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Preface

Traffic assignment is the process of allocating a given set of traffic movements to a specific

traffic system. The purposes of traffic assignment include the assigning of estimated future

trips to the existing traffic system in order to assess the deficiencies of the system, to evaluate

the effects of possible improvements in the traffic system and to test possible alternate routes

for the traffic system.

One of the most popular principles used in the study of traffic assignment models is the

Wardrop user equilibrium principle which states that users of the traffic network will

choose the route having the minimum cost between each OD pair, and through this process,

the routes that are used will have equal costs; moreover, routes with costs higher than the

minimum will have no flow. Moreover, the traffic equilibrium problem (TEP) is to find a

vector pair of route flows and minimum route costs such that the Wardrop user equilibrium

principle, together with the nonnegativity condition imposed on the travel demand function,

are satisfied.

The TEP has been studied for many decades. Various formulations have been proposed

under various assumptions. Earlier TEP formulations made use of assumptions which are

found to be unnatural or unrealistic (e.g., that the travel costs are independent of the link

flows) in order to obtain TEP models which are easy to analyze. Most of the existing TEP

formulations assume that route costs are additive, that is, the route costs are simply the sum

of the link costs for all the links on the route being considered. Another assumption used in

most TEP models is that every traveler has a complete and accurate information about the

characteristics of the traffic network and all travelers have the same route cost perception

and travel behavior.

However, due to the rapid technological and economic advancement seen all over the

world, enormous changes in the road traffic conditions have occurred. Thus the additivity

and certainty assumptions on the route costs is no longer appropriate. Moreover, different
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individuals may have different travel behavior and such travel behavior may be affected by

the different time or weather of the day.

Hence, there is indeed a need to include nonadditivity and uncertainty in the route cost

function formulation in order to present a more realistic view of the traffic system. Unfortu-

nately, formulating the TEP with nonadditive route costs results in an increased difficulty in

the analysis and computation of its equilibrium solution which is usually done by formulating

the TEP into the equivalent mixed complementarity problem (MCP). The TEP with additive

costs may be formulated as a monotone MCP having a unique solution. However, an MCP

derived from the TEP with nonadditive costs does not immediately possess monotonicity

unless restrictive assumptions are made or a certain reformulation is introduced. Moreover,

the TEP under uncertainty may not have a solution in general.

It is the aim of this dissertation to present a more realistic TEP model which is solvable

using existing solution methods. In Chapter 3, we consider the TEP with nonadditive route

costs and propose an MCP formulation of this nonadditive TEP model which is solvable.

We then apply this MCP reformulation of the nonadditive TEP model to the road pricing

problem and show that the resulting reformulation is solvable using an existing solution

method. This is done in Chapter 4. Moreover, in Chapter 5, we propose models of the TEP

with uncertainty which give a reasonable equilibrium for the TEP. Moreover, we show that

these models can be converted into convex programming problems under some reasonable

conditions, and hence we can obtain an equilibrium solution of the model using the existing

optimization solver.

Kyoto, Japan RHODA PADUA AGDEPPA

December 2008
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Notations

G = (A,N ) network under consideration
A the set of links (with cardinality nA)
N the set of nodes (with cardinality nN )
W the set of origin-destination (OD) pairs w in G (with cardinality nW)
Rw the set of routes r connecting the OD pair w ∈ W
R the set of all routes (with cardinality nR)
fa the flow on link a ∈ A
f the vector of link flows
Fr the flow on route r ∈ R
F the vector of route flows
ta the travel time on link a ∈ A
Cr the cost experienced by a person using route r
uw the minimal route cost for the OD pair w
u the vector with components uw

Dw the demand associated with each OD pair w
∆ = (δar) the link-route incidence matrix whose elements are δar where

δar is 1 if route r passes through link a and 0 otherwise
Γ = (Γrw) the route-OD pair incidence matrix whose elements are Γrw where

Γrw is 1 if r ∈ Rw and 0 otherwise
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Chapter 1

Introduction

The movement of people and goods between different places is one of the major activities

that can be observed in a highly urbanized area. Since a society depends upon the mobility

provided by transportation networks, an efficient transportation system is therefore necessary

for its social and economic growth.

The recent modernization and economic advancement in most countries around the world

have caused an increase in the demand for transportation. However, the increase of mobility

has brought many serious social and environmental problems such as increased air pollution,

increased accident rates and traffic congestion.

The quantitative analysis of existing transport systems and traffic phenomena has been

done by traffic planners and researchers in order to address the above-mentioned problems.

The real-world transport system is very complex, hence properly formulated traffic models

are necessary in order to evaluate and manage such a system.

Traffic assignment is a major component in transportation planning. The basic concepts

of traffic assignment began when the demand for transportation enormously increased after

World War II [58]. The main purpose of the early traffic assignment problem was to estimate

the diversion of traffic from existing roads to new, improved alternative roads in order to

minimize the travel cost.

The early traffic assignment studies used assumptions which were highly unrealistic. For

example, they assumed that the travel time and cost were independent of link flows when

in reality, travel times and costs correspondingly increase with the increase in the number

of users.

In 1952, a breakthrough in traffic assignment modeling came with the publication of
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the paper of Wardrop [70] on two principles of flow distribution in a transportation net-

work, namely, the user equilibrium principle and the system optimum principle. The user

equilibrium principle states that users of the traffic network will choose the route having

the minimum cost between each origin-destination (OD) pair, and through this process, the

routes that are used will have equal costs; moreover, routes with costs higher than the min-

imum will have no flow. The system optimum principle assumes that users of the traffic

network will choose their routes so as to minimize the total travel time in the transportation

system. These two principles have been the basis of most traffic assignment models.

A traffic equilibrium model aims at predicting flow patterns and travel times which are

the results of the network user’s choices with regard to routes from their origins to their

destinations. The model is based on the behavioral assumption that all travelers compete

noncooperatively for the network resources in order to minimize their travel costs [70]. This

is the Wardrop user equilibrium principle. The traffic flows that satisfy this principle

are usually referred to as user-equilibrium flows since the routes chosen by the network users

are those which are individually perceived to be the shortest route under the prevailing

condition. It should be noted that the only situation where the user optimum flows and the

system optimum flows are equal is in the ideal condition when no congestion exists [58].

In this study, we focus on the user equilibrium principle. This is because in the real

traffic system, route flows are likely closer to a user rather than a system optimum [58].

This chapter is organized as follows. In the next section, we discuss the mathematical

models for the traffic equilibrium problem. We also discuss some of the solution methods

for the TEP in Section 1.1. Section 1.2 presents the motivations and objectives of the study.

Organization and contributions of this study are discussed in Section 1.3.

1.1 Mathematical Models for the Traffic Equilibrium

Problem

The traffic equilibrium problem (TEP) is to find the flow pattern by allocating the

OD demands to the network in such a way that no user can reduce his/her travel time by

unilaterally changing his/her route.

Various mathematical models for the TEP have been introduced to better understand
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the problem. In what follows, we present the general TEP model, a bilevel model on the

TEP, and the TEP model under uncertainty.

Let G = (A,N ) be a transportation network, where A is the set of links (with cardinality

nA) and N is the set of nodes (with cardinality nN ). Let W be the set of origin-destination

(OD) pairs in G (with cardinality nW). For every OD pair w ∈ W, there corresponds the

set Rw of routes connecting the OD pair w. We denote by R the set of all routes (with

cardinality nR), i.e., R =
⋃

w∈W Rw. All throughout this study, we assume that the network

G is connected, that is, there exists a route between each pair of nodes.

The cost experienced by a person using route r is denoted by Cr. In general, route costs

can be a function of the entire vector of route flows. The demand associated with each OD

pair w, denoted by Dw, is a function of the vector of minimum OD travel costs.

Figure 1.1 shows a sample traffic network with two origins and three destinations. The

routes between origin O2 to destination D3, Rw for w = {2 − 3}, are shown in bold.

D1

D2

D3

O2

O1

Figure 1.1: A sample traffic network.

1.1.1 General TEP Model

The TEP is to find a vector pair (F ,u) of route flows and minimum route costs such that

conditions
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0 ≤ Cr(F ) − uw ⊥ Fr ≥ 0, ∀r ∈ Rw, w ∈ W, (1.1.1)

∑

r∈Rw

Fr = Dw(u), ∀w ∈ W, (1.1.2)

uw ≥ 0, ∀w ∈ W, (1.1.3)

where F ∈ R
nR

+ is the vector of route flows Fr, uw is the minimal route cost for the OD pair

w, and u ∈ R
nW

+ is the vector with components uw. The notation “x ⊥ y” means that vectors

x and y are orthogonal and thus (1.1.1) implies (Cr(F ) − uw)Fr = 0 for all r ∈ Rw, w ∈ W

are satisfied.

(1.1.1) is the mathematical representation of the Wardrop equilibrium principle, (1.1.2)

means that the (elastic) travel demand must be satisfied, while (1.1.3) indicates that the

minimum travel costs must be nonnegative.

Studies on the traffic equilibrium problem assumes that each traveler has complete and

accurate information about the available routes and other characteristics of the traffic net-

work. Such a TEP model is called the deterministic model. In reality, however, it can be

observed that most traffic users have incomplete information of the network. This is known

as the stochastic model.

The TEP model is also formulated using the fixed demand case or the elastic demand

case. In the fixed demand case, D(u) ≡ D. In the elastic demand case, on the other hand,

the TEP is formulated as a problem where the demand is a function of the minimum route

costs u between the origin and destination. The elastic TEP model is more realistic in the

sense that, in general, a number of route choices are available to a traveler and that economic

considerations usually affect the travel decisions of a user.

Another assumption used in the study of the TEP is that the route costs faced by the

users in the network are additive, that is, the route costs are simply the sum of the link costs

for all the links on the route being considered. Mathematically, the additive route cost can

be written as

Cr(F ) =
∑

a∈A

δarta(f) for all r ∈ Rw, w ∈ W, (1.1.4)

where δar are the elements of the link-route incidence matrix ∆, i.e.,

δar =

{
1 if route r passes through link a
0 otherwise,
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and ta(f) is the travel time on link a ∈ A, fa is the flow on link a ∈ A, f is the vector of

link flows fa =
∑

r∈R δarFr, a ∈ A.

When the route costs are additive, TEP (1.1.1) – (1.1.3) can be reformulated as the

monotone variational inequality problem. Hence, we can efficiently obtain an equilibrium of

the TEP by using existing solution methods for the VIP.

However, as will be discussed later in Section 1.2, there are many situations where this

additivity assumption on the route costs is inappropriate [35]. Hence, recent studies on the

TEP have considered the case of nonadditive route costs.

1.1.2 Bilevel Model on the TEP

Traffic congestion is an important notion in the analysis of traffic equilibrium models. In

a real traffic network, it can be observed that as the number of traffic users increases, the

average speed on a link tends to decrease, which may lead to traffic congestion. The need for

measures to reduce congestion in the urban traffic areas is becoming more serious as more

and more people cluster in the cities, as a result of the modernization.

Road pricing is considered one of the effective means to reduce traffic congestion and

environmental damage, and it has been introduced in major highways of most countries.

Studies on road pricing consider a bilevel model wherein the traffic planner is assigned as

“the leader” (upper-level decision maker) while the traffic users are called “the followers”

(lower-level decision makers). Here, the leader makes some actions in order to achieve his

goal (e.g., collects toll in order to alleviate traffic congestion), while the followers react to

the actions of the leader by changing their behaviors (e.g., varying their travel schedules,

route choices or travel modes) according to the traffic equilibrium principle.

The bilevel model can be formulated as a mathematical program with equilibrium con-

straints (MPEC) [52], which is a constrained optimization problem whose constraints are

defined by a parametric variational inequality or complementarity system. The road pricing

problem (RPP) on the TEP can be formulated as the following MPEC:

min θ(τ, F )

s.t. τ ∈ T, (1.1.5)

(F, u) ∈ S(τ),
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where θ(τ, F ) is an objective function (say, maximize revenue), T is the set of possible tolls

imposed on all tollable links in the network (for example, T = {τ : τa ≥ 0, a ∈ A}) and S(τ)

is the set of solutions to the TEP satisfying conditions (1.1.1) – (1.1.3).

1.1.3 The TEP Model under Uncertainty

The concept of user equilibrium is generally associated with each traveler having full

and accurate information about travel costs, and all travelers being uniform and rational in

their decision-making [58]. That is, it is assumed that each traffic situation that happens

is deterministic. In reality, however, traffic conditions are not deterministic but contain

uncertainty. For example, traffic conditions vary depending on the weather condition. Travel

time on a day with fine weather (when visibility is good) will probably differ from a snowy

day when visibility is poor. Hence, it is necessary to include uncertainty in the study of

traffic equilibrium models in order to present a more realistic view of the traffic conditions.

The traffic equilibrium problem with uncertainty can be formulated by considering Ω

as the sample space of factors contributing to the uncertainty in the traffic network, say,

weather or time of the day. The route cost function C(F ) is replaced by C(F, ω) and the

travel demand D is replaced by D(ω), ω ∈ Ω. The TEP with uncertainty can be written as

the following stochastic variational inequality problem (SVIP): Find F such that

0 ≤ Cr(F, ω) − uw ⊥ Fr ≥ 0, ∀r ∈ Rw, w ∈ W,
∑

r∈Rw

Fr = Dw(ω), ∀w ∈ W, (1.1.6)

uw ≥ 0, ∀w ∈ W

for each ω ∈ Ω.

It is important to note, however, that (1.1.6) does not have a solution in general. Hence,

it is necessary to consider a reasonable solution instead.

1.1.4 Solution Methods for the TEP

The properties of an equilibrium solution to the TEP have been studied by considering

reformulations of the Wardrop equilibrium conditions. These reformulations include [58]: (i)
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Mathematical program (MP) (e.g., [46]); (ii) Fixed-point problem (FPP) (e.g., [6]); (iii) Vari-

ational inequality problem (VIP) (e.g., [21]); and (iv) Nonlinear complementarity problem

(NCP) (e.g., [1]).

Various approaches for solving the equivalent reformulations of the TEP have been pro-

posed. These solution methods include the generalized Newton’s method [44], PATH solver

[22], simplicial decomposition method [46], projection and contraction method [14], the

smoothing method [16], and the regularization method [25]. Another approach is to refor-

mulate the equivalent VIP reformulation as a minimization problem by the introduction of

a merit function [35].

Convergence results for these approaches have been established under the key assumption

of monotonicity. A VIP equivalent to the TEP with additive costs may usually be formulated

as a monotone VIP [26]. However, a VIP derived from the TEP with nonadditive costs does

not immediately possess monotonicity unless restrictive assumptions are made or a certain

reformulation is introduced.

Solution methods for the bilevel problem in transportation have also been proposed. The

bilevel problem, however, is known to be very complex, hence difficult to solve. Reformula-

tions to the bilevel problems have been introduced, which include (i) transforming the bilevel

problem into a (one-level) mixed 0-1 problem (e.g., [7]); and (ii) replacing the lower level

problem by its stationarity conditions, provided it is convex, which leads to the MPEC.

Solution methods to the above-mentioned reformulation of the bilevel problem include

the branch-and-bound algorithm [8] and trust region method [20]. Other solution methods

include smoothing approach [17, 24, 52], penalty approach [49, 63] and implicit programming

approach (ImPA) [23, 52]. Details of the ImPA will be presented in Chapter 4.

In the case of the TEP model under uncertainty, the resulting model is not deterministic.

Hence, there is a need of transforming such a model into a certain deterministic formulation

in order to solve the problem. The deterministic reformulations include (i) expected value

method [38]; and (ii) expected residual minimization method [18]. The details are given in

Chapter 5.

1.2 Motivations and Objectives of the Study

Various researches on the TEP have been done in order to better understand and present
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a more realistic representation of the real traffic conditions. More realistic traffic models are

necessary for an efficient transportation system. However, realistic traffic models are known

to be difficult to solve, or cannot be solved at all. Therefore, existing studies on the TEP

have used various assumptions in order to present realistic TEP models which are solvable.

It is the aim of this study to propose a solvable TEP model that is more realistic than the

existing ones.

In the study of the TEP, one of the basic assumptions used is that the route costs are

simply the sum of the link costs for all the links on the route being considered [1, 15, 21, 26].

Recall that the additive route cost function Cr can be written as (1.1.4).

There are many situations, however, where this additivity assumption on the route costs

is inappropriate. In particular, Gabriel and Bernstein [35] discussed several situations where

the route costs are nonadditive:

(i) Nonadditive toll and fare schemes – most existing toll and fare schemes being imple-

mented around the world are nonadditive.

(ii) Nonlinear valuation of travel time – different individuals have different valuations of

time, which contributes to the nonadditivity of route costs.

(iii) Transportation policies – the different transportation policies, such as congestion pric-

ing and the collection of emission fees, also add to the nonadditivity of route costs.

For example, emissions of hydrocarbons and carbon monoxide are nonlinear functions

of travel times.

Hence, it is indeed necessary to consider the nonadditivity of route costs in order to present

a more realistic view of the traffic situation.

Various models of TEPs with nonadditive route costs have been proposed in the last

decade [9, 35, 50]. However, those traffic models used a route cost function which is too

simple or assumptions which are too restrictive in order to obtain solvable TEP models.

In this study, we consider the traffic equilibrium problem with nonadditive route costs.

We introduce a route cost function which is a nonadditive disutility function of time (with

money converted to time). Our objective is to reformulate the equivalent VIP formulation

of the TEP into a monotone Mixed Complementarity Problem (MCP) under appropriate

conditions such that the resulting reformulation of the TEP with nonadditive route cost can

then be solved using existing solution methods.



1.3 Organization and Contributions 9

Moreover, we consider the road pricing formulation for the TEP with nonadditive costs.

This study aims to transform the road pricing formulation into an MPEC model by applying

the results obtained from the above-mentioned proposed TEP with nonadditive route costs.

On the other hand, the presence of uncertainty in most conditions affecting traffic, such

as different weather conditions, makes it necessary to consider the TEP with uncertainty in

order to present a more realistic view of the traffic situation. Unfortunately, the resulting

model of the TEP under uncertainty is not deterministic. Hence it is necessary to find

deterministic formulations for such problems. Recently, a new approach called the expected

residual (ER) method has been proposed to give a reasonable solution to problems of this

kind [18, 19, 28, 48].

The ER method regards a minimizer of an expected residual function for the AVIP as

a solution of SAVIP. Previous studies on the ER method employed the “min” function or

the Fischer-Burmeister (FB) function [18, 19, 28]. Such functions however are nonconvex in

general and hence we may not get a global solution.

In this study, we employ the regularized gap function and the D-gap function to define

a residual in the ER model and show that our proposed ER models are convex under some

conditions and hence a global solution can be obtained using existing solution methods.

1.3 Organization and Contributions

In the subsequent chapters, we will present some results related to the study of the traffic

equilibrium problem (TEP). Below, we summarize the organization of the rest of the thesis

as well as brief descriptions of the main contributions done in this study.

In Chapter 2, we provide an overview of the concepts used in this study. Specifically, we

give some important concepts on monotonicity and convexity for VIP and MPEC that are

necessary for better understanding of later arguments.

In Chapter 3, we consider the TEP with nonadditive costs. We modify the model pre-

sented in [35] by introducing a disutility function. We show that the equivalent VIP re-

formulation of the TEP can be transformed into a monotone MCP. We then establish the

existence and uniqueness result for an equilibrium of this reformulation.

In Chapter 4, we consider the road pricing formulation for the TEP with nonadditive

costs. We apply the results in Chapter 3 to transform the road pricing formulation into a
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mathematical program with equilibrium constraint (MPEC). We then show that this MPEC

formulation of the road pricing problem can be reformulated as a mathematical program with

strictly monotone MCP which can be solved using existing solution methods.

In Chapter 5, we consider the TEP under uncertainty. We begin first by considering

the affine variational inequality problem (AVIP) under uncertainty. We then propose two

new ER models, the ER-R model which uses the regularized gap function and the ER-D

model which uses the D-gap function for the stochastic affine variational inequality problem

(SAVIP). We establish the convexity of the two ER models and solve the traffic equilibrium

problem under uncertainty using the ER-D model.

In Chapter 6, we give a brief summary and conclusion of the main contributions of this

dissertation. We also mention some issues for future consideration.



Chapter 2

Preliminaries

In this chapter, we provide an overview of the important concepts used in this thesis.

Specifically, we give some important concepts and existing results for the variational in-

equality problem, the mathematical program with equilibrium constraints and their solution

methods.

2.1 Convexity and Monotonicity

In this section, we define the concepts of convexity and monotonicity. Note that monotonic-

ity plays an important role in the existence and uniqueness of equilibrium of the TEP while

convexity guarantees the global optimality of local minimum. We first define the convexity

for sets and real-valued functions.

Definition 2.1.1. A set K ∈ Rn is said to be convex if (1 − a)x + ay ∈ K holds for any

vectors x, y ∈ K and scalar a ∈ (0, 1).

Definition 2.1.2. Let K ∈ Rn be a nonempty and convex set. Then, a function ρ : K → Rn

is said to be
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(i) convex (on K) if ρ((1 − a)x + ay) ≤ (1 − a)ρ(x) + aρ(y) holds for any x, y ∈ K and

a ∈ (0, 1);

(ii) strictly convex (on K) if ρ((1− a)x + ay) < (1− a)ρ(x) + aρ(y) holds for any x, y ∈ K

with x 6= y and a ∈ (0, 1); and

(iii) strongly convex (on K) with modulus ε > 0 if ρ((1− a)x + ay) ≤ (1− a)ρ(x) + aρ(y)−

(1 − a)a||x − y||2 holds for any x, y ∈ K and a ∈ (0, 1).

It is obvious that any strongly convex function is strictly convex, and any strictly convex

function is convex. For example, a linear function is convex but not strictly convex, ρ(α) = eα

is strictly convex but not strongly convex, and ρ(α) = α2 is strongly convex.

Convexity plays a crucial role in the field of optimization. In particular, in the nonlinear

programming problem

minimize ρ(z) subject to κi(z) ≤ 0 (i = 1, . . . , m),

if functions κ1, . . . , κm and ρ are convex, then any local minimum of the problem is a global

minimum.

Next, we define monotonicity for vector-valued mappings from a subset of Rn to Rn.

Definition 2.1.3. Let K ⊆ Rn be a nonempty and convex set. A function G : Rn → Rn is

called

(i) monotone (on K) if (x − y)T
(
G(x) − G(y)

)
≥ 0, ∀x, y ∈ K;

(ii) strictly monotone (on K) if (x − y)T
(
G(x) − G(y)

)
> 0, ∀x, y ∈ K with x 6= y; and

(iii) strongly monotone (on K) with modulus ε > 0 if (x − y)T (G(x) − G(y)
)
≥ ε‖x −

y‖2, ∀x, y ∈ K.

It is obvious that any strongly monotone function is strictly monotone, and any strictly

monotone function is monotone.

It is important to note that monotonicity of the function G in Definition 2.1.3 particularly

plays an important role in the existence and uniqueness of an equilibrium of TEP. Most of
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the existing results for TEP rely on the assumption that the function G involved satisfies

certain conditions such as strong or strict monotonicity [26]. Moreover, monotonicity is also

important for solution methods for TEP to work efficiently.

The following proposition shows the relation between convexity and monotonicity.

Proposition 2.1.1. Let K ⊆ Rn be an open convex set, and ρ : K → R be a continuously

differentiable function. Then

(i) ρ is convex on K if and only if ∇ρ is monotone on K;

(ii) ρ is strictly convex on K if and only if ∇ρ is strictly monotone on K; and

(iii) ρ is strongly convex on K with modulus ε > 0 if and only if ∇ρ is strongly monotone

on K with modulus ε > 0.

It can be seen from the above proposition that there is a close relation between convexity

and monotonicity. Moreover, these properties also have much relevance to the positive

(semi)definiteness of matrices.

Proposition 2.1.2. Let K ⊆ Rn be an open convex set, and G : K → Rn be a continuously

differentiable function. Then

(i) G is monotone on K if and only if ∇G(x) is positive semidefinite for any x ∈ K;

(ii) G is strictly monotone on K if ∇G(x) is positive definite for any x ∈ K; and

(iii) G is strongly monotone on K if and only if there exists ε > 0 such that

min||e||=1 eT∇G(x)e ≥ ε

for any x ∈ K.

Note that (ii) above does not hold when “if” is replaced by “if and only if”. For example,

though a function G : R → R defined by G(α) = α3 is monotonically increasing on R,

∇G(α) = 3α2 is not positive when α = 0.
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The above two propositions directly lead to the following corollary which mentions the

relation between the convexity of a real-valued function and the positive (semi)definiteness

of its Hessian matrix.

Corollary 2.1.3. Let K ⊆ Rn be an open convex set, and ρ : K → R be a twice continuously

differentiable function. Then

(i) ρ is convex on K if and only if ∇2ρ(x) is positive semidefinite for any x ∈ K;

(ii) ρ is strictly convex on K if ∇2ρ(x) is positive definite for any x ∈ K; and

(iii) ρ is strongly convex on K if and only if there exists ε > 0 such that

min||e||=1 eT∇2ρ(x)e ≥ ε

for any x ∈ K.

Moreover, the following corollary on monotonicity of affine functions and convexity of

quadratic functions can be easily shown.

Corollary 2.1.4. Let M ∈ Rnxn and q ∈ Rn be a given matrix and a vector, respectively.

Let G : Rn → R and ρ : R → R be defined by G(x) = Mx + q and ρ(x) = 1
2
xT Mx + qT x,

respectively. Then, we have

(i) M is positive semidefinite ⇔ G is monotone ⇔ ρ is convex; and

(ii) M is positive definite ⇔ G is strongly monotone ⇔ ρ is strongly convex.

Corollary 2.1.4 implies that the strong monotonicity is equivalent to the strict monotonic-

ity for affine functions, and that the strong convexity is equivalent to the strict convexity

for quadratic functions.
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2.2 Variational Inequality Problem and Mathematical

Program with Equilibrium Constraints

The variational inequality problem (VIP) provides a convenient framework for the TEP,

especially in the analysis and computation of an equilibrium of the TEP. The VIP [26] is

generally stated as follows: Find a vector x ∈ K such that

(y − x)T G(x) ≥ 0, ∀y ∈ K, (2.2.1)

where K is a nonempty closed convex subset of ℜn and G : K → ℜn is a continuous function.

This problem is denoted by VIP(K, G). The VIP is a very large class of problems containing

systems of equations, convex programming problems, and complementarity problems. In

particular, when K = Rn, (2.2.1) is equivalent to the equation:

G(y) = 0.

Moreover, the following constrained optimization problem can be reformulated as a VIP:

minimize ρ(y) (2.2.2)

subject to y ∈ K,

where the objective function ρ is continuously differentiable (C1) on an open superset of the

closed convex set K ⊆ Rn. Any local minimizer x of (2.2.2) must satisfy

(y − x)T∇ρ(x) ≥ 0, ∀y ∈ K,

which is the VIP(K,∇ρ). A solution of the VIP(K,∇ρ) is called a stationary point of

(2.2.2). Moreover, if ρ is a convex function, then every stationary point of (2.2.2) is a global

minimum of the above optimization problem. Hence, for a convex function ρ and a convex

set K, VIP(K,∇ρ) is equivalent to the optimization problem (2.2.2).

Special cases of the VIP include the Nonlinear Complementarity Problem (NCP) and

the Mixed Complementarity Problem (MCP). The NCP is the VIP with K = ℜn
+ ≡

{x ∈ ℜn|xi ≥ 0, i = 1, . . . , n} and the MCP is the VIP with K = {x ∈ ℜn|ai ≤ xi ≤ bi,

i = 1, . . . , n}, where ai ∈ ℜ ∪ {−∞}, bi ∈ ℜ ∪ {+∞}, ai ≤ bi, i = 1, . . . , n. We denote the

NCP with the function G by NCP(G) and the MCP with the function G and the set K by

MCP(G,K).
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The TEP can be formulated as a VIP. When the travel cost and the demand functions

Cr(F ) and Dw(u) are nonnegative, and for each OD pair w ∈ W,

[ ∑

r∈Rw

FrCr(F ) = 0, F ≥ 0
]

=⇒ [Fr = 0, ∀ r ∈ Rw], (2.2.3)

then the Wardrop equilibrium conditions (1.1.1) – (1.1.3) are equivalent to the NCP(H)

with the function H defined by

H(F, u) ≡
(

C(F ) − Γu
ΓT F − D(u)

)
, (2.2.4)

where C(F ) is the vector of route costs Cr(F ), and Γ = (Γrw) is the route-OD pair incidence

matrix whose entries are given by

Γrw =

{
1 if r ∈ Rw

0 otherwise.

Remark 2.2.1. If the route cost function Cr is positive, then since for each w ∈ W, Fr is

positive for some r ∈ Rw, we have Cr(F ) − uw = 0 from (1.1.1), hence, uw = Cr(F ) > 0.

Thus, the NCP(H) can be rewritten as

0 ≤ C(F ) − Γu ⊥ F ≥ 0,

ΓT F − D(u) = 0,

which is the MCP(H,L) with the set L defined by

L = ℜnR

+ × ℜnW .

Various approaches for solving the MCP have been proposed. Those solution methods

include the generalized Newton’s method [44], the smoothing method [16] and the regular-

ization method [25]. Another method is to reformulate the VIP as a minimization problem

by the introduction of a merit function [35]. Convergence results for these approaches have

been established under the key assumption of monotonicity on H .

Another important class related to the TEP is the mathematical program with equilibrium

constraints (MPEC), which has two sets of variables, namely, an upper-level variable x ∈ Rn

and a lower-level variable y ∈ Rm, and in which some or all of its constraints are defined by a
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parametric variational inequality or complementarity system with y as its primary variables

and x the parameter vector [52]. The MPEC is generally stated as follows:

min θ(x, y)

s.t. (x, y) ∈ Z, (2.2.5)

y solves VIP(K(x), G(x, ·)).

Here, Z is a subset of Rn+m, θ : Rn+m → Rm, K : Rn → 2Rm

are mappings, and y solves

VIP(K(x), G(x, ·)) if and only if y ∈ K(x) and

(y′ − y)TG(x, y) ≥ 0, for all y′ ∈ K(x).

Note that the above variational inequality is what is generally referred to as the equilibrium

constraints in MPEC.

The MPEC (2.2.5) is a generalization of the bilevel programming problem that is a

mathematical program with optimization constraints. Moreover, the MPEC is also closely

related to the so-called Stackelberg game [65], in which a distinctive player (called the leader)

can anticipate the actions (or reactions) of the other players (called the followers) and he

then uses such knowledge to select his optimal strategy. Each follower, on the other hand,

acts and devices his own strategy based on the particular strategy of the leader and his cost

function is dependent on both the leader’s and all the other followers’ strategies.

Other economic applications of MPEC include oligopolistic market analysis [64], volatility

estimation of American pricing option [42] and pricing of electric transmission [41]. MPECs

are also used in the study of engineering problems such as problems in elastoplasticity [32]

and obstacle problems [57].

Many transportation planning and design problems can be formulated as MPECs. In

network design problems, one is concerned with the modification of a transportation in-

frastructure by adding new links or improving existing ones in order to maximize social

welfare and/or minimize design and other costs [12, 15].

Although MPEC plays a very important role in many fields such as engineering design,

economic equilibrium and multilevel game, MPEC is very difficult to deal with because, from

the geometric point of view, its feasible region is not convex and not connected in general.

Moreover, its constraints fail to satisfy a standard constraint qualification such as the linear

independence constraint qualification of the Mangasarian-Fromovitz constraint qualification

at any feasible point [52]. Hence, existing solution methods for nonlinear programming

cannot be applied to MPEC directly.
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Many methods have been proposed in order to solve MPECs. Such solution methods

include smoothing approach [17, 24, 52], penalty approach [49, 63] and implicit programming

approach (ImPA) [23, 52]. The ImPA is known to be useful when the lower level problem

has a unique solution for every value of the upper level variable.

2.3 Existence and Uniqueness of Solution of the VIP

In the last decades, the VIP has been studied extensively. The monotonicity of G partic-

ularly plays an important role in the existence and uniqueness of solutions of VIP. Existence

and uniqueness are especially important in the study of the TEP since route flows do exist

and are certainly unique in practice.

In what follows, we discuss various attributes of the solution set of VIP (2.2.1). We begin

with the following proposition.

Proposition 2.3.1. Let G : Rn → Rn be a continuous function, and K ∈ Rn be a nonempty

closed convex set. If K is bounded, then (2.2.1) has at least one solution.

Proposition 2.3.1 guarantees the solvability of (2.2.1) under the boundedness assumption

on K.

Using Proposition 2.3.1, we can show that the following results guarantee the existence

of a solution to the equivalent NCP formulation of the TEP.

Proposition 2.3.2. If each route cost function Cr is nonnegative and continuous for all

r ∈ Rw, and each demand function Dw is a nonnegative continuous function bounded above

for all w ∈ W, then the NCP(H) with the function H defined by (2.2.4) has a solution.

Proof. See Theorem 3.17 [58].

Proposition 2.3.3. Let G : Rn → Rn be a continuous function, and K ⊆ Rn be a nonempty

closed convex set. Let S be the (possibly empty) solution set of the VIP (2.2.1).

(i) If G is monotone on K, then S is a closed convex set;
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(ii) If G is strictly monotone on K, then S consists of at most one element; and

(iii) If G is strongly monotone on K, then S consists of exactly one element.

Note that in this proposition, only (iii) guarantees the existence of a solution to (2.2.1).

A VIP equivalent to the TEP with additive costs may usually be formulated as a

monotone VIP [26]. However, a VIP derived from the TEP with nonadditive costs does

not immediately possess monotonicity unless restrictive assumptions are made or a certain

reformulation is introduced.

Proposition 2.3.4. Suppose that the demand function Dw is a positive continuous function

bounded above for each w ∈ W. Suppose further that the travel time function ta is positive

and continuous for each a ∈ A. If D is positive and t is strictly monotone, then the NCP(H)

has a unique solution.

Proof. See Theorem 3.19 [58].

In Chapter 3, we present the TEP with nonadditive route costs and show that under some

reasonable assumptions, the proposed TEP with nonadditive route costs can be reformulated

so that it can then be solved using existing solution methods.

2.4 Solution Methods for VIP and NCP

Various approaches for solving the VIP and MCP have been proposed. These solution

methods include the generalized Newton’s method [44], the smoothing method [16] and the

regularization method [25]. Another method is to reformulate the VIP as a minimization

problem or as an equivalent system of equations by the introduction of a merit function [35].

In this section, we introduce reformulation approaches for VIP and NCP.
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2.4.1 Merit Function for VIP and NCP

A real-valued function which takes 0 at a solution of an equilibrium problem and takes a

positive value otherwise is called a merit function of the equilibrium problem. We formally

define merit functions in the following.

Definition 2.4.1. A merit function for the VIP(K, G) on a (closed) set K ⊆ X is a

nonnegative function Ψ : X → R+ such that x solves VIP(K, G) if and only if x ∈ X and

Ψ(x) = 0, that is, if and only if the solutions of the VIP(K, G) coincide with the global

solutions of the problem

min Ψ(x) (2.4.1)

s.t. x ∈ X

and the optimal objective value of this problem is zero [26].

Before we introduce a merit function for NCP, we first define NCP functions.

A function φ : R2 → R is called an NCP function if it has the property:

φ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0.

Two popular NCP functions are

(i) min function : φ(a, b) = min(a, b);

(ii) Fischer-Burmeister (FB) function : φ(a, b) = a + b −
√

a2 + b2 .

Using an NCP function φ, the NCP(G) can be reformulated as the following system of

nonlinear equations:

Φ(x) =




φ(x1, G1(x))
...

φ(xn, Gn(x))


 = 0. (2.4.2)
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Thus, the NCP (2.2.4) (or MCP) of the TEP can be reformulated as the following system

of nonlinear equations:

Φ(F, u) =




φ
(
F1, C1(F ) − uw

)

...

φ
(
FnR

, CnR
(F ) − uw

)

ΓT F − D(u)




= 0. (2.4.3)

The nonlinear equations (2.4.2) can be reformulated as the following unconstrained mini-

mization problem:

min Ψ(x), (2.4.4)

where Ψ(x) = ||Φ(x)||2. The value of Ψ(x) is always larger than or equal to 0. Hence, Ψ(x)

is a merit function of the NCP(G).

Next we introduce merit functions for VIP. Popular merit functions for VIP(K, G) are

[26]:

(i) Regularized gap function (X = K):

fα(x) = max
y∈K

{
〈G(x), x − y〉 − 1

2α
‖y − x‖2

}
, α > 0; (2.4.5)

and

(ii) D-gap function (X = Rn) :

gα(x) = fα(x) − f1/α(x), α > 1. (2.4.6)

Note that fα(x) and gα(x) are also merit functions for NCP.

Different merit functions Ψ result in different optimization problems. Hence, it is neces-

sary to choose appropriate merit functions having as many desirable properties as possible.

Important properties of merit functions are as follows [33]:

• NCP(G) can be reformulated by means of a merit function into a constrained or un-

constrained optimization problem. Unconstrained problems can be solved by simpler

algorithms. Constrained problems, on the other hand, may possess desirable proper-

ties, for example, they may contain fewer stationary points which do not solve the

NCP.
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• The merit function Ψ must be continuously differentiable (smooth). Smooth merit

functions allow the use of well-developed (existing) smooth optimization theory and

numerical methods in nonlinear programming.

• Merit functions can be used in the design of numerical algorithms for solving the VIP

and MCP [26]. Specifically, one can use an iterative algorithm to minimize the merit

function in order to obtain its global minimum. However, merit functions are not

convex in general so that obtaining a global minima is not always guaranteed. Often,

one can only find a stationary point of the problem. Thus, it is indeed necessary to

know when such a stationary point becomes a solution to the VIP/NCP.

In the following, we summarize the properties of some merit functions for VIP and NCP.

Theorem 2.4.1. [26] (Equivalence)

(i) Squared FB function: Let

ΨFB(x) =
1

2

n∑

i=1

(φ(xi, Gi(x)))2,

where φ is the Fischer-Burmeister function. Then solving the NCP(H) is equivalent

to finding a global solution of the following unconstrained minimization problem:

minx∈Rn ΨFB(x), (2.4.7)

if the NCP has a solution.

(ii) Regularized gap function: Let K ⊆ Rn be a closed convex set. The regularized gap

function fα is nonnegative on K and x solves VIP (K, G) if and only if fα(x) = 0 and

x ∈ K. Hence, VIP(K, G) is equivalent to the constrained optimization problem

min fα(x) (2.4.8)

s.t. x ∈ K.
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(iii) D-gap function: The D-gap function gα is nonnegative in Rn and gα(x) = 0 if and only

if x is a solution of the VIP(K, G). Hence, solving VIP(K, G) is equivalent to finding

a solution of the unconstrained minimization problem

min gα(x) (2.4.9)

s.t. x ∈ Rn.

Theorem 2.4.2. [26] (Differentiability) Suppose that G is continuously differentiable.

(i) The squared FB function ΨFB is continuously differentiable.

(ii) The regularized gap function fα is continuously differentiable.

(iii) The D-gap function gα is continuously differentiable.

In reformulating (2.4.2) into an unconstrained minimization problem, one may use the

FB function which is known to have some advantageous properties over other NCP functions,

namely, the FB-function is semismooth and the merit function defined by the squared FB-

function is smooth and differentiable [27].

Theorem 2.4.3. (Stationarity) [26]

(i) Squared FB function: Suppose that G is a monotone function. Then x∗ is a stationary

point of ΨFB if and only if x∗ is a solution of NCP(G).

(ii) Regularized gap function: Suppose that G is a strongly monotone function. Then x∗ is

a stationary point of (2.4.8) if and only if x∗ solves VIP(K, G).

(iii) D-gap function: Let G be a strongly monotone function. Then x∗ is a stationary point

of (2.4.9) if and only if x∗ is a solution of VIP(K, G).

The following results for the convexity of the regularized gap function (2.4.5) and the

D-gap function (2.4.6) for LCP have been established by Peng [61].
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Theorem 2.4.4. (Theorem 2.1, [61]) Let G(x) = Mx+ q. If M is positive definite, then

the regularized gap function fα is convex for any sufficiently large α > 0.

Theorem 2.4.5. (Theorem 3.1, [61]) Let G(x) = Mx+ q. If M is positive definite, then

the D-gap function gα is convex if α > α, where α is given by

α = max‖x‖=1
1 + xT MT Mx

2xT Mx
.

The above results guarantee the convexity of (2.4.5) and (2.4.6) under the conditions

that G is affine, ∇G is positive definite and the parameter α is sufficiently large.

In this study, we extend the above results to the affine variational inequality problem

(AVIP).

2.4.2 The Generalized Newton Method for NCP

We now present the Generalized Newton Method (GNM) to solve the NCP(G) proposed

by Jiang [43]. In this method, the Fischer-Burmeister (FB) function φ, which is known to

be nonsmooth but convex, is used to reformulate the NCP(G) into a system of nonsmooth

equations Φ(x) = 0 given by (2.4.2). This is further equivalent to finding a global solution

of the minimization problem

minx∈Rn ΨFB(x), (2.4.10)

where

ΨFB(x) =
1

2
||Φ(x)|| 2 =

1

2

n∑

i=1

(φ(xi, Gi(x)))2 (2.4.11)

and φ is the Fischer-Burmeister function, if the NCP(G) has a solution.

In what follows, we present some concepts necessary for the understanding of the gener-

alized Newton method.

Let H : Rn → Rn be locally Lipschitz on Rn. Then Clarke’s generalized Jacobian of H
at x, denoted by ∂H(x), can be defined as

∂H(x) := co{limxk→x ∇H(xk) : H is differentiable at xk ∈ Rn},

where co stands for the convex hull. Denote y →d x if y → x, y 6= x and (y − x)/||y − x|| →
d/||d|| for some d ∈ Rn\{0}.
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A function H : Rn → Rn is said to semismooth at x ∈ Rn if H is Lipschitz continuous

on an open neighborhood of x and the following limit exists

limV ∈∂H(y), y →d xV d.

A necessary condition for H to be semismooth at x is that H is directionally differentiable

at x [62]. Moreover, the semismoothness of H at x implies that for any d ∈ Rn,

lim||d||→0
H(x + d) −H(x) −H′(x, d)

||d|| = 0, (2.4.12)

and

limV ∈∂H(x+d) ||d||→0
V d −H′(x, d)

||d|| = 0, (2.4.13)

where H′(x, d) denotes the directional derivative of H at x along the direction d.

Since φ is Lipschitz and G is smooth, it follows that Φ is locally Lipschitz on Rn. However,

Φ is not continuously differentiable at a given point x in general except that some strong

assumptions are imposed such as the condition that x2
i + G(x)2

i > 0 for i = 1, . . . , n.

Let N(x) = {i| x2
i + Gi(x)2 = 0} and let x ∈ F = {x ∈ Rn : N(x) = ∅}. Then

∇Φ(x) = diag(γi(x))∇G(x) + diag(µi(x)),

where diag(ςi) denotes the diagonal matrix with diagonal elements ς1, ς2, . . . , ςn; and

γi(x) =
Gi(x)√

(Gi(x))2 + x2
i

− 1,

µi(x) =
xi√

(Gi(x))2 + x2
i

− 1.

For x /∈ F, it follows from the definition of Clarke’s generalized Jacobian that any V ∈
∂Φ(x) can be written as

V = diag(γi)∇G(x) + diag(µi),

where (γi + 1)2 + (µi + 1)2 ≤ 1, i = 1, 2, . . . , n.

We now present the generalized Newton method of Jiang and Qi [44] for the general

nonlinear equations G(x) = 0 :

Step 1. Choose an initial point x0 ∈ Rn and let k = 0.

Step 2. Choose Vk ∈ ∂Φ(xk) and solve the following Newton equations for the direction

dk ∈ Rn:

Φ(xk) + Vkd
k = 0. (2.4.14)



26 Preliminaries

Step 3. Set xk+1 = xk + dk. If xk+1 solves Φ(x) = 0, stop. Otherwise, let k := k + 1 and

go to Step 2.

Note that (2.4.14) is not necessarily solvable if Vk is singular. Moreover, the generalized

Newton method may not converge globally. To remedy such drawbacks of the method, the

GNM can be combined with the Levenberg-Marquardt and line search methods using merit

functions. This generalized Newton method (GNM) with line search proposed by Jiang [43]

and used in our numerical experiments in Chapter 3 is described as follows:

Step 1. (Initialization) Choose an initial starting point x0 ∈ Rn, two scalars ℘, ̺ ∈ (0, 1),

and let k := 0.

Step 2. (Search direction) Choose Vk ∈ ∂Φ(xk) and solve the following generalized Newton

equation:

V T
k Φ(xk) + (V T

k Vk + vkI)d = 0, (2.4.15)

with I the identity matrix in Rn×n. If d = 0 is a solution of the generalized Newton

equation, the algorithm terminates. Otherwise, let dk be the solution of the above

equation and go to Step 3.

Step 3. (Line search) Let λk = ̺ik , where ik is the smallest nonnegative integer i such

that

Ψ(xk + (̺)idk) − Ψ(xk) ≤ ℘(̺)i∇Ψ(xk)T dk.

Step 4. (Update) Choose vk+1 > 0. Let xk+1 := xk + λkd
k and k := k + 1. Go to Step 1.

The following results were established in [43].

Theorem 2.4.6. [43] Suppose that G is monotone. Let x∗ be an accumulation point of {xk}

generated by the GNM with line search. Let vk = min{Ψ(xk), ||∇Ψ(xk)||}. Then x∗ is a

solution of the NCP. Moreover, {xk} converges to x∗ superlinearly if ℘ ∈ (0, 1
2
) and if each

element of ∂Φ(x∗) is nonsingular.
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2.5 The Solution Method for the MPEC Model of the

Road Pricing Problem

In this study, we consider the road pricing problem (RPP) which is formulated as a

mathematical program with equilibrium constraints (MPEC) of the form

min θ(τ, F )

s.t. τ ∈ T, (2.5.1)

(F, u) ∈ S(τ),

where T is the set of possible tolls imposed on all tollable arcs in the network and S(τ) is

the solution set of MCP

0 ≤ C̃(τ, F ) − Γu ⊥ F ≥ 0, (2.5.2)

ΓT F − D(u) = 0,

where C̃(τ, F ) is the vector of nonadditive route costs with a given toll τ .

If S(τ) is a singleton for all τ ∈ T, then MPEC (2.5.1) can be written as an implicit

optimization problem in the upper-level variable τ alone:

min θ̃(τ) (2.5.3)

s.t τ ∈ T,

where θ̃(τ) ≡ θ(τ, y(τ)), y ≡ (F, v), y(τ) ≡ (F (τ), v(τ)).

The ImP approach is considered to be restrictive since it requires unnecessarily strong as-

sumptions such as strong monotonicity for the approach to be applicable to certain problems.

However, the ImPA assumes that for τ sufficiently close to τ̄ , y(τ) is locally single-valued

and has a certain first-order directional smoothness property. Moreover, with the existence

of such an implicit function, the implicit optimization problem can then be solved using

existing optimization solvers [52].
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2.6 Expected Residual Approach for the VIP with Un-

certainty

The stochastic variational inequality problem (SVIP) is to find a vector x ∈ K such that

(y − x)T G(x, ω) ≥ 0, ∀y ∈ K, (2.6.1)

where K ⊆ Rn is a nonempty closed convex set, G : Rn×Ω → Rn is a vector-valued function

and (Ω, P ) is a probability space with Ω ⊆ Rn.

In general, there is no x satisfying the above SVIP for all ω ∈ Ω. One approach is to

consider the following deterministic reformulation of (2.6.1):

(y − x)T E[G(x, ω)] ≥ 0, ∀y ∈ K, (2.6.2)

where E[G(x, ω)] is the expectation function of G(x, ω). This is known as the expected value

(EV) model.

Another existing approach considers the following deterministic formulation which is to

find a vector x ∈ Rn
+ that minimizes the expected total residual defined by an NCP function,

that is,

minx∈Rn
+
E [ ||Φ(x, ω)|| 2] (2.6.3)

where E[||Φ(x, ω)||2] is the expectation function of ||Φ(x, ω)||2.
The problem (2.6.3) is referred to as the expected residual (ER) model. The idea of the

ER method is to minimize the expected residual of the equilibrium for each event ω by

using an NCP function as introduced in Section 2.4. Here, Φ(x∗, ω) = 0 means that x∗ is an

equilibrium solution for the event ω ∈ Ω. Thus, ||Φ(x, ω)|| can be regarded as the “distance”

from a vector x to the equilibrium solution for ω ∈ Ω.

Previous studies on the stochastic complementarity problem made use of an NCP func-

tion, such as the “min” function and Fischer-Burmeister (FB) function, to formulate ER

models [18, 19, 28, 48]. In the deterministic case, all NCP functions are equivalent in the

sense that they can reformulate any complementarity problem as a system of nonlinear

equations having the same solution set [18]. In the stochastic case, the situation is different,

however.

The ER model with the “min” function has been studied in [18, 19, 28] for the stochastic

linear complementarity problem (SLCP). In particular, it is shown that, for a class of SLCPs,
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if the EV model has a bounded solution set, then the ER model also has a bounded solution

set, but the converse is not true in general. Moreover, if M(ω) is a stochastic R0 matrix,

then the ER model has a bounded solution set. Recall that a stochastic matrix M(·) is called

a stochastic R0 matrix [28] if x ≥ 0, M(ω)x ≥ 0, xT M(ω)x = 0 a.e. imply that x = 0. The

studies [18, 19, 28], however, do not consider the convexity of the ER model.

In Chapter 5, we establish the convexity of the ER model and apply it to the traffic

equilibrium problem under uncertainty.
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Chapter 3

The Traffic Equilibrium Problem with

Nonadditive Costs and Its Monotone

Mixed Complementarity Problem

Formulation

3.1 Introduction

In the study of the traffic equilibrium problem (TEP), the researchers have presented

various formulations in which many different assumptions are made to represent the “real”

traffic conditions [1, 15, 21, 26]. One of the standard assumptions used is that the route

costs faced by the users in the network are additive. That is, the route costs are simply the

sum of the link costs for all the arcs on the route being considered.

There are many situations, however, where this additivity assumption on the route costs

is inappropriate. Gabriel and Bernstein [35] discussed some of the situations where nonaddi-

tive route costs occur. They claimed that almost all toll and fare schemes being implemented

around the world are nonadditive. For example, the different pricing policies such as con-
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gestion pricing and the collection of emission fees add to the nonadditivity of travel costs.

Moreover, different individuals have different valuations of time, which contributes to the

nonadditivity of route costs.

Although nonadditivity is important in presenting a more realistic view of the traffic

situation, it causes a difficulty in the analysis and computation of an equilibrium, which are

usually done by formulating the TEP as the variational inequality problem (VIP).

In the last decades, the VIP has been studied extensively. Monotonicity particularly

plays an important role in the existence and uniqueness of solutions of VIP. Moreover, the

monotonicity is also important for solution methods for VIP to work efficiently. Most of

the existing results for the VIP rely on the assumption that the function involved satisfies

certain conditions such as strong or strict monotonicity [26].

A VIP equivalent to the TEP with additive costs may usually be formulated as a

monotone VIP [26]. However, a VIP derived from the TEP with nonadditive costs does

not immediately possess monotonicity unless restrictive assumptions are made or a certain

reformulation is introduced.

Lo and Chen [50] considered a special case of the TEP with nonadditive cost functions.

Specifically, they introduced a route-specific cost structure, where the route cost is assumed

to be the sum of the travel time and an additional charge which is route-specific (a specific

travel cost, possibly in the form of toll, is added only to a particular route in the network).

This additional cost is only incurred by travelers on that route. They showed that the

equivalent NCP becomes monotone. However, they reported that other users of the network

(not necessarily using this route) are affected by this added route cost only when they share

a common link with the route with the added cost. Moreover, the route cost function they

considered was very simple, hence not so realistic. In order to solve the TEP, they converted

the NCP formulation into an equivalent optimization problem by using a merit function.

Gabriel and Bernstein [35] proposed a more general route cost function. They also used

some assumptions on the route costs in order to ensure monotonicity of their formulation.

However, as will be shown in Section 3.2, those assumptions imply that the cost function is

an affine function of time. In their work, they proposed a merit function approach to solve

the NCP formulation of the TEP with nonadditive costs. Their method was based on trans-

forming the NCP first into a problem of finding a zero of a system of nonsmooth equations.

The problem can be solved by using an existing method when the NCP is monotone.

In this chapter, we modify the model presented by Gabriel and Bernstein [35] by intro-

ducing a disutility function. We show that the equivalent VIP can be transformed into a
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monotone MCP, and then give the existence and uniqueness results for the proposed model.

This chapter is organized as follows. In the next section, we discuss the nonadditive

travel costs for the TEP. The proposed TEP and its monotone MCP reformulation are

presented in Section 3.3. We also establish the existence and uniqueness results in this

section. Computational results for TEPs with different disutility functions and various

networks to compare our reformulation to the original VIP formulation are given in Section

3.4. We give a brief conclusion in Section 3.5.

3.2 Nonadditive Travel Costs

Previous studies on the TEP focused on the assumption that the cost on route r is

simply the sum of the costs on each link a comprising the route r. Although the additivity

assumption is convenient, there are various situations in which the route costs in the network

are no longer additive. A particular case of a nonadditive route cost model considers both

time and money in the formulation. Moreover, different individuals normally have different

values for time. Hence, the additivity assumption is no longer appropriate for such a case.

A detailed discussion on various situations where route costs are nonadditive can be found

in [35].

Gabriel and Bernstein [35] and Larsson, et al. [46] presented two different formulations

of the nonadditive route cost functions:

1. Gabriel and Bernstein [35]:

Cr(F ) = ϕr

(∑

a∈A

δarta(f)
)

+ η1

∑

a∈A

δarta(f) + Λr(F ), ∀r ∈ Rw, w ∈ W, (3.2.1)

where η1 > 0 is the time-based operating costs factor (e.g., gasoline consumption), ϕr

is a function which converts time into money, and Λr(F ) is the route-specific financial

costs (e.g., tolls) which are allowed to vary in cost according to route flows.

2. Larsson et al. [46]:

Cr(F ) =
∑

a∈A

δarta(f) + φr(mr), ∀r ∈ Rw, w ∈ W, (3.2.2)

where mr is the monetary outlay (e.g., route-specific financial cost which is allowed to

vary according to route) and the function φr converts money into time.
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In Gabriel and Bernstein [35], the route cost function is based on money (“money-based”),

while in the formulation of Larsson et al. [46], the route cost is expressed in terms of time

(“time-based”). There has been no clear explanation as to which formulation is better, or

as to why the route costs should be represented as such. It has been noted by Bernstein and

Wynter [10], however, that even if one chooses φr = ϕ−1
r in (3.2.2), this will not make the

two formulations equivalent.

We point out that, although the route cost function in Gabriel and Bernstein [35] is a

general form of the route cost function, the assumptions they used to establish its monotonic-

ity are somewhat restrictive. They assumed that there exists a function ℓ : RnR → R such

that ϕ′
r(ξr) = ℓ(ξ) ≥ 0, for all r = 1, . . . , nR, where ξ is the vector of route travel times,

i.e., ξ = ∆T t(∆F ). This assumption implies that ℓ(ξ) is a constant independent of ξ and

hence the function ϕr must be affine. To see this, consider ξ and ξ such that ξr = ξr for all

r except for some r, and ξr = ξr + δ. Then ℓ(ξ) = ϕ′
r(ξr) = ℓ(ξ). This holds for all δ and for

any r. Therefore, ℓ(ξ) must be constant, and hence, ϕr(ξ) is affine.

In our proposed model, we will present a route cost function that can deal with both linear

and nonlinear cases by introducing a particular disutility function, and show its monotonicity.

3.3 TEP with Disutility Functions and Its Monotone

MCP Reformulation

In this section, a new formulation of the TEP with nonadditive costs that can be re-

formulated as a monotone MCP is proposed. The existence and uniqueness result for an

equilibrium of this reformulation is then established.

3.3.1 TEP Model with Disutility Function

We consider a special case of the “time function” given in the form

Tr(F ) =
∑

a∈A

δarta(f) + gr(Λr), ∀r ∈ Rw, w ∈ W, (3.3.1)
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where Λr is the route toll (assumed to be fixed) and gr is a function that converts money

into time. Next, we introduce a disutility function Uw for each OD pair w ∈ W.

We propose the following new route cost function:

Cr(F ) = Uw

(
Tr(F )

)
= Uw

(∑

a∈A

δarta(f) + gr(Λr)
)
, ∀r ∈ Rw, w ∈ W. (3.3.2)

Note that when each disutility function Uw is the identity function, the route cost func-

tion (3.3.2) reduces to the route cost function (3.2.2) proposed by Larsson et al. (2002).

Also, when gr(Λr) and Λr(F ) are absent, (3.3.2) becomes equivalent to (3.2.1) by letting

Uw(χr) = ϕr(ωr) + η1ωr. The model (3.2.1) may describe more realistic situations than

(3.3.2). However, in (3.2.1), ϕr must be affine to ensure the monotonicity of the equiva-

lent MCP as pointed out in Section 3.2. We stress that the disutility function Uw includes

both linear and nonlinear cases. Moreover, formulation (3.3.2) can be used to deal with the

multimodal TEP where different modes (such as trucks, cars, etc.) use different disutility

functions.

In what follows, we make use of (3.3.2) in order to obtain a monotone MCP reformulation

of the TEP.

3.3.2 A Monotone MCP Reformulation

In this subsection, we present a monotone MCP equivalent to the TEP with (3.3.2). In

the succeeding discussions, we assume that the functions Dw, Uw and Cr are continuous.

We also assume the following conditions for our purpose.

Assumption 3.3.1. For all w ∈ W, the demand function Dw is always positive, Uw :

[0,∞) → [0,∞) is a strictly increasing function such that Uw(0) = 0 and limv→∞ Uw(v) = ∞.

Also, for each r, Tr(F ) > 0 for all F ≥ 0, and gr(Λr) in (3.3.1) is nonnegative.

Assumption 3.3.1 holds in general, since most network users would prefer the shortest

travel time, and hence the disutility function is strictly increasing.

Note that Assumption 3.3.1 implies that Cr defined by (3.3.2) is positive and thus we
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can reformulate the TEP with (3.3.2) as the following MCP(H ,L):

Uw(Tr(F )) − uw ≥ 0, Fr ≥ 0,
(
Uw(Tr(F )) − uw

)
Fr = 0, ∀r ∈ Rw, w ∈ W,

∑

r∈Rw

Fr = Dw(u), ∀w ∈ W,

where

H(F, u) ≡
(

U(T (F )) − Γu
ΓT F − D(u)

)
,

U(T (F )) =
(
. . . , Uw(Tr(F )), . . .

)T
, and L = RnR

+ × RnW .

Remark 3.3.1. Note that from (1.1.1) – (1.1.3), uw above is the minimal route cost for the

OD pair w ∈ W. On the other hand, vw in the next proposition is the minimal time based

on the “time function” (3.3.1).

However, the above MCP formulation is not monotone in general. In what follows, we

reformulate MCP(H ,L) into an MCP with cost functions Tr(F ). We then show that this

reformulation is monotone under appropriate conditions.

Theorem 3.3.1. Suppose that Assumption 3.3.1 holds. Then MCP(H,L) is equivalent to

MCP(H̃,L) with

H̃(F, v) ≡




T (F ) − Γv

ΓT F − D(U(v))


 (3.3.3)

and U(v) =
(
. . . , Uw(vw), . . .

)T
.

Proof. First we show that MCP(H ,L) implies MCP(H̃ ,L). Let (F ∗, u) be a solution of

MCP(H ,L). By Assumption 3.3.1, for each w ∈ W there exists a unique vw ≥ 0 such that

Uw(vw) = uw. If F ∗
r > 0, then Uw(Tr(F

∗)) = uw = Uw(vw). Thus, Tr(F
∗) = vw, and hence

(
Tr(F

∗) − vw

)
F ∗

r = 0. If F ∗
r = 0, then Uw(Tr(F

∗)) ≥ uw = Uw(vw). Since Uw is strictly

increasing, we have Tr(F
∗) ≥ vw and

(
Tr(F

∗)− vw

)
F ∗

r = 0. Moreover,
∑

r∈Rw
Fr −Dw(u) =

∑
r∈Rw

Fr − Dw

(
U(v)

)
= 0. Therefore, (F ∗, v) is a solution of MCP(H̃ ,L).
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To show that MCP(H̃ ,L) implies MCP(H ,L), let (F ∗, v) be a solution of MCP(H̃ ,L).

Then, since, F ∗
r ≥ 0 and

∑
r∈Rw

F ∗
r = Dw

(
U(v)

)
, we can find, for each w ∈ W, a route

jw ∈ Rw such that F ∗
jw > 0. For such jw ∈ Rw, Tjw(F ∗) = vw. Since a route cost function is

assumed to be always positive, we have Tjw(F ∗) > 0 and vw > 0.

Let uw = Uw(vw). Since Uw(vw) > 0, we have uw > 0, ∀w ∈ W. To complete the proof,

we need to show that Uw(Tr(F
∗)) − uw ≥ 0 and

(
Uw(Tr(F

∗)) − uw

)
F ∗

r = 0 for all r ∈ Rw.

Now, suppose F ∗
r > 0. Then Tr(F

∗) = vw. This implies that Uw(Tr(F
∗)) = Uw(vw) = uw.

Hence, Uw(Tr(F
∗)) = uw and

(
Uw(Tr(F

∗)) − uw

)
F ∗

r = 0. If F ∗
r = 0, then Tr(F

∗) ≥ vw

and Uw(Tr(F
∗)) ≥ Uw(vw). Thus, Uw(Tr(F

∗)) − uw ≥ 0 and
(
Uw(Tr(F

∗)) − uw

)
F ∗

r = 0.

Consequently, (F ∗, u) is a solution of MCP(H ,L).

Having shown that MCP(H ,L) is equivalent to MCP(H̃ ,L), in the succeeding discussions

we focus our attention to MCP(H̃ ,L). Note that MCP(H ,L) is not monotone in general.

However, we can show that under the following additional assumption the MCP(H̃ ,L) be-

comes monotone.

Assumption 3.3.2. There exists a nonincreasing function dw : R → R such that Dw(u) =

dw(uw) for each w ∈ W. Moreover, t(f) = (. . . , ta(f), . . .)T is monotone on f .

Assumption 3.3.2 means that Dw is a nonincreasing function of uw only for each w ∈ W.

Theorem 3.3.2. Suppose that Assumptions 3.3.1 and 3.3.2 hold. Then MCP(H̃,L) is

monotone.

Proof. From Assumption 3.3.2 and the fact that T (F ) = ∆t(∆F ) + (. . . , gr(Λr), . . .)
T , T

is monotone. Also, since dw is a nonincreasing function and Dw(u) = dw(uw) for each

w ∈ W from Assumption 3.3.2, it follows that −D
(
U(v)

)
is monotone. For any (F1, v1)

T ,
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(F2, v2)
T ∈ RnR × RnW , we have

(
H̃(F1, v1) − H̃(F2, v2)

)T







F1

v1


 −




F2

v2







=
(
T (F1) − T (F2)

)T

(F1 − F2) −
(
Γv1 − Γv2

)T

(F1 − F2)

+
(
ΓT (F1 − F2)

)T

(v1 − v2) −
(
D(U(v)) − D(U(v))

)T

(v1 − v2)

=
(
T (F1) − T (F2)

)T

(F1 − F2) −
(
D(U(v)) − D(U(v))

)T

(v1 − v2) ≥ 0,

where the last inequality follows from the monotonicity of T (F ) and −D(U(v)). Hence

MCP(H̃ ,L) is monotone.

Using a similar argument, we can show the following result.

Corollary 3.3.3. If Dw(u) is constant for each w ∈ W, then MCP(H̃,L) is monotone.

3.3.3 Existence and Uniqueness Results

In this subsection, we present some existence and uniqueness results for our proposed

model (3.3.2).

The first result ensures that MCP(H̃ ,L) has a solution, i.e., our model has an equilibrium.

To prove it, we make use of a result by Facchinei and Pang (2003).

Assumption 3.3.3. The function Cr defined by (3.3.2) is nonnegative, and Dw is bounded

above on the set {u ∈ RnW |u > 0}.

Theorem 3.3.4. Suppose Assumption 3.3.3 holds. Then MCP(H̃,L) has a nonempty bounded

solution set. Moreover, if Assumptions 3.3.1 and 3.3.2 hold, the set of solutions is convex.

Proof. Since Cr is nonnegative and Dw is bounded above by Assumption 3.3.3, it follows from

Proposition 2.2.14 in [26] that MCP(H̃ ,L) has a solution. Next we show that the solution set

is bounded. Let S be its solution set and let SF = {F |(F, v) ∈ S} and Sv = {v|(F, v) ∈ S}.
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Since
∑

r∈Rw
Fr = Dw(U(v)), ∀w ∈ W for all (F, v) ∈ S and, by assumption, the demand

function D is bounded, it follows that SF is bounded. Moreover, we note that Tr(F ) ≥ vw ≥

0, ∀r ∈ Rw, w ∈ W, from Assumption 3.3.1 and the definitions of MCP(H̃ ,L). Hence, Sv is

bounded since SF is bounded. Thus, the solution set S of MCP(H̃ ,L) is bounded.

Suppose that Assumptions 3.3.1 and 3.3.2 hold. Since MCP(H̃ ,L) is monotone by The-

orem 3.3.2, it follows that the set of solutions is convex [26].

Next we show that the set of solutions of MCP(H̃ ,L) is a singleton under the following

assumption together with Assumption 3.3.1.

Assumption 3.3.4. There exists a strictly decreasing function dw : R → R such that

Dw(u) = dw(uw) for each w ∈ W . Moreover, T (F ) = (. . . , Tr(F ), . . .)T is a strictly monotone

function.

Remark 3.3.2. Assumption 3.3.4 on T holds when ∇t(f) is positive definite for all f , where

t(f) = (. . . , ta(f), . . .)T , and the rank of the link-route incidence matrix ∆ is nR. This is

because T (F ) = ∆t(∆F ) + (. . . , gr(Λr), . . .)
T so that ∇F T (F ) = ∆∇t(∆F )∆T is positive

definite.

Under Assumption 3.3.4, both T and −D(U(·)) are strictly monotone.

Theorem 3.3.5. Suppose that Assumptions 3.3.1, 3.3.4 and 3.3.3 hold. Then MCP(H̃,L)

has a unique solution.

Proof. It follows from Theorem 3.3.4 that MCP(H̃ ,L) has a solution. To show that this solu-

tion is unique, let x1 = (F T
1 , vT

1 )T and x2 = (F T
2 , vT

2 )T be two solutions of MCP(H̃ ,L). Since

x1, x2, H̃(x1) and H̃(x2) are nonnegative, from the complementarity conditions xT
1 H̃(x1) = 0

and xT
2 H̃(x2) = 0, we have

(x1 − x2)
T
(
H̃(x1) − H̃(x2)

)
≤ 0.
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From the definition (3.3.3) of H̃ and x, the above inequality can be rewritten as

(F1 − F2)
T
(
T (F1) − Γv1 − T (F2) + Γv2

)
+ (v1 − v2)

T
(
ΓT F1 − D(U(v1)) − ΓT F2 + D(U(v2))

)
≤ 0,

which implies that

(F1 − F2)
T
(
T (F1) − T (F2)

)
+ (v1 − v2)

T
(
− D(U(v1)) + D(U(v2))

)
≤ 0. (3.3.4)

Since T and −Dw(U(·)) are strictly monotone from Assumption 3.3.4, the inequality (3.3.4)

implies that F1 = F2 and v1 = v2. Therefore, the solution set is a singleton.

3.4 Numerical Results

Figure 3.1: The 7-link Network A.

Figure 3.2: The 7-link Network B.

In this section, we present our computational results. Under Assumption 3.3.1, we can

easily verify that NCP(H) and NCP(H̃) are equivalent to MCP(H ,L) and MCP(H̃ ,L),
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Figure 3.3: The 11-link Network.

Table 3.1: Network routes and OD pairs.

Network OD pair Route

7-link A

1-2 1 = {a}, 2 = {b,c,d}

1-3 3 = {b,c,f}

4-2 4 = {c,d,e}

4-3 5 = {c,e,f}, 6 = {g}

7-link B
1-4 1 = {c,f,g}, 2 = {a,c}, 3 = {d,f}

1-5 4 = {b,c,g}, 5 = {c,e}, 6 = {b,d}

11-link

1-7 1 = {a,c}, 2 = {k}, 3 = {b,d}

2-7 4 = {h,i}, 5 = {b,d,e}, 6 = {e,k}, 7 = {a,c,e}

3-7 8 = {j}, 9 = {c,g}

6-7 10 = {i}, 11 = {d,f}

respectively. In our numerical experiments, we try to obtain an equilibrium solution of the

TEP with (3.3.2) by solving NCP(H) and NCP(H̃) instead of MCP(H ,L) and MCP(H̃ ,L).

To solve NCPs, we use the Generalized Newton Method (GNM) of Jiang [43]. (See Chapter

2 for the detail).
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Table 3.2: Coefficients of the demand function of the 7-link Network A for the 2-mode case.

Coefficients of the OD pair

demand function MODE A MODE B

1-2 1-3 4-2 4-3 1-2 1-3 4-2 4-3

b1
w 400 400 400 400 400 400 400 400

b2
w 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Table 3.3: Coefficients of the demand function for the single-mode case.

Network
Coefficients of the demand function

b1
w b2

w

7-link A

600 0.04

500 0.03

500 0.05

400 0.05

7-link B
200 0.2

220 0.2

11-link

600 0.04

500 0.03

500 0.05

400 0.05

The main reason for choosing the GNM is due to the fact that our proposed model

satisfies monotonicity properties, and the GNM has nice convergence properties under these

conditions. There are other methods such as the PATH solver (Cao and Ferris [13], Dirkse

and Ferris [22]) that can be used to solve the NCPs however.
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Table 3.4: Coefficients of the link cost function of the 7-link Network A for the 2-mode case.

Coefficients of the Link

link cost function a b c d e f g

c1
w 60 10 5 8 12 5 70

c2
w 200 300 700 300 300 300 200

The numerical experiments consist of two parts. In the first part we check the validity

of our model by comparing it with the traditional model with additive costs. Here, we use

a network with two transportation modes. Our model uses different disutility functions for

the different transportation modes.

In the second part of the experiments, we aim to find a solution for the two NCP formu-

lations, namely, NCP(H) and NCP(H̃), in order to compare the two formulations.

The coding was done in Matlab 6.5. In our experiments, we used three different sample

networks (Figures 3.1, 3.2 and 3.3). The network shown in Figure 3.1 is taken from [15], the

one shown in Figure 3.2 is taken from [67] and the one in Figure 3.3 is taken from [68].

The routes and OD pairs are given in Table 3.1. The demand function used is

Dw(uw) = −b1
w(exp(−b2

wuw)),

where b1
w and b2

w are given in Table 3.2 (for the 2-mode case) and Table 3.3 (for the single-

mode case). The link cost function used is

ta(f) = c1
w(1.0 + 0.15(f/c2

w)4),

where c1
w and c2

w are given in Table 3.4 (for the 2-mode case) and Table 3.5 (for the single-

mode case).
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Table 3.5: Coefficients of the link cost function for the single-mode case.

Network Link
Coefficients of the Link Cost Function

c1
w c2

w

7-link A

a 60 50

b 10 2

c 5 6

d 8 2

e 12 13

f 5 6

g 70 60

7-link B

a 6 15

b 4 15

c 3 30

d 5 30

e 6 15

f 4 15

g 1 15

11-link

a 6 200

b 5 200

c 6 200

d 7 200

e 6 100

f 1 100

g 5 150

h 10 150

i 11 200

j 11 200

k 15 200
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Table 3.6: Route flows of 7-link Network A for the 2-mode case.

Route Flow
MODEL

Traditional Proposed

F A
1 0.0000 0.0000

F A
2 75.8216 76.8721

F A
3 101.9756 103.2007

F A
4 144.9559 146.1842

F A
5 104.7306 105.5160

F A
6 0.0000 0.0000

F B
1 0.0000 0.0000

F B
2 75.8216 72.8016

F B
3 101.9756 99.4810

F B
4 144.9559 143.2517

F B
5 104.7306 101.8342

F B
6 0.0000 0.0000

3.4.1 Comparison of the Proposed Model and the Traditional

Model

We have tested the validity of our proposed formulation. In this experiment, we compare

our proposed model to that of the traditional model on the 7-link Network A with two

transportation modes.

In this experiment, we suppose that both modes have the same OD pairs (Table 3.1),

set of routes (Table 3.1) and demand functions (Table 3.2). For the traditional model, we

use the same route cost functions for both modes A and B, that is, Cr(F ) = Tr(F ). On the

other hand, for the proposed model we use different route cost functions for mode A and for
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Table 3.7: Residuals when Uw(Tr(F )) = (Tr(F ))2.

NETWORK initial point of GNM

RESIDUAL

NCP(H) NCP(H̃)

7-link A

(0,0,0,0,0,0,0,0,0,0) 7.047E-003 1.1479E-005

(1,1,1,1,1,1,1,1,1,1) 6.645E-003 1.7912E-005

(10,10,10,10,10,10,10,10,10,10) 3.499E-003 2.5162E-005

7-link B

(0,0,0,0,0,0,0,0) 2.1822E-009 8.0737E-006

(1,1,1,1,1,1,1,1) 1.9485E-009 2.9617E-008

(10,10,10,10,10,10,10,10) 1.7703E-009 2.9615E-008

11-link

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 6.5077E-009 1.4218E-006

(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 9.8253E-007 2.9473E-009

(10,10,10,10,10,10,10,10,10,10,10,10,10,10,10) 7.5163E-007 6.5297E-007

mode B, that is, CA
r (F ) = Tr(F ) and CB

r (F ) = Tr(F ) + 0.001(Tr(F ))2, respectively.

The results are shown in Table 3.6. In the table, F A
r , r = 1, . . . , 6, stand for the route flows

corresponding to mode A, and F B
r , r = 1, . . . , 6, stand for the route flows corresponding to

mode B. The results show that, compared to the route flows for the traditional TEP model,

there is a significant difference in the route flows of the two modes for our proposed model.

As expected, the routes with lower travel costs (i.e., lower disutility function values) have

higher route flows (in the case of mode A), while routes with higher disutility function values

have lesser flows (in the case of mode B).

3.4.2 Comparison of NCP(H) and NCP(H̃) Formulations

We have also compared the NCP formulations of the TEP, namely, NCP(H) and NCP(H̃).

The networks are tested using nonlinear link cost functions, an elastic demand function and
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Table 3.8: Residuals when Uw(Tr(F )) = Tr(F ) + 0.01(Tr(F ))2.

NETWORK initial point of GNM

RESIDUAL

NCP(H) NCP(H̃)

7-link A

(0,0,0,0,0,0,0,0,0,0) 3.9814E+004 6.1748E-013

(1,1,1,1,1,1,1,1,1,1) 3.8881E+004 4.3999E-014

(10,10,10,10,10,10,10,10,10,10) 1.2173E-008 1.7146E-011

7-link B

(0,0,0,0,0,0,0,0) 8.7901E-006 5.0343E-009

(1,1,1,1,1,1,1,1) 9.8626E-007 4.2881E-010

(10,10,10,10,10,10,10,10) 9.1695E-007 1.1765E-012

11-link

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 3.6525E-006 1.5524E-006

(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 3.6775E-006 1.0126E-008

(10,10,10,10,10,10,10,10,10,10,10,10,10,10,10) 2.0176E-006 1.6949E-008

various disutility functions. Here we introduce two disutility functions, namely,

(i) Uw(Tr(F )) = (Tr(F ))2; and

(ii) Uw(Tr(F )) = Tr(F ) + 0.01(Tr(F ))2

for the route cost functions on each network.

The computational results are shown in Tables 3.7 and 3.8. In these tables, “NET-

WORK” stands for the sample network used, the columns NCP(H) and NCP(H̃) under

“RESIDUAL” respectively show the values of the residuals for the two NCP formulation.

The residual is defined as r(x) = |xT H(x)| + ∑nR+nW

i=1 min{0, xi} +
∑nR+nW

i=1 min{0, Hi(x)}
and it is computed in order to evaluate the quality of the solutions. Therefore, the residuals

should be as small as possible; a value very close to zero is ideal.

We have also tested our proposed reformulation for the case where there are two different



48
The Traffic Equilibrium Problem with Nonadditive Costs and Its Monotone

Mixed Complementarity Problem Formulation

Table 3.9: Residuals for the 7-link Network A for the case when there are 2 modes of

transportation using the routes in the network.

Disutility Function initial point of GNM

RESIDUAL

NCP(H) NCP(H̃)

Uw(Tr(F )) = (Tr(F ))2

(0,0,0,0,0,0,0,0,0,0) 2.3817E-002 2.2658E-006

(1,1,1,1,1,1,1,1,1,1) 8.8063E-004 3.2301E-005

(10,10,10,10,10,10,10,10,10,10) 4.2729E-002 3.3028E-005

Uw(Tr(F )) = Tr(F ) + 0.01(Tr(F ))2

(0,0,0,0,0,0,0,0,0,0) 1.9057E+004 7.9972E-009

(1,1,1,1,1,1,1,1,1,1) 1.8794E+004 7.9962E-009

(10,10,10,10,10,10,10,10,10,10) 9.1208E-010 7.9978E-009

transportation modes in the network. In this example, we use Network A (Figure 3.1). The

results for this case are shown in Table 3.9.

In both cases, the results reveal that our proposed reformulation NCP(H̃) successfully

yields an equilibrium of the original TEP as evident by the computed residual for each

formulation (see for example, in Table 3.8 for the 7-link A Network and Table 3.9 for

Uw(Tr(F )) = Tr(F ) + 0.01(Tr(F ))2 ). However, we have a difficulty in obtaining an equilib-

rium of the TEP by solving NCP(H) as it lacks the monotonicity.

3.5 Conclusions

In this chapter, we have formulated the TEP with nonadditive route costs by introducing

a disutility function, then presented its monotone MCP reformulation. For this reformula-

tion, we have established the existence and uniqueness of the equilibrium of the proposed
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model. Moreover, we have shown through numerical experiments that our new MCP refor-

mulation is useful in identifying an equilibrium of the TEP. We note that, aside from GNM,

there are other methods (e.g. PATH solver) available for solving NCPs.
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Chapter 4

An MPEC Model of the Road

Pricing Problem with Nonadditive

Route Costs

4.1 Introduction

In recent years, the modern economic growth has caused traffic congestion problems

around the world. Means to solve such a problem have become the focus of attention of

most traffic planners and researchers. Road pricing is considered one of the effective means

and it has been introduced in major highways of most countries [12, 53, 55, 60, 66]. In most

cases, tolls are imposed in order to reduce network congestion since it causes an increase in

the transportation cost of some links of the network and thus may result in the reduction

of transportation demand for certain routes in the network, or force road users to change

their travel routes or travel schedules. Another reason for collecting tolls is to cover for the

maintenance costs of the network or to compensate for the social and environmental damage

(such as pollution) that may be brought about by the use of the road network [29, 53, 68].

Studies on road pricing consider a bilevel model wherein the traffic planner is assigned

as “the leader” (upper-level decision maker) while the traffic users are called “the followers”
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(lower-level decision makers). Here, the leader makes some actions in order to achieve his

goal (e.g., collects toll in order to alleviate traffic congestion), while the followers react to the

actions of the leader by changing their behaviors (e.g., varying their travel schedules, route

choices or travel modes) according to the traffic equilibrium principle. The bilevel model

can be formulated as a mathematical program with equilibrium constraints (MPEC) [52],

which is a constrained optimization problem whose constraints are defined by a parametric

variational inequality or complementarity system.

MPEC has been studied extensively in the last decade. MPECs however are known to

be quite difficult to handle due to its complexities [52]. Such difficulty in handling MPECs

arises from the fact that its feasible region is in general nonconvex and nonsmooth. Many

methods have already been proposed in order to solve MPECs. Such solution methods

include smoothing approach [17, 24, 52], penalty approach [49, 63] and implicit programming

approach (ImPA) [23, 52]. The ImPA is known to be useful when the lower level problem

has a unique solution for every upper level variable. In this chapter, we apply the ImPA to

our bilevel optimization problem.

Previous studies on road pricing usually assumed the additive route costs [12, 60, 67],

that is, the route costs are simply the sum of the link costs for all the arcs on the route being

considered. Although the additivity assumption is convenient, there are various situations

in which the route costs in the network are no longer additive. Some of these situations are

presented in Section 1.2 as discussed by Gabriel and Bernstein in [35].

In the study of road pricing on the traffic equilibrium problem (TEP), it is indeed impor-

tant to consider nonadditivity in order to present a more realistic view of the traffic situation.

However, it causes a difficulty in the analysis and computation of an equilibrium, since they

are usually done by formulating the TEP into the equivalent mixed complementarity prob-

lem (MCP). The TEP with additive costs may be formulated as a monotone MCP having a

unique solution [26]. However, an MCP derived from the TEP with nonadditive costs does

not immediately possess monotonicity unless restrictive assumptions are made or a certain

reformulation is introduced.

In this chapter, we consider the road pricing formulation for the TEP with nonadditive

costs. We make use of the results in Chapter 3 in order to transform the road pricing

formulation into an MPEC. Since the proposed MPEC model has a strictly monotone lower

level constraints as will be shown later in this Chapter, we employ the ImPA for solving it.

This chapter is organized as follows. In the next section, the MPEC model of the TEP and

its reformulations are presented. We then introduce an implicit programming formulation
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for the MPEC and show its properties in Section 4.3. Numerical examples are given in

Section 4.4. We give a brief conclusion in Section 4.5.

4.2 Mathematical Program with Monotone MCP Con-

straints Model of the Road Pricing Problem with

Nonadditive Route Costs

In this section, we consider a road pricing model on the TEP with nonadditive route costs.

We show that this model can be reformulated as a mathematical problem with monotone

MCP constraints.

Let C̃(τ, F ) be the vector of nonadditive route costs with a given toll τ ∈ RnA . Then

the route flow must satisfy the following MCP:

0 ≤ C̃(τ, F ) − Γu ⊥ F ≥ 0, (4.2.1)

ΓT F − D(u) = 0.

Let S(τ) be the solution set of MCP (4.2.1).

We consider the situation where the traffic planner aims to minimize an objective function

θ(τ, F ) by choosing an optimal toll τ . Various types of objective function can be used. For

example,

1. to maximize the total revenue, we set

θ(τ, F ) = −
∑

a∈A

τafa, (4.2.2)

where fa is the flow on link a ∈ A which is determined by F ∈ RnR ;

2. to minimize the total travel cost, we set

θ(τ, F ) =
∑

w∈W

∑

r∈Rw

FrC̃r(τ, F ). (4.2.3)
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Then the road pricing problem is formulated as the following MPEC:

min θ(τ, F )

s.t. τ ∈ T, (4.2.4)

(F, u) ∈ S(τ),

where T is the set of possible tolls imposed on all tollable arcs in the network (for example,

T = {τ : τa ≥ 0, a ∈ A}).
When MCP (4.2.1) is monotone, a number of methods, such as ImPA, are available

to solve MPEC (4.2.4). However, when the route cost function Cr is nonadditive (which

usually happens in the real world), MCP (4.2.1) is not necessarily monotone and hence such

methods may not be applied directly. Below, we consider the nonadditive route cost function

Cr introduced in Chapter 3, and show that MCP (4.2.1) can be reformulated as a monotone

MCP.

First, we consider a special case of the “time function” given in the form

Tr(τ, F ) =
∑

a∈A

δarta(∆F ) + gr(τ), ∀r ∈ Rw, w ∈ W. (4.2.5)

By introducing a disutility function Uw for each OD pair w ∈ W, we define the following

nonadditive route cost function

Cr(τ, F ) = Uw

(
Tr(τ, F )

)
= Uw

(∑

a∈A

δarta(∆F ) + gr(τ)
)
, ∀r ∈ Rw, w ∈ W. (4.2.6)

This route cost function can deal with both the linear and nonlinear cases. For example,

one may consider a nonlinear disutility function of the form Uw(t) = t + 0.01t2.

Using the route cost function (4.2.6), we reformulate the MCP (4.2.1). To this end, we

make the following assumption.

Assumption 4.2.1. The functions Dw, Uw and Cr are continuous. Also, for each w ∈ W,

the demand function Dw is positive, and Uw : [0,∞) → [0,∞) is a strictly increasing function

such that Uw(0) = 0 and limv→∞ Uw(v) = ∞. Moreover, for each r, Tr(τ, F ) > 0 for all

F ≥ 0, and gr(τ) in (4.2.5) is nonnegative for all τ ∈ T.

The above assumption means that the disutility function is strictly increasing. It further

implies that Cr defined by (4.2.6) is positive. We then rewrite MCP (4.2.1) with the route
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cost function (4.2.6) as the following MCP:

0 ≤ U(T (τ, F )) − Γu ⊥ F ≥ 0, (4.2.7)

ΓT F − D(u) = 0,

where U(T (τ, F )) = (. . . , Uw(Tr(τ, F )), . . .)T . Note, however, that MCP (4.2.7) is not

monotone in general.

By the equivalence between (4.2.1) and (4.2.7), we can rewrite MPEC (4.2.4) as

min θ(τ, F )

s.t. τ ∈ T

(U(T (τ, F )) − Γu)TF = 0 (4.2.8)

ΓT F − D(u) = 0

U(T (τ, F )) − Γu ≥ 0

F ≥ 0.

We may solve the above problem using a general optimization method, such as Sequential

Quadratic Programming (SQP), or some existing solution methods for MPEC [52]. However,

some efficient methods, such as the ImPA, cannot be applied since MCP (4.2.7), which is

involved in the constraints of (4.2.8), is not monotone in general.

In Chapter 3, it was shown that under Assumption 3.3.1, MCP (4.2.7) is equivalent to

the following MCP:

0 ≤ T (τ, F ) − Γv ⊥ F ≥ 0, (4.2.9)

ΓT F − D(U(v)) = 0,

where U(v) = (. . . , Uw(vw), . . .)T and T (τ, F ) = (. . . , Tr(τ, F ), . . .)T . The function Tr(τ, F )

is given by (4.2.5). Moreover, we showed in Theorem 3.3.2 that MCP (4.2.9) is monotone

under the following additional assumption.

Assumption 4.2.2. There exist a nonincreasing function dw : R → R and a strictly in-

creasing function t̄a : R → R such that Dw(u) = dw(uw) for each w ∈ W and ta(f) = t̄a(fa)

for each a ∈ A.
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Thus, we obtain the following optimization problem with monotone MCP constraints

equivalent to MPEC(4.2.8):

min θ(τ, F )

s.t. τ ∈ T

(T (τ, F ) − Γv)TF = 0 (4.2.10)

ΓT F − D(U(v)) = 0

T (τ, F ) − Γv ≥ 0

F ≥ 0.

4.3 An Implicit Programming Approach (ImPA)

In this section we present an implicit programming approach (ImPA) for solving MPEC

(4.2.10) given in the previous section. The ImPA has already been studied in the literature

[52]. However, its applicability is somewhat limited since the uniqueness of a solution of the

lower level problem is required. We will show that the lower level problem of MPEC (4.2.10)

satisfies one of the required monotonicity properties, and hence the ImPA can be applied to

our problem.

First, we give sufficient conditions for the uniqueness of a solution of MCP (4.2.9).

Assumption 4.3.1. There exist a strictly decreasing function dw : R → R such that

Dw(u) = dw(uw) for each w ∈ W. Moreover, T (τ, F ) = (. . . , Tr(τ, F ), . . .)T is a strictly

monotone function with respect to F.

Remark 4.3.1. Assumption 4.3.1 holds when ∇t(∆F ) is positive definite for all F , where

t(∆F ) = (. . . , ta(∆F ), . . .)T , and the rank of the link-route incidence matrix ∆ is nR. This is

because T (τ, F ) = ∆t(∆F ) + (. . . , gr(τ), . . .)T so that ∇F T (τ, F ) = ∆∇t(∆F )∆T is positive

definite.

Remark 4.3.2. When T (τ, F ) is merely monotone, we may consider a regularized function

T̃ (τ, F ) := T (τ, F ) + εF as a “time function” (4.2.5), where ε is a positive constant. The
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function T̃ (τ, F ) is strictly monotone. Moreover, since a route flow F is bounded, a term

εF is vanishingly small, provided ε is sufficiently small. Moreover, we showed that MCP has

a unique solution if the function Cr defined by (4.2.6) is nonnegative, and Dw is bounded

above on the set R
nW

++ = {u ∈ RnW : u > 0}.

It follows from Theorem 3.3.5 that for each τ ∈ T, the solution set S̃(τ) of MCP (4.2.9)

is a singleton. Let (F (τ), v(τ)) be the unique element of S̃(τ).

In the succeeding discussions, we let y ≡ (F, v), y(τ) ≡ (F (τ), v(τ)), and θ̃(τ) ≡
θ(τ, y(τ)). Then MPEC (4.2.10) can be written as the following optimization problem in the

upper-level variable τ alone:

min θ̃(τ) (4.3.1)

s.t τ ∈ T.

This problem can be solved using existing optimization solvers. Such an optimization

method usually requires the differentiability of the objective function, particularly near the

solution. From now on, our aim is to investigate the differentiability of the function y(τ).

To begin with, consider the reformulation on MCP (4.2.9) using the min function.

Let Hmin be defined by

Hmin(τ, y) =




min
{

F1, H̃1(τ, y)
}

...

min
{
FnR

, H̃nR
(τ, y)

}

ΓT F − D(U(v))




, (4.3.2)

where

H̃(τ, y) ≡ T (τ, F ) − Γv. (4.3.3)

Then MCP (4.2.9) is equivalent to Hmin(τ, y) = 0.

Note that the function Hmin is not differentiable at a point (τ, y) where Fi = H̃i(τ, y) for

some i ∈ {1, . . . , nR}. Hence, y(τ) is not differentiable at such a point. For this reason, we

make use of the following strict complementarity assumption.

Assumption 4.3.2. For each i = 1, . . . , nR, Fi(τ) > 0 holds when H̃i(τ , y(τ)) = 0 at a

solution τ of MPEC (4.3.1).
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Under Assumption 4.3.2, y(τ) is a strictly complementary solution of MCP (4.2.9).

Hence, we can define the following index sets associated with the solution y(τ):

A = {i ∈ {1, . . . , nR} : (F (τ))i > 0 = H̃i(τ , y(τ))}, (4.3.4)

B = {i ∈ {1, . . . , nR} : (F (τ))i = 0 < H̃i(τ , y(τ))}, (4.3.5)

which form a partitioning of {1, . . . , nR}. When y is close to y(τ), Hmin(τ , y) = 0 is locally

reduced to

Ĥ(τ , y) ≡




(Hmin(τ , y))A

(Hmin(τ , y))B

ΓT F − D(U(v))



 =




FA

H̃B(τ , y)
ΓT F − D(U(v))



 = 0.

Now we show that the Jacobian of Ĥ with respect to y is nonsingular at (τ , y(τ)). We

use the following additional assumption.

Assumption 4.3.3. ∇FB
TB(τ, F ) is a positive definite matrix on some open sphere with

center (τ , F (τ)).

We show that

0 6= det∇yĤ(τ , y(τ))T

= det




I 0 0

∇FA
H̃B(τ , y(τ))T ∇FB

H̃B(τ , y(τ))T −ΓT
B

ΓA ΓB −∇D(U(v))T∇U(v)T


 ,

where ΓA and ΓB are submatrices of the route-OD pair incidence matrix Γ corresponding to

the index sets A and B, respectively. Let M = ∇FB
H̃B(τ , y(τ))T and N = −∇D(U(v))T∇U(v)T .

Then

det∇yĤ(τ , y(τ))T = det

(
M −ΓT

B

ΓB N

)
.

Claim.

(
M −ΓT

B

ΓB N

)
is nonsingular.

Proof. First, recall that from Assumption 3.3.1, v is always nonnegative. Let vectors p and

q satisfy



M −ΓT
B

ΓB N







p

q


 =




0

0


 ,
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i.e.,

Mp − ΓT
Bq = 0, (4.3.6)

ΓBp + Nq = 0. (4.3.7)

From (4.3.7) we have ΓBp = −Nq so that

0 = pT Mp − pT ΓT
Bq = pT Mp + qT NT q.

From Assumptions 3.3.1 and 3.3.2, N is positive semidefinite. Hence,

0 = pT Mp + qT NT q ≥ pT Mp.

Since ∇FB
TB(τ, F ) is positive definite by Assumption 4.3.3, it follows that M = ∇FB

H̃B(τ , y(τ))T

is positive definite. Thus, p = 0.

Moreover, from the definition of the route-OD pair incidence matrix Γ, ΓB is a full

rank matrix. Thus, by (4.3.6), we also have q = 0. It then follows that




M −ΓT
B

ΓB N


 is

nonsingular.

Based on the preceding discussion, we can apply the Implicit Function Theorem to obtain

the following result.

Theorem 4.3.1. Suppose that Assumptions 4.3.2 and 4.3.3 hold. Then the function y(τ) is

differentiable near τ . Moreover, θ̃ is differentiable near τ whenever θ is differentiable near

(τ , y(τ)).

4.4 Numerical Results

In this section, we present our computational results. In the numerical experiments,

we solve MPEC (4.3.1) and MPEC (4.2.8). We call the former the implicit programming

approach (ImPA) and the latter the direct optimization approach (DOA). In MPEC (4.3.1),
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the decision variable consists only of the toll τ . In MPEC (4.2.8), on the other hand, the

decision variables include the toll τ , route flow F and the minimum route cost u associated

with each OD pair. Both problems (4.3.1) and (4.2.8) were solved using the solver fmincon

in the Optimization Toolbox of Matlab, which is based on the sequential programming

method (SQP). We employ the generalized Newton method (GNM) of Jiang [43] to obtain

the equilibrium solution (F (τ), v(τ)) of MCP (4.2.9) for a given τ .

We used the sample networks shown in Chapter 3 (Figures 3.1 – 3.3) in our experiments.

The routes and OD pairs in these networks are given in Table 3.1. The demand function

used is

Dw(uw) = −b1
w(exp(−b2

wuw)),

where b1
w and b2

w are given in Table 4.1. The link cost function used is

ta(fa) = c1
a(1.0 + 0.15(fa/c

2
a)

4),

where c1
w and c2

w are given in Table 4.2.

We have solved the two problems, i.e., (4.3.1) and (4.2.8), using two objective functions,

namely, maximizing the total revenue (4.2.2) and minimizing the total travel cost (4.2.3),

subject to τa ≥ 0, ∀a ∈ A, with either of the following disutility functions:

Uw(t) = t + 0.01t2 (4.4.1)

Uw(t) = t1.1 (4.4.2)

for the three sample networks. In the case of minimizing the total travel cost, we impose the

additional constraints that τa ≤ 5, ∀a ∈ A. The initial toll values used in the experiments

for the two methods were randomly generated as follows. First we choose an initial toll

value τ 0
i from [0, 100] for the problem of maximizing the total revenue, and from [0, 5] for the

problem of minimizing the total travel cost. Then, using the generalized Newton method,

we compute the corresponding (F (τ 0), u(τ 0)) and assign them as the initial route flow and

initial route cost for DOA.

We used the fmincon solver to solve each problem with 10 randomly generated initial

points. For all runs, the solver was terminated with the message “OPTIMIZATION TER-

MINATED” and exitflag values 1, 4 or 5 were obtained. The corresponding meanings of

these exitflag values are as follows:

1 : The first order optimality conditions are satisfied to the specified tolerance.
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Table 4.1: Coefficients of the demand function.

Network
Coefficients of the demand function

O-D pair b1
w b2

w

7-link A

1-2 600 0.04

1-3 500 0.03

4-2 500 0.05

4-3 400 0.05

7-link B
1-4 200 0.2

1-5 220 0.2

11-link

1-7 600 0.04

2-7 500 0.03

3-7 500 0.05

6-7 400 0.05
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Table 4.2: Coefficients of the link cost function (lcf).

Network Link
Coefficients of the lcf

c
1

a
c
2

a

7-link A

a 60 50

b 10 2

c 5 6

d 8 2

e 12 13

f 5 6

g 70 60

7-link B

a 6 15

b 4 15

c 3 30

d 5 30

e 6 15

f 4 15

g 1 15

11-link

a 6 200

b 5 200

c 6 200

d 7 200

e 6 100

f 1 100

g 5 150

h 10 150

i 11 200

j 11 200

k 15 200
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4 : The magnitude of a search direction is smaller than the specified tolerance and the

constraint violation is less than options.TolCon.

5 : The magnitude of a directional derivative is less than the specified tolerance and the

constraint violation is less than options.TolCon.

Here “options.TolCon” is the termination tolerance on the constraint violation, whose default

value is set at 10−7. The respective exitflag values of fmincon are shown in Table 4.3. In

the table, the values under the column “Exitflag Values” correspond to the actual exitflag

values obtained during the experiment, and the values shown under the column “Frequency”

stand for the number of times each exitflag value was obtained both for the maximization

and minimization problems with their respective disutility functions (4.4.1) and (4.4.2).

Table 4.3: Exitflag values of fmincon.

Network Exitflag values

Frequency

Maximizing (4.2.2) Minimizing (4.2.3)

(4.4.1) (4.4.2) (4.4.1) (4.4.2)

DOA ImP DOA ImP DOA ImP DOA ImP

7-link A
1 0 0 0 0 10 10 10 8

4 3 0 4 0 0 0 0 0

5 7 10 6 10 0 0 0 2

7-link B
1 0 0 0 0 0 10 0 9

4 3 0 4 0 9 0 9 0

5 7 10 6 10 1 0 1 1

11-link
1 0 0 0 4 0 0 0 0

4 8 0 9 0 6 0 6 0

5 2 10 1 6 4 10 4 10

The computational results of 10 trials with different initial points for each problem are

shown in Tables 4.4 and 4.5. In these tables, “Network” stands for the sample network used
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in the experiment, the columns “DOA” and “ImP” under “FVAL” show the mean, maximum

and minimum objective function values of MPEC (4.2.8) and MPEC (4.3.1) obtained by the

DOA and ImPA, respectively.

Table 4.4: Mean, maximum and minimum values of the objective function when the objective

is to maximize the total revenue.

Network Disutility Function
FVAL

mean maximum minimum

7-link A

(4.4.1)
DOA 245.10 420.52 42.33

ImP 415.66 420.52 371.85

(4.4.2)
DOA 394.13 531.84 253.40

ImP 531.90 531.90 531.90

7-link B

(4.4.1)
DOA 21.96 78.77 0.03

ImP 85.31 93.57 83.86

(4.4.2)
DOA 13.35 51.06 0.03

ImP 58.22 65.30 57.24

11-link

(4.4.1)
DOA 2643.62 6099.8 42.74

ImP 6206.37 6521.5 5963.2

(4.4.2)
DOA 3056.65 5519.4 302.32

ImP 5547.15 5832.3 5411.2

Table 4.4 shows the case of maximizing the total revenue. In all experiments considered,

the mean objective function values obtained by ImPA were relatively greater than the cor-

responding values obtained by DOA. It has been observed that DOA is highly influenced by

the choice of an initial point. In particular, for the case of the 7-link Network A with disutil-

ity function (4.4.2), ImPA always converged to the same limit point, while DOA converged

to 10 different limit points for all 10 different initial points.

For the problem of minimizing the total travel cost, it can be seen from Table 4.5 that
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Table 4.5: Mean, maximum and minimum values of the objective function when the objective

is to minimize the total cost.

Network Disutility Function
FVAL

mean maximum minimum

7-link A

(4.4.1)
DOA 1153.9 1153.9 1153.9

ImP 1153.9 1153.9 1153.9

(4.4.2)
DOA 1466.8 1466.8 1466.8

ImP 1466.8 1466.8 1466.8

7-link B

(4.4.1)
DOA 99.38 176.77 55.70

ImP 41.08 41.08 41.08

(4.4.2)
DOA 59.97 133.85 25.15

ImP 25.73 50.09 23.02

11-link

(4.4.1)
DOA 9741.31 9816 9714.3

ImP 9733.85 9774.8 9716.3

(4.4.2)
DOA 9724.57 9753.2 9714.3

ImP 8897.62 9026.2 8570.6
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the two approaches give similar results for the 7-link A Network. However for the 7-link B

and 11-link Networks, the mean objective function values obtained by ImPA were relatively

smaller than the ones obtained by DOA. Similarly, as in the case of maximizing the total

revenue, it has been observed that DOA is highly influenced by the choice of an initial

point. In particular, for the 7-link Network B with disutility function (4.4.1), ImPA always

converged to the same limit point, while DOA converged to 10 different limit points for all

10 initial points used in the experiment.

The numerical results reveal that ImPA generally performs better than DOA. They

particularly show that the solutions obtained by DOA vary depending on the chosen initial

points, while those of ImPA are stable. For the exitflag values in Table 4.3, we do not see any

significant difference between ImPA and DOA. However, in general, solving problem (4.3.1)

with ImPA spent more CPU time than solving problem (4.2.8) with DOA. This is because

we used the generalized Newton method with fixed initial points in our codes. This problem

may be remedied by using methods other than GNM in order to improve the efficiency of

the proposed solution method.

4.5 Conclusions

In this chapter, we have introduced a road pricing model of the TEP with nonadditive

route costs. Our approach makes use of the disutility function introduced in Chapter 3 for the

lower level problems. We have shown that the resulting MPEC model can be reformulated

as a mathematical program with strictly monotone MCP, hence, the ImPA is appropriate

for solving the proposed model. Moreover, we have shown through numerical experiments

that for solving our proposed model, the ImPA works better than the direct optimization

approach in terms of stability of solutions.



Chapter 5

Convex Expected Residual Models for

the Traffic Equilibrium Problem

under Uncertainty

5.1 Introduction

In the study of the traffic equilibrium problem, most models assume that traffic users

are given complete and accurate information about the actual traffic situation. However,

in reality, the traffic situation is generally affected by various factors such as changes in

weather conditions (e.g., different rainfall or snowfall intensities), different disturbances on

the road (e.g., traffic accident or road improvements/construction) and changes in travel

demand (e.g., morning or evening rush hour or special celebrations). Such variations in the

travel time or travel demand from day to day imply that uncertainties do occur in the actual

traffic system, hence the assumption that each driver knows completely the traffic conditions

all over the network is rarely true. In fact, traffic users will have to make their route choices

without exactly knowing the actual traffic conditions.
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As an example, we consider weather. On a day with fine weather, the visibility is good

and the road surface condition is good. On a rainy day, on the other hand, travel visibility

is usually poor and the road user will have to travel at a reduced speed due to slippery road

surface. Correspondingly, the travel cost on a fine day will probably differ from the travel

cost on a rainy day. Moreover, travelers may even have to choose to postpone their trips

scheduled on a rainy day to another day with good weather.

In this chapter, we consider the situation when the actual traffic situation is uncertain

and the travel cost function or the demand function changes correspondingly with the situ-

ation. That is, we consider the traffic equilibrium problem (TEP) under uncertainty. The

TEP under uncertainty can be reformulated as the stochastic variational inequality problem

(SVIP) as will be shown in Section 5.2.

The SVIP, however, has no solution in general. Thus it is necessary to define a reasonable

solution of the SVIP. In this chapter, we regard a global solution of the expected residual

(ER) model for the SVIP as a reasonable solution of the stochastic affine variational inequal-

ity problem (SAVIP). We propose ER models based on the regularized gap function and the

D-gap function for the VIP. In particular, we establish convexity of both the regularized gap

function and the D-gap function and show that the resulting ER models with the proposed

residual functions are convex. Thus, a reasonable solution of the TEP under uncertainty

can be obtained by solving a convex programming problem.

This chapter is organized as follows. In the next section, we introduce the traffic equi-

librium problem (TEP) under uncertainty and reformulate it as SVIP. We then discuss the

expected residual model for SAVIP in Section 5.3. In Section 5.4, we introduce the reg-

ularized gap function and the D-gap function for the affine variational inequality problem

(AVIP), and establish the convexity results of these functions. The proposed ER models

for SAVIP are then presented in Section 5.5. We also establish the convexity results for

these models in this section. Computational results for the TEP under uncertainty with the

proposed ER models are given in Section 5.6. We give a brief conclusion in Section 5.7.

5.2 Traffic Equilibrium Problem under Uncertainty

Let Ω denote the sample space of factors contributing to the uncertainty in the traffic

network, such as weather and accidents. For each event ω ∈ Ω, we assign an occurrence
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probability p. Let

uw : minimal route cost for OD pair w ∈ W,
u : vector with components uw,
Dw(ω) : travel demand under uncertainty for OD pair w ∈ W,
D(ω) : vector with components Dw(ω),
C(F, ω) : vector of route cost functions Cr(F, ω).

In what follows, we are concerned with the special case where the travel demands do not

depend on the route costs, which is the case of fixed travel demands.

Let S(ω) = {F ∈ RnR |F ≥ 0, ΓT F = D(ω)}. The traffic equilibrium problem (TEP)

under uncertainty can be written as the following stochastic variational inequality problem

(SVIP): Find F ∗ ∈ S(ω) such that

〈C(F ∗, ω), F − F ∗〉 ≥ 0, ∀F ∈ S(ω). (5.2.1)

The route cost function Cr is defined by

Cr(F, ω) =
∑

a∈A

δarta(∆F, ω), (5.2.2)

where ∆ = (δar) is the link-route incidence matrix and ta(∆F, ω) is the travel time with

uncertainty on link a. Note that if ta(·, ω) is affine, then (5.2.1) becomes a stochastic affine

variational inequality problem (SAVIP). Details of the SAVIP will be discussed in the next

section.

Note also that the TEP under uncertainty (5.2.1) – (5.2.2) may also be written as the

following stochastic mixed complementarity problem (SMCP):

0 ≤ F ⊥ C(F, ω) − Γu ≥ 0, (5.2.3)

ΓT F − D(ω) = 0,

where x ⊥ y means vector x and y are perpendicular to each other. However, we observe

that

M(ω) =

(
∇F C(F, ω) −Γ

ΓT 0

)

is not a positive definite matrix, even if C is affine with respect to F and ∇FC(F, ω) is

positive definite.



70
Convex Expected Residual Models for the Traffic Equilibrium Problem under

Uncertainty

5.3 Expected Residual Models for the Stochastic Affine

Variational Inequality Problem (SAVIP)

The affine variational inequality problem (AVIP) is to find x ∈ S such that

〈Mx + q, y − x〉 ≥ 0, ∀y ∈ S,

where S = {y ∈ Rn | Ay = b, y ≥ 0} with A ∈ Rm×n and b ∈ Rm, and M ∈ Rn×n, q ∈ Rn.

The AVIP is a wide class of problems which includes the quadratic programming problem

and the linear complementarity problem.

A stochastic version of the AVIP is the stochastic affine variational inequality problem

(SAVIP) which is to find x ∈ S(ω) such that

〈M(ω)x + q(ω), y − x〉 ≥ 0, ∀y ∈ S(ω), (5.3.1)

where S(ω) = {y ∈ Rn | A(ω)y = b(ω), y ≥ 0} with A : Ω → Rm×n and b : Ω → Rm,

M : Ω → Rn×n, q : Ω → Rn and (Ω, P ) is a probability space with Ω ⊆ Rl. When

S(ω) ≡ Rn
+, the problem is reduced to the stochastic linear complementarity problem (SLCP)

[18].

There is no vector x satisfying (5.3.1) for all ω ∈ Ω in general. We may consider two

approaches in order to get a reasonable solution of SAVIP. One is the expected value

(EV) method which formulates the problem as follows: Let M̄ = E[M(ω)], q̄ = E[q(ω)],

Ā = E[A(ω)] and b̄ = E[b(ω)], where E denotes the expectation. The EV formulation is to

find a vector x ∈ S̄ = {x|Āx = b̄, x ≥ 0} such that

〈M̄x + q̄, y − x〉 ≥ 0, ∀y ∈ S̄.

Another approach is the expected residual (ER) method which makes use of a residual

function for AVIP. The ER method solves the following optimization problem:

min E[r(x, ω)]

s.t. x ∈ X,

where r(·, ω) : Rn → R+ is a residual function for the variational inequality problem.

For the stochastic complementarity problem, the previous studies [18, 19, 28, 48] made

use of an NCP function to formulate ER models. The ER model with the “min” function
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has been studied in [18, 19, 28] for the stochastic linear complementarity problem (SLCP).

In particular, it is shown that, for a class of SLCPs, if the EV model has a bounded solution

set, then the ER model also has a bounded solution set, but the converse is not true in

general. Moreover, based on their theoretical and numerical results, Chen and Fukushima

[18] and Chen, et al. [19] pointed out that a solution of the ER model is more reasonable

than that of the EV model. Thus we consider the ER model in this chapter.

We can expect to obtain a solution of the ER model by using existing solution methods.

However, there is no guarantee that such a solution is a global optimal solution of the ER

model. The following example shows the nonconvexity of the ER model with the natural

residual function.

Example 5.3.1. Consider the SLCP with G(x, ω) =





5x − 1 if ω = 1

2.7x − 0.9 if ω = 2
and Ω = {1, 2},

p(1) = p(2) = 1
2
, and r(x, ω) = min (x, G(x, ω))2. Then the expected residual function

E[r(x, ω)] is not convex as shown in Figure 5.1.

Figure 5.1: The ER function with the natural residual for Example 5.3.1.
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Recently, Luo and Lin [51] consider the stochastic variational inequality problem (SVIP)
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which is to find a vector x ∈ S ⊆ Rn such that

〈G(x, ω), y − x〉 ≥ 0, ∀y ∈ S, (5.3.2)

where G : Rn × Ω → Rn. The SVIP (5.3.2) is a generalization of the SLCP studied in

[18, 19, 28]. In [51], the authors consider the ER model with the regularized gap function

g(x, ω) = maxy∈S〈G(x, ω), x− y〉 − α

2
‖x − y‖2,

where G is an affine function, that is, G(x, ω) = M(ω)x + q(ω). They establish the differ-

entiability of this regularized gap function and the objective function E[g(x, ω)] of the ER

model. They also establish the conditions for the level boundedness of E[g(x, ω)]. They

then propose a quasi-Monte Carlo method to solve the ER model for the SVIP by means of

sequential approximations of E[g(x, ω)]. The convergence properties of such an approxima-

tion method have also been established. However, they do not consider the convexity of the

ER model.

5.4 Convexity of the Regularized Gap Function and

D-gap Function for the AVIP

In this section, we show that the regularized gap function and the D-gap function are

convex when M is positive definite. The results are extensions of [61] where these functions

are shown to be convex for the deterministic LCP.

Let G(x) = Mx+q and S = {x ∈ Rn|Ax = b, x ≥ 0}. Then the regularized gap function

fα : Rn → R and the D-gap function gα : Rn → R+ for the AVIP are defined, respectively,

by

fα(x) = max
y∈S

{
〈G(x), x − y〉 − 1

2α
‖y − x‖2

}
(5.4.1)

and

gα(x) = fα(x) − f1/α(x),

where α > 1 is a positive constant.

In what follows we show the main results of this section which are natural extensions of

[61, Theorems 2.1 and 3.1].
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Theorem 5.4.1. Suppose that S is nonempty and M is positive definite. Then the following

statements hold.

(a) The regularized gap function fα is convex for all α ≥ 1
βmin

, where βmin > 0 is the

minimum eigenvalue of M +MT . Moreover, if α ≥ 1
βmin

(1+β) with a positive constant

β, then fα is strongly convex with modulus β.

(b) The D-gap function gα is convex for all α ≥ ᾱ, where ᾱ is given by

ᾱ = max
‖x‖=1

1 + xT MT Mx

2xT Mx
> 0.

Moreover, gα is strongly convex with modulus β > 0 for all α ≥ ᾱ + β.

Proof. (a) Suppose that α ≥ 1
βmin

(1+β) with a nonnegative constant β. Then vT (α(M +

MT ) − I)v ≥ β‖v‖2 for all v ∈ Rn. It then follows that the maximand in (5.4.1) is convex

in x for any y, and hence fα is convex. Moreover, if β > 0, then the maximand is strongly

convex with modulus β for every y, and hence fα is also strongly convex with modulus β.

(b) First notice that −f1/α(x) is the optimum value of the following convex quadratic

programming problem:

miny −〈G(x), x − y〉 + α
2
‖y − x‖2

s.t. Ay = b
y ≥ 0.

(5.4.2)

Then by direct calculation, the Lagrangian dual problem of (5.4.2) is formulated as

max(λ,µ) h(x, λ, µ)
s.t. λ ∈ Rm

µ ≥ 0,

where λ ∈ Rm and µ ∈ Rn are the Lagrange multipliers of (5.4.2), and h(x, λ, µ) is given by

h(x, λ, µ) = − 1

2α
‖AT λ − µ‖2 − 〈b, λ〉 − 1

α
〈AT λ − µ, Mx + q − αx〉

− 1

2α

〈
x,

(
MT M − α(M + MT ) + α2I

)
x
〉
− 1

α
〈q, (M − αI)x〉

− 1

2α
‖q‖2 +

α

2
‖x‖2 − 〈x, Mx〉 − 〈q, x〉.
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By the duality theorem, we have −f1/α(x) = max{h(x, λ, µ)|λ ∈ Rm, µ ≥ 0}. Hence, the

D-gap function is written as

gα(x) = max
y∈S

{〈G(x), x − y〉 − 1

2α
‖y − x‖2} + max

λ∈Rm,µ≥0
h(x, λ, µ)

= max
y∈S,λ∈Rm,µ≥0

{
〈G(x), x − y〉 − 1

2α
‖y − x‖2 + h(x, λ, µ)

}

= max
y∈S,λ∈Rm,µ≥0

p(x, y, λ, µ),

where

p(x, y, λ, µ) = 〈G(x), x − y〉 − 1

2α
‖y − x‖2 + h(x, λ, µ).

Next we show that p(·, y, λ, µ) is convex for every fixed (y, λ, µ). Note that

∇2
xp(x, y, λ, µ) = M + MT − 1

α
I − 1

α
MT M + M + MT − αI + αI − M − MT

= M + MT − MT M + I

α
.

Then we can deduce that M + MT − MT M+I
α

is positive semidefinite for any α ≥ ᾱ in a way

similar to the proof of [61, Theorem 3.1]. Therefore p(·, y, λ, µ) is convex for all (y, λ, µ),

and hence gα is convex. 2

Remark 5.4.1. In [61], the linear complementarity problem (LCP) with the general cone is

considered. We can extend Theorem 5.4.1 to the AVIP with the general cone by assuming

Slater’s constraint qualification.

5.5 ER Models for SAVIP and Their Convexity

We formulate two ER models using the regularized gap function and the D-gap function.

Let G(x, ω) = M(ω)x + q(ω). Then the regularized gap function and the D-gap function

with random variable ω ∈ Ω are defined by

fα(x, ω) = max
y∈S(ω)

{
〈G(x, ω), x− y〉 − 1

2α
‖y − x‖2

}
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and

gα(x, ω) = fα(x, ω) − f1/α(x, ω).

Using these functions, we formulate the following two ER models:

ER-R min E[fα(x, ω) + τ‖A(ω)x − b(ω)‖]
s.t. x ≥ 0.

ER-D min E[gα(x, ω)]
s.t. x ∈ Rn.

The parameter τ > 0 in ER-R is used for controlling the balance between the residual and

the feasibility.

Let θR
α (x) and θD

α (x) be the objective functions of ER-R and ER-D, respectively, i.e.,

θR
α (x) = E[fα(x, ω) + τ‖A(ω)x − b(ω)‖],

θD
α (x) = E[gα(x, ω)].

Now we investigate the conditions under which θR
α (x) and θD

α (x) are convex.

We call M(ω) uniformly positive definite with modulus β0 if there exists a positive

constant β0 such that

inf
ω∈Ω,‖x‖=1

xT M(ω)x ≥ β0.

Theorem 5.5.1. Suppose that M(ω) is uniformly positive definite with modulus β0. Suppose

also that S(ω) is nonempty for all ω ∈ Ω. Then the following statements hold.

(a) θR
α is convex for all α ≥ 1

2β0
and strongly convex with modulus β > 0 for all α ≥

1
2β0

(1 + β).

(b) Suppose that M(ω) is bounded on Ω. Then θD
α is convex for all α ≥ ᾱ, where ᾱ is given

by

ᾱ = sup
w∈Ω,‖x‖=1

1 + xT M(ω)T M(ω)x

2xT M(ω)x
.

Moreover, θD
α is strongly convex with modulus β > 0 for all α ≥ ᾱ + β.

Proof. Since the sum of (strongly) convex functions is (strongly) convex, the statements

(a) and (b) follow from Theorem 5.4.1. 2
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The theorem indicates that both ER-R and ER-D are convex programming problems,

and hence we can obtain a global optimal solution using existing solution methods. These

methods include the quasi-Newton methods and the interior point methods [56, 11].

We show the effects of α on E[gα(x, ω)] in the following example.

Example 5.5.1. Let Ω = {1, 2} and p(1) = p(2) = 1
2
. Let G(x, ω) =






5x − 1 if ω = 1

2.7x − 0.9 if ω = 2,

where S(ω) = {x ∈ R |x ≥ 0}. Figures 5.2 and 5.3 show that E[gα(x, ω)] becomes convex

when α is large.

Figure 5.2: The ER-D function for Example 5.5.1 when α = 1.1.
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Theorem 5.5.2. Suppose that M(ω) is uniformly positive definite. Suppose also that S(ω)

is nonempty for all ω ∈ Ω. Then there exists a solution of ER-D. Moreover, if α ≥ 1
2β0

(1+β),

then there exists a solution of ER-R.

Proof. Since M(ω) is uniformly positive definite, gα(x, ω) is coercive for all ω ∈ Ω, see

Proposition 10.3.9 in [26]. Therefore, θD
α is also coercive. Hence, ER-D has a solution.
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Figure 5.3: The ER-D function for Example 5.5.1 when α = 5.
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Moreover, if α ≥ 1
2β0

(1+β), it follows from Theorem 5.5.1 (a) that θR
α is strongly convex.

Thus, ER-R has a solution. 2

Remark 5.5.1. When the travel time ta(·, ω) is an affine function for each a and any ω, the

SVIP (5.2.1) – (5.2.2) becomes the SAVIP. In (5.2.1), M(ω) = ∇F C(F, ω) is positive definite

under some conditions such as that ta is an increasing function of the link flows. Hence,

by Theorems 5.5.1 and 5.5.2, the convexity of the proposed ER models (ER-R and ER-D)

guarantees that we can obtain a global solution of the ER model for the AVIP formulation

of the TEP with uncertainty.

Note however that we cannot apply Theorems 5.5.1 and 5.5.2 to the SMCP (5.2.3) since,

as mentioned in Section 5.2, M(ω) is not positive definite.

In the following, we give a particular example to illustrate the meaning of the solutions

obtained by the ER-R and ER-D models.

Consider the case where there are two events, ω1 and ω2 that can happen, say, ω1 =

fine day and ω2 = rainy day. The TEP without uncertainty only considers the case

when the traffic users know the exact weather of the day. That is, either ω1 happens with
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probability 1 or ω2 happens with probability 1. However, in reality, nobody can exactly

predict the weather, and the available weather information such as the weather forecast

cannot be trusted completely. The TEP with uncertainty considers the case when the

occurrence probability of ω1 is, say, 0.6 and that of ω2 is, say, 0.4. The solution obtained by

the ER model is regarded as the traffic flow pattern that satisfies the equilibrium condition

on average.

5.6 Numerical Results

In this section, we present our computational results. In the numerical experiments,

we solve the TEP under uncertainty (5.2.1) – (5.2.2) using the ER-D model proposed in

Section 3. We solve the problem using the solver fminunc in the Optimization Toolbox of

Matlab. We employ the quadratic programming solver quadprog of Matlab to compute

gα(x, ω) for each ω ∈ Ω. The TEP under uncertainty is solved using different values of the

parameter α to find its influence on the solution obtained. Moreover, we consider the case

where D(ω) is fixed for all ω ∈ Ω and the case where there is also uncertainty in D(ω). We

also solve the MCP formulation (5.2.3) of the TEP under uncertainty using the ER method

with Fischer-Burmeister (FB) function and compare the solutions obtained with those of

the ER-D method.

The sample network shown in Figure 5.4 is used in our experiment. The attributes of

this sample network are given in Table 5.1. We use the linear link cost function given by

ta(f, ω) = M(ω)f + k(ω), where f = KF is the vector of link flows fa, ki(ω) represents the

free travel cost of link i and Mij(ω) represents the magnitude of the effect of flows on link j

to the link cost of link i. The corresponding values of H(ω) and k(ω) are as follows:

M(ω) =




22 0 2 2 4 1 2 0 4 5
0 15 0 0 1 2 0 3 5 3
2 0 14 0 2 0 1 3 2 3
2 0 0 16 + 50ω 0 2 3 1 2 4
4 1 2 0 12 0 2 2 0 0
1 2 0 2 0 10 0 0 1 2
2 0 1 3 2 0 11 0 0 0
0 3 3 1 2 0 0 14 0 1
4 5 2 2 0 1 0 0 16 + 50ω 0
5 3 3 4 0 2 0 1 0 20
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Figure 5.4: A 10-link traffic network.

Table 5.1: OD pair, routes and links of the 10-link network.

O-D pair Routes Links

1-7

1 {a,d,i}

2 {a,c,f,i}

3 {a,c,h,j}

4 {b,e,f,i}

5 {b,e,h,j}

6 {b,g,j}

and k(ω) = [50, 30, 40, 40 + 60ω, 30, 50, 20, 60, 40 + 40ω, 70]T .

Note that in this sample network, only the costs of links d = (2, 5) and i = (5, 7)

depend on the random variable ω. We assume that ω is uniformly distributed in the interval

[1
2
− δ, 1

2
+ δ]. Hence, the expectation of ω is 1

2
and its variance is δ2

3
.

In our experiments, we choose L samples of ω from the interval [1
2
−δ, 1

2
+δ] to approximate

the actual continuous distribution. Hence, the occurrence probability of each event ωi is

pi = 1
L
. We set L = 21. The values of α have been arbitrarily chosen in our numerical
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experiments.

5.6.1 Comparison of Link Flows for Different Values of α

In this experiment, we look at the influence of α. Here we set δ = 0.1 and assume the

fixed demand D(ω) = 200 for all ω ∈ Ω. We present the results for various values of α in

Tables 5.2 and 5.3. Table 5.2 shows that some route flows obtained are negative for small

values of α. However, as the value of α becomes large, the route flows obtained become all

positive. In Table 5.3, it can be seen that as the value of α increases, the link flows on links

d = (2, 5) and i = (5, 7) increase correspondingly. It is also interesting to observe that as

the value of α becomes larger, the corresponding route flows obtained get closer to satisfying

the demand, as shown in Figure 5.5. Moreover, the increase in the total route flow is small

when α is large, so the effect of α to a solution is small for large α.

Table 5.2: Route flows for different values of α when D(ω) = 200.

α Route Flows

3.3 (35.85, 19.85, 8.47, 17.72, -2.28, 148.07 )

5 (35.76, 19.81, 8.46, 17.68, -2.28, 147.77)

18 (29.39, 21.20, 2.45, 8.57, 3.40, 125.25)

50 (29.90, 23.63, 0.39, 6.58, 5.58, 127.24)

100 (30.38, 24.24, 0.13, 6.43, 5.93, 129.13)

1000 (31.00, 18.67, 6.14, 12.56, 0.06, 131.53)

5.6.2 The Case of Travel Demand with Uncertainty

In our experiments, we also consider the case where the travel demand is subject to uncer-

tainty. Here, we set δ = 0.1 and assume that the travel demand is given by D(ω) = 500ω − 100.
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Table 5.3: Link flows for different values of α when D(ω) = 200.

α Link Flows

18
(53.04, 137.22, 23.65, 29.39, 11.97,

29.77, 125.25, 5.85, 59.16, 131.10)

50
(53.91, 139.40, 24.01, 29.90, 12.16,

30.21, 127.24, 5.96, 60.11, 133.20)

75
(54.45, 140.73, 24.24, 30.21, 12.27,

30.50, 128.44, 6.03, 60.70, 134.47)

100
(54.75, 141.49, 24.37, 30.38, 12.36,

30.66, 129.13, 6.07, 61.04, 135.20)

500
(55.59, 143.59, 24.72, 30.87, 12.56,

31.11, 131.03, 6.17, 61.98, 137.20)

5000
(55.80, 144.11, 24.81, 30.99, 12.61,

31.22, 131.50, 6.20, 62.22, 137.70)

9000
(55.82, 144.14, 24.82, 31.00, 12.61,

31.23, 131.52, 6.20, 62.23, 137.72)

10000
(55.82, 144.14, 24.82, 31.00, 12.61,

31.23, 131.53, 6.20, 62.23, 137.73)
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Figure 5.5: Total route flow for different values of α when D(ω) = 200.
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The results are shown in Table 5.4.

Figure 5.6: Total route flow for different values of α when D(ω) = 500ω − 100.
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It can be seen from Table 5.4 that some route flows obtained are negative when α is

small. It is also observed that, similar to the case where the demand is fixed as D(ω) = 200,

the total route flow increases as the value of α increases. It can be seen from Figure 5.6 that

as α becomes large, the total route flow approaches 150. Moreover, the increase in the total
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Table 5.4: Route flows for different values of α when D(ω) = 500ω − 100.

α Route Flows

10 (25.6609, 14.1777, 5.9815, 12.7606, -2.0497, 107.0979)

50 (22.4198, 19.0718, -1.2081, 3.6273, 5.1809, 96.2403)

145 (22.8787, 18.2127, -0.0121, 4.9095, 4.0867, 98.0357)

150 (22.8883, 18.1652, 0.0425, 4.9659, 4.0342, 98.0733)

500 (23.0951, 17.1067, 1.2529, 6.2162, 2.8694, 98.8816)

1000 ( 23.1423, 15.8479, 2.5464, 7.5188, 1.5863, 99.0661)

5000 (23.1808, 15.9142, 2.5084, 7.4884, 1.6328, 99.2165)

10000 ( 23.1857, 15.9310, 2.4952, 7.4760 1.6471, 99.2355)

route flow is small when α is large. Hence, the effect of α to a solution is small when α is

large.

Remark 5.6.1. Note that even if ER-D is not convex, i.e., when α is small, we may still

obtain a reasonable solution. However, it can be seen from Table 5.2 and Table 5.4 that the

solutions tend to be infeasible when α is small.

5.6.3 Comparison of ER-D Model with Another ER Model

In this experiment, we also compare the ER-D model proposed in this chapter with

another ER model which is based on the MCP formulation (5.2.3) and uses the Fischer-

Burmeister (FB) function. This ER model is referred to as ER-FB and is defined as follows:

min E[Ψ(F, u, ω)] (5.6.1)

s.t. ΓT F − D̄ = 0,
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where Ψ(F, u, ω) = ‖Φ(F, u, ω)‖2 with

Φ(F, u, ω) =




φ(F1, (C(F, ω) − Γu)1)
...

φ(FnR
, (C(F, ω) − Γu)nR

)


 ,

and the travel demand is assumed to be fixed at D̄ = 200.

Here, we consider the effect of δ, which defines the interval Ω = [1
2
− δ, 1

2
+ δ], on the

feasibility of the solutions obtained by the two ER methods. Link flows obtained for different

values of α and different values of δ are shown in Table 5.5. It can be seen from the table that

ER-FB and ER-D obtained the same solution when δ is very small. However, the results

vary when δ and α become larger.

Moreover, as shown in Figure 5.7, as δ increases, that is, as the variance of ω becomes

larger, the obtained route flows tend to violate the demand condition. More specifically, the

bigger the value of δ, the smaller the total route flow. However, as seen from the figure,

the decrease in the total route flow for the ER-FB model is more significant than the ER-D

models with large α. Thus the solutions obtained by the ER-D models with larger values

of α are more stable than the solutions obtained by the ER-FB model when the variance of

random variable ω becomes large.

Figure 5.7: Total route flow for different values of δ when D(ω) = 200.
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Remark 5.6.2. Note that when we consider ER-FB for the SAVIP, we need to convert
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SAVIP into SMCP. Hence, the ER-FB model may lose some properties of the SAVIP. The

difference between the solutions obtained by the ER-D model and the ER-FB model can

be seen in the numerical results above, where the solution of ER-FB tends to violate the

conditions more than the solution of ER-D.

5.7 Conclusion

In this chapter, we have proposed two new ER models, the ER-R model which uses

the regularized gap function and the ER-D model which uses the D-gap function for the

stochastic affine variational inequality problem (SAVIP). Sufficient conditions for the models

to be convex have been established. One of the ER models proposed in this chapter, the

ER-D model, is then applied to the traffic equilibrium problem under uncertainty. In the

numerical experiment, we compare the ER-D model with the MCP-based ER model with

the Fischer-Burmeister function (ER-FB).

The numerical results show that, when the demand D(ω) is fixed (D(ω) = 200), the

proposed ER-D model with large α can obtain more reasonable solutions since the obtained

route flows tend to satisfy the demand condition. Moreover, the demand condition is not

greatly affected by the increase in the variance of ω, that is, in the change in δ, as compared

to the ER-FB model.

In this study, the values of α used in the numerical experiments were only chosen arbi-

trarily. Determining a suitable value of α (and ᾱ) based on Theorem 5.5.1 and investigating

its effect on the feasibility of the solutions would be an interesting topic to consider in the

future.
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Table 5.5: Link flows for ER-D and ER-FB for different values of δ when D(ω) = 200.

δ

Link Flows

ER-D (α = 100) ER-D (α = 500) ER-D (α = 1000) ER-D (α = 5000) ER-FB

0.0001

54.85 54.85 54.85 54.85 54.85

145.15 145.15 145.15 145.15 145.15

26.60 26.60 26.60 26.60 26.60

28.25 28.25 28.25 28.25 28.25

11.78 11.78 11.78 11.78 11.78

31.59 31.59 31.59 31.59 31.59

133.37 133.37 133.37 133.37 133.37

6.79 6.79 6.79 6.79 6.79

59.85 59.85 59.85 59.85 59.85

140.15 140.15 140.15 140.15 140.15

0.01

54.75 55.60 55.71 55.80 54.61

141.49 143.59 143.88 144.11 142.20

24.37 24.72 24.77 24.81 24.02

30.38 30.87 30.94 30.99 30.59

12.36 12.56 12.59 12.61 15.50

30.66 31.11 31.18 31.22 32.05

129.14 131.03 131.29 131.50 126.68

6.07 6.17 6.19 6.20 7.50

61.05 61.98 62.11 62.22 62.64

135.20 137.20 137.48 137.70 134.20

0.02

53.67 55.61 55.88 56.11 55.66

137.62 142.47 143.15 143.70 138.40

22.79 23.61 23.72 23.81 21.60

30.88 32.01 32.17 32.30 34.07

12.07 12.54 12.61 12.66 16.40

28.82 29.82 29.96 30.08 33.16

125.54 129.93 130.54 131.04 121.97

6.05 6.32 6.36 6.40 4.80

59.70 61.83 62.13 62.37 67.29

131.59 136.26 136.90 137.43 126.80



Chapter 6

Summary and Conclusions

In this dissertation, the mathematical models of the traffic equilibrium problems have

been studied. Nonadditive route cost functions as well as uncertainty have been considered

in order to present a more realistic view of the traffic conditions. Specifically, the main

results of this study are detailed in Chapters 3 – 5.

In Chapter 3, we have formulated the TEP with nonadditive route costs by introducing

a disutility function (which is a function of the travel costs between OD pairs) , then pre-

sented its monotone MCP reformulation. For this reformulation, we have established the

existence and uniqueness of the equilibrium of the proposed model. Moreover, we have shown

through numerical experiments that our new MCP reformulation is useful in identifying an

equilibrium of the TEP.

In Chapter 4, we have considered a road pricing model of the TEP with nonadditive route

costs. Our approach makes use of the disutility function introduced in Chapter 3 for the lower

level problems. We have shown that the resulting MPEC model of the road pricing problem

can be reformulated as a mathematical program with strictly monotone MCP constraints,

hence, the ImPA is appropriate for solving the proposed model. Moreover, we have shown

through numerical experiments that for solving our proposed model, the ImPA works better

than the direct optimization approach in terms of stability of solutions.

In Chapter 5, we consider the TEP under uncertainty. To solve this problem we have first

proposed two new ER models, the ER-R model which uses the regularized gap function and

the ER-D model which uses the D-gap function for the stochastic affine variational inequality
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problem (SAVIP). Sufficient conditions for the models to be convex have been established.

One of the ER models proposed in this paper, the ER-D model, is then applied to the traffic

equilibrium problem under uncertainty. In the numerical experiment, we compare the ER-D

model with the MCP-based ER model with the Fischer-Burmeister function (ER-FB). The

numerical results show that the proposed ER-D model can obtain better solutions when

the model parameter α is large since the obtained route flows tend to satisfy the demand

condition. Moreover, the demand condition is not greatly affected by the increase in the

variance of the random variables as compared to the ER-FB model.

As stated above, we have made significant contributions in the study of the TEP. How-

ever, there still remain topics that need further improvement and issues that remain unre-

solved. We point out some of these in the following.

In Chapter 3, we restricted ourselves to the disutility function which is only a function

of the travel costs between OD pairs. It is also important to consider the case when this

disutility function is a function of the travel costs between each route. Moreover, the case

of asymmetric demand function is also an important topic for future study. Finding an

efficient nonadditive shortest path algorithm for the purpose of column generation, which is

necessary when solving the nonadditive TEP for real-sized networks, is another important

topic to consider.

In Chapter 4, we have only considered a simple traffic network. Extending our model to

deal with the case of the more general multimodal or multiclass networks will be another

important topic to explore.

Finally, in Chapter 5, we have only arbitrarily chosen the value of α in our experiments.

Determining how large the value of α should be and investigating its effect on the feasibility

of the solutions would be an interesting topic to consider in the future.
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