
Minimizing multimodal functions by simplex coding
genetic algorithm∗

Abdel-Rahman Hedar and Masao Fukushima
Department of Applied Mathematics and Physics, Graduate School of Informatics,

Kyoto University, Kyoto 606-8501, Japan

September 12, 2002, Revised February 14, 2003

Abstract

Combining meta-heuristics with local search methods is one approach that recently
has drawn much attention to design more efficient methods for solving continuous
global optimization problems. In this paper, a new algorithm called Simplex Coding
Genetic Algorithm (SCGA) is proposed by hybridizing genetic algorithm and simplex-
based local search method called Nelder-Mead method. In the SCGA, each chromo-
some in the population is a simplex and the gene is a vertex of this simplex. Selection,
new multi-parents crossover and mutation procedures are used to improve the initial
population. Moreover, Nelder-Mead method is applied to improve the population in the
initial stage and every intermediate stage when new children are generated. Applying
Nelder-Mead method again on the best point visited is the final stage in the SCGA to
accelerate the search and to improve this best point. The efficiency of SCGA is tested
on some well known functions. Comparison with other meta-heuristics indicates that
the SCGA is promising.

Key words: Global optimization, meta-heuristics, genetic algorithm, memetic
algorithm, simplex coding, local search methods, Nelder-Mead method.

1 Introduction

Global optimization has drawn much attention recently [8, 17, 18, 19], because of a very broad
spectrum of applications in real-world systems. However, the works that deal with the global
optimization of functions with continuous variables are still not enough to confront the rapid
growth of the applications. Therefore, the global optimization of functions with continuous

∗This research was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of
Education, Science, Sports and Culture of Japan.

1

variables is a challenging problem. In this paper, we focus on the case of unconstrained
minimization, i.e., the problem is

min
xεRn

f(x),

where f is a generally nonconvex, real valued function defined on Rn. Meta-heuristics con-
tribute to a reasonable extent in solving global optimization problems, mainly combinato-
rial problems [16]. Genetic algorithms (GAs) are one of the most efficient meta-heuristics
[5, 12], that have been employed in a wide variety of problems. However, GAs, like other
meta-heuristics, suffer from the slow convergence that brings about the high computational
cost.

Recently, several new approaches have been developed to furnish meta-heuristics with the
ability to simulate the fast convergence of local search methods. Most of these approaches
hybridize local search methods with meta-heuristics to obtain more efficient methods with
relatively faster convergence. This paper pursues in that direction and proposes a new hybrid
method that combines GA with a local search method called Nelder-Mead method [15]. In
the combined method, called the simplex coding genetic algorithm (SCGA), we consider the
members of the population to be simplices, i.e., each chromosome is a simplex and the gene
is a vertex of this simplex. Selection, crossover and mutation procedures are used to improve
the initial population. Moreover, Nelder-Mead method is applied to improve the population
in the initial stage and every intermediate stage when new children are generated. In the
SCGA, we use the linear ranking selection scheme [1] to choose some fit parents to be mated.
Then, using a new scheme of a multi-parents crossover, new children are reproduced and a
few of them are mutated. Applying Kelley’s modification [9, 10] of Nelder-Mead method on
the best point visited is the final stage in the SCGA to accelerate the search and to improve
this best point.

There have been some attempts to utilize the idea of hybridizing local search methods
with GA. Simple hybrid methods use the GA or local search methods to generate the points
for the new population and then apply the other technique to improve this new population [6,
23]. Other hybrid methods do some modifications in the GA operations; selection, crossover
and mutation using local search methods [14, 20, 21, 22]. However, the method proposed
in this paper is different from those hybrid methods as we will see in the next section.
Simulated annealing as a meta-heuristic was also considered in hybrid approaches with local
search methods [7]. The main idea of these hybrid approaches is to avoid creating random
movements by using local information about promising search directions. Moreover, uphill
acceptance in simulated annealing makes these hybrid approaches not easily entrapped in
local minima.

The next section briefly reviews the basics of the Nelder-Mead method and discuss some
hybrid GA methods that use Nelder-Mead method. The description of the proposed method
is given in Section 3. Section 4 discusses the experimental results along with the initialization
of some parameters and the setting of the control parameters of the proposed method. The
conclusion follows the experimental results and makes up Section 5.

2

2 Simplex-Based Genetic Algorithms

In this section, we review some earlier methods that hybridize GAs and simplex methods.
The Nelder-Mead method is the most popular simplex-type method that has been used to
design a hybrid simplex-based GA method. First, we highlight the Nelder-Mead method
before describing hybrid simplex-based GA methods.

2.1 Nelder-Mead method

The local search method called the Nelder-Mead method [15] is one of the most popular
derivative-free nonlinear optimization methods. Instead of using the derivative information
of the function to be minimized, the Nelder-Mead method maintains at each iteration a non-
degenerate simplex, a geometric figure in n dimensions of nonzero volume that is the convex
hull of n+1 vertices, x1, x2, . . . , xn+1, and their respective function values. In each iteration,
new points are computed, along with their function values, to form a new simplex. Four
scalar parameters must be specified to define a complete Nelder-Mead method; coefficients
of reflection ρ, expansion χ, contraction γ, and shrinkage σ. These parameters are chosen to
satisfy

ρ > 0, χ > 1, 0 < γ < 1, and 0 < σ < 1.

The Nelder-Mead method consists of the following steps:
1. Order. Order and re-label the n + 1 vertices as x1, x2, . . . , xn+1 so that f(x1) ≤

f(x2) ≤ · · · ≤ f(xn+1). Since we want to minimize f , we refer to x1 as the best vertex or
point, to xn+1 as the worst point.

2. Reflect. Compute the reflection point xr by

xr = x + ρ (x− xn+1) ,

where x is the centroid of the n best points, i.e., x =
∑ n

i=1xi/n. Evaluate f(xr). If f(x1) ≤
f(xr) < f(xn), replace xn+1 with the reflected point xr and go to step 6.

3. Expand. If f(xr) < f(x1), compute the expansion point xe by

xe = x + χ (xr − x) .

Evaluate f(xe). If f(xe) < f(xr) replace xn+1 with xe and go to step 6; otherwise replace
xn+1 with xr and go to step 6.

4. Contract. If f(xr) ≥ f(xn), perform a contraction between x and the better of xn+1

and xr.
4.1. Outside. If f(xn) ≤ f(xr) < f(xn+1) (i.e., xr is strictly better than xn+1),

perform an outside contraction: Calculate

xoc = x + γ (xr − x) .

Evaluate f(xoc). If f(xoc) ≤ f(xr), replace xn+1 with xoc and go to step 6; otherwise, go to
step 5.

3

x1

x3

x2 x2

x1

x3

xic

xoc xr

xe

x′3

x′2

Figure 1: The reflection, expansion, contraction and shrikage points for a simplex in two
dimensions.

4.2. Inside. If f(xr) ≥ f(xn+1), perform an inside contraction: Calculate

xic = x + γ (xn+1 − x) .

Evaluate f(xic). If f(xic) ≤ f(xn+1), replace xn+1 with xic and go to step 6; otherwise, go
to step 5.

5. Shrink. Evaluate f at the n new vertices

x′i = x1 + σ (xi − x1) , i = 2, . . . , n + 1.

Replace the vertices x2, . . . , xn+1with the new vertices x′2, . . . , x
′
n+1.

6. Stopping Condition. Order and re-label the vertices of the new simplex as
x1, x2, . . . , xn+1 such that f(x1) ≤ f(x2) ≤ · · · ≤ f(xn+1). If f(xn+1) − f(x1) < ε, then
stop, where ε > 0 is a small predetermined tolerance. Otherwise go to step 2.

Figure 1 shows the effects of reflection, expansion, contraction and shrinkage for a simplex
in two dimensions using the standard values of the coefficients

ρ = 1, χ = 2, γ =
1

2
, and σ =

1

2
.

After more than thirty years of studying and applying the Nelder-Mead method, McKin-
non [11] shows that the Nelder-Mead algorithm can stagnate and converge to a nonoptimal
point even for very simple problems. However, Kelley [9, 10] proposes a test for sufficient
decrease which, if passed for all iterations, will guarantee convergence of the Nelder-Mead
iteration to a stationary point under some appropriate conditions. The Kelley’s modification
[9, 10] of the Nelder-Mead method will be employed in the final stage of our hybrid method,
which will be described in Section 3.

4

2.2 Hybrid GA methods

There have been several attempts to hybridize GA with simplex-based direct search methods.
Remarkable features underlying these hybrid methods are global exploration and parallelism
in GA, and local exploitation in direct search methods. Moreover, both GA and direct search
methods only use the function values rather than derivatives, which makes those hybrid
methods applicable to a broad class of problems. In the following, we briefly summarize
some of the hybrid simplex-based GA methods.

Renders and Bersini method [20]. In this method the population is divided into λ
groups of n+1 chromosomes. Then, one of the following operations is applied to each group
with some predetermined probabilities to reproduce exactly one child.

• Discrete crossover. Each gene in a child can be chosen from the corresponding gene
in a parent which is randomly chosen from the group. This child replaces the worst
parent in this group.

• Average crossover. The average of all n + 1 parents in the group replaces the worst
parent in this group.

• Simplex crossover. Apply the Nelder-Mead method with slight modification to repro-
duce a new point.

The algorithm terminates if some convergence criterion is reached.
Yang and Douglas method [21]. M points are selected randomly from the search

space to form the initial population. GA’s reproduction schemes (selection, crossover, and
mutation) are used to generate k (0 < k < M) children. The rest of the offspring will be
generated by repeating the following procedure M − k times. Using some selection scheme,
construct a subcommunity of S points from the M old points. Try to get a better child
by applying a simplex method. Otherwise, a child is generated randomly within the search
space. If the best point of the new generation is not better than the best one of the old
generation, then replace the worst point of the new generation by the best point of the old
generation. Moreover, some comparisons are made between the old generation and the new
one to copy some of the best points in the old generation into the new one. The algorithm
terminates if either a predetermined iteration number is reached or an acceptable objective
function value is obtained.

Yen, Liao, Lee, and Randolph method [22]. This simplex GA hybrid method
uses a modification of the Nelder-Mead method called the concurrent simplex method. The
initial population consists of M chromosomes and the concurrent simplex method is applied
to the top S (n < S < M) chromosomes in the population to produce S − n children. The
top n chromosomes are copied to the next generation. The GA’s reproduction operations,
crossover and mutation, are used to generate the remaining M − S chromosomes. The
algorithm terminates when it satisfies a convergence criterion or reaches a predetermined
maximum number of fitness evaluations.

5

Musil, Wilmut, and Chapman method [14]. The initial population consists of M
chromosomes generated at random. The cycle starts by selecting n + 1 random pairs of
parents from the population. The binary operations (crossover and mutation) are applied
on the parents to reproduce children. One child is selected from each of the n + 1 pairs
of children and this results in n + 1 new children. The Nelder-Mead method runs for k
iterations starting with the simplex that consist of these n+1 children. The point that gives
the lowest objective function value obtained by Nelder-Mead iterations replaces the one with
the highest objective function value in the population. The cycle is terminated when the
parameters in the population have converged. At this point, other Nelder-Mead iterations
start with the chromosome with the lowest objective function value in the population to
refine this chromosome and to get the solution.

Our hybrid method SCGA presented in the next section is different from these hybrid
methods in many aspects. One of the main differences lies in the coding representation. We
use a simplex coding in which the chromosome is a simplex and its genes are the vertices
of this simplex. It is expected that using this coding type and applying the Nelder-Mead
method starting from each chromosome in the initial population and from each child chro-
mosome will increase the local exploitation and will improve these chromosomes. The other
main difference consists in the crossover operation. We introduce a new kind of multi-parents
crossover that gives the chance for more than two parents to cooperate in reproducing chil-
dren and exploring the region around these parents.

3 Description of SCGA

In this section, we describe the proposed method SCGA. The SCGA uses the main functions
of the GA; selection, crossover and mutation, on a population of simplices to encourage the
exploration process. Moreover, the SCGA tries to improve the initial members and new
children by applying a local search method to enhance the exploitation process. This kind
of exploration-exploitation procedure is sometimes called “Memetic Algorithm”, see [13].
Finally, the SCGA applies an effective local search method on the best point reached by the
previous exploration-exploitation procedure. The purpose of this local search is to accelerate
the final stages of the GA procedure. This strategy is expected to be effective because the GA
has a difficulty in obtaining some required accuracy although the GA may quickly approach
the neighborhood of the global minimum.

3.1 Initialization

The SCGA starts with the following initialization procedure:

1. Generate the initial population P0 that consists of M chromosomes (simplices), i.e.,

P0 =
{
Sj : Sj =

{
xj,i

}n+1

i=1
; xj,i ∈ Rn, j = 1, . . . , M

}
.

6

2. Order the vertices of each simplex Sj, j = 1, 2, . . . , M, so that

f(xj,1) ≤ f(xj,2) ≤ · · · ≤ f(xj,n+1). (1)

3. Apply a small number of iterations of the Nelder-Mead method with each Sj as an
initial simplex to improve the chromosomes in the initial population P0.

4. Order the simplices Sj = {xj,i}n+1
i=1 , j = 1, . . . , M in the improved population P0 so

that
f(x1,1) ≤ f(x2,1) ≤ · · · ≤ f(xM,1). (2)

3.2 GA loop

Repeat the following procedures described in 3.2.1–3.2.3 while the stopping conditions are
not satisfied.

3.2.1 Selection

We describe how we select the set Q ⊆ P of the members that will be given the chance to
be mated from the current population P . For each generation, the size of Q is the same as
that of P but more fit members in P are chosen with higher probability to be included in
Q. We use Baker’s scheme called “linear ranking selection” [1] to select the new members in
Q. In this scheme, the chromosomes Sj ∈ P, j = 1, 2, . . . , M, are sorted in the order of raw
fitness as in (2), and then the probability of including a copy of chromosome Sj into the set
Q is calculated by

ps(S
j) =

1

M

(
ηmax − (ηmax − ηmin)

j − 1

M − 1

)
,

where ηmin = 2 − ηmax and 1 ≤ ηmax ≤ 2. Using these probabilities, the population is
mapped onto a roulette wheel, where each chromosome Sj is represented by a space that
proportionally corresponds to ps (Sj) . Chromosomes in the set Q are chosen by repeatedly
spinning the roulette wheel until all positions in Q are filled.

3.2.2 Crossover and mutation

Choose a random number from the unit interval [0, 1] for each chromosome in Q. If this
number is less than the predetermined crossover probability pc, then this chromosome is
chosen as a parent. Repeat the following steps until all parents are mating.

1. Select a number nc from the set {2, . . . , n + 1} randomly to determine the number of
parents chosen to be mated together.

2. Compute new children Ci =
{
xi,k

c

}n+1

k=1
, i = 1, . . . , nc by

xi,k
c = xk + d ri, k = 1, . . . , n + 1, (3)

7

x1,1

x2,1

x3,1

d

x1

x2

x3
x1,3x1,2

x2,3

x2,2

x3,3

x3,2

d

x1

x2

x3

(a) (b)

C1

C2

C3
S1

S3

S2

Figure 2: An example of SCGA crossover in two dimensions.

where ri, i = 1, . . . , nc, are random vectors of length less than 1, d is the maximum
distance between pairs of parents and xk is the average of the kth vertices of all parents,
i.e.,

xk =
1

nc

nc∑

i=1

xi,k, k = 1, . . . , n + 1. (4)

Figure 2 shows an example of crossover in two dimensions. In Figure 2(a), we use
Equations (4) to compute the dotted simplex whose vertices are the average of the
vertices of the parents S1, S2 and S3. By using Equations (3), we move this dotted
simplex randomly inside the circle to create the children C1, C2 and C3, as in Figure
2(b).

3. Choose a random number from the unit interval [0, 1] for each child Ci, i = 1, . . . , nc.
If this number is less than the predetermined mutation probability pm, then this child
is mutated. Let Im be the index set of those children who are mutated.

4. Apply the following procedure for each child Ci =
{
xi,k

c

}n+1

k=1
, i ∈ Im. Select a number

ni from the set {1, 2, . . . , n + 1} randomly to determine the vertex that is reflected as

a mutation. Compute the mutated child C̃i =
{
xi,k

m

}n+1

k=1
by

xi,k
m = xi,k

c , k = 1, . . . , ni − 1, ni + 1, . . . , n + 1,
xi,ni

m = x + u (x− xi,ni
c) ,

where u is a random number in the interval [0.5, 1.5] and x is the average of vectors
xi,1

c , . . . , xi,ni−1
c , xi,ni+1

c , . . . , xi,n+1
c . Replace the child Ci by the mutated one C̃i. Figure

3 shows an example of mutation in two dimensions, where the mutated simplex consists
of the vertices x1,1

m , x1,2
m and x1,3

m , where the vertex x1,2
m is randomly chosen on the line

segment p1p2.

8

x1,1
c = x1,1

m

x1,3
c = x1,3

m

x1,2
c

p1

p2

Figure 3: An example of SCGA mutation in two dimensions.

5. Apply a small number of iterations of the Nelder-Mead method with each child Ci, i =
1, . . . , nc as an initial simplex to improve the chromosomes.

6. The population in the next generation consists of the M best ones from the set P ∪
{Ci}nc

i=1 . Re-order the chromosomes in the new population so that (1) and (2) hold.

3.2.3 Reduction of the population

After every predetermined number of generations, remove some of the worst members in the
population P .

3.2.4 Acceleration in the final stage

From the best point obtained by the above procedures, construct a small simplex. Then,
apply Kelley’s modification [9, 10] of the Nelder-Mead method on this simplex to obtain the
final solution.

4 Experimental Results

4.1 Parameter setting

We specify suggested values of the initial and control parameters.

4.1.1 Generating the initial population

Let [L,U] = {x ∈ Rn : li ≤ xi ≤ ui, i = 1, 2, . . . , n} be the domain in which the initial
points are chosen and let this domain be divided into an equal distance grid. The pop-
ulation consists of simplices distributed on this grid and in each coordinate direction there
are µ simplices, i.e., the size M of population equals µn. We distribute the simplices in such
a way that each simplex is put in a neighborhood of one of the knots in the grid. We consider
all possible positions of simplices if n = 2, and some best positions of them if 3 ≤ n ≤ 10.

9

x1

x2

l1 u1

u2

l2

Figure 4: Initial population in two dimensions.

However, for n > 10, we employ another procedure for choosing the initial simplices as will
be discussed later. From each one of these main vertices we construct a right-angled simplex
by taking a step in each coordinate direction. This step size is called edge length. Figure
4 shows an example of the distribution of the population in two dimensions. The values of
the parameters used in generating the initial population are given as follows.

1. The number µ of simplices per coordinate direction is varied from 2 to 5 according
the estimated density of the local minima of the test function and the number n of
variables.

2. The edge length is set equal to min1≤i≤n (ui − li) /10.

3. The number of Nelder-Mead iterations in the local search for the initial population is
set equal to 2.

In the case of n > 10, the main vertices in the initial population are generated in a
different way. First, we choose a random point x1,1 ∈ [L,U] . Then we generate the other
main vertices xj,1, j = 2, . . . , M, by using the following procedure:

1. Generate xj,1.

2. If min1≤k≤j−1 max1≤i≤n |xj,1
i − xk,1

i |/ (ui − li) ≥ h for some prescribed h ∈ (0, 1), then
accept this vertex xj,1. Otherwise, return to step 1.

We set the probability of accepting the new main vertex equal to 0.7. From these main
vertices, we construct the simplices of the initial population as in the case of n ≤ 10.

10

4.1.2 GA loop parameters

The steps of the GA loop have been described in the previous section. Here we specify the
values of the parameters used in this loop.

1. The control parameter ηmax in the selection procedure is chosen to be 1.1 according to
the original setting in [1].

2. The crossover probability pc and the mutation probability pm are set equal to 0.6 and
0.1, respectively.

3. The number of Nelder-Mead iterations in the local search for the new children is fixed
at 2.

4. At every 3n generations, we remove the n worst chromosomes from the population
unless the number of its chromosomes is less than 2n.

4.1.3 Termination criteria

The SCGA is terminated when one of the following termination conditions is satisfied.

1. The function values at all vertices of the simplex that contains the best point become
close to each other, i.e.,

f(x1,n+1)− f(x1,1) ≤ ε,

where the tolerance ε is a small positive number and set equal to 10−8.

2. The number of generations exceeds the predetermined number that is set equal to
min (10n, 100) .

4.2 Numerical results

The performance of the SCGA was tested on a number of well known functions [2, 3, 7,
21, 22], which are given in the Appendix. The behavior of these test functions varies to
cover many kinds of difficulties that face global optimization problems. For each function
we made 100 trials with different initial populations. To judge the success of a trial, we used
the condition

|f ∗ − f̂ | < ε1 |f ∗|+ ε2, (5)

where f̂ refers to the best function value obtained by SCGA, f ∗ refers to the known exact
global minimum, and ε1 and ε2 are small positive numbers. We set ε1 and ε2 equal to 10−4 and
10−6, respectively, when n ≤ 10, but for n > 10 we relax this test condition by increasing the
value of ε2 to 10−4. The results are shown in Table 1, where the average number of function
evaluations and the average error are related to only successful trials. Table 1 shows that the
SCGA reached the global minima in a very good success rate for the majority of the tested

11

Table 1: Results of SCGA
Average number of

Function Rate of success function evaluations Average error
RC 100 173 3.62e-07
ES 100 715 4.97e-09
GP 100 191 4.81e-09
HM 100 176 5.23e-08
SH 98 742 8.83e-06
MZ 100 179 3.40e-06
B1 99 460 5.11e-09
B2 99 471 5.43e-09
B3 100 468 5.14e-09
R2 100 222 4.60e-09
Z2 100 170 4.68e-09
DJ 100 187 5.12e-09
H3,4 100 201 2.14e-06
S4,5 79 1086 3.28e-07
S4,7 81 1087 4.06e-05
S4,10 84 1068 9.81e-06
R5 90 3629 5.88e-09
Z5 100 998 7.10e-09
H6,4 99 989 2.00e-06
GR 100 906 8.46e-09
R10 90 6340 1.85e-08
Z10 100 1829 1.76e-08
R20 90 33134 7.59e-05
Z20 100 33106 5.79e-07

functions. Moreover, the numbers of function evaluations and the average errors show the
efficiency of the method.

In Table 2, we compare the results of the SCGA with those of three other meta-heuristic
methods. These methods are:

1. Real-value Coding Genetic Algorithm (RCGA) [2].

2. Continuous Genetic Algorithm (CGA) [4].

3. Direct Search Simulated Annealing (DSSA) [7].

12

Table 2: Average number of function evaluations in SCGA and other meta-heuristics

Function SCGA RCGA [2] CGA⊗ [4] DSSA [7]
RC 173 490 620 118
ES 715 642 1504 1442 (93%)
GP 191 270 410 261
HM 176 - - 225
SH 742 (98%) 946 575 457 (94%)
MZ 179 452 - -
B1 460 (99%) - 430 252
B2 471 (99%) 493 - -
R2 222 596 960 306
Z2 170 437 620 186
DJ 187 395 750 273
H3,4 201 342 582 572
S4,5 1086 (79%) 1158 (62%) 610 (76%) 993 (81%)
S4,7 1087 (81%) 1143 (70%) 680 (83%) 932 (84%)
S4,10 1068 (84%) 1235 (58%) 650 (81%) 992 (77%)
R5 3629 (90%) 4150 (60%) 3990 2685
Z5 998 1115 1350 914
H6,4 989 (99%) 973 970 1737 (92%)
GR 906 - - 1830 (90%)
R10 6340 (90%) 8100 (70%) 21563 (80%) 16785
Z10 1829 2190 6991 12501

The figures for these methods in Table 2 are taken from the original references. For those
results of the CGA which are marked by (⊗) in Table 2, their original corresponding data in
Table 1 in [4] seem to contain some inconsistencies. In fact, since the same condition as (5) is
used in CGA [4] to test the successful trials, the average errors for the tested functions must
be less than the right-hand side of (5) for all these functions. However, the average errors
corresponding to the tested functions in [4] are reported to be greater than the right-hand
side of (5). The comparison given in Table 2 shows the SCGA outperforms the others for
many of those functions.

Next, we try to compare SCGA with some of the other simplex-based GA methods
described in Section 2. Actually, for many reasons, it is not so easy to make clear comparisons
between SCGA and other simplex-based GA methods of [14, 20, 21, 22]. In fact, some of
these hybrid methods such as [14, 22] are concentrated on a certain complicated specific
problem. Moreover, for some of these methods, computational experiments reported in their
original references do not show much helpful information for comparison. For instance, the

13

Table 3: The results for F1 function

Function evaluations SCGA Simplex GA [21]
Average 351 660
Min 259 32
Max 452 9538

Table 4: The results for De Joung F5 function

Average number of
Method function evaluations
SCGA 1570
Simplex GA [20] 14924
Simplex GA [22] 1695

successful trial test is not mentioned in [21, 22] and the number of the test problems is very
small in [14, 20, 21]. Nevertheless, in Tables 3 and 4, we give the available comparisons
between SCGA and the other Simplex GA methods of [20, 21, 22]. First, we compare SCGA
with the Simplex GA [21] using two functions F1 (n = 2) and F2 (n = 10), see A.15 and
A.16 in the Appendix. The results for F1 are shown in Table 3 and the results for both
SCGA and the Simplex GA [21] are taken over 100 trials. It is seen that for this function,
SCGA outperforms the Simplex GA [21] with regard to the average function evaluations.
For the other function F2, many results for the Simplex GA are reported in [21] and the
best of them is 0.0002 for the best function value with 6400 function evaluations. On the
other hand, the results of SCGA for this function are slightly worse, that is, 0.0008 for the
best function value with 8127 function evaluations. However, there is another function with
n = 10 studied in [21] for which the Simplex GA [21] needed to generate 640 generations to
obtain the accuracy 10−3, whereas SCGA needed only 60 generation to obtain the accuracy
10−9.

SCGA is also compared with the Simplex GA methods of [20, 22] using De Joung F5
function, see A.17 in the Appendix. All these methods have the same rate of success (100%),
but the Simplex GA [20] required a large number of function evaluations, as shown in Table
4. We note that the results for the Simplex GA methods of [20, 22], which are cited from [22],
are the average taken over 10 trials. However, the reference [22] does not give the condition
used to judge the success of trials for both of the Simplex GA methods of [20, 22], whereas
the results for SCGA are taken over 100 trials and we use condition (5) with ε1 = 10−4 and
ε2 = 10−6 to judge the success of trials. It is noteworthy that the average error obtained by
SCGA for De Joung function F5 is 1.6× 10−7.

14

5 Conclusion

In this paper, we have introduced a simplex coding genetic algorithm that uses a set of sim-
plices as the population. Applying the Nelder-Mead local search method on these simplices
in addition to the ordinary GA operations such as selection, crossover and mutation enhances
the exploration process and accelerates the convergence of the GA. We also have introduced
a new kind of multi-parents crossover that gives more than two parents the chance to co-
operate in reproducing children and exploring the region around these parents. Moreover,
using a local search method again in the final stage helps the GA in obtaining good accuracy
quickly. Finally, the computational results show that the SCGA works successfully on some
well known test functions.

References

[1] J. E. Baker (1985). Adaptive selection methods for genetic algorithms. In: J. J. Grefen-
stette (Ed.), Proceedings of the First International Conference on Genetic Algorithms,
pp. 101–111. Lawrence Erlbaum Associates, Hillsdale, MA.

[2] M. Bessaou and P. Siarry (2001). A genetic algorithm with real-value coding to optimize
multimodal continuous functions, Struct. Multidisc. Optim., 23, 63–74.

[3] I. Bohachevsky, M. E. Johnson and M. L. Stein (1986). Generalized simulated annealing
for function optimization, Technometrics, 28, 209–217.

[4] R. Chelouah and P. Siarry (2000). A continuous genetic algorithm designed for the
global optimization of multimodal functions, J. Heuristics, 6, 191–213.

[5] D. E. Goldberg (1989). Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley.

[6] T. Günal (2000). A hybrid approach to the synthesis of nonuniform lossy transmission-
line impedance-matching sections, Microwave and Optical Technology Letters, 24, 121–
125.

[7] A. Hedar and M. Fukushima (2002). Hybrid simulated annealing and direct search
method for nonlinear unconstrained global optimization, Optim. Methods and Software,
17, 891–912.

[8] R. Horst and P. M. Pardalos (Eds.) (1995). Handbook of Global Optimization. Kluwer
Academic Publishers, Boston, MA.

[9] C. T. Kelley (1999). Detection and remediation of stagnation in the Nelder-Mead algo-
rithm using a sufficient decrease condition, SIAM J. Optim., 10, 43–55.

15

[10] C. T. Kelley (1999). Iterative Methods for Optimization. Frontiers Appl. Math. 18,
SIAM, Philadelphia, PA.

[11] K. I. M. McKinnon (1999). Convergence of the Nelder-Mead simplex method to a non-
stationary point, SIAM J. Optim., 9, 148-158.

[12] Z. Michalewicz (1996). Genetic algorithms + Data structures = Evolution programs.
Springer, Berlin, Heidelberg, New York.

[13] P. Moscato (1999). Memetic algorithms: An introduction. In: D. Corne, M. Dorigo and
F. Glover (Eds.), New Ideas in Optimization. McGraw-Hill, London, UK.

[14] M. Musil, M. J. Wilmut and R. Chapman (1999). A hybrid simplex genetic algorithm
for estimating geoacoustic parameters using matched-field inversion, IEEE J. Oceanic
Eng., 24, 358–369.

[15] J. A. Nelder and R. Mead (1965). A simplex method for function minimization, Comput.
J., 7, 308–313.

[16] I. H. Osman and J. P. Kelly (Eds.) (1996). Meta-Heuristics: Theory and Applications.
Kluwer Academic Publishers, Boston, MA.

[17] P. M. Pardalos and M. G. C. Resende (Eds.) (2002). Handbook of Applied Optimization.
Oxford University Press, Oxford.

[18] P. M. Pardalos, H. E. Romeijn and H. Tuy (2000). Recent developments and trends in
global optimization, J. Comput. Appl. Math., 124, 209–228.

[19] P. M. Pardalos and H. E. Romeijn (Eds.) (2002). Handbook of Global Optimization.
Kluwer Academic Publishers, Boston, MA.

[20] J. M. Renders and H. Bersini (1994). Hybridizing genetic algorithms with hill-climbing
methods for global optimization: Two possible ways. In: Z. Michalewicz, J. D. Schaf-
fer, H.-P. Schwefel. D. B. Fogel, and H. Kitano (Eds.), Proceedings of the First IEEE
Conference on Evolutionary Computation, pp. 312–317. IEEE Press.

[21] R. Yang and I. Douglas (1998). Simple genetic algorithm with local tuning: Efficient
global optimizing technique, J. Optim. Theory Appl., 98, 449–465.

[22] J. Yen, J. C. Liao, B. Lee and D. Randolph (1998). A hybrid approach to modeling
metabolic systems using a genetic algorithm and simplex method, IEEE Trans. on Syst.,
Man, and Cybern. B, 28, 173–191.

[23] R. Zentner, Z. Sipus and J. Bartolic (2001). Optimization synthesis of broadband circu-
larly polarized microstrip antennas by hybrid genetic algorithm, Microwave and Optical
Technology Letters, 31, 197–201.

16

A List of test functions

A.1 Branin RCOS function (RC)

• Number of variables: n = 2.

• Definition: RC(x1, x2) = (x2 − 5.1
4π2 x

2
1 + 5

π
x1 − 6)2 + 10(1− 1

8π
) cos(x1) + 10.

• Range of initial points: −5 < x1 < 10, 0 < x2 < 15.

• Number of local minima: no local minimum1.

• Global minima: (x1, x2)
∗ = (−π, 12.275), (π, 2.275), (9.42478, 2.475);

RC((x1, x2)
∗) = 0.397887.

A.2 Easom function (ES)

• Number of variables: n = 2.

• Definition: ES(x1, x2) = − cos(x1) cos(x2) exp(−(x1 − π)2 − (x2 − π)2).

• Range of initial points: −10 < xj < 10, j = 1, 2.

• Number of local minima: several local minima.

• The global minimum: (x1, x2)
∗ = (π, π); ES((x1, x2)

∗) = −1.

A.3 Goldstein and Price function (GP)

• Number of variables: n = 2.

• Definition: GP (x1, x2) = u ∗ v,

where u = 1 + (x1 + x2 + 1)2 (19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2) ,
and v = 30 + (2x1 − 3x2)

2 (18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2) .

• Range of initial points: −2 < xj < 2, j = 1, 2.

• Number of local minima: 4 local minima.

• The global minimum: (x1, x2)
∗ = (0,−1); GP ((x1, x2)

∗) = 3.

1Throughout the Appendix, ‘local minimum’ means a mere local minimum that is not a global minimum

17

A.4 Hump function (HM)

• Number of variables: n = 2.

• Definition: HM(x1, x2) = 1.0316285 + 4x2
1 − 2.1x4

1 + 1
3
x6

1 + x1x2 − 4x2
2 + 4x4

2.

• Range of initial points: −5 < xj < 5, j = 1, 2.

• Number of local minima: no local minima.

• Global minima: (x1, x2)
∗ = (0.0898,−0.7126), (−0.0898, 0.7126);

HM((x1, x2)
∗) = 0.

A.5 Shubert function (SH)

• Number of variables: n = 2.

• Definition: SH(x1, x2) =
(∑5

j=1 j cos ((j + 1) x1 + j)
) (∑5

j=1 j cos ((j + 1) x2 + j)
)
.

• Range of initial points: −10 < xj < 10, j = 1, 2.

• Number of local minima: 760 local minima.

• Global minima: 18 global minima and SH((x1, x2)
∗) = −186.7309.

A.6 Michalewicz function (MZ)

• Number of variables: n = 2.

• Definition: MZ(x1, x2) = −∑2
j=1 sin (xj)

(
sin

(
jx2

j/π
))2m

; m = 10.

• Range of initial points: 0 ≤ xj ≤ π, j = 1, 2.

• Number of local minima: many local minima.

• Global minima: MZ((x1, x2)
∗) = −1.8013.

A.7 Bohachevsky functions (Bm)

• Number of variables: n = 2.

• Three functions were considered: B1, B2 and B3.

• Definitions: B1(x1, x2) = x2
1 + 2x2

2 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7.

B2(x1, x2) = x2
1 + 2x2

2 − 0.3 cos(3πx1) cos(4πx2) + 0.3.
B3(x1, x2) = x2

1 + 2x2
2 − 0.3 cos(3πx1 + 4πx2) + 0.3.

18

Table 5: The coefficients of Hartmann function H3,4

i aij ci pij

1
2
3
4

3.0 10.0 30.0
0.1 10.0 35.0
3.0 10.0 30.0
0.1 10.0 35.0

1.0
1.2
3.0
3.2

0.689 0.1170 0.2673
0.4699 0.4387 0.7470
0.1091 0.8732 0.5547
0.0381 0.5743 0.8828

• Range of initial points: −10 ≤ xj ≤ 10, j = 1, 2.

• Number of local minima: many local minima.

• Global minima: (x1, x2)
∗ = (0, 0); Bm((x1, x2)

∗) = 0; m = 1, 2, 3.

A.8 De Joung function (DJ)

• Number of variables: n = 3.

• Definition: DJ(x1, x2, x3) = x2
1 + x2

2 + x2
3.

• Range of initial points: −5 < xj < 5, j = 1, 2, 3.

• Number of local minima: no local minima.

• The global minimum: (x1, x2, x3)
∗ = (0, 0, 0); DJ((x1, x2, x3)

∗) = 0.

A.9 Hartmann function (H3,4)

• Number of variables: n = 3.

• Definition: H3,4(x) = −∑4
i=1 ci exp

[
−∑3

j=1 aij (xj − pij)
2
]
. The coefficients are shown

in Table 5.

• Range of initial points: 0 < xj < 1, j = 1, 2, 3.

• Number of local minima: 4 local minima.

• The global minimum: x∗ = (0.114614, 0.555649, 0.852547); H3,4(x
∗) = −3.86278.

19

Table 6: The coefficients of Shekel function S4,m

i aij ci

1
2
3
4
5
6
7
8
9
10

4.0 4.0 4.0 4.0
1.0 1.0 1.0 1.0
8.0 8.0 8.0 8.0
6.0 6.0 6.0 6.0
3.0 7.0 3.0 7.0
2.0 9.0 2.0 9.0
5.0 5.0 3.0 3.0
8.0 1.0 8.0 1.0
6.0 2.0 6.0 2.0
7.0 3.6 7.0 3.6

0.1
0.2
0.2
0.4
0.4
0.6
0.3
0.7
0.5
0.5

A.10 Shekel functions (S4,m)

• Number of variables: n = 4.

• Definition: S4,m(x) = −∑m
i=1

[∑4
i=1 (xi − ai)

2 + ci

]−1
. The coefficients are shown in

Table 6.

• Three functions were considered: S4,5, S4,7 and S4,10.

• Range of initial points: 0 < xj < 10, j = 1, . . . , 4.

• Number of local minima: m local minima.

• Same global minimum for three functions S4,5, S4,7 and S4,10: x∗ = (4, 4, 4, 4);

S4,5(x
∗) = −10.1532, S4,7(x

∗) = −10.4029 and S4,10(x
∗) = −10.5364.

A.11 Hartmann function (H6,4)

• Number of variables: n = 6.

• Definition: H6,4(x) = −∑4
i=1 ci exp

[
−∑6

j=1 aij (xj − pij)
2
]
. The coefficients are ahown

in Table 7.

• Range of initial points: 0 < xj < 1, j = 1, . . . , 6.

• Number of local minima: 6 local minima.

• The global minimum:

20

Table 7: The coefficients of Hartmann function H6,4

i aij ci

1
2
3
4

10.00 3.00 17.00 3.50 1.70 8.00
0.05 10.00 17.00 0.10 8.00 14.00
3.00 3.50 1.70 10.0 17.00 8.00
17.00 8.00 0.05 10.00 0.10 14.00

1.0
1.2
3.0
3.2

i pij

1
2
3
4

0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

x∗ = (0.201690, 0.150011, 0.476874, 0.275332, 0.311652, 0.657300);
H6,4(x

∗) = −3.32237.

A.12 Griewank function (GR)

• Number of variables: n = 6.

• Definition: GR(x) =
∑6

j=1

x2
j

4000
−∏6

j=1 cos
(

xj√
j

)
+ 1.

• Range of initial points: −1 < xj < 1, j = 1, 2, . . . , 6.

• Number of local minima: many local minima.

• The global minimum: x∗ = (0, . . . , 0), GR(x∗) = 0.

A.13 Rosenbrock functions (Rn)

• Number of variables: n = 2, 5, 10.

• Definition: Rn(x) =
∑n−1

j=1

[
100

(
x2

j − xj+1

)2
+ (xj − 1)2

]
.

• Range of initial points: −5 < xj < 10, j = 1, 2, . . . , n.

• Number of local minima: no local minimum.

• The global minimum: x∗ = (1, . . . , 1), Rn(x∗) = 0.

21

A.14 Zakharov functions (Zn)

• Number of variables: n = 2, 5, 10.

• Definition: Zn(x) =
∑n

j=1 x2
j +

(∑n
j=1 0.5jxj

)2
+

(∑n
j=1 0.5jxj

)4
.

• Range of initial points: −5 < xj < 10, j = 1, 2, . . . , n.

• Number of local minima: no local minimum.

• The global minimum: x∗ = (0, . . . , 0), Zn(x∗) = 0.

A.15 Function (F1)

• Number of variables: n = 2.

• Definition: F1(x1, x2) = x2
1 + x2

2 − cos(18x1)− cos(18x2).

• Range of initial points: −1 < xj < 1, j = 1, 2.

• Number of local minima: many local minima.

• The global minimum: (x1, x2)
∗ = (0, 0); F1((x1, x2)

∗) = −2.

A.16 Function (F2)

• Number of variables: n = 10.

• Definition: F2(x) =
∑10

j=1 min {|xj − 0.2|+ a, |xj − 0.4| , |xj − 0.7|+ a} , a = 0.05.

• Range of initial points: 0 < xj < 1, j = 1, . . . , 10.

• Number of local minima: many local minima.

• The global minimum: x∗ = (0.4, 0.4, . . . , 0.4); F2(x
∗) = 0.

A.17 De Joung F5 function

• Number of variables: n = 2.

• Definition: F5(x1, x2) =
(
0.002 +

∑25
j=1

1

j+
∑2

i=1
(xi−aij)

6

)−1

,

a1j = −32,−16, 0, 16, 32 for j = 1, 2, . . . , 5,
a1k = a1j for k = j + 5, j + 10, j + 15, j + 20, and j = 1, 2, . . . , 5,
a2j = −32,−16, 0, 16, 32 for j = 1, 6, 11, 16, 21,
a2k = a2j for k = j + 1, j + 2, j + 3, j + 4, and j = 1, 6, 11, 16, 21.

22

• Range of initial points: −65.536 < xi < 65.536, i = 1, 2.

• Number of local minima: many local minima.

• The global minimum: (x1, x2)
∗ = (−32,−32); F5((x1, x2)

∗) = 0.998004.

23

