ = 0.95
were not significantly different from those with λ = 0.9. The main reason for this insignificant
difference is due to the use of refining local search method at the final stage. Since setting
λ equal to 0.95 is more computationally costly, we set λ equal to 0.9. A common choice of
the number of trials allowed at each temperature, which is called epoch length M , is to let
it depend on the size of the problem [14]. Although Kirkpatrick et al. [10] set the value of
M equal to n, our preliminary experiments have revealed that setting M equal to 2n fits
the SAHPS algorithm well. Therefore, we set M equal to 2n. In the implementation of
SA, the cooling schedule is terminated when the temperature reaches a fixed minimum value
Tmin [14]. We observed that setting Tmin equal to min

(
10−3, 10−3Tmax

)
can give a complete

cooling schedule in the sense that the acceptance probability at the end is almost zero.
Neighborhood radius. The neighborhood radius ǫ, which is used in generating the

exploring points zk in the Global SA Search and in generating the exploring points used to
compute vector v in the ADD step, is set equal to 10−3.

SA trial point radius. The radius r, which is used in generating the SA trial points,
is initialized as r0 := min1≤i≤n (ui − li) /5 to fit the search domain of each test func-
tion, and then r is reduced in parallel to the reduction of temperature T by setting r :=
max {0.95r, 0.02r0} .

HPS parameters. The mesh size is initialized as ∆0 := min1≤i≤n (ui − li) /10, and
when no improvement is achieved, its shrinkage factor σ in (7) is set equal to 0.7. Actually,
the standard value of the shrinkage coefficient in direct search methods is 0.5 but, in our
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experiments, we observed that using the value 0.7 gives more ability of efficient exploration
than the value 0.5, because the latter may decrease the step size prematurely before reaching
a proper exploration process. We set the step size α used in Step 2.2.a equal to 10−3. The
pattern search strategy described in Section 3 is adopted in the Local HPS step.

Loop repetitions. The repetition numbers of the Global SA Search and Local HPS
steps, m1 and m2, are both set equal to n initially, which is equal to the half of the epoch
length M . However, m2 is updated as m2 := min{5n, 1.05m2} in Step 4 at every major
iteration. The control parameter mac, the desired number of accepted points in the Global
SA Search step, is set equal to 1.

Termination conditions. Beside the completeness of the cooling schedule, Algorithm
4.1 may be terminated in Step 4, if the difference between the function values of two consec-
utive improvement trials becomes less than Tol = 10−8, or the number of iterations exceeds
Itmax = 50n.

In Table 3, we summarize all parameters used in the SAHPS algorithm with their assigned
values.

Algorithm 4.1 was programmed in Matlab and applied to 19 well-known test functions
[5, 6]. For each function, this Matlab code was run 100 times with different initial points.
To judge the success of a trial, we used the condition

|f∗ − f̂ | < ǫ1 |f
∗| + ǫ2, (8)

where f̂ refers to the best function value obtained by SAHPS, f∗ refers to the known exact
global minimum value, and ǫ1 and ǫ2 are small positive numbers. We set ǫ1 and ǫ2 equal
to 10−4 and 10−6, respectively. The average number of function evaluations (Av. f -evals.)
and the average errors (Av. Error) reported in Table 4 are those for the successful trials. It
is noteworthy that, for some of the functions that fail to achieve the 100% success rate, the
success rate can be improved by relaxing the maximum number of iterations or by slowing
down the cooling schedule. For example, the success rate for SH function can be improved
to 95% with Av. f -evals. of 822 and Av. Error of 9E–6, if we set the maximum number of
iterations equal to 100n instead of 50n.

To complete the testing of the SAHPS method, we compare it with other SA-based
methods, Enhanced Simulated Annealing (ESA) [19] and Direct Search Simulated Annealing
(DSSA) [6]. The results of ESA are taken from its original paper [19], as well as [5]. The
results of DSSA are taken from its original paper [6].

The results shown in Table 4 indicate that SAHPS generally outperforms the ESA. Since
ESA is a plain SA method without any combination with a local search method, we may
conclude that hybridizing HPS with SA significantly improves the performance of SA. On the
other hand, the comparison between SAHPS and DSSA does not seem to yield a definitive
answer. The performance of DSSA is better for the problems with n < 5 but SAHPS
outperforms DSSA in higher dimensional problems, i.e., n ≥ 5, in terms of the number of
function evaluations.

6 Conclusion

In this paper, we have presented a new hybrid global search method in which a direct search
method is combined with the SA procedure to remedy the slow convergence of the latter
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Table 3: SAHPS Parameters

Parameter Definition Value

Tmax maximum (initial) temperature − 1
ln(0.9) |f(x̃0) − f(x0)|

Tmin minimum temperature min
(
10−3, 10−3Tmax

)

λ cooling ratio 0.9
M epoch length 2n
ǫ neighborhood radius 10−3

r0 initial radius for generating SA trial points min1≤i≤n (ui − li) /5
∆0 initial mesh size min1≤i≤n (ui − li) /10
σ reduction factor of mesh size 0.7
α step size for checking descent directions 10−3

m1 Global SA Search repetition number n

m2 Local HPS repetition number

{
initial: n
update: min{5n, 1.05m2}

mac number of accepted points in Global SA Search 1
Itmax maximum number of iterations 50n
Tol termination tolerance 10−8

Table 4: Results of SAHPS and other SA methods

Av. f -evals. Av. Error
f

RC
ES
GP
BH
HM
SH
Z2

R2

DJ
H3,4

S4,5

S4,7

S4,10

Z5

R5

H6,4

GR
Z10

R10

SAHPS ESA DSSA

318 – 118
432(96%) – 1442(93%)
311 783 261
346 – 252
278 – 225
450(86%) – 457(94%)
276 15820 186
357 796 306
398 – 273
517(95%) 698 572
1073(48%) 1137(54%) 993(81%)
1059(57%) 1223(54%) 932(84%)
1031(48%) 1189(50%) 992(77%)
716 96799 914
1104(91%) 5364 2685
997(72%) 1638 1737(92%)
795 – 1830(90%)
2284 15820 12501
4603(87%) 12403 16785

SAHPS ESA DSSA

4E–7 – 4E–7
5E–9 – 3E–9
5E–9 9E–3 4E–9
8E–9 – 5E–9
5E–8 – 5E–8
9E–6 – 9E–6
7E–9 – 4E–9
6E–9 – 4E-9
6E–9 – 5E–9
2E–6 5E–4 2E–6
3E–7 4E–3 2E–6
4E–5 8E–3 6E–7
1E–5 4E–2 1E–5
8E–9 – 5E–9
7E–9 – 3E-9
2E–6 6E–2 2E–6
8E–9 – 5E–9
3E–8 2E–3 7E–9
2E-8 4E-2 7E-9

14



method. Two new methods have been introduced to design the SAHPS method; one is the
ADD method that produces an approximate descent direction, the other is the HPS method
that is used to make a local exploratory search in the main SAHPS method. The latter has
turned out to be particularly effective because the HPS method shows a superior performance
in reducing the computational expense of the plain PS method.
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A List of test functions

A.1 Branin RCOS function (RC)

Number of variables: n = 2.

Definition: RC(x1, x2) = (x2 −
5.1
4π2 x2

1 + 5
π
x1 − 6)2 + 10(1 − 1

8π
) cos(x1) + 10.

Range of initial points: −5 < x1 < 10, 0 < x2 < 15.

Number of local minima: no local minimum1.

Global minima: (x1, x2)
∗ = (−π, 12.275), (π, 2.275), (9.42478, 2.475);

RC((x1, x2)
∗) = 0.397887.

A.2 Easom function (ES)

Number of variables: n = 2.

Definition: ES(x1, x2) = − cos(x1) cos(x2) exp(−(x1 − π)2 − (x2 − π)2).

Range of initial points: −10 < xj < 10, j = 1, 2.

Number of local minima: several local minima.

The global minimum: (x1, x2)
∗ = (π, π); ES((x1, x2)

∗) = −1.

1Throughout the Appendix, ‘local minimum’ means a mere local minimum that is not a global minimum
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A.3 Goldstein and Price function (GP )

Number of variables: n = 2.

Definition: GP (x1, x2) = u ∗ v,

where u = 1 + (x1 + x2 + 1)2
(
19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)
,

and v = 30 + (2x1 − 3x2)
2
(
18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

)
.

Range of initial points: −2 < xj < 2, j = 1, 2.

Number of local minima: 4 local minima.

The global minimum: (x1, x2)
∗ = (0,−1); GP ((x1, x2)

∗) = 3.

A.4 Bohachevsky functions (BH)

Number of variables: n = 2.

Three functions were considered: B1, B2 and B3.

Definition: BH(x1, x2) = x2
1 +2x2

2 − 0.3 cos(3πx1)− 0.4 cos(4πx2)+0.7.

Range of initial points: −10 ≤ xj ≤ 10, j = 1, 2.

Number of local minima: many local minima.

Global minima: (x1, x2)
∗ = (0, 0); BH((x1, x2)

∗) = 0.

A.5 Hump function (HM)

Number of variables: n = 2.

Definition: HM(x1, x2) = 1.0316285 + 4x2
1 − 2.1x4

1 + 1
3x6

1 + x1x2 − 4x2
2 + 4x4

2.

Range of initial points: −5 < xj < 5, j = 1, 2.

Number of local minima: no local minima.

Global minima: (x1, x2)
∗ = (0.0898,−0.7126), (−0.0898, 0.7126); HM((x1, x2)

∗) =
0.

A.6 Shubert function (SH)

Number of variables: n = 2.

Definition: SH(x1, x2) =
(∑5

j=1 j cos ((j + 1) x1 + j)
) (∑5

j=1 j cos ((j + 1) x2 + j)
)

.

Range of initial points: −10 < xj < 10, j = 1, 2.

Number of local minima: 760 local minima.

Global minima: 18 global minima and SH((x1, x2)
∗) = −186.7309.

A.7 De Joung function (DJ)

Number of variables: n = 3.

Definition: DJ(x1, x2, x3) = x2
1 + x2

2 + x2
3.

Range of initial points: −5 < xj < 5, j = 1, 2, 3.

Number of local minima: no local minima.

The global minimum: (x1, x2, x3)
∗ = (0, 0, 0); DJ((x1, x2, x3)

∗) = 0.
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A.8 Hartmann function (H3,4)

Number of variables: n = 3.

Definition: H3,4(x) = −
∑4

i=1 ci exp
[
−
∑3

j=1 aij (xj − pij)
2
]
.

Range of initial points: 0 < xj < 1, j = 1, 2, 3.

Number of local minima: 4 local minima.

The global minimum: x∗ = (0.114614, 0.555649, 0.852547); H3,4(x
∗) = −3.86278.

i aij ci pij

1
2
3
4

3.0 10.0 30.0
0.1 10.0 35.0
3.0 10.0 30.0
0.1 10.0 35.0

1.0
1.2
3.0
3.2

0.689 0.1170 0.2673
0.4699 0.4387 0.7470
0.1091 0.8732 0.5547
0.0381 0.5743 0.8828

A.9 Shekel functions (S4,m)

Number of variables: n = 4.

Definition: S4,m(x) = −
∑m

i=1

[∑4
i=1 (xi − ai)

2 + ci

]−1
.

Three functions were considered: S4,5, S4,7 and S4,10.

Range of initial points: 0 < xj < 10, j = 1, . . . , 4.

Number of local minima: m local minima.

Same global minimum for three functions S4,5, S4,7 and S4,10: x∗ = (4, 4, 4, 4);

S4,5(x
∗) = −10.1532, S4,7(x

∗) = −10.4029 and S4,10(x
∗) = −10.5364.

i aij ci

1
2
3
4
5
6
7
8
9
10

4.0 4.0 4.0 4.0
1.0 1.0 1.0 1.0
8.0 8.0 8.0 8.0
6.0 6.0 6.0 6.0
3.0 7.0 3.0 7.0
2.0 9.0 2.0 9.0
5.0 5.0 3.0 3.0
8.0 1.0 8.0 1.0
6.0 2.0 6.0 2.0
7.0 3.6 7.0 3.6

0.1
0.2
0.2
0.4
0.4
0.6
0.3
0.7
0.5
0.5

A.10 Hartmann function (H6,4)

Number of variables: n = 6.

Definition: H6,4(x) = −
∑4

i=1 ci exp
[
−
∑6

j=1 aij (xj − pij)
2
]
.

Range of initial points: 0 < xj < 1, j = 1, . . . , 6.

Number of local minima: 6 local minima.

The global minimum:

x∗ = (0.201690, 0.150011, 0.476874, 0.275332, 0.311652, 0.657300); H6,4(x
∗) = −3.32237.
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i aij ci

1
2
3
4

10.00 3.00 17.00 3.50 1.70 8.00
0.05 10.00 17.00 0.10 8.00 14.00
3.00 3.50 1.70 10.0 17.00 8.00
17.00 8.00 0.05 10.00 0.10 14.00

1.0
1.2
3.0
3.2

i pij

1
2
3
4

0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

A.11 Griewank function (GR)

Number of variables: n = 6.

Definition: GR(x) =
∑6

j=1
x2

j

4000 −
∏6

j=1 cos
(

xj√
j

)
+ 1.

Range of initial points: −10 < xj < 10, j = 1, 2, . . . , 6.

Number of local minima: many local minima.

The global minimum: x∗ = (0, . . . , 0), GR(x∗) = 0.

A.12 Rosenbrock functions (Rn)

Number of variables: n = 2, 5, 10.

Definition: Rn(x) =
∑n−1

j=1

[
100

(
x2

j − xj+1

)2
+ (xj − 1)2

]
.

Range of initial points: −5 < xj < 10, j = 1, 2, . . . , n.

Number of local minima: no local minimum.

The global minimum: x∗ = (1, . . . , 1), Rn(x∗) = 0.

A.13 Zakharov functions (Zn)

Number of variables: n = 2, 4, 5, 10, 20.

Definition: Zn(x) =
∑n

j=1 x2
j +

(∑n
j=1 0.5jxj

)2
+
(∑n

j=1 0.5jxj

)4
.

Range of initial points: −5 < xj < 10, j = 1, 2, . . . , n.

Number of local minima: no local minimum.

The global minimum: x∗ = (0, . . . , 0), Zn(x∗) = 0.
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