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Preface

In this thesis, we develop several methods for solving the general (not necessarily monotone)

variational inequality problem. The variational inequality problem, which may be regarded

as an extension of the nonlinear programming problem, has now become one of the core

subjects in optimization, and indeed it covers various classes of optimization problems in-

cluding the nonlinear system of equations and equilibrium problems of many kinds. Besides

its use as these problems, the variational inequality problem has a wide range of important

application fields in engineering and economics.

Since its emergence in 1960s, the variational inequality problem has been widely explored

by mathematicians, engineers and economists. Although there have been plenty of methods

proposed for solving the variational inequality problem, most of them restrict themselves by

imposing some assumptions such as monotonicity on the problem. For the general variational

inequality problem, there are very few methods, and especially methods implementable in

practice are even fewer.

The relationship between the variational inequality problem and global optimization was

first pointed out by Auslender in 1976 when he introduced the gap function. Since then sev-

eral other global optimization reformulations of the variational inequality problem have been

discovered and all of them possess the same important property that the global minimum

value of the equivalent problem is zero provided the variational inequality problem has a

solution. Moreover, the advances in computer technology and the emergence of the heuristic

methods make it possible to employ global optimization methods which are traditionally

considered very expensive for solving the variational inequality problem.

The main contribution of this thesis is to investigate the possibility of using global opti-

mization methods for solving the general variational inequality problem. We develop meth-

ods, from deterministic to heuristic, for directly solving the equivalent global optimization

problems. Moreover, we propose a modified and practically implementable version of the

classical fast convergent Josephy-Newton method and employ a heuristic method as a sub-
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problem solver.

Another important contribution is to develop a heuristic method that is capable of detect-

ing as many as possible, hopefully all, solutions of the general variational inequality problem.

The adaptive fitness function techniques for the evolutionary algorithm is introduced as a

part of this method.

Kyoto, Japan Mend-Amar Majig

January 2009
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Chapter 1

Introduction

1.1 Variational Inequality Problem

Let S be a nonempty closed convex set in ℜn and F be a continuous mapping from ℜn into

itself. The variational inequality problem (VIP for short) is to find a vector x∗ ∈ S such that

〈F (x∗), x− x∗〉 ≥ 0, ∀x ∈ S, (1.1.1)

where 〈·, ·〉 denotes the inner product in ℜn. This problem is denoted by VI(S, F ) and its

solution set is denoted by SOL(S, F ).

When S ≡ ℜn, (1.1.1) reduces to the following system of nonlinear equations:

F (x) = 0. (1.1.2)

When F is a gradient of some differentiable function f , i.e., F (x) ≡ ∇f(x), then (1.1.1)

represents the optimality condition of the following optimization problem:

min f(x) subject to x ∈ S. (1.1.3)

Besides being an extension to the nonlinear programming problem and the system of non-

linear equations, the variational inequality problem is a host to various types of equilibrium

problems and has a great deal of application fields [8, 17, 33, 54, 69, 73, 78, 98].

Theoretical aspects of the VIP have been studied extensively [2, 3, 6, 9, 10, 11, 12, 25,

32, 35, 44, 45, 46, 47, 49, 50, 57, 59, 65, 66, 67, 76, 77, 79, 80, 84, 85, 92, 93, 94, 95, 99] since

its emergence and many algorithms, such as projection methods, interior and smoothing

methods and equation reduction methods, have been proposed to solve it [11, 18, 19, 20, 23,

32, 39, 68, 70, 71, 72, 74, 83, 101]. However, the validity and efficiency of those algorithms

often depend on the monotonicity-like assumption on the mapping F .
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Although some algorithms have been proposed for solving general (not necessarily mono-

tone) VIPs [1, 40, 41, 48, 83, 88, 96], they are primarily designed to solve the particular

VI(S, F ) in which the constraint set S is the non-negative orthant ℜn
+. This special prob-

lem, VI(ℜn
+, F ), is called the nonlinear complementarity problem, and is denoted NCP(F ).

Some methods [40, 41, 88] may be applied to the general VIP by reformulating the problem

as a complementarity problem through its KKT system. But those approaches increase the

dimension of the problem by introducing Lagrangian multipliers.

Among the methods for solving the VIP, a popular idea is to reformulate the VIP as

some well known class of problems such as nonlinear systems of equations or optimization

problems and deal with their equivalent problems by using classical methods [22, 23, 35,

40, 41, 42, 43, 66, 72, 83, 84, 85, 97, 102, 106, 107]. It has been known for long that the

VIP can be reformulated as an optimization problem with zero global minimum value. But

global optimization methods have been considered computationally very expensive and little

attention has been paid to using global optimization approaches for solving VIPs.

The advances in computer technology and the emergence of meta-heuristic methods

[7, 13, 28, 51, 52] in global optimization make us reconsider the use of global optimization

methods for solving VIPs. Solving the global optimization problem derived from a VIP has

several advantages.

Firstly, since a global solution of the equivalent optimization problem will always be the

true solution to VIP, we do not need any extra assumptions as most of the VIP methods

require. In this way we can deal with the VIP under a very general setting.

Secondly, the known global minimum value of the equivalent problem is particularly help-

ful especially when we use heuristic approaches. Due to the absence of optimality conditions

for general global minima, heuristic methods for global optimization usually use some upper

limit for computational expenses as a stopping condition. Since the global minimum value

is known to be zero, we can use this information in the stopping condition.

Moreover, heuristic methods of global optimization will give us opportunity to search

with much more flexibility. As a result we may develop a method for finding as many as

possible solutions of the general VIP, which is one of the first methods of this kind.
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1.2 Global Optimization Problem

For a given set S and a continuous function f , the global optimization problem is to find

x∗ ∈ S such that

f(x∗) ≤ f(x), ∀x ∈ S. (1.2.1)

The point x∗ satisfying (1.2.1) is called a global minimum for f over the set S, and f(x∗) is

called the global minimum value.

The global optimization problem is one of the fundamental subjects in optimization and

its practical applications are diverse [37]. In the presence of multiple non-global solutions,

the classical optimization methods are not guaranteed to find the global solutions. The

methods for solving global optimization problems fall into three categories; deterministic

methods, stochastic methods and heuristic methods [37, 13, 75, 87, 89, 90].

The deterministic methods, including the branch and bound methods, the cutting plane

methods, have a theoretical guarantee of finding the global solution. But most of the de-

terministic methods are proposed for particular classes of the problems and take advantage

of the special structure of the problems. Besides, the deterministic methods are considered

very expensive.

The stochastic methods, including the simulated annealing and the Monte-Carlo sam-

pling, search the solution randomly and there is no guarantee that the algorithm can find the

solution in a finite number of steps. Nevertheless, for some type of problems the stochastic

methods work better than the deterministic methods.

The advances in the computer technology in last two decades make it possible to solve

global optimization problems once considered very hard. Meantime, the introduction of

meta-heuristics for global optimization has brought us to a new era in global optimization

solver [13, 28, 51]. The heuristic methods search global solutions in an intelligent way.

Although there is no guarantee for the convergence of the method to a solution, heuristic

methods work very well in practice, and very often prevail the other two. Methods in meta-

heuristics are flexible, and they can deal with very general global optimization problems.

The main drawback of stochastic and heuristic methods is that they suffer from the

difficulty in determining stopping conditions, and they usually use some upper limits on

computational expenses. But when we use heuristic methods to solve an equivalent opti-

mization problem of the VIP, we have a natural stopping condition based on the fact that

the global minimum value is zero.

In the thesis, we concentrate on using global optimization methods and techniques for

solving the general variational inequality problem. Using a global optimization approach for
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solving VIPs has several advantages.

First of all, the global minimum value of the equivalent problems is known to be zero

beforehand. So we can get rid of the difficulty that most global optimization problems face

in determining when to stop.

Secondly, when we try to obtain not just one solution, but multiple solutions, the zero

global minimum value is very important. The adaptive fitness function technique we develop

has the property that when we construct the merit function by using some adaptive functions,

the global minimum value will remain intact because of the zero global minimum value.

We will employ both deterministic and heuristics methods for solving the equivalent

global optimization problems of VIPs.

1.3 Outline of the Thesis

In the subsequent chapters, we explore the basic properties of the VIP and its relationship

with global optimization, and develop several methods for solving the general VIP. Below

we summarize the main contributions in each chapter.

In Chapter 2, we give a brief introduction to the VIP, its solution analysis, and its relation

to a global optimization problem. Equivalent unconstrained global optimization problems

based on merit functions will be discussed in detail.

In Chapter 3, we present a heuristic method to find as many as possible solutions of

the general VIP. We propose a hybrid evolutionary algorithm that incorporates local search

in promising regions. In order to prevent searching process from returning to the already

detected global or local solutions, we employ some adaptive fitness function techniques.

In Chapter 4, we propose a new practical version of globally convergent Josephy-Newton

based method for VIPs. By means of some additional bound constraint, the method ensures

existence of solutions to subproblems, which is an essential property not enjoyed by the clas-

sical Josephy-Newton method. Under appropriate conditions, global and locally superlinear

convergence properties of the proposed method are established. Furthermore, we develop an

evolutionary algorithm for solving general VIPs with bounded polyhedral constraints, which

can be used to solve the modified Josephy-Newton subproblems when the constraint set is

polyhedral.

In Chapter 5, we present a deterministic approach for solving VIPs. Under some suitable

assumptions, the Lipschitz continuity for merit functions is shown. Then the classical Lips-

chitzian branch and bound method is applied to solve merit function minimization problems.



1.3 Outline of the Thesis 5

In Chapter 6, we will summarize the findings in the thesis and discuss some possible

future directions.
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Chapter 2

Preliminaries

2.1 Notations

First we introduce some basic notations which will be used in the subsequent chapters.

ℜn is the n dimensional Euclidean space.

‖ · ‖ is the Euclidean norm defined by

‖x‖ :=
√

x2
1 + x2

2 + · · ·+ x2
n, for x = (x1, x2, . . . , xn).

‖ · ‖∞ is the l∞ norm defined by

‖x‖∞ := max
1≤i≤n

|xi|, for x = (x1, x2, . . . , xn).

B(x̄, δ) is the closed ball with center x̄ and radius δ defined by

B(x̄, δ) := {x ∈ ℜn| ‖x− x̄‖ ≤ δ}.

The notation x ⊥ y means vector x is perpendicular to vector y.

An n× n matrix G is called positive definite, if and only if

〈x,Gx〉 > 0, ∀x ∈ ℜn, x 6= 0.

For a given symmetric, positive definite matrix G, ‖ · ‖G is the G norm defined by

‖x‖G := 〈x,Gx〉.
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For a given closed convex set S ⊆ ℜn, a vector x ∈ ℜn and a symmetric positive definite

matrix G, the projection of x onto S under the G norm, denoted ΠS,G(x), is defined as the

unique solution of the following strictly convex minimization problem

minimize 1
2
‖y − x‖2G

subject to y ∈ S.

When G is the identity matrix, i.e., G ≡ I, ΠS,G(x) is called the Euclidean projection and

denoted simply by ΠS(x).

For a differentiable function f : ℜn → ℜ, ∇f(x) denotes its gradient at point x defined by

∇f(x) :=













∂f(x)

∂x1
...

∂f(x)

∂xn













,

where
∂f(x)

∂xi

is the partial derivative of f at x associated with its i-th component.

For a differentiable vector valued function F : ℜn → ℜm, ∇F (x) denotes its transposed

Jacobian matrix at point x defined by

∇F (x) := (∇F1(x) . . .∇Fn(x)) =













∂F1(x)

∂x1

. . .
∂Fm(x)

∂x1
...

. . .
...

∂F1(x)

∂xn

. . .
∂Fm(x)

∂xn













.

2.2 Solution Analysis of VIPs

The most fundamental result on the existence of a solution to the VI(S, F ) requires the

compactness and convexity of the set S and continuity of the mapping F .

Theorem 2.2.1. [15, 34] Let S ⊆ ℜn be a nonempty and convex set and let F : S → ℜn be

a continuous mapping. If S is compact, then there exists a solution to the problem VI(S, F ).

From this theorem, many other results can be derived by replacing the compactness of S

with some additional conditions on F . Among these additional conditions, the monotonicity

plays a crucial role. Below we introduce the definition of the monotonicity and its versions.
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Definition 2.2.2. [82] The mapping F : ℜn → ℜn is said to be

(a) monotone over a set S if

〈F (x)− F (y), x− y〉 ≥ 0, ∀x, y ∈ S; (2.2.1)

(b) strictly monotone over S if

〈F (x)− F (y), x− y〉 > 0, ∀x, y ∈ S, x 6= y; (2.2.2)

(c) strongly monotone over S if there exists an α > 0 such that

〈F (x)− F (y), x− y〉 ≥ α‖x− y‖2, ∀x, y ∈ S; (2.2.3)

(d) coercive with respect to S if there exists a vector x0 ∈ S such that

lim
x∈S, ‖x‖→∞

〈F (x), x− x0〉
‖x‖ =∞. (2.2.4)

The concept of monotonicity is closely related with the concept of convexity. In fact,

when F is a gradient mapping of a real-valued function f , i.e., F (x) = ∇f(x), ∀x ∈ S, then

the mapping F is monotone on S if and only if f is a convex function on S.

In general, the variational inequality problem may have more than one solution, but

under the strict monotonicity assumption on F , there cannot be more than one solution.

Proposition 2.2.3. [32] If F is strictly monotone on S, then the problem VI(S, F ) has at

most one solution.

Note that the strict monotonicity assumption does not guarantee the existence of the

solution to VI(S, F ). The following two theorems show that under a bit stronger conditions,

the existence is guaranteed.

Theorem 2.2.4. [34, 80] Let S ⊆ ℜn be a nonempty, closed, convex set and let F : S → ℜn

be a continuous mapping. If F is coercive with respect to S, then the problem VI(S, F ) has

a nonempty compact solution set.

The following theorem suggests the uniqueness of the solution.
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Theorem 2.2.5. [34, 80] Let S ⊆ ℜn be a nonempty, closed, convex set and let F : S → ℜn

be a continuous mapping. If F is strongly monotone with respect to S, then there exists a

unique solution to the problem VI(S, F ).

Next we consider the concept of an isolated solution.

Definition 2.2.6. [104] A solution x∗ of the variational inequality problem VI (S, F ) is

isolated if there exists a neighborhood U of x∗ such that x∗ is the only solution of the VI(S, F )

in U .

The following result gives a sufficient condition for a solution of the problem VI(S, F ) to

be isolated.

Proposition 2.2.7. [104] Let F : ℜn → ℜn be a continuously differentiable mapping and let

x∗ be a solution to the problem VI(S, F ). If the Jacobian matrix ∇F (x∗) is positive definite,

then x∗ is isolated.

We close this subsection with some discussion about the KKT system of the variational

inequality problem. We consider the case where the constraint set S is represented by finitely

many differentiable inequalities and equations:

S := {x ∈ ℜn| h(x) = 0, g(x) ≤ 0}, (2.2.5)

with h : ℜn → ℜl is an affine function and g : ℜn → ℜm is a vector-valued continuously

differentiable convex function. When we consider the KKT system for an optimization

problem, a condition so called constraint qualification on the constraint set is crucial for the

validity of the KKT system. One of the most popular constraint qualifications is Slater’s

constraint qualification. We say that the generalized Slater’s constraint qualification holds

for the set S given by (2.2.5) if there exists a x̄ ∈ S such that g(x̄) < 0.

Proposition 2.2.8. [17] Let S be given by (2.2.5) where the function h := (h1, . . . , hl) is

affine and the function g := (g1, . . . , gm) is continuously differentiable and convex. Let F be

a mapping from S into ℜn. The following two statements are valid.
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(a) Let x be a solution to VI(S, F ). If the generalized Slater’s constraint qualification holds

for the set S, then there exist vectors µ ∈ ℜl and λ ∈ ℜm such that

0 = F (x) +
l

∑

j=1

µj∇hj(x) +
m
∑

i=1

λi∇gi(x)

0 = h(x)

0 ≤ λ ⊥ g(x) ≤ 0.

(2.2.6)

(b) Conversely, if (x, µ, λ) satisfies (2.2.6), then x solves the VI (S, F ).

This KKT system itself may be regarded as a box constrained variational inequality

problem. Hence, instead of solving the original VIP with general convex constraints, we can

deal with a box constrained VIP with higher dimension.

2.3 Equivalent Reformulations of VIPs

2.3.1 Equation Reformulations

The first two reformulations are based on the projection operator. Let us define the following

two mapping:

• the natural mapping - F nat
S (v) := v − ΠS(v − F (v)),

• the normal mapping - F nor
S (v) := F (ΠS(v)) + v − ΠS(v).

The following proposition will give us equivalent reformulations of VIP as systems of equa-

tions.

Proposition 2.3.1. [92, 93, 94] Let S ⊆ ℜn be a closed convex set and let F : S → ℜn

be any mapping. Then x is a solution to VI(S, F ) if and only if any of the following two

statements holds:

(a) x satisfies

F nat
S (x) = 0; (2.3.1)

(b) there exists a vector z such that x = ΠS(z) and

F nor
S (z) = 0. (2.3.2)
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The next reformulation is based on the KKT system of the VIP. We have seen in the

previous section that, under some suitable condition, for a finitely representable set

S := {x ∈ ℜn| h(x) = 0, g(x) ≤ 0},

if x is a solution to VI(S, F ), it satisfies with some (µ, λ) ∈ ℜl × ℜm the following KKT

system

0 = F (x) +
l

∑

j=1

µj∇hj(x) +
m
∑

i=1

λi∇gi(x)

0 = h(x)
0 ≤ λ ⊥ g(x) ≤ 0.

(2.3.3)

By using the so-called complementarity function, or C function for short, we can reformulate

this system as a nonlinear system of equations.

Definition 2.3.2. A function ψ : ℜ2 → ℜ is called a C-function, if for any pair (a, b) ∈ ℜ2,

ψ(a, b) = 0⇐⇒ (a, b) ≥ 0 and ab = 0.

With the Fischer-Burmeister C function defined by ψFB(a, b) :=
√
a2 + b2−a− b, we can

redefine the KKT system (2.3.3) as the following system of nonlinear equations:








F (x) +
l

∑

j=1

µj∇hj(x) +
m
∑

i=1

λi∇gi(x)

h(x)
ψFB(g(x), λ)









= 0, (2.3.4)

where ψFB(g(x), λ) = (ψFB(g1(x), λ1), . . . , ψFB(gm(x), λm))T .

2.3.2 Merit Functions

Definition 2.3.3. [17, 22] A merit function for the VI (S, F ) on a closed set X ⊇ S is

a nonnegative function θ : X → ℜ+ such that x∗ ∈ SOL(S, F ) if and only if x∗ ∈ X and

θ(x∗) = 0, that is, if and only if the solutions of the VI (S, F ) coincide with the global

solutions of the problem

minimize θ(x)

subject to x ∈ X
and the optimal objective value of this problem is zero.
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When SOL(S, F ) is empty, then either the global optimal value of θ over X is positive

or θ has no global minima on X. Below we consider some well known merit functions.

Gap function [3, 35]

The gap function is defined by

θgap(x) = sup
y∈S

〈F (x), x− y〉. (2.3.5)

This function is considered the first of the merit functions and several other merit functions

have been created by modifying this function [22, 23, 43]. It is not difficult to see that

θgap(x) ≥ 0, ∀x ∈ S, and that x∗ ∈ SOL(S, F ) if and only if θ(x∗) = 0. Thus θgap is a merit

function for the VI (S, F ) on S.

To evaluate a gap function value, we have to maximize a linear function over the set S.

Unless S is a polyhedral set, this is not a trivial task. In general, the gap function is not

differentiable.

The next function we consider is the regularized gap function which is a modification of

the gap function.

Regularized gap function [23]

The regularized gap function is defined by

θc(x) = sup
y∈S

{〈F (x), x− y〉 − c

2
〈x− y,G(x− y)〉}, (2.3.6)

where G is a symmetric, positive definite matrix and c is a positive scalar. To evaluate a

regularized gap function value we have to solve the following convex programming problem.

maximize 〈F (x), x− y〉 − c

2
〈x− y,G(x− y)〉

subject to y ∈ S.
(2.3.7)

The objective function in (2.3.7) is strongly concave, so the regularized gap function is

well defined, and from the definition of the function it is seen that

θb(x) ≤ θa(x), ∀x ∈ ℜn,

for any two scalars b > a > 0. Moreover, the regularized gap function is differentiable,

whenever so is F , and its gradient is given by

∇θc(x) = F (x) + (∇F (x)T − cG)T (x− ΠS,G(x− c−1G−1F (x))).

It is important to note that the nonnegativity of the regularized gap function θc is valid

only on S; moreover, in order for a zero of θc to be a solution of the VI (S, F ), it is essential
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that such a zero belongs to S. The constraint x ∈ S is needed in order to ensure that a

global minimizer of the program with zero objective value solves the VI (S, F ).

Linearized gap function [102]

One of the drawbacks of the regularized gap function is that the evaluation of this function

requires a calculation of a projection onto the set S, which cannot be accomplished by a

finite procedure, unless S is polyhedral. However, in the case of a finitely representable set

S, we can consider a less expensive merit function. Assume that

S := {x ∈ ℜn|gi(x) ≤ 0, i = 1, . . . ,m}, (2.3.8)

where each gj, i = 1, . . . ,m is a convex and continuously differentiable function. Linear

equality constraints can be included without difficulty, but are omitted for simplicity. We

define the polyhedral approximation to S at the point x by

Γ(x) := {y ∈ ℜn| gi(x) + 〈∇gi(x), y − x〉 ≤ 0, i = 1, . . . ,m},

and define the linearized gap function θlin
c (x) by

θlin
c (x) = sup

y∈Γ(x)

{〈F (x), x− y〉 − c

2
〈x− y,G(x− y)〉}. (2.3.9)

Since S ⊆ Γ(x), ∀x ∈ ℜn,

θlin
c (x) ≥ θc(x), ∀x ∈ ℜn,

and the following proposition shows that under some suitable constraint qualifications for

S, θlin
c (x) is indeed a merit function for VI(S, F ).

Proposition 2.3.4. [102] Let S be defined by (2.3.8), where each gi, i = 1, . . . ,m is a

convex and continuously differentiable function. Let c > 0 be a given scalar and G be a

given symmetric positive definite matrix. If x ∈ S and θlin
c (x) = 0, then x ∈SOL(S, F ).

Conversely, if x ∈ SOL(S, F ) and the generalized Slater’s constraint qualification holds for

S, then θlin
c (x) = 0.

The evaluation of the linearized gap function requires solving a convex quadratic program-

ming problem. Although this function is not differentiable, under some suitable condition,

it can be shown that the function is directionally differentiable for every direction.
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2.3.3 Unconstrained Global Optimization Reformulations

In this subsection, we will consider several unconstrained global optimization reformulations

to VIPs.

Equation based reformulations

The equation reformulations we have considered in the previous sections directly lead us to

some unconstrained global optimization reformulations of VIPs.

Suppose that for the VI(S, F ) we have the following equation reformulation:

H(x) = 0. (2.3.10)

If we consider the function

θ(x) := ‖H(x)‖α, (2.3.11)

where α is any positive integer, then this is an unconstrained merit function for the VIP,

i.e.,

min θ(x) subject to x ∈ ℜn, (2.3.12)

whose global minimum value is zero. In the special case where H(x) = F nat(x) and α = 1,

the function θ is called the natural residual function and denoted θnat(x), i.e.,

θnat(x) := ‖F nat(x)‖ = ‖x− ΠS(x− F (x))‖.

Penalty based reformulation

The merit functions we have considered so far are all parts of some constrained global

optimization problems

min θ(x) subject to x ∈ S. (2.3.13)

For a finitely representable set S := {x ∈ ℜn| h(x) = 0, g(x) ≤ 0}, we can consider the

following penalty based reformulation for the variational inequality problem. Let us define

the penalty function for problem (2.3.13) by

p(x) := θ(x) + ρmax{g1(x), . . . , gm(x), |h1(x)|, |h2(x)|, . . . , |hl(x)|}. (2.3.14)

The following theorem shows that under some assumptions, the function (2.3.14) can serve

as an unconstrained merit function for VI(S, F ).

Theorem 2.3.5. [5] Under some suitable constraint qualifications, there exists a ρ > 0 for

which the solution sets of the problem

min p(x) subject to x ∈ ℜn (2.3.15)
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and problem (2.3.13) are identical.

Note that the global minimum value of the problem (2.3.15) for an appropriate ρ is again

zero.

The D-gap merit functions [106]

The D-gap function is defined by

θab(x) := θa(x)− θb(x), ∀x ∈ ℜn, (2.3.16)

where a and b are given scalars satisfying b > a > 0.

The following theorem shows that the D-gap function is an unconstrained merit function

of the VI (S, F ).

Theorem 2.3.6. [43, 106] Let F : ℜn → ℜn be continuous and S be a closed convex subset

of ℜn. For b > a > 0, the D-gap function θab is continuous on ℜn and

(a) θab(x) ≥ 0 for all x in ℜn;

(b) θab(x) = 0 if and only if x ∈ SOL(S, F );

(c) if F is continuously differentiable on ℜn, then so is the D-gap function θab.

As an alternative to this D-gap function, we may also consider the linearized D-gap

function

θlin
ab (x) = θlin

a (x)− θlin
b (x),

which remains directionally differentiable under some suitable condition. It is not difficult to

see that this function is indeed a merit function. Evaluation of the D-gap function requires

solving two convex programming problem, while that of the linearized D-gap function re-

quires solving two convex quadratic programming problem. With either the D-gap function

or the linearized D-gap function, we can reformulate the VI(S, F ) as an unconstrained global

optimization problem

minimize θab(x) subject to x ∈ ℜn (2.3.17)

or

minimize θlin
ab (x) subject to x ∈ ℜn (2.3.18)

whose global minimum value is zero.

All the unconstrained global optimization reformulations we have considered result in

the global optimization problems whose global minimum values are known to be zero. This

is the motivation of our global optimization approach to VIPs.
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In the following three sections, we develop three methods for solving general VIPs. All of

them are based on solving an equivalent global optimization problem we have just considered.

In two of them, we directly solve the equivalent global optimization problem for VIPs. The

other one solves the equivalent global optimization problem as a subproblem of a particular

fast convergent method.
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Chapter 3

Hybrid Evolutionary Algorithm for

VIPs

3.1 Introduction

In this chapter, we propose a heuristic method for finding as many as possible, hopefully

all, solutions of the general VIP. To achieve this, we first use an optimization reformulation

of the VIP based either on a merit function or on its KKT system. In either case, the

VIP is reformulated as the following box constrained optimization problem with zero global

minimum value [17, 22]:

min f(x) s.t. x ∈ D, (3.1.1)

where f is a real-valued function and the set D is defined as D = {x ∈ Rn| l ≤ x ≤ u}.
Here l, u ∈ Rn ∪ {±∞} are, possibly infinite, lower and upper bounds on the variable.

In order to find all global solutions of problem (3.1.1), we propose a population-based hy-

brid evolutionary algorithm (HEA) that incorporates local search in promising regions. The

proposed method tries to keep and improve diversity of good trial points in the population

set while searching for global minimizers of the objective function. Moreover, every time a

global or local solution, or an unpromising trial point is detected by the HEA, the objective

function of the problem is locally modified around this point to prevent the searching pro-

cess from returning back to the vicinity of this solution again. Actually, the proposed HEA

invokes some known strategies of hybrid metaheuristics [51, 89, 103] with some modifications



20 Hybrid Evolutionary Algorithm for VIPs

to fit the general VIP.

The tunneling function method for finding a global minimum of a non-convex function

was first introduced in [55]. The main idea of this method is that every time a local solution

is detected in computation, it tries to construct a new objective function which has the same

global minima as the original function but the detected local minimum is no longer a local

minimum for the new function. The new function is treated as the objective function in the

next search stage, and this process is repeated until a global solution is found. Another idea

to escape from a detected local minimum, called the filled function method, is proposed in

[26, 27, 105]. Instead of constructing a tunnel at a detected local minimum, it considers a

new objective function which has a local maximum at the detected local solution and has no

stationary point at local solutions worse (having greater original objective function value)

than the detected one. Both tunneling and filled function techniques are applied to the

general nonlinear complementarity problem in [40], where a semi-smooth Newton method is

presented.

In our method, the tunneling function technique is used not only for escaping from the

detected local minimum, but also and more importantly for escaping from a detected global

minimum and its basin to search for other global minimizers. However, the direct use of

the tunneling function technique at a detected global minimum can be effective only if it is

an exact solution of the problem. In practice, we can only expect to find approximations

of global minima. To cope with this difficulty, before using the tunneling modification at

a detected approximate global minimum, we suggest first to use another modification of

the objective function, which is called a hump function and helps capture the exact global

minimum near the detected approximate solution, and then construct a hump-tunneling

function to which the HEA is applied.

The global optimal value of problem (3.1.1) is known to be zero. The proposed method

HEA exploits this fact in two ways. First, it helps the HEA to determine whether a solution

is global or not. Second and more importantly, if a modified objective function (either by a

tunneling or by a hump-tunneling function) has at least one common global minimum with

the original objective function, it must also have the zero global minimum value, i.e., the

global minimum value of the objective functions will remain the same during the computation

except when there are no other common global minimizers.

The organization of this chapter is as follows: In Section 3.2, we first give a description

of the evolutionary algorithm and main procedures used in it. In Section 3.3, we introduce

the adaptive fitness function techniques that enable us to find multiple solutions for the VIP.

The basic ideas behind the tunneling and hump function techniques are also contained in
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this section. In Section 3.4, we present some diversification techniques. In Section 3.5, we

discuss our HEA and its elements in detail. Then we present some numerical results for well

known test problems in Section 3.6 and conclude the chapter in Section 3.7.

3.2 Evolutionary Algorithm

An evolutionary algorithm is based on the idea of imitating the evolutionary process ob-

served in nature. Encouraged by the roles of reproduction, mutation and survival in the

evolution of living things, an evolutionary algorithm tries to combine and change elements

of existing solutions in order to create a new solution with some of the features of parents,

and selects next candidate solutions among them [13, 28, 36, 103]. An evolutionary algorithm

for optimization is different from classical optimization methods in several aspects. First of

all, it depends on random sampling, i.e., the method is non-deterministic. So there is no

theoretical guarantee for the method to find an optimal solution. Secondly, an evolutionary

algorithm works with a population of candidate solutions, meanwhile classical optimization

methods usually maintain a single best solution found so far. The use of population sets

helps the evolutionary algorithm avoid being trapped at a local solution.

Basic scheme of an evolutionary algorithm is given in Figure 3.1. It relies on procedures

such as Parents selection, Crossover and Mutation, and Survival selection [13, 28].

POPULATION

PARENTS

OFFSPRING

Parent Selection

Crossover

Mutation

Survivor Selection

Initialization

Termination

Figure 3.1: Basic scheme of an evolutionary algorithm
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Now we elaborate on the procedures shown in Figure 3.1.

Initialization. We choose the parameters and the fitness function by which solutions

can be assessed, and establish an initial population set. To generate the initial population

set we use either a random distribution or a controlled random distribution.

Parents selection. Parents selection procedure collects parents in a set called parents

pool proportionally to their fitness values. The smaller the fitness function value, the higher

the probability to be chosen as a parent. Thus, it is possible for one member to dominate

all the others and get selected a high proportion of the time.

Crossover and Mutation. The purpose of crossover is to produce children who are

expected to possess better properties than their parents. Good results can be obtained with

a random matching of the individuals [13, 28]. Moreover, random changes or mutations

are made periodically for some members of the current population, thereby yielding a new

candidate solution.

Survival selection. An evolutionary algorithm performs a selection process in which

the most fit members of the population survive, and the least fit members are eliminated.

This process is done with the help of the fitness function and leads the population towards

ever-better solutions.

Termination. An evolutionary algorithm has no optimality condition for the solution

of the problem, so we never know whether the solution we have found is a real optimal

solution or not, unless we already knew the global minimum value of the problem beforehand.

So in general, a prescribed upper limit on the number of function evaluations is used for

termination. Once the number of function evaluations hits this upper limit, the algorithm

stops and the best solution found so far is regarded as a global minimum.

A drawback of any evolutionary algorithm is that a solution is judged better only in

comparison to currently known other solutions; such an algorithm actually has no reasonable

way to test whether a solution is, even local, optimal. This drawback will disappear when

the minimum objective value is known, and the global optimization problem considered here

precisely meets this requirement.

3.3 Adaptive Fitness Function Techniques

When the evolutionary search gets stuck around some local or global solution, unless we

intervene, it is very likely that the searching process stops around that point, even for other

runs with different initial population sets. Adaptive fitness functions discussed below are
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proposed to prevent the searching process wandering around detected solution uselessly and

give opportunity to continue searching in other regions.

First we consider the following two types of functions. Let fc(x) be the current fitness

function used in the HEA and x̄ be a point around which the function fc(x) is to be modified.

Tunneling function. [4, 55, 56] Consider the following function:

ft(x, x̄) := fc(x) · exp
( 1

‖x− x̄‖2
)

. (3.3.1)

This function is called a tunneling function because of its behavior around the point x̄. For

the sake of computational convenience, instead of directly using the function ft(x, x̄), we use

the following approximation of this function:

f̄t(x, x̄) := fc(x) · exp
( 1

εt + 1
ρ2

t
‖x− x̄‖2

)

, (3.3.2)

where εt and ρt are positive parameters that control the degree and the range of modification.

If x̄ is not a global minimum, since the objective function value is zero at any global minimum,

the modified function f̄t(x, x̄) has the same global minima as the function fc(x) has.

Now let x̄ be an isolated global minimum of fc(x). Our purpose is to construct a new

fitness function which has the same global minimizers as the fitness function fc(x) has, except

x̄. Moreover, we require the new function to have no solution around x̄. In principle, we

may use the tunneling function (3.3.2). If x̄ is an exact global solution, i.e., fc(x̄) = 0, then

under mild condition the function ft(x, x̄) can satisfy our requirements. But, if x̄ is just an

approximation of a global solution x̄∗, as one may expect in practice, then it may not be

appropriate to use the tunneling function modification ft(x, x̄), because the exact solution

x̄∗ still satisfies ft(x̄
∗, x̄) = 0 unexpectedly (see Figure 3.2).

Below we propose a possible remedy to overcome the above-mentioned drawback of the

tunneling function method.

Hump-Tunneling function. Consider first the following modified function:

fh(x, x̄) := fc(x) + αhmax
{

0, 1− 1

ρ2
h

‖x− x̄‖2
}

, (3.3.3)

where αh, ρh > 0 are some parameters. We call this function the hump function and this

function may enable us to escape from the region around x̄ even when x̄ is an approximation

of a global solution.
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∗
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∗
3

ft(x, x̄1)

(b)
O

y

Figure 3.2: (a) Graphs of a function and (b) its tunneling modification at an approximate solution

x̄1.

However, it is not clear how we can determine the parameter ρh appropriately. If we set it

smaller than necessary, the modified function may not be very useful because of a narrow

range of modification, and if we set it large, it may affect some other global solutions near

x̄, if any, and may make them non-global solutions any more (see Figure 3.3.(a)). Although

it is not very appropriate to use either tunneling or hump function method individually, it

may be effective to use a combination of these two functions.

We first take a sufficiently small positive scalar ρ̄h and define a hump function fh(x, x̄)

as in (3.3.3). Then we construct the following function:

f̄ht(x, x̄) := fh(x, x̄) · exp
( 1

εt + 1
ρ2

t
‖x− x̄‖2

)

=
(

fc(x) + αhmax
{

0, 1− 1

ρ̄2
h

‖x− x̄‖2
})

· exp
( 1

εt + 1
ρ2

t
‖x− x̄‖2

)

. (3.3.4)

We call this function the hump-tunneling function and zero points of this function coincide

with those of the function fc(x) except for those zeros in B(x̄, ρ̄h). Choosing ρ̄h small enough,

we can avoid affecting other global solutions near x̄ (see Figure 3.3.(b)).

Now we explain when and how to use these functions in detail. The HEA collects the

points at which the detected global or local solutions, or unpromising trial points in the set

Smod of modification points. Once one of those points is detected, the method adds it to

Smod and modifies the objective function around this point in order to avoid returning to it

in the further search. Moreover, the HEA collects the detected global solutions in the set

Sglob and it will play an important role in the algorithm.
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Figure 3.3: (a) Graphs of a hump function and (b) a hump-tunneling function constructed through

modification at an approximate solution x̄2 of the function of Figure 3.2.(a).

Let us consider the modifications.

1. If x̄ is an global solution, then we set

Smod := Smod ∪ {x̄}, Sglob := Sglob ∪ {x̄},

fc(x) :=
(

f(x) +
∑

xg∈Sglob

max
{

0, 1− 1

ρ̄2
h

‖x− xg‖2
})

·exp
(

∑

xm∈Smod

1

εt + 1
ρ2

t
‖x− xm‖2

)

.

Before considering the next type of modification, let us introduce the concepts of semi-local

solutions and unpromising trial points.

Definition 3.3.1. If after a certain number of evolutionary generations and local searches,

the best candidate solution in the population set P has not been improved and it is not a

global minimum, then we say the point is a semi-local solution.

Definition 3.3.2. Let f(x) and fc(x) be the original and the current fitness functions,

respectively, and x̄ be a trial point. Suppose a local search is executed on the original objective

function f with the starting point x̄. If the current fitness function value increases after the

local search, then we say that x̄ is an unpromising trial point.
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Figure 3.4: (a) the original function and (b) an illustration of unpromising trial point .

Figure 3.4.(b) illustrates an unpromising trial point. Let x̄1 be a global solution and x̂1 be

obtained by local search applied to the original function from the starting point x̄1. Then

since the modified function value increases after the local search, x̄1 is unpromising.

2. Suppose x̄ is a semi-local solution. Since it may still attract the population set, we

need to modify the function around this point. A similar observation applies when x̄ is an

unpromising trial point, and we also modify the function. In either case, we set

Smod := Smod ∪ {x̄}, fc(x) := fc(x) · exp
( 1

εt + 1
ρ2

t
‖x− x̄‖2

)

.

Determining the tunneling parameters. The choice of the tunneling parameters is

very important when constructing a new fitness function. Even with the hump-tunneling

function, it is not easy to fully escape from the basin of the already detected solutions.

If we choose the tunneling range parameter ρt smaller than enough, the tunneling will be

not effective and the algorithm will need more modifications to leave fully the basin of this

solution. On the other hand, if we choose this parameter inappropriately big, then it also

may affect the other solutions basins and may make them narrower. So here we consider a

heuristic approach to determine appropriate parameters εt, ρt.

Assume that x̄ is a trial solution on which the tunneling is to be constructed. First we

will determine the basin of this point, so this will in turn give the range of the tunneling.

Choose a parameter τ > 1 and execute the following procedures.

Generate r random vectors dj
i , j = 1, 2, . . . , r with unit length and check the condition

f(x̄+ τ idj
i ) < f(x̄+ τ i+1dj

i ), ∀j ∈ {1, . . . , r} (3.3.5)
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If (3.3.5) holds for i = 0, then repeat the above procedure by setting i := i + 1 until

(3.3.5) is violated. As soon as (3.3.5) is violated, let δ̄ := τ i−1 and x̃ = x̄ + δ̄d̄, where d̄ is

one of the random vectors violating the condition (3.3.5).

If (3.3.5) does not hold for i = 0, then repeat the above procedure by setting i := i − 1

until (3.3.5) is satisfied. As soon as (3.3.5) is satisfied, let δ̄ := τ i and x̃ = x̄ + δ̄d̄, where d̄

is one of the random vectors last considered in checking (3.3.5).

Now we may deduce that the basin of the point x̄ includes the ball B(x̄, δ̄). So our

tunneling should affect more the region inside B(x̄, δ̄) and less outside it. For example, we

require that the new fitness function at the point of tunneling has a value at least twice as

much as that at the point x̃, i.e.,

f̄ht(x̄) ≥ 2f̄ht(x̃),

and at the point x̃ it has a value no greater than exp(1
4
) times f(x̃)− f(x̄), i.e.,

f̄ht(x̃) ≤ exp(
1

4
)(f(x̃)− f(x̄)).

Then simple calculation gives us possible choices

ρt = 0.25δ̄, εt = min{1,−2 + 2

√

1 +
1

log 2(f(x̃)− f(x̄))
}.

Collecting all the procedures given in this section, we denote by AFF(fc, x̄, Smod, Sglob,P)

the fitness function modification procedure. This procedure yields a new fitness function,

which is a modification of the former fitness function fc on x̄, with the corresponding changes

in the sets Smod, Sglob and P.

3.4 Population Update Rules

In order to search for many global solutions simultaneously, the proposed evolutionary al-

gorithm first tries to keep diversity in the population set. Due to the rules of accepting a

newly produced trial solution to survive in the population set, most evolutionary algorithms

have the tendency that population sets eventually cluster around only a few solutions. This

is because, in ordinary evolutionary algorithms, a new trial solution is usually accepted to

survive and replace some solution in the population set, if it is better than that. Although

some algorithms such as scatter search method [51, 52] try to keep diversity, the number

of different good points in the population set is still small (even if the objective function
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has many global solutions) and the remaining points are usually just diversity points. The

HEA uses the Population Update Rules, which are novel types of criteria for accepting new

trial solutions to survive in the population set, and tries to keep diversity while searching

for promising points.

Here we propose two different techniques to update the population set, which are aimed

to keep diversity while searching for global solutions. The first one is somewhat heuristic and

depends on the structure of the population set. The second one is based on some tolerance

parameter for the distance between trial points.

Population Update 1. Consider a set of points P := {x1, x2, . . . , xM} sorted according to

their objective function values. Let x be a trial solution used to update the population set.

1. If f(x) ≥ f(xM), i.e., x is worse than the worst element in P, then discard x.

2. If f(x) ≤ f(x1), i.e., x is better than the best element in P, then add x to P and delete

the closest point to x in P.

3. If f(xi) ≤ f(x) < f(xi+1), then let

k := argmin
1≤j≤i

‖x− xj‖, l := argmin
i+1≤j≤M

‖x− xj‖.

Namely, xk is the closest point to x among such points in P that their objective function

values are smaller than f(x), while xl is the closest point to x among such points in P that

their objective function values are greater than f(x).

If ‖x− xk‖ ≤ ‖xk − xl‖, then discard x.

If ‖x− xk‖ > ‖xk − xl‖ and ‖x− xl‖ ≤ ‖xk − xl‖, then delete xl from P and add x to P in

the (i+ 1)-th position.

Otherwise, delete xM from P and add x to P in the (i+ 1)-th position.

Population Update 2. Let P := {x1, x2, . . . , xM} be a set of points sorted according

to their function values, and εD > 0 be a fixed tolerance for the distance. Let x be a trial

solution. Define

B(x, ε) := {y ∈ Rn| ‖x− y‖ < ε}, k(i) := argmin
1≤j≤i

‖x− xj‖.

1. If f(x) ≤ f(x1), then add x to the set P and delete from P all the points xj satisfying

xj ∈ B(x, εD). If there is no such element in P, then delete xM from P. If there are many,

add new trial solutions generated by using Diversification Generation Method to P to keep

the size of the population set P equal to M .
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2. If f(xi) < f(x) ≤ f(xi+1), then do the following:

If x ∈ B(xk(i), εD), then discard x. Otherwise, add the point x to P, and delete all the

elements xj, j = i + 1, . . . ,M of P satisfying xj ∈ B(x, εD). If there is no such element in

P, then delete xM from P. If there are many, add new trial solutions generated by using

Diversification Generation Method to P to keep the size of the population set P equal to

M .

If εD = 0, then the Population Update Rule 2 will coincide with the ordinary update rule

used in the genetic algorithm that accepts a child to survive if it is better than an element

in the population.

3.5 Hybrid Evolutionary Algorithm

In this section, we describe our hybrid evolutionary algorithm HEA for the optimization

problem (3.1.1) with zero global minimum value:

min f(x) s.t. x ∈ D,

where the constraint set is defined as D := {x ∈ Rn| l ≤ x ≤ u} with l, u ∈ Rn ∪ {±∞}.
Assume that f is continuously differentiable. Our purpose is to design an evolutionary al-

gorithm which is able to find as many solutions as possible of problem (3.1.1).

First we elaborate the steps used in the HEA.

Diversification Generation Method. The purpose of the diversification generation [51]

is to generate a well distributed set of trial solutions. The basic Diversification Generation

method uses controlled randomization and frequency memory to generate a set of diverse

solutions. This can be accomplished by dividing the range [li, ui] of each variable into 4

sub-ranges of equal size. Then, a solution is constructed in two steps. First a subrange is

randomly selected. The probability of selecting a subrange is determined to be inversely

proportional to its frequency count. Then a value is randomly generated within the selected

subrange.

Crossover and Mutation Procedure. The purpose of crossover is to produce children

who are expected to possess better properties than their parents. Good results can be ob-

tained with a random matching of the individuals [13, 28]. Some well known crossovers are

the following [36].
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Single-point crossover : One crossover position (coordinate) in the vector of variables

(genes) is randomly selected and the variables situated after this point are exchanged between

individuals, thus producing two offsprings.

Multi-point crossover : Some crossover positions are chosen, and then the variables be-

tween successive crossover points are exchanged among the two parents to produce new

offsprings.

Intermediate recombination: The values of the offspring variables are chosen from the

values of the parents variables according to some rule.

Although we could use various types of existing crossovers, we propose another crossover

which may hopefully be more appropriate to our problem. We have seen in the Chapter 2

the fact that

x solves the VI(D,F ) ⇐⇒ x = ΠD(x− F (x)),

where ΠD(z) := argmin
y∈D

‖z− y‖ is the projection of point z on D. If we denote the mapping

H(x) := ΠD(x− F (x)), then we have

‖x− ΠD(x− F (x))‖ = ‖x−H(x)‖ =

√

√

√

√

n
∑

i=1

(xi −Hi(x))2.

Here Hi(x) is i-th component of the vector H(x). According to this formula, we may tell to

some extent the quality of the gene xi, that is, the smaller the value |xi−Hi(x)|, the better

the gene. In particular, the equalities xi − Hi(x) = 0, i = 1, . . . , n, hold at any solution

of the VIP. Taking into account these properties, we propose the following crossover and

mutation.

Let (p1, p2) be a pair of solutions used to produce new trial solutions.

Crossover. Let p̄ denote the vector whose coordinates are given by

p̄j :=

{

p1
j , if |p1

j −Hj(p
1)| ≤ |p2

j −Hj(p
2)|,

p2
j , otherwise,

j = 1, . . . , n.

Choose random numbers r1, r2 from the interval [0, 1]. Define two new trial solutions as

follows:

If p̄ 6= p1 or p̄ 6= p2, then

ci := pi + ri(p̄− pi), i = 1, 2.

Otherwise,

c1 := p1 + r1(p
2 − p1), c2 :=

{

ΠD(p1 − r2(p2 − p1)), if p̄ = p1;
ΠD(p2 − r2(p1 − p2)), if p̄ = p2.
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Mutation. Choose random numbers r1, r2 from the interval [0, 1]. Define two new trial

solutions as follows:

ci := pi + ri(H(pi)− pi), i = 1, 2.

In the HEA, we use the above Crossover and Mutation in addition to the multi-point

crossover to generate the children.

Now we will describe the evolutionary algorithm with adaptive fitness function. We first

discuss parameters and procedures that will be used in the algorithm.

M – number of elements in the population set,

lN – number of best points to which local search is applied,

ls – maximum number of steps per local search,

N̄ , η – parameters used to determine semi-global solutions,

Crossover[(p1, p2)] +Mutation – the mating procedure for the pair (p1, p2) and possible

mutation for the resulted children pair,

Local Search (f(x), x̄, ls) – a local search process for the function f(x) starting from the

point x̄ with the number of steps ls.

To check whether a point is semi-local or not, we use N̄ evolutionary generations and a

local search step. Here we use a set B whose elements represent the historical data of the

best points in the population set during the last N̄ generations.

To terminate our EA, we use the following three different criteria.

S1. The number of function evaluations exceeds the pre-determined upper limit,

S2. The number of detected global solutions exceeds the pre-determined number,

S3. Let Ns be a pre-specified positive integer. The most recently added Ns elements of

the set Smod of modification points were not new global solutions.

If one of those criteria is satisfied, then we terminate the main algorithm.
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The main loop of the proposed algorithm is stated as follows.

Algorithm 3.5.1. HEA

1. Initialization. Choose parameters M, lN , ls, N̄ , ε > 0 and η ∈ (0, 1). Generate the

population set P by using some diversity generation method. Let the set of modification

points and the set of global solutions be Smod := ∅ and Sglob := ∅, respectively. Define the

current fitness function as

fc(x) := f(x).

Sort the elements in P in ascending order of their current fitness function values, i.e.,

fc(x
1) ≤ fc(x

2) ≤ · · · ≤ fc(x
M).

Set the generation counters t := 1 and s := 1.

2. Parents Selection. Generate a parents pool

P ′ := {(xi, xj)|xi, xj ∈ P, xi 6= xj}.

3. Crossover and Mutation. Select a pair (p1, p2) ∈ P ′ and generate a pair as

(c1, c2)←− Crossover[(p1, p2)] +Mutation.

4. Population Update. Using the Population Update Rule with c1 and c2, update the

population set P. Delete the pair (p1, p2) from the parents pool P ′. If P ′ = ∅, then let

N := min{s, N̄} and

B := {b1, b2, . . . , bN} ← {x1, b1, . . . , b(N−1)}, s := s+ 1

and go to Step 5; otherwise go to Step 3.

5. Intensification. If, during the last N̄ generations of evolution, the fitness function has

not been modified and the best point in the population set has not been improved enough, i.e.,

s ≥ N̄ and
∣

∣

∣fc(b
N̄)− fc(b

1)
∣

∣

∣ ≤ η(1 + fc(b
1)),
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then choose x1, x2, ..., xlN ∈ P and for each xi, i = 1, 2, ..., lN , perform the following proce-

dure:

x̄i ←− Local Search (f(x), xi, ls).

If xi is an unpromising trial point, then construct a new fitness function by

fc(x) := AFF(fc, x
i, Smod, Sglob,P).

Otherwise, P := P ∪ {x̄i}\{xi}.

If the fitness function is modified at least once during the above procedure, then set s := 1.

Go to Step 6.

6. Semi-local solutions and adaptation. If x1 ∈ P is a semi-local solution, i.e.,

s ≥ N̄ and
∣

∣

∣fc(b
N̄)− fc(x

1)
∣

∣

∣ ≤ η(1 + fc(x
1)),

then construct a new fitness function by

fc(x) := AFF(fc, x
1, Smod, Sglob,P)

and set s := 1. Otherwise, let B := {b1, b2, . . . , bN̄} ← {x1, b1, . . . , b(N̄−1)}. Proceed to Step 7

with (fc(x),P).

7. Stopping Condition. If one of the stopping conditions holds, then terminate the

algorithm and refine the global solutions in Sglob by some local search method. Otherwise, set

t := t+ 1 and go to Step 2.

Remark 3.5.2. This algorithm can be used for solving a more general class of problems.

Particularly, we can employ the HEA for solving an extension of VIP, the quasi variational

inequality problem (QVIP). For a vector valued mapping F and a set valued mapping S, the

QVIP is to find a vector x∗ ∈ S(x∗) such that

〈F (x∗), x− x∗〉 ≥ 0, ∀x ∈ S(x∗). (3.5.1)



34 Hybrid Evolutionary Algorithm for VIPs

Unlike the ordinary VIP, the constraint set S in the QVIP varies depending on the variable

x. When the constraint set S is constant, i.e., S(x) ≡ S, the QVIP reduces to the ordinary

VIP. Although the application field of this type of problem is diverse including the generalized

Nash equilibrium problem, there hardly exist practically implementable methods for the QVIP

yet. Fortunately, the linearized gap function and the linearized D-gap function for the VIP

discussed in Chapter 2 still apply for the QVIP [24], and allow us to reformulate the QVIP

as an unconstrained optimization problem with zero global minimum value, which can be

solved by using the HEA.

3.6 Numerical Experiments

The performance of the HEA was tested on a number of well known test problems in the

MCPLIB library. To show the efficiency of the HEA we have used only those problems

which have multiple solutions, and for each problem we made 20 trials with different initial

populations. The programming code for the algorithm was written in MATLAB and run on

a computer Pentium 4, Microprocessor.

The regularized gap function is used to reformulate MCPLIB test problems as optimiza-

tion problems, and for local search in the HEA, we employ MATLAB’s command fmincon

combined with an active set detecting strategy. Moreover, the HEA is supposed to use a

finite box for generating diversity points in the Diversification Generation Method, whereas

most of the test problems are mixed complementarity problems which have no lower or up-

per bound. To deal with such problems, we use a fixed finite box defined inside the original

box in the Diversification Generation Method, while using the original box constraint in the

Crossover Mutation Procedure and in the local search.

In general, it is difficult to universally determine suitable values of HEA parameters for

every problem, because they are highly problem dependent. Nevertheless, through testing

many times on various test problems, we suggest possible choices of the parameters as shown

in Table 3.1.

We have two versions of the HEA; HEA1 and HEA2 that use Population Update Rule 1

and Rule 2, respectively. We ran the HEA versions for all the chosen test problems with the

general parameter settings mentioned in Table 3.1 and put the numerical results in Tables

3.2 and 3.3. The columns in these tables have the following meanings:
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Table 3.1: Parameter Settings.

Parameters Definition Value

M number of elements in population min{2n + 4, 20}

lN number of best points for which local search is used 2

ls maximum number of steps per local search min{2n, 30}

N̄ , η parameters controlling local search in HEA 3, 10−3

ε tolerance parameter for the objective function in HEA 10−6

Nmax maximum number of ineffective local transformations 10

Ngmax maximum number of global solutions to be found 20

NFmax maximum number of function evaluations 5n104

εD distance tolerance used in Population Update Rule 2 n/5

εt, ρt tunneling parameters used in (3.3.2) and (3.3.4) 0.1, 2

αh, ρh humping parameters used in (3.3.4) 1, 0.3

Problem: name of the test problem,
n: dimension of the test problem,
Kmin, Kav, Kmax: minimum, average, maximum numbers of solutions found by the

algorithm,
Ngen: average number of generations,
Nloc: average number of local steps taken,
NF : average number of function evaluations,
Nf : average number of function evaluations when the last global solution

is obtained.

The results reported in Tables 3.2 and 3.3 show that the HEA is promising. For most of

test problems, the average numbers of obtained global solutions (Kav) are close to the max-

imum numbers of obtained global solutions (Kmax), and this implies that the HEA versions

are capable of finding multiple solutions. Moreover, the average numbers of generations are

reasonable compared with the problem dimensions and the numbers of obtained global solu-

tions. The HEA versions use three different stopping conditions. Specifically, if the number

of global solutions or that of ineffective transformations (i.e., the number of subsequently
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detected local solutions or unpromising trial points) or that of function evaluations exceeds

their respective pre-specified limits Ngmax, Nmax,NFmax, then the algorithm is terminated.

We observe in both tables that the HEA versions find global solutions in a relatively small

number of function evaluations (Nf ), and after that, the algorithms were still running un-

til one of the termination conditions is met in order to check whether there are any other

solution left or not.

Table 3.2 reveals that the HEA1 finds no less than Ngmax (=20) global solutions for five

test problems. In fact, we may conclude that these problems have infinitely many solutions,

and by setting Ngmax bigger, it is possible to find as many solutions as one may want. For

the other five problems, the algorithm was terminated because the number of ineffective

local transformations exceeded Nmax(= 10).

Table 3.2: Numerical Experiments for the HEA with Population Update Rule 1.

Problem n Kmin Kav Kmax Ngen Nloc NF Nf

badfree 5 20 20 20 31 14 3260 3260

games 16 20 20 20 74 432 32859 32859

kojshin 4 2 2 2 38 115 4023 1474

mathinum 3 1 14.4 20 255 858 30402 23066

mathisum 4 1 1.9 2 52 184 6751 2974

ne-hard 3 2 3.1 4 185 956 31223 16068

powell 16 4 11.4 20 96 1644 45740 36676

powell mcp 8 2 5.1 9 110 1109 24585 10553

scarfasum 14 2 2.7 3 80 1157 45508 25139

sppe 27 20 20 20 325 471 138475 138475

Table 3.3 shows that, the performance of the HEA2 is promising except for problem

mathinum, for which it occasionally failed to find a global solution despite the fact that this

problem has at least twenty solutions as shown in Tables 3.2 and 3.3. It happened because

the number of ineffective local transformations reached its limit Nmax(= 10) before finding

a global solution. By increasing Nmax, we could improve the performance of the HEA2 for

this problem. Another possible reason for the unexpected performance of the HEA2 for
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problem mathinum is the choice of parameter εD. As we mentioned earlier in Section 3.4,

the Population Update Rule 2 is an extension of the standard genetic algorithm selection

mechanism and it tries to prevent the population from prematurely converging to one or

only a few points. However, we found that the choice ε = n/5 was not appropriate for

problem mathinum, since the HEA2 could not escape from the undesirable property that

the population converges to only a few points. We have observed that, by increasing εD, we

could improve the performance of the HEA2 for this problem.

Table 3.3: Numerical Experiments for the HEA with Population Update Rule 2.

Problem n Kmin Kav Kmax Ngen Nloc NF Nf

badfree 5 20 20 20 15 0 2946 2946

games 16 20 20 20 31 132 25529 25529

kojshin 4 2 2 2 28 92 5786 1986

mathinum 3 0 4.3 20 794 1008 132280 41290

mathisum 4 1 1.95 2 48 95 9299 2728

ne-hard 3 2 3.3 4 82 261 17930 10746

powell 16 5 14 20 71 1160 49965 34619

powell mcp 8 3 6.9 11 107 1123 32349 12887

scarfasum 14 1 1.6 3 49 714 55479 22456

sppe 27 20 20 20 225 1563 260650 260650

Finally, we make some remarks on the comparison between the results shown in Tables

3.2 and 3.3 in terms of the numbers of obtained global solutions and computational costs.

Generally, the HEA versions are neutral in terms of the numbers of obtained global solutions,

since these numbers are almost the same for six problems out of ten. For problems powell

and powell mcp, the HEA2 was able to find more global solutions than the HEA1. However,

for problems mathinum and scarfasum, the HEA1 performed better than the HEA2 in terms

of the numbers of obtained global solutions and the numbers of function evaluations. On

the other hand, the HEA2 did not use local search in all runs for problem badfree, while the

HEA1 required more local search steps than the HEA2 for seven out of ten problems.
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3.7 Conclusion

In this chapter, we have presented a new population-based algorithm HEA that is designed

to find as many solutions as possible of the general VIP. New types of population update

schemes in the evolutionary algorithm and a hump-tunneling technique for escaping from

detected solutions have also been proposed. The computational results for some well known

test problems show that the HEA method is capable of locating many solutions in an ac-

ceptable number of function evaluations. Moreover, the numerical results indicate that, the

more solutions a problem has, the better the HEA method works. Finally, it is worth men-

tioning that one can use the HEA for finding solutions of a system of equations or a global

optimization problem with known minimum objective value.



Chapter 4

Restricted-Step Josephy Newton

Method for VIPs

4.1 Introduction

Our next approach is a combination of heuristic and deterministic approaches. Consider the

variational inequality problem, to find a vector x∗ ∈ S such that

〈F (x∗), x− x∗〉 ≥ 0, ∀x ∈ S. (4.1.1)

In this chapter, we present two methods for general VIPs. These methods are designed

with quite different ideas, but they are linked in that the second method can be used as a

subprocedure within the first method.

The first method is a modification of the classical Josephy-Newton method for VIPs.

The Josephy-Newton method is an iterative method that successively solves sub-linearized

variational inequalities and local superlinear convergence of the method has been established

[39]. Globalization of the Josephy-Newton method by combining it with some line search

methods for equivalent optimization problem of VIP has also been designed [17, 101]. A

difficulty of using those approaches in practice is that solvability of the subproblems is not

guaranteed, i.e., in some case the subproblems have no solution. Furthermore, even when the

subproblems have solutions, it is not easy to find them because the subproblems themselves

are general variational inequalities with the same constraint set S.



40 Restricted-Step Josephy Newton Method for VIPs

Our method adopts the idea that an extra bound constraint (such as a box or a ball)

is added to the original constraint set in the subproblems so that the Josephy-Newton sub-

problems have always solutions. In order to get a global convergence property, we combine

the Josephy-Newton method with the gradient projection method for the equivalent opti-

mization problem and we employ the regularized gap function for VIP (4.1.1) as a merit

function. Although the solvability of the subproblems is ensured by means of the above

mentioned modification, we still need some effective method for solving those subproblems.

The second method we develop is to meet this requirement. It is an evolutionary al-

gorithm designed to solve the VIP with bounded polyhedral constraints and also relies on

the equivalent global optimization problem of the VIP. The global minimum value of the

equivalent optimization problem is known to be zero and the algorithm uses this fact as

a stopping condition. Unlike the heuristic method developed in the previous chapter, this

method directly deals with the special structure of the polyhedral constraint set. Moreover,

crossover and mutation procedures amenable to the polyhedral constraint set are devised as

well as the initial population generation procedure. In addition, we use the adaptive fitness

function procedure to increase the validity of the algorithm. In general, an evolutionary

algorithm is expensive computationally. However, our target here is to solve VIPs with

bounded polyhedral sets, of which size is presumably small. For such problems, we may

expect that the algorithm can find a solution with a reasonable amount of computations.

The organization of the chapter is as follows. In Section 4.2, we propose the restricted-

step Josephy-Newton method and discuss its convergence properties. Section 4.3 presents the

evolutionary algorithm for solving VIPs with bounded polyhedral constraints. Appropriate

crossover and mutation procedures as well as the fitness function modification procedure will

also be discussed. In Section 4.4, we report numerical results of the methods for some test

problems. Section 4.5 concludes the chapter.

4.2 Restricted-Step Josephy-Newton Method

In this section we present the restricted-step Josephy-Newton method for solving the general

VIP. Fist we will briefly review the classical Josephy-Newton method [39]. Let us consider

the VIP (4.1.1). At the k-th iteration, the Josephy-Newton method solves the linearized

sub-VIP

〈F k(x), x′ − x〉 ≥ 0, ∀x′ ∈ S (4.2.1)
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to get the next iteration point xk+1. Here F k is the linear approximation of the mapping F

at xk, i.e.,

F k(x) := F (xk) + F ′(xk)(x− xk).

It has been shown [39] that this algorithm is locally superlinearly convergent and, by combin-

ing it with a descent method for a merit function, there have been developed some methods

which are globally convergent and locally superlinearly convergent [17, 101]. A drawback

of these methods is that the solvability of (4.2.1) is not guaranteed and even if it has a

solution, without some kind of monotonicity assumption on (4.2.1) we may fail to solve it.

We propose here a modification of the Josephy-Newton method which is implementable in

practice.

We consider the Josephy-Newton subproblem modified as

〈F k(x), x′ − x〉 ≥ 0, ∀x′ ∈ S ∩B(xk, δ), (4.2.2)

where δ > 0 is a fixed scalar and B(xk, δ) := {x ∈ ℜn| ‖x − xk‖ ≤ δ}. We combine this

method with the gradient projection method for the equivalent optimization problem to VIP

(4.1.1)

min θ(x) s.t x ∈ S. (4.2.3)

Lemma 4.2.1. A point xk is a solution of VIP (4.1.1) if and only if it is a solution of the

modified Josephy-Newton subproblem (4.2.2).

Proof. Let xk be a solution to VIP (4.1.1). Then 〈F (xk), x′ − xk〉 ≥ 0, ∀x′ ∈ S, and

since xk ∈ S ∩B(xk, δ) and F k(xk) = F (xk), xk is solution to (4.2.2).

Next, let xk be a solution of the modified Josephy-Newton subproblem (4.2.2) and show

it is a solution of VIP (4.1.1). Assume to the contrary that there exists a point x̄ ∈ S such

that 〈F (xk), x̄−xk〉 < 0. Then the point x̃ := xk +min{δ, 1} x̄− xk

‖x̄− xk‖ is in S ∩B(xk, δ) and

〈F k(xk), x̃− xk〉 =
min{δ, 1}
‖x̄− xk‖ 〈F (xk), x̄− xk〉 < 0.

This contradicts the fact that xk is a solution of (4.2.2). 2

The use of the subproblem (4.2.2) has some advantages. First of all, this problem always

has a solution because the constraint set is bounded and closed convex. Secondly, we may
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develop some effective method for solving it when the parameter δ is of appropriate size. In

general, the choice of the parameter δ is important for the efficiency of the algorithm. If δ

is inappropriately big, then the procedure of solving the sub-VIP (4.2.2) may not be very

effective. On the other hand, if we choose δ too small, then the improvement of the solution

might also be very small, resulting in slow convergence. One possible way to cope with this

situation is to adjust the parameter δ appropriately during the iterations in a way similar

to the trust region method in nonlinear optimization. We use some upper limit δmax and

lower limit δmin for the parameter δ to prevent it from becoming too large or too small. In

the next section, we will present an algorithm for solving sub-VIP (4.2.2).

The restricted-step Josephy-Newton algorithm, referred to as Algorithm rJN, is formally

stated as follows.

Algorithm 4.2.2. Algorithm rJN

1. Initialization. Choose x0 ∈ S and set parameters ε1 > 0, ε2 > 0, p > 1, γ ∈

(0, 1), σ ∈ (0, 1), ρ > 0, β ∈ (0, 1), 0 < δmin < δmax and a negative integer imin. Set

δ0 := δmax and the iteration counter k := 0.

2. Stopping condition. If θ(xk) ≤ ε1 or ‖xk − ΠS(xk −∇θ(xk))‖ ≤ ε2, then STOP.

3. Sub-VIP. Find a solution x̄k of the sub-VIP (4.2.2) with δk, and let dk := x̄k − xk.

(a) If the condition

θ(xk + dk) ≤ σ · θ(xk) (4.2.4)

is satisfied, then set xk+1 := x̄k and δk+1 :=











min{2δk, δmax}, if ‖xk+1 − xk‖ = δk;

max{δmin, ‖xk+1 − xk‖}, otherwise.

Set k := k + 1 and go to Step 2.

(b) Otherwise, check the condition

∇θ(xk)Tdk ≤ −ρ · ‖dk‖p, (4.2.5)

and if it holds, then find the smallest nonnegative integer ik such that

θ(xk + βikdk) ≤ θ(xk) + γβik∇θ(xk)Tdk. (4.2.6)
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If ik = 0, then redefine ik by finding the largest nonpositive integer in [imin, 0] satisfying

(4.2.6) and

θ(xk + βik−1dk) > θ(xk + βikdk), xk + βikdk ∈ S. (4.2.7)

Set xk+1 := xk + βikdk, δk+1 := mid{δmin, ‖xk+1 − xk‖, δmax}. Set k := k + 1 and go to Step

2.

(c) If either of conditions (4.2.4) and (4.2.5) is not satisfied, then go to Step 4.

4. Gradient projection step. Find xk+1 by the following gradient projection procedure:

Define xk(α) := ΠS(xk− αδk

‖∇θ(xk)‖∇θ(x
k)) and find the smallest nonnegative integer ik such

that

θ(xk(βik)) ≤ θ(xk) + γ∇θ(xk)T (xk(βik)− xk). (4.2.8)

If ik = 0, then redefine ik by finding the largest nonpositive integer in [imin, 0] satisfying

(4.2.8) and

θ(xk(βik−1)) > θ(xk(βik)). (4.2.9)

Set xk+1 := xk(βik), δk+1 := mid{δmin, ‖xk+1 − xk‖, δmax}, k := k + 1 and go to Step 2.

Remark 4.2.3. In Step 3(b) and Step 4, when ik = 0 is accepted by (4.2.6) or (4.2.8),

we try to find a stepsize larger than unity in the hope of achieving a further reduction in

the function value. Note that this modification does not affect the theoretical convergence

properties of the algorithm.

In the algorithm, we use a gradient projection step when the Josephy-Newton subproblem

fails to give a useful direction. The idea of combining Newton-type methods with gradient

related methods, is an important technique to make Newton-type methods globally conver-

gent and can be found in many literatures [17, 41, 88, 101]. When the iteration approaches a

solution satisfying a certain regularity condition, Newton type methods will take effect and

make the convergence faster.
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The next theorem establishes the global and local superlinear/quadratic convergence prop-

erties of the restricted-step Josephy-Newton method.

Theorem 4.2.4. Let F be a continuously differentiable mapping and S be a closed convex

set. Let {xk} be an infinite sequence generated by Algorithm rJN. Then

(a) every accumulation point of {xk} is a stationary point of the optimization problem (4.2.3).

(b) if x∗ is an accumulation point of {xk} such that F ′(x∗) is positive definite, then x∗ is a

solution of the VIP (4.1.1) and the whole sequence {xk} converges to this point. Furthermore,

if p > 2 and γ < 1
2

in Algorithm rJN, then the following statements hold:

(i) eventually the unit step size for the direction dk is accepted so that xk+1 = x̄k.

(ii) the convergence rate is Q-superlinear; furthermore, if the Jacobian F ′(x) is Lipschitz

continuous in a neighborhood of x∗, the convergence rate is Q-quadratic.

Proof. Part (a) can be proved by using standard arguments on descent methods. For

part (b), if we show that eventually the subproblems (4.2.1) and (4.2.2) have identical

solution sets, then everything will essentially follow from Theorem 10.4.23 of [17].

Since F is continuously differentiable and F ′(x∗) is positive definite, there exists a scalar

δ1 > 0 such that F ′(xk) is positive definite for any xk ∈ B(x∗, δ1). This implies that the

mapping F k(x) = F (xk) + F ′(xk)(x − xk) is strongly monotone for all k large enough, and

hence the subproblems (4.2.1) and (4.2.2) both have unique solutions.

Theorem 7.3.3 of [17] states that there exists a positive scalar ε̄ such that for every

ε ∈ (0, ε̄] a δ2 > 0 exists such that for every xk ∈ S ∩ B(x∗, δ2), the problem (4.2.1) has

a unique solution in B(xk, ε). If we choose ε = min{ε̄, δmin

2
}, then we can ensure that the

solution of (4.2.1) is in B(xk, δmin). Therefore, this solution is also a solution of (4.2.2), and

since they both have unique solutions, their solution sets are identical. 2
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4.3 Evolutionary Algorithm for VIPs with a Bounded

Constraint Set

In this section, we present a method for solving the following VIP: Find x ∈ D such that

〈F̄ (x), x′ − x〉 ≥ 0, ∀x′ ∈ D, (4.3.1)

where F̄ : ℜn → ℜn and D ⊆ ℜn. If we let F̄ (x) := F k(x) and D := S ∩ B(xk, δ), then

this VIP reduces to the Josephy-Newton subproblems (4.2.1) in the previous section. We

will confine ourselves to the case where S is a polyhedral set and the norm used to define

B(xk, δ) is the l∞ norm. Then the set D is a bounded polyhedral set represented by a system

of linear inequalities, that is,

D := {x ∈ ℜn|Ax ≤ b},

where A ∈ ℜm×n and b ∈ ℜm.

Then the VIP (4.3.1) can be reformulated as the following global optimization problem:

min θ̄(x) s.t x ∈ D, (4.3.2)

where θ̄ is the gap function associated with (4.2.2). The evaluation of gap function in this

case requires solving a linear programming problem. The method presented here follows the

main framework of the evolutionary algorithm [13, 28] and uses some additional procedures

to exploit the special features of the problem such as the known minimum value and the

polyhedrality of the constraint set.

Firstly, the global minimum value of the problem is known to be zero if the VIP (4.3.1) has

a solution. We use this fact not only as a stopping condition but also to improve the validity

of the evolutionary algorithm. The evolutionary algorithm is a population-based algorithm.

It makes use of a fitness function to evaluate the goodness of a solution, thereby keeping the

population set consisting of promising solutions. If, during the search, the population set

gets stuck around a point which is not a global minimum, we need to direct the population

set to another possible region which may contain a global solution. But if we use the same

fitness function all the time, even with a different initial population set, the algorithm is

very likely to converge back to this non-global solution. So we modify the fitness function

by increasing the function value around this non-global solution. More specifically, we use

the tunneling function technique [4] and consider a new fitness function

ft(x, x̄) := fc(x) · exp
( 1

‖x− x̄‖2
)

, (4.3.3)
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where fc(x) is the current fitness function and x̄ is the above-mentioned non-global solution.

The modified fitness function ft(x, x̄) will have the same exact global minimum points as

the original function.

Next we use crossover and mutation procedures that are amenable to the polyhedral con-

straint set D = {x ∈ ℜn|Ax ≤ b}. Let aT
i , i = 1, . . . ,m be the rows of matrix A, and

bi, i = 1, . . . ,m be the components of vector b. Suppose we have two points x /∈ D

and y ∈ int D, where int D denotes the interior of D. First we determine the point

where the line segment [x, y] intersects the boundary of D. Let us define the index sets

I(x) := {i | 〈ai, x〉 − bi > 0}. Then the point of intersection is determined as

x̄ := y +
−〈ai(x,y), y〉+ bi(x,y)

〈ai(x,y), x− y〉
(x− y),

where i(x, y) := argmin
i∈I(x)

−〈ai, y〉+ bi
〈ai, x〉 − bi

. During the evolutionary search, points generated by

the crossover and mutation procedures may go outside the constraint set D, and we need to

bring them back into the set D. Because the projection operator may project many different

points onto the same point on the boundary, it may be helpful to use points of intersection

computed by the above mentioned procedure instead of projection.

To describe our procedures, it will be convenient to define the mapping P : ℜn× int D →
D by

P (x, y) :=







x, for x ∈ D;

y +
−〈ai(x,y), y〉+ bi(x,y)

〈ai(x,y), x− y〉
(x− y), for x /∈ D.

(4.3.4)

The coefficient
−〈ai(x,y), y〉+ bi(x,y)

〈ai(x,y), x− y〉
in (4.3.4) is well defined and actually bounded. In fact,

we have

−〈ai(x,y), y〉+ bi(x,y)

〈ai(x,y), x− y〉
=

−〈ai(x,y), y〉+ bi(x,y)

−〈ai(x,y), y〉+ bi(x,y) + 〈ai(x,y), x〉 − bi(x,y)

=
(

1 +
〈ai(x,y), x〉 − bi(x,y)

−〈ai(x,y), y〉+ bi(x,y)

)−1

,

which is bounded by the definition of i(x, y).

Initial population generation. First we determine the analytical center x0 of the set

D and a box D1 containing D inside. Finding such a box can be done easily by solving the

2n linear programming problems

li := min
x∈D
〈ei, x〉, ui := max

x∈D
〈ei, x〉, i = 1, 2, . . . , n,
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where ei is the i-th unit vector, and then letting D1 := {x ∈ ℜn| li ≤ xi ≤ ui, i = 1, . . . , n}.
Moreover the analytical center x0 of D will be determined by

x0 := argmin
x∈D

m
∑

i=1

− log(bi − 〈ai, x〉).

Then we will generate points randomly in the box D1 and bring them inside the set D.

Specifically, let x ∈ D1 be a generated point. Then we compute a new point xnew as follows

and add it to the population set:

xnew := x0 + α · (P (x, x0)− x0),

where P (·, ·) is defined by (4.3.4) and α ∈ (0, 1) is a random scalar. Clearly all points in the

population set lie in the interior of D.

Crossover. Let x1 and x2 be parents to mate and xc ∈ ℜn be a point created by the

intermediate recombination of x1 and x2, whose components are corresponding components

of either x1 or x2. Then we produce two children as follows:

c1 := x1 + α1 · (P (x1, xc)− x1), c2 := x2 + α2 · (P (x2, xc)− x2),

where α1, α2 ∈ (0, 1) are random scalars.

Mutation. We choose some component of a newly produced child and change it randomly

in a certain range.

Now we state our evolutionary algorithm, called Algorithm EA, for problem (4.3.2),

thereby solving the general VIP (4.3.1) with a bounded polyhedral constraint.

Algorithm 4.3.1. Algorithm EA

1. Initialization. Choose a population size M and fix parameters lN , ls, N̄ , η,NFmax, ε >

0. Construct an initial population set P and let the initial fitness function be the original

objective function of (4.3.2),

fc(x) := θ̄(x).

Evaluate the trial points in P and order them according to their fitness function values so

that x1 is the best solution and xM is the worst, i.e.,

fc(x
1) ≤ fc(x

2) ≤ · · · ≤ fc(x
M).
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Set the generation counters t := 1 and s := 0.

2. Parents Pool Generation. Generate a parents pool P ′, which consists of all different

pairs from the population set P.

3. Crossover and Mutation. Select a pair (p1, p2) from the parents pool P ′. Apply the

Crossover and Mutation Procedure to the pair (p1, p2) to obtain two new trial points c1, c2.

4. Survival Selection. If the newly produced point c1 or c2 is better than any point p̄ in

the population, then replace p̄ by that new point. Delete the pair (p1, p2) from the parents

pool P ′. If P ′ = ∅, then reorder the population set according to their fitness function value

and let

N := min{s, N̄}, B := {b1, b2, . . . , bN} ← {x1, b1, . . . , b(N−1)}, s := s+ 1

and go to Step 5; otherwise go to Step 3.

5. Intensification. If, during the last N̄ generations of evolution, the fitness function has

not been modified and the best point in the population set has not been improved enough, i.e.,

s ≥ N̄ and |fc(b
N̄)− fc(b

1)| ≤ η(1 + fc(b
1)),

then choose x1, x2, ..., xlN ∈ P and for each xi, i = 1, 2, ..., lN , perform a local search on the

original objective function θ̄(x):

x̄i ←− Local Search (θ̄(x), xi, ls),

where ls is the maximum number of steps in the local search. If fc(x
i) < fc(x̄

i), i.e, after the

local search the current fitness function value increases, then construct a new fitness function

by

fc(x) := fc(x) · exp
( 1

‖x− xi‖2
)

.

Otherwise, let P := P ∪{x̄i}\{xi}. If the fitness function is modified at least once during

the above procedure, then set s := 1. Reorder the points in the population set according to
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their fitness function values and let t := t+ 1. Go to Step 6.

6. Stopping Condition. If fc(x
1) < ε or the number of function evaluations exceeds the

pre-specified limit NFmax, then terminate the algorithm and refine the global solution x1 by

some local search method.

If the fitness function of the problem has not been modified and x1 ∈ P has not been

improved enough during the last N̄ generations of evolution and a local search, i.e.,

s ≥ N̄ and |fc(b
N̄)− fc(x

1)| ≤ η(1 + fc(x
1)),

then construct a new fitness function by

fc(x) := fc(x) · exp
( 1

‖x− x1‖2
)

and set s := 1. Otherwise, let B := {b1, b2, . . . , bN̄} ← {x1, b1, . . . , b(N̄−1)}. Proceed to Step

2 with (fc(x),P).

4.4 Numerical Experiments

The performance of the restricted-step Josephy-Newton method was tested on a number

of test problems. The lack of test problems for general variational inequality problems en-

forces us to generate test problems by ourselves. We did this task by modifying, i.e., adding

some extra constraints to, well known mixed complementarity test problems in the MCPLIB

library [14]. The test problems used in our numerical experiments are included in the Ap-

pendix A. The programming code for the algorithm was written in MATLAB and run on a

computer Pentium 4 Microprocessor.

The algorithm is terminated if one of the following two conditions is satisfied:

θ(x∗) ≤ ε1, ‖x∗ − ΠS(x∗ −∇θ(x∗))‖ ≤ ε2.

In the implementation, we have used the following parameter settings:

β = 0.5, σ = 0.5, γ = 0.49, p = 2.1, ρ = 0.5, δmin = 0.2n, δmax = 10δmin, imin = −10
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and

ε1 = 10−12, ε2 = 10−6.

The parameter settings of the evolutionary algorithm EA used to solve sub-VIPs are dis-

played in Table 4.1. The last two parameters in Table 4.1 are used in the stopping conditions

of EA, and they both depend on the current objective value in the main iteration, where n

is the dimension of the problem and xk is the current point of the main iteration. In the

early stage of the main iterations, i.e, when θ(xk) is relatively large, solving subproblems

with high precision is not so effective from the viewpoint of computational expense. As the

iteration process converges to a solution, the tolerance εEA in EA will decrease, while the

maximum number of function evaluations allowed will increase.

Table 4.1: Parameter Settings.

Parameters Definition Value

M number of elements in population 10

lN number of best points for which local search is used 1

ls maximum number of steps in local search 20

N̄ , η parameters controlling local search in EA 3, 10−3

εt, ρt tunneling parameters 0.1, 2

εEA tolerance parameters for the objective function in EA min{10−6, 10−2 · θ(xk)}

NFmax maximum number of function evaluations in EA mid{100n, 400n,
400n

θ(xk)0.25
}

The results for the test problems are shown in Table 4.2. The columns in this table have

the following meanings:
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Problem: name of the test problem,
n: dimension of the test problem,
t: number of main iterations,
Nθ: number of rJN directions accepted by the condition (4.2.4),
Nd: number of rJN directions accepted by the condition (4.2.6),
Nmon: number of monotone sub-VIPs solved,
Ninact: number of sub-VIPs where the constraint ‖x− xk‖ ≤ δ was inactive

at the solution,
Nunit: number of times rJN unit stepsize was taken,
θ(x∗): regularized gap function value at the obtained solution,
NF : number of function evaluations,
NFEA: number of function evaluations required to solve the sub-VIPs by EA.

As shown in Table 4.2, the main termination criterion

θ(x∗) ≤ ε1

was satisfied for all test problems. Moreover, the number of iterations was quite small overall

and the solutions of sub-VIPs were used very often. All the problems except choi∗ made use

of the directions determined from the solution of sub-VIPs. As for the problem choi∗, the

method solved sub-VIPs 8 times, and 7 of them gave successful directions. The column 6

Table 4.2: Numerical Experiments for the Restricted-Step Josephy-Newton Method.

Problem n t Nθ Nd Nmon Ninact Nunit θ(x∗) NF NFEA

badfree∗ 5 3 3 0 0 2 3 4.5391e-18 4 6556

choi∗ 13 8 7 0 5 4 7 7.4270e-13 19 29095

explcp∗ 16 12 11 1 0 0 12 8.8818e-16 13 4527

josephy∗ 4 4 4 0 0 3 4 2.8813e-13 5 3968

kojshin∗ 4 4 4 0 0 3 4 1.4279e-16 5 2979

mathinum∗ 3 8 6 2 0 5 8 2.9116e-16 9 7944

mathisum∗ 4 10 8 2 0 3 9 6.0942e-16 12 11321

nash∗ 10 8 8 0 8 6 8 1.0027e-13 9 18871

(Nmon) shows the number of monotone sub-VIPs we encountered. Most of the test problems

have non-monotone sub-VIPs, while every sub-VIP of the problem nash∗ was monotone.
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This suggests that the problem nash∗ itself is monotone. The column 7 (Ninact) shows the

number of sub-VIPs that had solutions interior to additional box constraints. The column

8 (Nunit) gives the number of times the unit step size or a longer step size was accepted in

the direction determined by the solutions of sub-VIPs. For all problems except mathisum∗

and choi∗, such a step size was accepted all the times.

The last two columns of the table show the number of function evaluations required to

solve all the sub-VIPs. The column NF shows the number of actual function evaluations of

F , while NFEA shows the number of merit function evaluations for sub-VIPs (4.2.2). Since

the evaluation of those merit functions requires to solve a linear programming problem, these

numbers equal the number of linear programming problems solved.

4.5 Conclusion

In this chapter we have proposed a practically implementable, globally convergent and locally

superlinearly convergent method for solving the general variational inequality problem with

polyhedral constraints. Our restricted-step Josephy-Newton method is a modification of the

classical Josephy-Newton method and it solves the linearized sub-VIPs with additional box

constraints. Moreover, an evolutionary algorithm for solving those sub-VIPs is presented that

can effectively deal with bounded polyhedral constraints. Numerical results show that the

proposed approach is able to solve various test problems of non-monotone VIPs successfully.



Chapter 5

Lipschitzian Branch and Bound

Method for VIPs

5.1 Introduction

In this chapter, we develop another deterministic global optimization approach for solving

general VIP. Consider the following variational inequality problem:

to find a vector x∗ ∈ S such that

〈F (x∗), x− x∗〉 ≥ 0, ∀x ∈ S. (5.1.1)

We employ a branch and bound method for an equivalent global optimization problem to

VIP. The branch and bound method was first proposed by Land and Doig in 1960 for linear

programming [53], since then the usage of this method expanded to other fields. Nowadays,

the branch and bound method is regarded as one of the best deterministic methods of

global optimization. The basic idea of branch and bound method is that it divides the

searching region into sub-regions on which the upper and lower bounds of the function can

be determined. Then the regions with higher lower bounds than an upper bound of some

other region can be safely discarded from the computation since those regions do not include

the solution, and the dividing process continues on the remaining sub-regions themselves.

The iteration stops when the lowest upper bound of sub-regions equals an upper bound of

corresponding region and any element in that region can be regarded as a solution.
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In our approach, we use the branch and bound method from Lipschitzian optimization

side. Under some mild conditions, we show that some of the merit functions introduced in

Chapter 2 have Lipschitzian properties. Then the Lipschitzian condition gives us upper and

lower bounds for the merit function on a certain set.

Using the Lipschitzian branch and bound method for VIP (5.1.1) has several advantages.

First of all, theoretical convergence of the method is guaranteed. Secondly, the equivalent

global optimization problem to VIP has the zero global minimum value. This means we

have a natural lower bound for the objective function, and when determining the useless

subregions instead of comparing the lower bounds of regions with the highest upper bound,

we can just compare them with zero. A branch and bound algorithm was also developed for

linear complementarity problem by Al-Khayyal [1], but in a quite different manner.

This chapter is organized as follows. In Section 5.2, we consider the gap function and the

natural residual function, and show their Lipschitzian properties. In Section 5.3, we describe

a global optimization method based on a branch and bound method for solving the VIP.

In Section 5.4, we present some numerical results with the proposed method for some test

problems. Section 5.5 concludes the chapter.

5.2 Lipschitz Continuity

Consider the VI(S, F ) defined by (5.1.1), where F : ℜn → ℜn is a continuous, but not

necessarily monotone, mapping and S is a nonempty closed convex set in ℜn.

In Chapter 2, we have seen that with the following merit functions, the VIP can be refor-

mulated as a global optimization problem with zero global minimum value.

• Gap function:

θgap(x) = sup
y∈S

〈F (x), x− y〉. (5.2.1)

• Natural residual function:

θnat(x) = ‖x− ΠS(x− F (x))‖, (5.2.2)

where ΠS(z) := argmin
y∈S

‖z − y‖ denotes the projection of point z on S.

Assume that F is Lipschitz continuous on the set S, i.e., there exists a constant LF > 0 such

that

‖F (x)− F (y)‖ ≤ LF‖x− y‖, ∀x, y ∈ S.
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Moreover, we assume that the set S is compact. Under these assumptions, the VIP (5.1.1)

is guaranteed to have at least one solution [17]. Denote by L1 and L2 the global maximum

values of continuous functions ‖F (y)‖ and ‖x−y‖, respectively, over the compact set S, i.e.,

L1 = max
y∈S
‖F (y)‖, L2 = max

x,y∈S
‖x− y‖, (5.2.3)

where ‖ · ‖ denotes the Euclidean norm.

Lemma 5.2.1. If F is Lipschitz continuous on S with constant LF and S is a compact set,

then the gap function θgap defined by (5.2.1) is Lipschitz continuous with constant Lgap :=

LFL2 + L1 on S.

Proof. For ∀x, y ∈ S, we have

θgap(x)− θgap(y) = max
z∈S
〈F (x), x− z〉 −max

z∈S
〈F (y), y − z〉

≤ max
z∈S

[〈F (x), x− z〉 − 〈F (y), y − z〉]
= max

z∈S
[〈F (x)− F (y), x− z〉+ 〈F (y), x− y〉]

≤ max
z∈S
‖F (x)− F (y)‖‖x− z‖+ ‖F (y)‖‖x− y‖

≤ (LF max
z∈S
‖x− z‖+ ‖F (y)‖)‖x− y‖

≤ (LFL2 + L1)‖x− y‖ = Lgap‖x− y‖.

On the other hand, we have

θgap(x)− θgap(y) = max
z∈S
〈F (x), x− z〉 −max

z∈S
〈F (y), y − z〉

≥ −max
z∈S

[〈F (y), y − z〉 − 〈F (x), x− z〉]
= −max

z∈S
[〈F (y)− F (x), y − z〉+ 〈F (x), y − x〉]

≥ −(max
z∈S
‖F (x)− F (y)‖‖y − z‖+ ‖F (x)‖‖x− y‖)

≥ −(LF max
z∈S
‖y − z‖+ ‖F (x)‖)‖x− y‖

≥ −(LFL2 + L1)‖x− y‖ = −Lgap‖x− y‖.

Hence we conclude that

|θgap(x)− θgap(y)| ≤ Lgap‖x− y‖, ∀x, y ∈ S.

This completes the proof.
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Lemma 5.2.2. If F is Lipschitz continuous on S with constant LF and S is a compact

set, then the natural residual function θnat defined by (5.2.2) is Lipschitz continuous with

constant Lnat := LF + 2.

Proof. Let us take ∀x, y ∈ S and check the Lipschitz condition:

|θnat(x)− θnat(y)| = |‖x−H(x)‖ − ‖y −H(y)‖|
≤ ‖(x−H(x))− (y −H(y))‖
≤ ‖x− y‖+ ‖H(x)−H(y)‖
= ‖x− y‖+ ‖ΠS(x− F (x))− ΠS(y − F (y))‖.

Since the projection operator is non-expansive, we have

|θnat(x)− θnat(y)| ≤ ‖x− y‖+ ‖ΠS(x− F (x))− ΠS(y − F (y))‖
≤ ‖x− y‖+ ‖(x− F (x)− (y − F (y))‖
≤ ‖x− y‖+ ‖x− y‖+ ‖F (x)− F (y)‖
≤ 2‖x− y‖+ LF‖x− y‖ = Lnat‖x− y‖.

The proof is completed.

Remark 5.2.3. It is also possible to show the Lipschitz continuity of the differentiable

merit function (2.3.5) and one may combine the Lipschitz optimization approach with some

gradient related method.

5.3 Lipschitzian Branch and Bound Method

When F is Lipschitz continuous, Lemmas 5.2.1 and 5.2.2 allow us to reduce the VIP to a

Lipschitz optimization problem. Although Lipschitz optimization problems with box con-

straints have been much studied [30, 31, 37, 38, 75], application to VIP is scarce. For this

reason, we restrict ourselves to VIP with box constraints. More specifically, we consider the

VI(D,F ) with

D := {y ∈ Rn|li ≤ yi ≤ ui, i = 1, ..., n}.
The best known and most studied algorithm for Lipschitz optimization problems is the

branch and bound method [37, 38]. In this method, the feasible set D is subsequently di-

vided into more and more refined parts, over which lower and upper bounds of the minimum
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objective function value are determined. Parts of the feasible set D with lower bounds

exceeding zero (global minimum value of merit function) are discarded from further con-

sideration, since these parts cannot contain a solution of VIP. Negative lower bounds may

also be helpful in selecting parts of D that have a good chance to contain a solution, as we

consider below.

Description of the branch and bound method is given as follows [37, 38]:

Branch and bound method

Let us define a rectangle R = {o, d, λ,m, υ} with origin o(R), diagonal endpoint d(R), Lip-

schitz lower bound λ(R), best known solution m(R) = argmin
x∈K(R)

θ(x) and best known upper

bound υ(R) = min
x∈K(R)

θ(x), where K(R) = {o(R), d(R), (o(R) + d(R))/2, . . . } is a set of

control points associated with the rectangle. In particular, for a function θ satisfying the

Lipschitz condition with constant L, λ(R) is computed as

λ(R) = max{ max(θ(o(R)), θ(d(R)))− L‖d(R)− o(R)‖,
θ((o(R) + d(R))/2)− L/2‖d(R)− o(R)‖, . . . }.

The priority queue Ω := {R1, R2, . . . } of rectangles which may contain a solution will also

be used in the method and the priority may be defined in many ways. In our numerical

experiments, we use two different priorities, diving and the most expansive bound.

diving strategy - the smaller the lower bound value υ(R), the better the rectangle R.

the most expansive bound strategy - the higher the difference between upper and

lower bounds λ(R)− υ(R), the better the rectangle R.

Algorithm 5.3.1. Algorithm LBB

1.Initialization. R = D; Λ0 = λ(R); Υ0 = υ(R); s0 = m(R); Ω = {R}; k := 0;

2. Stopping Condition. If Υk < Λk+ε, then terminate the algorithm and sk is a solution.

Otherwise, go to the next step.

3. Selection. Select a candidate R from the priority queue Ω according to the one of the

strategies.
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4. Branching. Divide R into two rectangle (R1, R2) by halving it.

5. Bounding. Determine λ(Ri), υ(Ri),m(Ri) for i = 1, 2 and insert R1, R2 in the priority

queue Ω. Update the upper and the lower bounds, and the current solution:

Λk+1 := max{Λk, λ(R1), λ(R2)},

Υk+1 := min{Υk, υ(R1), υ(R2)},

sk+1 := argmin{θ(s)| s ∈ {sk,m(R1),m(R2)}}.

Set k := k + 1 and go to Step 2.

The efficiency of the branch and bound algorithm substantially depends on the Lipschitz

constant. There are some procedures for estimating the Lipschitz constant, such as those

proposed by Strongin [100] and Meewella and Mayne [75]. Such constants may also be

estimated by using interval analysis [90, 91].

Since the minimum value of the merit function is known to be zero, we concentrate more

on decreasing the upper bound Υk than decreasing the difference Υk − Λk and we use the

stopping condition Υk < ε instead of Υk −Λk < ε. Moreover, at every pre-specified number

of, say three, iterations, we select the next rectangle R from the priority queue Ω with the

lowest upper bound υ(R), instead of selecting it by the diving strategy or the most expansive

bound strategy.

Convergence of the algorithm is ensured by the following theorem.

Theorem 5.3.2. ([37]) If ε = 0 in the branch and bound algorithm and an infinite sequence

is generated, then

Λ = lim
k→∞

Λk = lim
k→∞

θ(sk) = lim
k→∞

Υk = Υ

and every accumulation point s∗ of the sequence {sk} is an optimal solution of the optimiza-

tion problem

min θ(x) s.t x ∈ D.
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5.4 Numerical Experiments

In this section, we implement the branch and bound method for two types of test problems.

The first one is the affine variational inequality problem in which F is given by F (x) = Px+q,

where P ∈ ℜn×n and q ∈ ℜn. For this kind of problems, it is not difficult to compute Lipschitz

constants for merit functions. In fact, we have

L1 = max
x∈D
‖F (x)‖

= max
x∈D
‖Px+ q‖

≤ min{‖Pl + q‖+ ‖P‖‖u− l‖, ‖P‖‖c(l, u)‖},

where c(l, u) is a vector with components ci(l, u) = max{|(u+P †q)i|, |(l+P †q)i|}, i = 1, ..., n,

and P † stands for the Moore-Penrose inverse of P . So by letting

LF = ‖P‖ and L2 = ‖u− l‖,

we have from Lemmas 5.2.1 and 5.2.2,

Lgap = LFL2 + L1

≤ ‖P‖‖u− l‖+ min{‖Pl + q‖+ ‖P‖‖u− l‖, ‖P‖‖c‖}

and

Lnat = LF + 2 = ‖P‖+ 2.

Thus, Lgap depends substantially on the diameter of the set D. Therefore, for a rectangle

R ⊂ D, it is sometimes computationally helpful to use different estimates of Lipschitz

constant instead of using only Lgap. For example, in the interval [li, ui] ⊂ [l, u], Lipschitz

constant for the gap function θgap may be estimated as follows:

Li
gap = LFL2 + Li

1

≤ ‖P‖‖u− l‖+ min{‖Pli + q‖+ ‖P‖‖ui − li‖, ‖P‖‖c(li, ui)‖}.

To use this formula without trouble, however, one has to have some guarantee, at least, that

Li
gap < Lgap.

The other type of problems we have tested are non-smooth nonlinear complementarity

problems involving a mapping of the form F (x) = P |x| + q, where P ∈ ℜn×n, q ∈ ℜn and

|x| denotes the vector with components |xi|, i = 1, . . . , n.

When the branch and bound method is executed, one often obtains a good feasible point

in an early stage and most of the computational effort is spent to verify its quality or prove
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optimality. In addition to the stopping condition Υk < ε, we use another stopping condition

- upper limit NFmax for the number of function evaluations. Once the number of function

evaluations reaches NFmax, we terminate the algorithm. In our computational experiments,

we set

ε = 10−6 and NFmax = 10000n,

where n is the dimension of the problem.

We solved six VIPs in the Appendix B up to dimension 10. The program was coded

in Matlab and run on a computer Pentium 4 Microprocessor. Tables 5.1 and 5.2 show the

numerical results. Columns of the tables have the following meaning.

Problem: name of the test problem,
n: dimension of the test problem,
func: merit function used,
L : Lipschitz constant of the merit function,
θ∗ ≈: the function value at the obtained solution,
|Ω| : the number of elements in the priority queue,

i.e., the number of remaining rectangles which possibly contain a solution,
NF : the number of function evaluations.

The numerical results reported in Tables 5.1 and 5.2 show that the branch and bound

method was able to solve all the test problems. As we see in the last columns of both tables,

the number of function evaluations required to find an approximate solution of each test

problem is generally not so large. Particularly, for problems (P1),(P3),(P5) and (P6), the

method works very well. Problems (P3) and (P6) have a solution at a vertex of the box

constraint set, while problems (P1) and (P5) happen to have a solution at a vertex of some

sub-rectangle emerged in an earlier stage of branching. Moreover, for all problems, the Lips-

chitz constant Lnat of θnat is much smaller than that of θgap. This is because of the fact that

Lgap largely depends on the size of the constraint set, while Lnat does not depend on it. The

stopping condition Υk < ε was satisfied for most of the test problems and approximation of

solutions was reasonably accurate. Only for the θgap reformulations of problems (P2), (P4)

and (P6), the maximum number of function evaluations NFmax was used to terminate the

iteration.

In Table 5.1, we see that, for the diving strategy, the θnat reformulation works better

than the θgap reformulation for all problems but (P3). We can see this fact in the last two

columns of Table 5.1, i.e., the number of function evaluations and the number of remaining

rectangles in the priority queue Ω for the θnat reformulation are smaller than those of the

θgap reformulation. The reason for this may be explained by the fact that Lnat is usually
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much smaller than Lgap. Moreover, for the θgap reformulation, the method with the diving

strategy was not able to solve problem (P6), while the θnat reformulation was solved easily

Table 5.1: Numerical Experiments of the Algorithm LBB with the Diving Strategy

Problem n func L θ∗ ≈ |Ω| NF

θgap 9.8994 4.7684e-7 184 1464

P1 2
θnat 4.0000 6.7435e-7 117 560

θgap 31.7177 1.9073e-6 3275 30000

P2 3
θnat 5.3027 4.7684e-7 471 11668

θgap 20.1923 7.6294e-7 131 532

P3 4
θnat 5.8587 8.2591e-7 483 2056

θgap 49.1393 7.5338e-5 3238 30000

P4 3
θnat 7.3629 8.5963e-7 788 6448

θgap 55.4700 9.2387e-7 232 928

P5 5
θnat 12.7750 6.7435e-7 219 876

θgap 391.0476 36.7296e-0 12688 100000

P6 10
θnat 17.6376 9.6294e-7 419 1676

by the same strategy. This shows that the diving strategy is not suitable for problem (P6)

with the θgap reformulation. The θgap reformulation of problems (P2) and (P4) required the

upper limit NFmax for the number of function evaluations to terminate the iteration, while

the the stopping condition Υk < ε was satisfied before the number of function evaluations

reached its upper limit NFmax in all the other cases.

In Table 5.2, which shows the results for the most expansive bound strategy, we see

that the θnat reformulation works better for problems (P1), (P2), (P4) and (P6) in terms

of both the numbers of function evaluations and remaining rectangles in Ω, while the θgap

reformulation performs well for problems (P3) and (P5). The θgap reformulations of problems

(P2) and (P4) used NFmax to terminate the iteration, while the stopping condition Υk < ε

was satisfied before the number of function evaluations reached its upper limit NFmax in all
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Table 5.2: Numerical Experiments for the Algorithm LBB with the Most Expansive Bound

Strategy

Problem n func L θ∗ ≈ |Ω| NF

θgap 9.8994 4.7684e-7 133 1436

P1 2
θnat 4.0000 6.7435e-7 74 456

θgap 31.7177 1.9073e-6 1320 30000

P2 3
θnat 5.3027 4.7684e-7 171 12200

θgap 20.1923 7.6294e-7 127 580

P3 4
θnat 5.8587 8.2591e-7 385 2952

θgap 49.1393 7.5338e-5 1432 30000

P4 3
θnat 7.3629 8.5963e-7 375 6552

θgap 55.4700 9.2387e-7 211 848

P5 5
θnat 12.7750 6.7435e-7 226 904

θgap 391.0476 7.6722e-7 537 2148

P6 10
θnat 17.6376 9.4619e-7 443 1772

the other cases. For problems (P2) and (P4), the θnat reformulation works much better than

the θgap reformulation, as we can see in the last two columns of Table 5.2. We may deduce

that for problems having a solution in a general position, Lipschitz constant plays a more

important role for effective computation.

Finally, we discuss some comparison of results shown in the two tables. For the θgap

reformulation, the method with the most expansive bound strategy works consistently better

than the method with the diving strategy. Comparing the number of function evaluations for

the reformulation θnat in Tables 5.1 and 5.2, we observe that the diving strategy works better

for all problems except (P1). With the most expansive bound strategy for θgap, the method

could solve problem (P6) without trouble. For problems (P1)-(P4), the most expansive

bound strategy leaves less rectangles in the priority queue Ω.
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5.5 Conclusion

In this chapter, we have considered the possibility of applying Lipschitz optimization ap-

proach to general VIPs. Under some suitable conditions, we have shown that the equivalent

global optimization reformulations of VIPs satisfy the Lipschitz condition, and presented

a branch and bound algorithm designed particularly for the latter problem. Numerical re-

sults for some test problems are reported to illustrate the behavior of the proposed approach.
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Chapter 6

Conclusions

In this thesis, we have developed several global optimization based methods for solving the

general VIP. From classic methods to heuristics, we have studied the possibility of using

global optimization methods for solving the equivalent optimization problem to VIP. The

main advantage of the equivalent global optimization reformulation to VIP is the global min-

imum value of the equivalent problem is known to be zero. Since there are no general criteria

for global optimal solutions, most global optimization methods suffer from the difficulty in

determining when to terminate the algorithm. The information about the global minimum

value is crucial for our methods and it greatly enhances the performance of the methods.

Moreover, directly dealing with the equivalent global optimization problem enables us to

deal with VIP under very general settings.

Below, we describe the main contributions of the thesis chapter by chapter.

In Chapter 3, we have proposed a heuristic method for solving the general VIP. Special

procedures such as adaptive fitness function techniques and the population update rules

have been introduced. The proposed method is capable of detecting as many as possible,

hopefully all solutions of the general VIP. Numerical experiments for some well known test

problems show that the method works very well in practice.

In Chapter 4, we have proposed a modified and practically implementable version of

the classical Josephy-Newton method. By imposing some extra bounds to the traditional

Josephy-Newton subproblems, we ensure the existence of solutions to subproblems. Under

appropriate conditions, global and locally superlinear convergence properties of the proposed

method are established. Furthermore, we have developed an evolutionary algorithm for
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solving general VIPs with bounded polyhedral constraints, which can be used to solve the

Josephy-Newton subproblems when the constraint set is polyhedral. Numerical experiments

show that the proposed approach is able to solve various test problems successfully.

In Chapter 5, we have proposed a deterministic approach for solving the general VIP.

Assuming the mapping F is Lipschitz continuous, we have shown that some of merit func-

tions are Lipschitz continuous. Then the Lipschitzian branch and bound method has been

employed for solving the merit function minimization problem. The known global minimum

value of zero gives us the natural lower bound, so we have concentrated only the upper

bound minimization part. Numerical experiments for some test problems are reported to

illustrate the behavior of the proposed approach.

Finally, we discuss some future research directions concerning the general VIP.

In Chapter 3, we have considered an evolutionary algorithm for solving the general VIP.

Similarly, it is interesting to study other heuristic methods such as Tabu search and the

simulated annealing for solving the general VIP. Combining these methods with adaptive

fitness function techniques, new methods can be developed.

Another issue left without answer in Chapter 3 is to construct an exact tunneling func-

tion. The tunneling function employed in the adaptive function techniques is somewhat

heuristic and we have to determine the appropriate tunneling parameters. Establishing an

exact tunneling function would be very helpful, not only in solving VIP, but also in other

optimization fields that use the tunneling function.

In Chapter 4, the Josephy-Newton method linearizes only a part of the original VIP

and it results in subproblems with the same constraint set. When we use some polyhedral

approximation to the constraint set, the existence of a solution to subproblems is in dan-

ger even if the original constraint set is compact. By imposing some extra bound to this

linearized constraint sets we may consider a fully linearized version of the Josephy-Newton

method with tractable subproblems.

The next direction for general VIP is to consider large scale problems. When the size of

the problem is very big, most of the existing methods face the computational difficulty. The

parallel version of our methods or some decomposition methods will be useful to deal with

such problems.
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Test Problems for the Restricted-Step

Josephy-Newton Method

The test problems used in the numerical experiments for the restricted-step Josephy-Newton

method are displayed here. We have used some standard test problems from the MCPLIB

[14] to construct our test problems by modifying the constraint sets. In particular, modifica-

tions have been made in such a way that the solutions of the original test problems become

infeasible to the new test problems.

• badfree∗

n = 5 and F (x) = Mx+ q, where

M =













1 0 0 0 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 1 1 0













, q =













−1
−1
−0.5
−0.5
−1













.

In this example, the original constraint set X was

X := {x ∈ ℜn| xi ≥ 0, i = 1, . . . , n− 1}.

We have modified this by adding two linear constraints:

S = {x ∈ X|
n

∑

i=1

xi ≤ n,
n

∑

i=1

ixi ≥ n+ 1}.

We use the feasible starting point x0 =
(n− 1

n
,
n− 1

n
, . . . ,

n− 1

n

)T

.
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• choi∗

n = 13 and F (x) = (∇xj
Πj(x))

n
j=1, where

Πj(x) = (xj − Cj)
Q

I

I
∑

i=1

Prij,

with

Prij =
exp{−χDUij}

J
∑

m=1

exp{−χDUim}+K

and

DUij =
N

∑

n=1

vin(ajn − bin)2 + wixj + bi.

For the details of the coefficients given above, see [8]. In this example, the original

constraint set X was

X := {x ∈ ℜn| li ≤ xi ≤ ui},

where

l = (0.4, 0.1328, 0.4, 0.1275, 0.0975, 0.1172, 0.1541, 0.4, 0.301, 0.4, 0.4, 0.26, 0.2383),

u = (1.2, 0.3984, 1.2, 0.3825, 0.2925, 0.3516, 0.4623, 1.2, 0.903, 1.2, 1.2, 0.78, 0.7149).

We have modified this by adding two linear constraints:

S = {x ∈ X|
n

∑

i=1

xi ≥ 5,
n

∑

i=1

xi ≤ 10}.

We use the feasible starting point x0 =
(l + u)

2
.

• explcp∗

n = 16 and F (x) = Mx+ q, where

M =











1 2 . . . 2

0
. . . . . .

...
...

. . . . . . 2
0 . . . 0 1











, q =







−1
...
−1






.

In this example, the original constraint set X was

X := {x ∈ ℜn| xi ≥ 0, i = 1, . . . , n}.
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We have modified this by adding two linear constraints:

S = {x ∈ X|
n

∑

i=1

xi ≥ 2,
n

∑

i=1

xi ≤ n}.

We use the feasible starting point x0 =
(1

2
,
1

2
, . . . ,

1

2

)T

.

• josephy∗

n = 4 and

F (x) =









3x2
1 + 2x2

2 + 2x1x2 + x3 + 3x4 − 6
2x2

1 + x2
2 + x1 + 3x3 + 2x4 − 2

3x2
1 + 2x2

2 + x1x2 + 2x3 + 3x4 − 1
x2

1 + 3x2
2 + 2x3 + 3x4 − 3









.

In this example, the original constraint set X was

X := {x ∈ ℜn| xi ≥ 0, i = 1, . . . , n}.

We have modified this by adding two linear constraints:

S = {x ∈ X|
n

∑

i=1

ixi ≥ n,
n

∑

i=1

xi ≤ n− 1}.

We use the feasible starting point x0 =
(1

2
,
1

2
,
1

2
,
1

2

)T

.

• kojshin∗

n = 4 and

F (x) =









3x2
1 + 2x2

2 + 2x1x2 + x3 + 3x4 − 6
2x2

1 + x2
2 + x1 + 10x3 + 2x4 − 2

3x2
1 + 2x2

2 + x1x2 + 2x3 + 9x4 − 9
x2

1 + 3x2
2 + 2x3 + 3x4 − 3









.

In this example, the original constraint set X was

X := {x ∈ ℜn| xi ≥ 0, i = 1, . . . , n}.

We have modified this by adding two linear constraints:

S = {x ∈ X|
n

∑

i=1

ixi ≥ n,
n

∑

i=1

xi ≤ n− 1}.

We use the feasible starting point x0 =
(1

2
,
1

2
,
1

2
,
1

2

)T

.
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• mathinum∗ and mathisum∗

Both mathinum and mathisum test problems originate from the Mathiesen’s Walrasian

equilibrium problem with

F (x) =















−x1 + x2 + x3

x4 −
0.9(5x2 + 3x3)

x1

5− x4 −
0.1(5x2 + 3x3)

x2

3− x4















.

The dimension of the problem is n = 4 and the original constraint set X is given by

X := {x ∈ ℜn| xi ≥ 0, i = 1, . . . , n}.

(a). mathinum∗

Setting x1 = 4.2, we have mathinum test problem with dimension n = 3. We have

modified the problem by adding two linear constraints:

S = {x ∈ X|
n

∑

i=1

xi ≥ 10,
n

∑

i=1

xi ≤ 10n}.

We use the feasible starting point x0 = (4, 4, 4)T .

(b). mathisum∗

Setting
n−1
∑

i=1

xi = 1, we have mathisum test problem with dimension n = 4. We have

modified the problem by adding a linear constraint:

S = {x ∈ X|
n

∑

i=1

xi ≤ n}.

We use the feasible starting point x0 =
(1

2
,
1

2
,
1

2
,
1

2

)T

.

• nash∗

n = 10, γ = 1.2, c = (5, 3, 8, 5, 1, 3, 7, 4, 6, 3), L = (10, 10, . . . , 10),

β = (1.2, 1, 0.9, 0.6, 1.5, 1, 0.7, 1.1, 0.95, 0.75) and

F (x) =
(

ci + (Lixi)
1
βi − p(x) + xi

p(x)

γs(x)

)n

i=1
,

where

s(x) =
n

∑

j=1

xj, p(x) = 5000
1
γ s(x)−

1
γ .
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In this example, the original constraint set X was

X := {x ∈ ℜn| xi ≥ 0, i = 1, . . . , n}.

We have modified this by adding two linear constraints:

S = {x ∈ X|
n

∑

i=1

xi ≥ 1,
n

∑

i=1

xi ≤ 4n}.

We use the feasible starting point x0 = (1, 1, . . . , 1)T .
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Appendix B

Test Problems for the Lipschitzian

Branch and Bound Method

The test problems used in the numerical experiments for the Lipschitzian branch and bound

method are displayed here. The first three test problems, which are originally linear com-

plementarity problems, are taken from [21] and are modified by introducing some box con-

straints.

• Test Problem 1

P1(n = 2) : F (x) = Px+ q, D := {x ∈ ℜn|a ≤ x ≤ b},

where

P =

(

1 1
1 1

)

, q =

(

−1
−1

)

, a =

(

0
0

)

, b =

(

1.5
1.5

)

.

• Test Problem 2

P2(n = 3) : F (x) = Px+ q, D := {x ∈ ℜn|a ≤ x ≤ b},

where

P =





0 −1 2
2 0 −2
−1 1 0



 , q =





−3
6
−1



 , a =





0
0
0



 , b =





2
2

2.5



 .

• Test Problem 3

P3(n = 4) : F (x) = Px+ q, D := {x ∈ ℜn|a ≤ x ≤ b},



74 Test Problems for the Lipschitzian Branch and Bound Method

where

P =









0 0 1 2
0 0 3 1.5
1 2 0 0
3 1.5 0 0









, q =









−0.1
−0.1
−0.1
−0.1









, a =









0
0
0
0









, b =









2
2
2
2









.

The other three test problems are nonlinear, non-smooth VIPs given as follows.

• Test Problem 4

P4(n = 3) : F (x) = P |x|+ q, D := {x ∈ ℜn|a ≤ x ≤ b},

where

P =





−2 −1 −3
0 −1 1
3 3 1



 , q =





2
−1
−1



 , a =





−1
−1.5
−1.5



 , b =





1
2
2



 .

• Test Problem 5

P5(n = 5) : F (x) = P |x|+ q, D := {x ∈ ℜn|a ≤ x ≤ b},

where

P =













3 1 −1 1 −3
−3 0 −2 −5 2
−1 −1 4 1 0
0 −4 3 3 4
2 −1 4 5 2













, q =













−3
−1
−3
5
−1













, a =













−1
1
1
0
0













, b =













0
2
2
1
1













.

• Test Problem 6

P5(n = 10) : F (x) = Px+ q, D := {x ∈ ℜn|a ≤ x ≤ b},

where

P = 0.1 ·

































−3 21 15 43 −45 −45 36 −49 −5 38
−7 10 −35 26 −38 −20 14 −9 −13 −43

8 16 −3 −19 20 −18 −10 −26 27 −11
39 −16 25 −36 5 16 6 5 −5 −22
−22 37 −13 −3 39 42 22 −46 −32 18
−26 15 11 9 43 −21 46 27 39 −13

48 36 43 −2 −4 10 29 −12 −41 −29
−47 9 −5 5 −30 −50 −36 36 47 16

16 49 −18 23 −33 43 2 38 1 19
−41 −47 25 16 −8 48 −46 15 43 3

































,
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q = (16.6, − 18.8, − 44.2, 33.0, 37.3, 20.7, 46.6, − 41.8, 44.5, − 42.4)T ,

a = (−1, −1, −1, −1, −1, −1, −1, −1, −1, −1)T , b = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2)T .
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[78] Moré, J.J. (1971), The application of variational inequalities to complementarity prob-
lems and existence theorems, Technical Report 71–90, Department of Computer Sciences,
Cornell University, Ithaca, NY.
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