
META-HEURISTICS PROGRAMMING

AND ITS APPLICATIONS

EMAD H. A. MABROUK

META-HEURISTICS PROGRAMMING

AND ITS APPLICATIONS

By

EMAD H. A. MABROUK

Submitted in partial fulfillment of
the requirement for the degree of

Doctor of Informatics

KYOTO UNIVERSITY
KYOTO 606-8501, JAPAN

JANUARY 2011

Preface

The importance of Artificial Intelligence (AI) increases rapidly, and its implementations

in real-life applications are widely spread. Moreover, extensive novel publications con-

tinually appear to introduce theoretical studies on AI and new applications in different

fields of Computer Science and others, such as machine learning, information technology,

communications, cryptography and security algorithms. One of the most well-known AI

algorithms is the Genetic Programming (GP) algorithm. Since the first appearance of the

GP algorithm, extensive theoretical and application studies on it have been conducted.

The main advantage of the GP algorithm is its ability to deal with “computer programs”

by using the tree data structure to represent solutions of a given problem. This tree-

based representation enables the GP algorithm to evolve solutions conveniently, and to

cover a wide range of applications. Recently, several versions and implementations of the

GP algorithm have been proposed to improve its results. Nevertheless, several questions

have been raised too about the complexity of the GP algorithm and the disruption effect

of the crossover and mutation operators used in the algorithm.

The main contribution of this thesis is to propose a new set of AI algorithms that

deal with computer programs to inherit the main advantage of the GP algorithm, and to

overcome some of its drawbacks. In addition, the importance of local search is highlighted

here by introducing a new set of breeding operators that are applied with a small scale

of change to avoid the disruption of a solution. Specifically, each proposed algorithm

incorporates the search strategy of a well-known meta-heuristic algorithm with the tree

data structure through the proposed local search procedures. Moreover, the proposed

algorithms are considered to introduce new alternatives to the GP algorithm.

Another contribution of this thesis is to consider two topics in cryptography and

security algorithms, prime numbers generator and efficient Pseudorandom Number Gen-

erators (PRNGs). Recently, the usage of prime numbers has increased in various fields

of security algorithms, e.g., public key cryptography algorithms and hash tables. On the

other hand, PRNGs comprise a very important component in many topics of Computer

ii Preface

Science, especially computer security and cryptography, where developing new efficient

PRNGs is an important problem. Therefore, the algorithms proposed in this thesis are

used to attack those applications. Numerous mathematical formulas that can produce

many distinct prime numbers are discovered. In addition, a new set of highly nonlin-

ear functions that can be implemented in both hardware and software are generated to

produce new efficient PRNGs.

Although this thesis is only one small step that just opens the door for introducing a

new generation of efficient AI algorithms, the author hopes that the thesis will be helpful

for further research and implementations in various applications.

Emad H. A. Mabrouk
January 2011

Acknowledgements

I would like to express my sincere appreciation to my supervisor, Prof. Masao Fukushima

of Kyoto University, for many things. I thank him for accepting me to be one of his

students, for guiding my research, and for reading and correcting my draft manuscripts

carefully. Although I may have often troubled him, even outside the research framework,

he has been always very understanding and encouraging. Moreover, he often spared his

precious time for me to answer my questions. His eager and earnest attitude to the

studies was respectable and incentive. Really, I would like to bear such a spirit in my

mind, and make effort to improve my skill of research in the future.

I would also like to tender my acknowledgments to Dr. Abdel-Rahman Hedar of Assiut

University, EGYPT. In fact, a lot of ideas in this thesis was first suggested by Dr. Hedar,

and then improved and supported by him and Prof. Fukushima. He supported me and

gave me a lot of kind advices by phone and E-mail. I am really grateful to him.

I am also thankful to Prof. Hideaki Sakai of Kyoto University and Prof. Hajime Kita

of Kyoto University for serving on my dissertation committee. Further, I wish to thank

Prof. Honglei Xu of Central South University, CHINA, for his careful review of my

dissertation to improve its quality.

I would like to express my gratitude to all members of Prof. Fukushima’s research

group, Prof. Nobuo Yamashita, Dr. Shunsuke Hayashi and my colleagues, for the good

scientific atmosphere they offered me during my study in Kyoto University. My especial

thanks to Ms. Fumie Yagura, Mr. Koichi Nabetani, Mr. Noritoshi Kurokawa, and Mr.

Kenji Hamatani, for their kindness and help which made my stay at the laboratory and

the university easier.

I share the success of this dissertation with my wife and my kids. For four years, they

have been always encouraging me to overcome difficulties encountered in advancing my

research. Without their moral support, I could not complete this dissertation. So, I am

iv Acknowledgements

very grateful for their continual support and encouragement. In addition, I owe great

thanks to my parents, brothers and sisters for all things that they gave me or taught me.

Without their support, I would never have made any success.

I am greatly indebted to The Egyptian Ministry of Higher Education for managing the

scholarship program and financing my entire study in Japan for four years. Moreover,

I am grateful for all research facilities that have been provided by Kyoto University to

achieve this study.

Lastly and above all, I would like to give back all the glory, honor and praise to

ALLAH, the Creator and the Ultimate Source of all gifts in life. I would thank Him

Almighty, for without Him, all these would not have been possible.

Contents

Preface i

Acknowledgements iii

1 Introduction 1

1.1 Meta-Heuristics . 2

1.1.1 Genetic Programming . 3

1.1.2 Tabu Search . 9

1.2 Aims, Organization and Contributions 10

2 Meta-Heuristics Programming 13

2.1 Introduction . 13

2.2 Representation of Individuals . 13

2.3 Local Searches over Tree Space . 16

2.3.1 Shaking Search . 16

2.3.2 Grafting Search . 17

2.3.3 Pruning Search . 18

2.4 Meta-Heuristics Programming Framework 20

3 Tabu Programming 25

3.1 Introduction . 25

3.2 Tabu Programming Algorithm . 25

3.3 Numerical Experiments . 29

3.3.1 Set of Parameters in TP . 29

3.3.2 Test Problems . 30

3.3.3 Performance Analysis . 31

3.3.4 TP vs GP . 38

3.4 Conclusions . 44

vi CONTENTS

4 Memetic Programming 45

4.1 Introduction . 45

4.2 Memetic Programming . 45

4.2.1 Local Search Programming . 46

4.2.2 Proposed Algorithm . 48

4.2.3 Memetic Programming with ADF Technique 51

4.3 Implementation of MP . 52

4.3.1 Individuals Representation and Breeding Operators 52

4.3.2 Selection Techniques . 52

4.3.3 Set of Parameters in MP . 53

4.3.4 Building and Evolving ADFs in MP 54

4.4 Numerical Experiments . 56

4.4.1 Test Problems . 57

4.4.2 Performance Analysis . 58

4.4.3 MP vs GP . 64

4.4.4 MP vs TP . 70

4.5 Conclusions . 71

5 Applications 73

5.1 Introduction . 73

5.2 Prime Number Generation . 73

5.2.1 MP Algorithm . 74

5.2.2 Numerical Experiments . 75

5.3 Efficient Pseudorandom Number Generators 77

5.3.1 Avalanche Effect . 77

5.3.2 TP algorithm . 78

5.3.3 Numerical Experiments . 78

5.4 Conclusions . 83

6 Summary and Conclusions 85

A Test Problems 87

A.1 Symbolic Regression Problem . 87

A.1.1 Quartic Polynomial Problem . 87

A.1.2 Multivariate Polynomial Problem 87

A.2 Boolean N -Bit Even-Parity Problem . 88

A.3 Boolean N -Bit Multiplexer Problem . 88

Chapter 1

Introduction

Artificial Intelligence (AI) is a branch of computer science that studies and designs

intelligent agents. John McCarthy, the father of AI, defines AI as “the science and

engineering of making intelligent machines” [87]. The actual research of AI started at

the Dartmouth conference “The Dartmouth Summer Research Conference on Artificial

Intelligence” in 1956 [103]. Moreover, the scientists who attended the conference became

leaders of AI research for many decades, e.g., John McCarthy, Marvin Minsky, Allen

Newell and Herbert Simon. By the middle of the 1960s, the US Department of Defense

had heavily funded and established many AI research laboratories around the world [56].

In the early 1980s, the commercial success of expert systems enabled the AI research

to be vitalized [87, 103], where an expert system is an AI program to simulate the

knowledge and analytical skills of human experts. In the 1990s and early 21st century,

AI has achieved its greatest success and it has expanded through several applications

[103].

Nowadays, applications of AI are too numerous to list and can be seen in the in-

frastructure of every industry, for example, information technology [6, 17, 21, 71, 84,

91, 97, 116], communications [29, 78, 101, 102, 104], security [8, 22, 26, 42, 44, 52, 75],

etc [15, 30, 35, 45, 46, 47, 48, 63, 77]. Therefore, researchers continually try to de-

velop new efficient AI algorithms or improve the current ones to maximize their benefits

[4, 14, 27, 33, 49, 51, 58, 82, 83, 93, 96, 108, 114, 123]. On the other hand, many

different problems in applications of AI require a discovery of a “computer program”

as an output when presented with particular inputs [67]. Those problems include, for

example, symbolic regression [110, 111, 121], machine learning [18, 80, 117], pattern

recognition [67, 81, 124], and generating an intrusion detection system in network secu-

rity [1, 40, 42, 94], etc. The process of solving those problems can be reformulated as

a search for the fittest individual computer program in the space of possible computer

2 Introduction

programs for the problem under consideration [32, 67].

The Genetic Programming (GP) algorithm is known as the most suitable algorithm

used to solve such problems [5, 19, 25, 64, 67, 68, 69, 70, 71, 96, 99, 123]. The GP

algorithm inherits the basic idea of the well-known meta-heuristics Genetic Algorithms

(GAs) [17, 25, 38, 39, 88, 112] and deals with working computer programs obtained from

a given problem [67, 68, 69, 70, 76]. The main difference between GAs and the GP

algorithm lies in the representation of a solution and the application fields. GAs usually

use an array of bits to represent a solution [38, 112], while the GP algorithm deals with

computer programs represented as trees [66, 67, 68, 69, 70, 76, 120]. However, in spite

of the popularity and great importance of the GP algorithm, a number of authors have

pointed out that its main breading operators suffer from some drawbacks [11, 54, 57, 59,

82, 92, 93, 108, 123]. Altering a node high in a tree may result in serious disruption of

the subtree rooted at that node. Therefore, there have been many attempts to edit GP

operators to make changes in small scales [55, 60, 61, 85]. In addition, the importance

of local search has been well recognized, and methods of improving the local structure

of individuals have been developed [47, 54, 79, 82, 83].

In this thesis, we introduce a set of new algorithms as alternatives to the GP algorithm

in order to accommodate more application areas. All of these algorithms use the tree

data structure to represent a solution, and search for a desirable computer program

as an output. In addition, we use new local search procedures over a tree space as

alternative operators to the classical breading operators in the GP algorithm. The new

procedures aim to generate a set of trial programs in the neighborhood of a program by

making moderate changes in it. Finally, the proposed algorithms can be gathered under

a unified framework which we call Meta-Heuristics Programming (MHP).

In the next section, we give a brief introduction of meta-heuristics, and discuss two

well-known meta-heuristics, Genetic Programming and Tabu Search, that are consid-

ered the ancestors of the proposed algorithms. Finally, the aims, contributions and the

organization of this thesis are stated in Section 1.2.

1.1 Meta-Heuristics

Meta-heuristics are high-level strategies that guide other heuristics in a search for feasible

solutions [3, 10, 32, 49, 98, 102]. The term “meta-heuristics”, first used by Glover [30],

contains all heuristics methods that show evidence of achieving good quality solutions for

a problem of interest within an acceptable time. In addition, meta-heuristics are often

considered to be a promising choice for solving combinatorial optimization problems,

1.1 Meta-Heuristics 3

where exploring the exact solutions for these problems becomes very hard due to some

limitations like an extremely large running time. Nevertheless, meta-heuristics offer no

guarantee of obtaining global best solutions [32, 98, 102].

The most commonly used data structure types in meta-heuristics are bit-strings and

real-valued vectors, except for Genetic Programming. Moreover, meta-heuristics are

typically applied to problems that can be modeled or transformed to optimization prob-

lems [3, 13, 32, 98, 102]. In terms of the process of updating solutions, meta-heuristics

can be classified into two classes; population-based methods and point-to-point meth-

ods [10, 13, 32]. In the latter methods, the search keeps only one solution at the end

of each iteration, from which the search will start in the next iteration. On the other

hand, the population-based methods keep a set of many solutions at the end of each

iteration. Additional classifications for meta-heuristics can be seen in [10, 13], in terms

of methodology, memory usage, neighborhood structure, etc. In the next subsection, the

GP algorithm and its procedures will be discussed in detail to show the idea of the tree

data structure, and to point the drawbacks of the current breading operators. Subsection

1.1.2 highlights the principles of the well-known Tabu Search. These two algorithms will

be adapted later to produce new evolutionary algorithms that deal with the tree data

structure, using a new set of breading operators.

1.1.1 Genetic Programming

The GP algorithm is an evolutionary algorithm (EA) inspired from the biological pro-

cesses of natural selection and survival of the fittest [67, 68, 69, 70, 71, 76]. The GP

algorithm evolves a population of computer programs represented as trees to find an

acceptable solution for a given problem. The first proposal of “tree-based” genetic

programming was given by Cramer [21] in 1985. This work was popularized by Koza

[67, 68, 69, 70], and subsequently, the feasibility of this approach in well-known applica-

tion areas has been demonstrated [5, 19, 25, 64, 71, 96, 99, 123]. The algorithm starts

the search process with a “population” of computer programs that are usually generated

randomly. Then, each program in the population is evaluated and some good programs

are selected and recombined using the mutation and the crossover operators to breed a

new population of programs. This process of selection and recombination to breed new

programs is iterated with the hope of driving the population toward an optimal solution.

When a termination condition is satisfied, the search process stops and the best program

found is considered the output of the algorithm. Fig. 1.1 represents a flowchart of the

GP algorithm.

4 Introduction

Figure 1.1: Flowchart of GP algorithm

The computer programs treated in the GP algorithm are represented as trees in which

leaf nodes are called terminals and internal nodes are called functions [67, 68, 69, 76].

Depending on the problem at hand, the user defines the domains of terminals and func-

tions. In the coding process, the tree structure of a solution should be transformed to an

executable code. Usually, these codes are expressed to closely match the Polish notation

of logic expressions [25]. Fig. 1.2 shows two examples of individuals represented as trees,

along with their executable codes in the Lisp computer languages [16, 62, 68, 70].

One of important improvements of GP has been made through the use of Automatically

Defined Functions (ADFs) for reusing codes [69]. The ADFs are sub-trees that can

be used as functions (called defun, subroutines, subprograms, or modules) of dummy

arguments in the main tree of a program to exploit symmetries and modularities in

the problem environments. In the standard GP algorithm with the ADF technique, each

ADF is defined in a separate function-defining branch as a part of a program. In addition,

for each ADF, the user must specify the number of dummy arguments and the function

set which is allowed to contain other ADFs. The main program is defined in the result-

producing branch that yields the fitness value of this program. For each program in the

population, the result-producing branch is allowed to call functions from the function

set that includes the original primitive functions as well as the ADFs defined for this

program. In fact, the ADF technique has been successful in improving the performance

1.1 Meta-Heuristics 5

Figure 1.2: Examples of GP representation

of GP for a set of problems, see numerical experiments in [69]. Fig. 1.3 shows an

example of the structure of a GP program that contains two function-defining branches

(two ADFs) and a result-producing branch.

The selection technique is a key issue in the GP algorithm, since it affects other steps

in a direct way [4, 12, 106, 107, 122]. Moreover, it implicitly affects the diversity of

the current population. For example, in the roulette wheel selection [12, 122], the best

program in the old population has the highest probability of propagating and producing

offsprings in the new population, which reduce the diversity in that population. In the

literature, e.g., [4, 12, 19, 106, 107, 122], several selection techniques are introduced and

discussed extensively, all of which make use of the fitness values of the current popula-

tion. However, the most common selection techniques used in the GP algorithm are the

roulette wheel selection and the tournament selection. In the tournament selection of

size k, k programs are chosen randomly from the current population, and the one with

the best fitness is selected as the winner. However in the roulette wheel selection, the

fitness values of all programs in the population are represented as contiguous segments

of a line, where the length of each segment is equal to its corresponding fitness value.

A random number, between 0 and the sum of all fitness values, is generated and the

program corresponding to the part that contains the generated random number is se-

lected as the winner. For more details and discussions about these selection strategies

and others, see [12, 19, 106, 122].

The crossover and mutation operators are the main breeding operators in the GP

6 Introduction

Figure 1.3: Example of representing a program in GP using ADF technique

algorithm. Since programs in the GP algorithm are represented by trees, the crossover is

applied by choosing two programs (trees) randomly, choosing a node randomly from each

tree, and exchanging the two subtrees rooted at these two nodes to get offsprings. On

the other hand, the mutation operator is applied for one program (tree) chosen randomly

from the pool set. Then, one can get a new offspring by choosing a node randomly and

exchanging the subtree rooted at this node by a new one that is generated randomly

[20, 67, 68, 69, 70, 71, 76, 108]. The crossover and mutation operators are summarized

in the following two procedures, and Fig. 1.4 illustrates an example of applying the

crossover and mutation operators in the GP algorithm.

Procedure 1.1. [Y1, Y2] = Crossover(X1, X2)

Step 1. Choose a node n1 from X1 randomly.

Step 2. Choose a node n2 from X2 randomly.

Step 3. Swap the two subtrees rooted at n1 and n2, and call the new trees
Y1 and Y2.

Procedure 1.2. [Y] = Mutation(X)

Step 1. Choose a node n1 from X randomly.

Step 2. Generate a new subtree X̂ randomly.

Step 3. Replace the subtree rooted at n1 by X̂ and call the new tree Y .

To generate a new population form the current one, the GP algorithm prepares a pool

of programs selected from the current population using a selection technique. Then, it

1.1 Meta-Heuristics 7

Figure 1.4: Mutation and crossover operations in GP

starts with a new empty population and repeats the following steps until the new pop-

ulation becomes full: First, it picks up an operator randomly from the set of breading

operators, i.e., reproduction (copy), crossover and mutation operators, based on a prede-

termined probability value. Second, the algorithm picks up one or two program(s), based

on the selected operator, randomly from the pool set. Third, the algorithm generates

new offsprings by applying the selected operator to the selected program(s). Finally,

new offsprings are added to the new population. Once the new population becomes full,

it will replace the old one [67, 68, 69, 70].

The computational effort (CE) has been introduced by Koza [68] to measure the

computational costs required for GP to solve a problem, and its value is based on some

8 Introduction

data collected from a set of independent runs. The formula of CE is given as follows:

CE = min
i

I(nPop, i, z),

I(nPop, i, z) = nPop ∗ R(z) ∗ i,

R(z) =

⌈
log(1 − z)

log(1 − P (nPop, i))

⌉
,

P (nPop, i) =
Ns(i)

Nall

,

(1.1)

where z is a positive number less than 1, Ns(i) is the number of successful independent

runs up to generation i, and Nall is the total number of runs. As in Koza [68], P (nPop, i)

represents the cumulative probability of success up to generation i, R(z) represents the

number of independent runs required to produce a solution up to generation i with

probability z, and I(nPop, i, z) is the number of programs that must be processed to get

a satisfactory solution, with probability z, using population size nPop up to generation

i.

Indeed, the crossover and mutation operators have extensively been studied, and many

effective settings of these operations have been proposed to deal with a wide variety of

problems [20, 57, 60, 69, 70, 76, 85, 93, 97, 109]. These efforts have popularized the

GP algorithm and expanded the range of applications. Nevertheless, it was argued

that trees tend to grow in size over the generations, causing the crossover operation

to be computationally expensive and yielding the program bloat problem, see [65, 93]

and references therein. This problem produces a high computational cost in the GP

algorithm due to the growth of individuals in size and complexity during the evolution

process [93, 108]. Moreover, it is reported in [9] that 75% of crossover events can result

in disruption of building blocks. It has also been addressed that crossover and mutation

are highly disruptive with the risk of convergence to a non-optimal solution [20, 55, 59,

82, 83, 92, 93]. Altering a node high in the tree may result in serious disruption of the

subtree below it.

These drawbacks of the crossover and mutation operators motivate researchers to pro-

pose some hypotheses about the causes behind these phenomena [11]. One of these

hypotheses is “Protective effect against destructive nature of modifying operators”, see

[11] and [125] for more details. Since these operators are main breeding operators in the

GP algorithm, there have been many attempts to edit them to make changes in small

scales, for example by using natural language processing [55, 71]. New crossover oper-

ators, such as brood crossover [106, 107], context-aware crossover [57, 85], homologous

crossover and crossover-hill climbing [9], ripple crossover [60], and depth-fair crossover

1.1 Meta-Heuristics 9

[61], are practical remedies for these problems. Moreover, the importance of local search

and improving the local structure of individuals have been addressed [54, 79, 82, 83].

1.1.2 Tabu Search

Tabu Search (TS) is a heuristic method originally proposed by Glover [30] in 1986.

Afterward, it has spread quickly to become one of the most powerful meta-heuristic

methods for tackling difficult combinatorial optimization problems [31, 35, 36, 47]. In

particular, TS improves an ordinary local search method by accepting uphill movements,

and storing attributes of the recently visited solutions in a short-term memory called tabu

list (TL). This strategy enables TS to avoid getting trapped in local minima and prevent

cycling over a sequence of non-optimal solutions. In several cases, TS provides solutions

very close to optimality with reasonable computing time. In addition, the high efficiency

of TS has captured the attention of many researchers. Several papers, book chapters,

special issues and monographs have surveyed the rich TS literature [33, 36, 47].

Suppose that the goal is to minimize the objective function f : S → R over all s ∈ S,

where each solution s has an associated neighborhood N(s) ⊂ S. A simple TS algorithm

with short-term memory begins with an initial solution s chosen, usually randomly, from

the feasible set S. The best non-tabu solution in the neighborhood N(s) replaces the

current one s, and its attributes will be stored in the TL. However, an aspiration criterion

may be applied to accept a tabu solution if it is better than the best solution found so

far. These steps are repeated with new solutions until some termination conditions are

satisfied (e.g., reaching the maximum number of iterations). The best solution found

during the search process is designated as a solution of the problem. Algorithm 1.3

shows an outline of the TS algorithm.

Algorithm 1.3. (Tabu Search Algorithm)

1. Initialization. Choose an initial solution s, and set the TL being empty.

2. Main Loop. Repeat the following Steps 2.1-2.3 until a termination condition is
satisfied, and then proceed to Step 3.

2.1. Generate a neighborhood N(s) ⊂ S of the current solution s based on the tabu
restrictions.

2.2. Let the best solution s′ in N(s) replace the current one, i.e., set s = s′.

2.3. Using the TL, mark the current solution s as a tabu move.

3. Termination. If a termination condition is satisfied, then go to Step 5. Other-
wise, go to Step 4.

10 Introduction

4. Diversification. Use a diversification strategy to generate a new diverse solution
s and go to Step 2.

5. Intensification. Improve the elite solutions obtained.

6. Stop. Stop and return with the best program found.

The short-term memory TL is built to keep the recency only. In order to achieve better

performance, a long-term memory has been proposed to keep more important search

features, such as the quality and the frequency, along with the recency. Specifically, the

long-term memory in a more advanced TS records attributes of special characteristics of

a solution or a move [31, 36, 47]. In this case, the search process of TS can adapt itself

using intensification and diversification strategies. The purpose of the diversification

strategy is to allow the algorithm to guide the search to new areas of the search space.

However, the intensification strategy enables the algorithm to perform a thorough search

around elite solutions in order to obtain much better solutions in their vicinities.

During the search process in the TS algorithm, the best solution that replaces the

current one is chosen from a modified neighborhood called Ñ(s), where the structure of

Ñ(s) mainly depends on the history of the search process [35]. In case of using TS based

on a short-term memory, the modified neighborhood Ñ(s) is a subset of the ordinary

neighborhood N(s), where TL and aspiration criteria are used to recognize solutions that

belong to N(s) and are excluded from Ñ(s). However, in a more advanced TS with

short-term and long-term memories, the modified neighborhood Ñ(s) may be expanded

to include some solutions that do not ordinarily exist in N(s). For example, Ñ(s) may

contain the high quality neighbors of elite solutions in the attractive regions to be used

if the intensification strategy is needed. It is worthwhile to note that the modified

neighborhood Ñ(s) of a solution s depends on the history of the search.

1.2 Aims, Organization and Contributions

The tree-based representation of a solution is a great advantage of the GP algorithm.

This representation enables the GP algorithm to evolve solutions conveniently, and to

cover a wide range of applications. It is worthwhile to mention that although there are

many meta-heuristic alternatives to GAs, the GP algorithm is almost the only meta-

heuristics adapted for searching the space of computer programs. In spite of that, the

crossover and mutation operations in the GP algorithm suffer from some drawbacks as

we explained in the previous section. Therefore, our aim in this thesis is to propose

new algorithms as alternatives to the GP algorithm. The proposed algorithms use the

1.2 Aims, Organization and Contributions 11

tree-based representation strategy to exploit the advantages of the tree data structure.

However, the search strategies and the set of breading operators of the proposed algo-

rithms will be different than those of the GP algorithm. The performance of the new

algorithms will be discussed through extensive numerical experiments on a set of test

problems. In addition, some applications for the proposed algorithms will be introduced

as well. The organization of the thesis is as follows.

In Chapter 2, we introduce the common aspects of the proposed algorithms. First,

we describe the tree representation of a program and the strategy of the coding process.

In particular, we represent a program as a tree like the GP algorithm. However, the

coding process for a tree and the way of generating a random tree are different than

those used in the GP algorithm. Then, a new set of local search procedures over a tree

space will be introduced as the main breading operations for the proposed algorithms.

Using these search procedures, various meta-heuristics can be reconsidered to deal with

computer programs using the tree data structure in a unified framework which we call

Meta-Heuristics Programming (MHP). Finally, the MHP framework will be introduced

at the end of Chapter 2.

In Chapter 3, we introduce a new algorithm that deals with computer programs, and

we call it the Tabu Programming (TP) algorithm. This algorithm inherents the search

strategy of the classical TS algorithm, and uses the tree data structure to represent a

solution. The local search procedures introduced in Chapter 2 are used to generate new

trial solutions from the current one. The performance of the TP algorithm is discussed

through extensive numerical experiments.

In Chapter 4, a new hybrid evolutionary algorithm, called the Memetic Programming

(MP) algorithm, is introduced. The MP algorithm hybridizes the standard GP algorithm

with a new local search algorithm over a tree space to intensify elite programs generated

by the GP algorithm. The new local search algorithm is called the Local Search Pro-

gramming (LSP) algorithm. Therefore, each generation of the MP algorithm is composed

of two phases, a diversification phase using the GP strategy, and an intensification phase

using the LSP algorithm to improve results of the diversification phase. The performance

of the MP algorithm will be shown through several numerical experiments.

In Chapter 5, we use the proposed algorithms in two different types of applications

in the information technology. Specifically, the MP algorithm is used to discover a new

set of formulas that can produce many distinct prime numbers. On the other hand,

the TP algorithm is used to generate numerous high efficient nonlinear functions that

can be used as strong pseudorandom number generators. The prime numbers and the

pseudorandom number generators are very important tools in several applications of

12 Introduction

information technology, i.e., cryptography and network security algorithms, hash tables,

and many fields of Computer Science.

Finally, Chapter 6 summarizes the main contributions of the thesis and discusses some

possible future work.

Chapter 2

Meta-Heuristics Programming

2.1 Introduction

Our aim in this thesis is to introduce new algorithms as alternatives to the GP algorithm.

Therefore, we introduce a new set of tools that helps to adapt meta-heuristics to deal

with the tree data structure. These tools include the way to represent a solution as

a tree, and some suggested breeding operators to produce programs from the current

one(s). In this chapter, we introduce these tools associated with the main framework

of the proposed algorithms. In the next section, the tree representation of a solution

will be introduced as well as the coding strategy supported with some examples. In

addition, a new set of breeding operations over a tree space will be introduced in Section

2.3. In fact, for some algorithms, these procedures can perform several tasks as we will

see in the coming chapters. Using these breeding operators, various meta-heuristics can

be adapted to deal with tree data structures. The universal framework of the proposed

algorithms will be introduced Section 2.4.

2.2 Representation of Individuals

For all algorithms proposed in this thesis, a solution generated by each algorithm is called

a program and it is represented as a tree consisting of one or more “gene(s)”. Each gene

represents a subtree consisting of some external nodes called terminals and some internal

nodes called functions. Genes inside a program are linked together by using a suitable

linking function, e.g., “+” for the symbolic regression problem, to produce the final form

of a solution. In the coding process, the tree structure of a program is transformed into

an executable code called genome. We code genes using a strategy that differs from the

one used in the standard GP, where each gene is represented as a linear symbolic string

14 Meta-Heuristics Programming

Figure 2.1: The tree structure and the coding representation of a solution

composed of terminals and functions. Fig. 2.1 shows an example of tree structures along

with their executable codes for a gene using the GP strategy and our strategy.

As to the initial program(s) of the algorithm, we generate its genes one by one. In

addition, each gene is generated according to the following simple steps: First, a tempo-

rary gene in its genome form is generated by choosing its nodes randomly. This gene is

composed of two parts, the head which contains function and terminal nodes, and the

tail which contains terminal nodes only. The total length (the number of nodes) of the

temporary gene is the sum of the head length hLen and the tail length t = hLen(n−1)+1,

where n is the maximum number of arguments of a function. Second, we adjust the final

form of the temporary gene by constructing its tree representation and deleting unneces-

sary elements, based on the functions and terminals that are generated randomly within

the gene. In this way, we can guarantee to generate a gene with a syntactically correct

structure. For example, when hLen = 5, the set of functions is F = {+,−, ∗, /} and the

set of terminals is T = {a}, which implies that t = hLen(n − 1) + 1 = 6 since n = 2.

Suppose that the generated temporary gene has 11 nodes as in Fig. 2.2A. By converting

this gene to its tree representation (Fig. 2.2B), one can see that the last 4 elements are

unnecessary elements. Consequently, we can delete these unnecessary elements and keep

the rest as in Fig. 2.2C.

Once the initial program or the initial population is generated, it will be evolved and

improved using the breeding operations based on the considered algorithm. For each

problem to solve, the sets of functions and terminals, and the fitness function must be

2.2 Representation of Individuals 15

Figure 2.2: Constructing a new gene

determined before calling the algorithm. In addition, the following set of representation

parameters must be determined as well.

◦ hLen: The head length for every gene generated randomly in the initial program.

◦ MaxLen: The maximum length, i.e., the number of nodes, of a gene allowed in the

search process.

◦ MaxDepth: The maximum depth of a gene, where the depth of a tree is the number

of links in the path from the root of this tree to its farthest node.

◦ nGenes: The number of genes in each program.

◦ LnkFun: The function used to link genes in each program.

It is worthwhile to note that the MaxLen and the MaxDepth parameters are used (one

of them or together) to bound the size of trees during the search process, since the size

of those trees can increase rapidly according to the breeding operations. In addition,

adapting each program to contain more than one genes, i.e., nGenes ≥ 1, increases the

probability of finding suitable solutions, and enables the algorithm to deal with more

complex problems [27].

16 Meta-Heuristics Programming

2.3 Local Searches over Tree Space

In this section, some local search operators over a tree space are introduced. These

operators aim to generate a new tree in a neighborhood of the current tree. We discuss

two types of local searches; static structure search and dynamic structure search [47, 51,

82, 83]. Static structure search aims to explore the neighborhood of a tree by altering

its nodes without changing its structure. On the other hand, dynamic structure search

changes the structure of a tree by expanding its terminal nodes or cutting its subtrees.

Shaking operator is shown as a static structure search, while Grafting and Pruning

operators are introduced as a dynamic structure search.

Before proceeding to the description of Shaking, Grafting and Pruning procedures, we

introduce some basic notations. For a tree X, we define its size, leaf number and depth

as follows.

• Tree size |X| is the number of nodes in tree X.

• Tree leaf number l(X) is the number of leaf nodes in tree X.

• Tree depth d(X) is the number of links in the path from the root of tree X to its

farthest node.

2.3.1 Shaking Search

Shaking search is a static structure search procedure that generates a tree X̃ from a tree

X by replacing the terminals or functions at some of its nodes by alternative ones without

changing its structure, i.e., an altered terminal node is replaced by a new terminal value

and an altered node containing a binary function is replaced by a new binary function,

and so on. Procedure 2.1 states the formal description of shaking search, while Fig.

2.3 shows an example of shaking search that alters two nodes of X. In Procedure 2.1,

λ ∈ [1, |X|] is a positive integer that represents the number of nodes to be changed, and

λ must be determined before calling the procedure.

Procedure 2.1. X̃ = Shaking(X,λ)

Step 1. Set X̃ := X and set the counter j := 1.

Step 2. While j ≤ λ, repeat Steps 2.1-2.3.

2.1 Choose a node tj from X̃ randomly.

2.2 Generate an alternative randomly from the set of functions and ter-
minals.

2.3 Local Searches over Tree Space 17

Figure 2.3: Example of shaking search (λ = 2)

2.3 Update X̃ by replacing the chosen node tj by the new alternative and
set j := j + 1.

Step 3. Return.

A neighborhood NS(X) of a tree X, associated with shaking search, is defined by

NS(X) = {X̃|X̃ = Shaking(X,λ), λ = 1, . . . , |X|}. (2.1)

2.3.2 Grafting Search

In order to increase the variability of the search process, grafting search is invoked as a

dynamic structure search procedure. Grafting search generates an altered tree X̃ from

a tree X by expanding some of its leaf nodes to branches1. As a result, X and X̃ have

different tree structures, since |X̃| > |X|, l(X̃) > l(X), and d(X̃) ≥ d(X). Procedure 2.2

states the formal description of grafting search, where µ refers to the number of branches

of depth2 ζ that will be added to X. In addition, µ and ζ must be determined before

calling the procedure. Figure 2.4 shows an example of grafting search that alters two

nodes in X by two branches in X̃.

Procedure 2.2. X̃ = Grafting(X,µ, ζ)

1Throughout the thesis, the term “branch” is used to refer to a subtree, see [23].
2The depth of a branch B has the same definition as the depth d(X) of a tree X, and will also be

denoted by d(B).

18 Meta-Heuristics Programming

Figure 2.4: Example of grafting search (µ = 2 and ζ = 1).

Step 1. Set X̃ := X and set the counter j := 1.

Step 2. While j ≤ µ, repeat Steps 2.1-2.3.

2.1 Generate a branch Bj of depth ζ randomly.

2.2 Choose a terminal node tj from X̃ randomly.

2.3 Update X̃ by replacing the node tj by the branch Bj and set j := j+1.

Step 3. Return.

A neighborhood NG(X) of a tree X, associated with grafting search, is defined by

NG(X) =
{

X̃|X̃ = Grafting(X,µ, ζ),

µ = 1, . . . , l(X), ζ = 1, . . . , ζmax

}
,

(2.2)

where ζmax is a predetermined positive integer.

2.3.3 Pruning Search

Pruning search is another dynamic structure search procedure. In contrast with graft-

ing search, pruning search generates an altered tree X̃ from a tree X by cutting some

of its branches. Therefore, X and X̃ have different tree structures, since |X̃| < |X|,
l(X̃) < l(X), and d(X̃) ≤ d(X). The formal description of pruning search is given below

2.3 Local Searches over Tree Space 19

Figure 2.5: Example of pruning search (ν = 2, ζ1 = 1, ζ2 = 2).

in Procedure 2.3, where ν refers to the number of branches of depth ζ that will be re-

placed by terminals. In addition, ν and ζ must be determined before calling the pruning

procedure. Fig. 2.5 shows an example of pruning search that cuts two branches in X.

Procedure 2.3. X̃ = Pruning(X, ν, ζ)

Step 1. Set X̃ := X and set the counter j := 1.

Step 2. While ζ ≤ d(X̃) and j ≤ ν, repeat Steps 2.1-2.3.

2.1 Choose a branch Bj of depth ζ in X̃ randomly.

2.2 Choose a terminal node tj randomly from the set of terminals.

2.3 Update X̃ by replacing the branch Bj by tj and set j := j + 1.

Step 3. Return.

A neighborhood NP (X) of a tree X, associated with pruning search, is defined by

NP (X) =
{

X̃|X̃ = Pruning(X, ν, ζ),

ν = 1, . . . , f(X), ζ = 1, . . . , d(X)
}

,
(2.3)

where f(X) := |X| − l(X) represents the number of functions in X.

The values of λ, µ, ν and ζ in the proposed local search procedures, Procedures 2.1,

2.2 and 2.3, must be determined before calling these procedures. In particular, one can

choose the values of ν, λ and η as random integers, based on the numbers of functions

20 Meta-Heuristics Programming

and terminals inside the tree X. For example, the value of ν can be chosen as a random

integer between 1 and |X|. However throughout this thesis, we choose the values of

λ, µ and ν based on the number of trials that we wish to generate. For example, to

generate three trial solutions using the shaking procedure, we call the shaking procedure

three times with λ = 1, λ = 2 and λ = 3, respectively. In other words, the first trial

solution (λ = 1) is generated by choosing one node randomly and replacing it by an

alternative node, while the second trial solution (λ = 2) is generated by choosing two

nodes randomly and replacing them by two alternative nodes, and so on.

On the other hand, the value of ζ may depend on the mission of the search process.

Specifically, during the ordinary search process, the local search procedures should be

applied with a small scale of change to avoid the disruption of the current solution.

However, those local search procedures should be applied with a bigger scale of change if

a diversity and escaping from the current position are needed. Actually, keeping diversity

is one of the major issues that should be taken into account in designing efficient global

search techniques [19].

To determine all neighbors around a tree X, we need a lot of information like the

size of X, the number of function nodes in X, the number of terminal nodes in X, the

number of functions in the function set, and the number of terminals in the terminal

set. Moreover, we need to determine number of arguments for each function node in

case of using the shaking procedure, and the depth of branches that will be added to

or cut from X in case of using the grafting and pruning procedures. All these required

information make it difficult (may be impossible) to determine all neighbors around a tree

X. Therefore, the GP research community always proposes stochastic search algorithms

that select a set of random candidate solutions in the neighborhood of solutions in the

current population. In this chapter, Procedures 2.1-2.3 behave as stochastic searches due

to the random choices in Step 2 in each procedure. In other words, by calling any of

these procedures several times for the same tree X and using the same parameters, one

may get a different X̃ for each call.

2.4 Meta-Heuristics Programming Framework

The main steps of applying meta-heuristics to solve a given problem are summarized as

follows:

1. Select a meta-heuristic method that has shown efficient evidences in related prob-

lems.

2.4 Meta-Heuristics Programming Framework 21

2. Compose the best configurations of the search procedures of the selected method.

For example, if GA is the selected method, then define the crossover, mutation and

selection procedures that fit the given problem.

3. Set and tune the initial and controlling parameters of the selected method in order

to obtain the best results.

Hence, the choice of a suitable meta-heuristic is an essential issue in problem solving.

It has been reported that the performance of search methods, especially meta-heuristics,

varies even when they are applied to the same problem [14, 24]. Moreover, the concept

of No Free Lunch [118, 119] has shown that no search algorithm is better than the others

when its performance is averaged over all possible applications. Therefore, the existence

of different types of meta-heuristics and their diversity are highly needed to accommodate

different types of applications. This has inspired us to extend meta-heuristics to deal

with applications by utilizing a tree data structure, and using the local search procedures

introduced in Section 2.3. We call the new framework Meta-Heuristics Programming.

Generally speaking, heuristic algorithms make use of four procedures. Two of them

are essential and the other two procedures are optional. The first one is the procedure

that generates a set of trial solutions around the current solution, e.g., the neighborhood

structure in the Tabu Search and Scatter Search algorithms [31, 34, 74]. The second

one is the procedure that updates the search process to move to the next iteration, e.g.,

the best solution from the set of trial solutions replaces the current one in the Tabu

Search algorithm or replaces the current solution in the Simulated Annealing algorithm

if a certain probability is greater than a random number between 0 and 1. On the other

hand, the third procedure (optional) is the procedure that drives the search process to

explore new regions in the case of being trapped in local optima. Finally, the fourth

one (optional) is the procedure that improves the best program(s) obtained during the

search process.

In the MHP, initial computer program(s) represented as tree(s) can be adapted through

the following four procedures to obtain acceptable target solutions of the given problem.

• TrialProgram: Generate trial program(s) from the current ones.

• UpdateProgram: Choose one program or more from the generated ones for the

next iteration.

• Diversification: Drive the search to new unexplored regions in the search space

by generating new structures of programs.

22 Meta-Heuristics Programming

• Refinement: Improve the best programs obtained so far.

The TrialProgram and UpdateProgram procedures are the essential ones in

MHP. The other three procedures are recommended to achieve better and faster perfor-

mance of MHP. Actually, these procedures make MHP behave like an intelligent hybrid

algorithm. The local search procedures introduced in Section 2.3 are used in the Tri-

alProgram procedure, while the UpdateProgram procedure depends on the type

of invoked meta-heuristics.

Figure 2.6: The MHP flowchart.

The main structure of the MHP framework is shown in Fig. 2.6. In its initialization

step, the MHP algorithm generates an initial set of trial programs which may be a single-

ton set in the case of point-to-point meta-heuristics. The main loop in the MHP frame-

work starts by calling the TrialProgram procedure to generate a set of trial programs

from the current population. To proceed to the next iteration, the UpdateProgram

procedure is used to extract the next program or the next population from the current

ones. Consequently, the controlling parameters are also updated to fit in the next itera-

tion. If the termination criteria are met, then the Refinement procedure is applied to

2.4 Meta-Heuristics Programming Framework 23

improve the elite solutions obtained so far. Otherwise, the search proceeds to the next

iteration but the need of diversity is checked first. The Diversification procedure may

be applied to generate new diverse solutions.

It is worthwhile to note that the MHP framework can be implemented in different

ways depending on the type of the invoked meta-heuristics; a point-to-point algorithm

or a population-based algorithm. In Fig. 2.6, if the population size is 1, then the

algorithm will work as a point-to-point algorithm. Otherwise, the algorithm will work

as a population-based algorithm.

24 Meta-Heuristics Programming

Chapter 3

Tabu Programming

3.1 Introduction

The TS algorithm has shown a good performance compared to the GAs in some imple-

mentations [47, 50]. This encourages us to propose a new algorithm that follows the

search strategy in the TS algorithm and uses the tree data structure. Specifically, the

purpose of this chapter is to propose a new algorithm called Tabu Programming (TP) al-

gorithm. This algorithm searches for a working computer program, represented as a tree,

as an output. Moreover, we use the local search procedures over a tree space, described

in Section 2.3, as the breeding operators of the proposed TP algorithm. Therefore,

the main contribution of the proposed algorithm is to design more alternatives to the

Genetic Programming (GP) algorithm in order to accommodate more application areas.

Through extensive numerical experiments, the TP algorithm is shown to work effectively

and, in fact, it outperforms the GP algorithm on some benchmark test problems. From

the numerical experiments, we may claim that the TP algorithm provides a promising

approach for problem solving.

After presenting the TP algorithm in next section, we report numerical results in

Section 3.3 for three types of benchmark problems; the symbolic regression problem, the

6-bit multiplexer problem, and the 3-bit even-parity problem. Finally, the conclusion

makes up Section 3.4.

3.2 Tabu Programming Algorithm

The Tabu Programming algorithm is a modified version of the Tabu Search algorithm

that uses tree-based representations and different neighborhood structures. In particular,

every solution generated by the TP algorithm is a computer program represented by

26 Tabu Programming

a tree consisting of terminals and functions. Therefore, the search space of the TP

algorithm is the set of all computer programs that can be represented as trees. In

addition, neighborhoods of a solution X should be generated by using the local search

procedures introduced in Section 2.3. The first idea of the TP algorithm was proposed

by Hedar and Fukushima [49] in a short paper presented in a 2006 workshop. Then, in

2007, Balicki [7] discussed TP as an extension of TS to deal with tree representations

using a special set of procedures. However, Balicki’s algorithm uses operations similar to

the mutation in GP and does not pay much attention to the drawbacks of the mutation

procedure. In this chapter, we introduce a more advanced version of the TP algorithm

and its implementation for problem solving.

The proposed TP algorithm invokes three basic search stages; local search, diversifi-

cation and intensification. In the local search stage, the TP algorithm uses two types

of local searches; static structure search to make good exploration around the current

solution, and dynamic structure search to accelerate the search process if successive non-

improvements face the static structure search. Static structure search aims to explore

the neighborhood of a current solution Xk by altering its nodes without changing its

structure through shaking search. In addition, dynamic structure search tries to change

locally the tree structure of Xk through grafting and pruning searches using branches

of small depth. Then, the Diversification procedure is applied (if needed) in order to

diversify the search for new tree structures. Finally, in order to explore close tree struc-

tures around the best programs visited so far, the Intensification procedure is applied

to improve these best programs further. Figure 3.1 shows the main structure of the TP

algorithm, and its formal description is given below.

Algorithm 3.1. (TP Algorithm)

1. Initialization.

Choose an initial program X0, set the tabu list TL and other memory elements
empty, and set the counter k := 0. Choose the values of nTL, nT , n′

T , n′′
T , ζ1,

ζ2 and n∗.

2. Main Loop. Repeat the following Steps 2.1 - 2.3 until the non-improvement
condition for the main loop is satisfied.

2.1 Static Structure Search. Repeat the following Steps 2.1.1 - 2.1.3 until a
non-improvement condition for the static structure search is satisfied. If the
condition is satisfied, proceed to Step 2.2.

2.1.1 Generate a set of nT trial programs Sk from the neighborhood NS(Xk),
Equation (2.1), based on the tabu restrictions and an aspiration criterion.

3.2 Tabu Programming Algorithm 27

2.1.2 Choose the best program in Sk and denote it by Xk+1.

2.1.3 Add Xk+1 to the TL and remove the oldest program in it. Update other
memory elements and set k := k + 1.

2.2 Dynamic Structure Search. Do the following Steps 2.2.1 - 2.2.4.

2.2.1 Generate a set of n′
T trial programs S ′

k from the neighborhood NG(Xk),
Equation (2.2), based on the tabu restrictions and an aspiration criterion.

2.2.2 Generate a set of n′′
T trial programs S ′′

k from the neighborhood NP (Xk),
Equation (2.3), based on the tabu restrictions and an aspiration criterion.

2.2.3 Choose the best program in S ′
k ∪ S ′′

k and denote it by Xk+1.

2.2.4 Add Xk+1 to the TL and remove the oldest program in it. Update other
memory elements and set k := k + 1.

2.3 Check for the non-improvement. If a non-improvement condition is sat-
isfied, go to Step 3. Otherwise, return to Step 2.1.

3. Termination Test. If a termination condition is satisfied, then go to Step 5.
Otherwise, go to Step 4.

4. Diversification. Choose a new diverse structure program Xk+1, set k := k + 1
and go to Step 2.

5. Intensification. If additional refinements are needed, then improve the n∗ best
obtained programs.

6. Stop. Stop and return with the best program found.

Algorithm 3.1 exhibits the more advanced TP algorithm. In Step 1, the algorithm

starts the search process with a random program X0 and the empty TL and other memory

elements. During the search process, those memory elements will be updated regularly

to contain information that helps in guiding the algorithm toward an optimal solution,

and terminate the search process in a suitable time. Specifically, the memory elements

store a set of elite solutions, the numbers of successive non-improvements faced by the

static and dynamic structure searches, and the number of fitness evaluations that have

been used.

The main loop in the algorithm starts at Step 2 and it contains two basic stages, Step

2.1 and Step 2.2. In Step 2.1, the algorithm uses the shaking procedure to generate nT

trial programs around the current one, based on the tabu restrictions. Then, the best

program in the trial set replaces the current program, and the TL and other memory

elements are updated. Until a non-improvement condition, e.g., reaching the maximum

number of successive internal iterations without improvements, for the static structure

search is satisfied, the inner loop consisting of Steps 2.1.1 - 2.1.3 is repeated. Then the

28 Tabu Programming

Figure 3.1: The TP flowchart.

algorithm moves to Step 2.2. In Step 2.2, the algorithm explores new programs a little

bit far from the current program by applying the grafting and pruning procedures using

random branches of depth ζ1 (preferably a small positive integer). Two sets containing

n′
T and n′′

T trial programs are generated using the grafting and pruning procedures,

respectively, based on the tabu restrictions. Then, the best program among those trials

replaces the current program, and the TL and other memory elements are updated. In

Step 3, the algorithm proceeds to the next iteration, but the need of diversification is

checked first, unless a termination condition (e.g., reaching the maximum number of

function evaluations) is satisfied. In Step 5, the algorithm refines the n∗ best programs

during the search process, and in Step 6, stops with the best program obtained.

During the search process, the algorithm generates new programs X̃i, i = 1, 2, ..., nk

from the current one Xk using one of the local search procedures defined in Section

2.3, where nk is a positive integer that represents the number of trial programs gener-

3.3 Numerical Experiments 29

ated by the chosen procedure, e.g., nk = nT for the shaking procedure in Step 2.1.1

and nk = n′
T + n′′

T for the grafting and the pruning procedures in Steps 2.2.1 and

2.2.2. Specifically, in Step 2.1.1, the algorithm uses the shaking procedure to gener-

ate a set Sk of nT trial programs from the neighborhood NS(Xk) in (2.1), i.e., Sk ={X̃λ|
X̃λ = Shaking(Xk, λ), λ = 1, 2, ..., nT}. Similarly, in Steps 2.2.1 and 2.2.2, the algo-

rithm generates sets S ′
k and S ′′

k of n′
T and n′′

T trial programs from the neighborhoods

NG(Xk) in (2.2) and NP (Xk) in (2.3) using the grafting and pruning procedures, respec-

tively, i.e., S ′
k ={X̃µ| X̃µ = Grafting(Xk, µ, ζ1), µ = 1, 2, ..., n′

T} and S ′′
k ={X̃ν | X̃ν =

Pruning(Xk, ν, ζ1), ν = 1, 2, ..., n′′
T}. In addition, each program in Sk, S ′

k and S ′′
k must

be verified to be accepted, based on the tabu restrictions or the aspiration criteria.

In Algorithm 3.1, the diversification and intensification procedures are optional, i.e.,

these procedures should be employed only when a simple TP algorithm is not effective

enough. In Step 4, the algorithm randomly chooses one of the grafting or pruning

procedures as a diversification procedure with a large depth ζ2. In addition, in Step 5,

the algorithm uses the shaking procedure as an intensification procedure.

3.3 Numerical Experiments

In this section, we study the performance of the TP algorithm on three types of bench-

mark problems; the symbolic regression problem, the 6-bit multiplexer problem and the

3-bit even-parity problem. Some preliminary experiments were carried out first to study

the behavior of TP parameters, and to study the efficiency of local search over the tree

space. Then, we conduct extensive experiments to analyze the main components of

the TP algorithm. Finally, some comparisons between the TP algorithm and the GP

algorithm are reported.

3.3.1 Set of Parameters in TP

From Section 2.2 and Section 3.2, the TP algorithm makes use of a set of two kinds of

parameters; representation parameters and search parameters. We list these parameters

in the following:

• Representation Parameters

◦ hLen: The maximum head length for every gene in the initial program.

◦ MaxDepth: The maximum depth of a gene.

◦ nGenes: The number of genes in a program.

30 Tabu Programming

◦ LnkFun: The function used to link genes in each program.

• Search Parameters

◦ nTrs: The number of trial programs to be generated in the neighborhood of the

current program. We set nT , n′
T and n′′

T in Algorithm 3.1 all equal to nTrs.

◦ StNonImp: The maximum number of consecutive non-improvements for the

static structure search (used as the termination condition for Step 2.1).

◦ MnNonImp: The maximum number of consecutive non-improvements for the

main loop (used as the termination condition for the main loop in Step 2).

◦ IntNonImp: The maximum number of consecutive non-improvements in the

intensification step (used in the termination condition for Step 5).

◦ nTL: The tabu list size.

◦ FunCnt: The maximum allowed number of fitness evaluations (used to specify

the upper limit of the amount of computations).

Through the numerical experiments in this chapter, we used ζ1 = 1, ζ2 ≥ 3 and n∗ ≥ 3

in Algorithm 3.1, and the maximum depth for a program is set to be MaxDepth = 10.

3.3.2 Test Problems

In the rest of this section, we test the performance of the TP algorithm through the

SR-QP, SR-POLY-4, 6-BM and 3-BEP problems, see Appendix A for more details. In

addition, we use the following settings, unless otherwise stated, for our test problems:

• For the SR-QP problem, the terminal set is the singleton {x}, and the function set

is {+,−, ∗, %} , where % is called “the protected division”, and x%y := x if y = 0;

x%y := x/y otherwise.

• For the SR-POLY-4 problem, the set of independent variables {x1, x2, x3, x4} is

regarded as the terminal set, and the function set is {+,−, ∗, %}.

• For the 6-BM problem, the set of arguments {a0, a1, d0, d1, d2, d3} is used as the

terminal set, and the set of Boolean functions {AND, OR, NOT, IF} is used as the

function set, where IF(x, y, z) returns y if x is true, and it returns z otherwise.

• For the 3-BEP problem, the set of arguments {a0, a1, a2} is used as the terminal

set, and the set of Boolean functions {AND, OR, NAND, NOR} is used as the

3.3 Numerical Experiments 31

Table 3.1: Standard values of the TP parameters.

Parameter Value

SR-QP 6-BM 3-BEP

hLen 3 3 3
nGenes 3 7 3
nTrs 5 7 5
StNonImp 3 3 3
MnNonImp 7 7 7
IntNonImp 3 3 3
nTL 7 7 7
FunCnt 2500 25000 25000
LnkFun + IF AND

function set. In fact, the GP research community considers evolving the N -BEP

function by using those Boolean functions as a good benchmark problem for testing

the efficiency of new GP techniques [68, 114].

For the SR-QP and SR-POLY-4 problems, the algorithm starts a run by generating

a dataset randomly under the conditions described in Subsections A.1.1 and A.1.2, re-

spectively. Moreover, the generated dataset will be fixed during the running time of the

algorithm for each independent run.

3.3.3 Performance Analysis

In this subsection, we study the performance of the TP algorithm under different envi-

ronments. First, we discuss several tabu list structures and representations to authorize

one of them as the TL of the TP algorithm. Second, we study the efficiency of the local

search procedures introduced in Section 2.3 and its effects on the TP algorithm. Finally,

the parameter setting of the TP algorithm is introduced to choose the best parameter

values that will be used through the rest of the numerical experiments. Throughout this

subsection, we use the standard values of the TP parameters shown in Table 3.1.

32 Tabu Programming

Structure of the Tabu List

In TS, the tabu list TL represents the short-term memory which is limited in terms of

time and storage capacity. The TL is a list that stores certain attributes for the last nTL

visited solutions, to decide if a new solution is accepted or not. Basically, the TL is used

to prevent the algorithm from being trapped in a cycle or a local optimum. In addition,

in most implementations of TS, TL is used to store nTL latest moves, or attributes of nTL

latest solutions instead of storing the entire solutions themselves.

Here, we discuss the structure of the TL in the proposed TP algorithm. We start

by introducing some of the important attributes for a program generated in the TP

algorithm:

• The fitness value of a program.

• The structure of a program and its information, for example, the number of nodes,

the depth, the width (the maximum number of nodes that lie in the same depth

from the root node), the number of function nodes, and the number of terminal

nodes.

• The latest operations performed to get a program, for example, the latest node(s)

changed and the latest local search procedure used to generate this program.

• The program itself.

To use the fitness value as an attribute in the TL, the algorithm must construct each

candidate solution and evaluate its fitness value before determining its tabu status. How-

ever, this process increases the number of fitness evaluations and the computational effort

for the algorithm. Therefore, we omit the use of the fitness value as an attribute in the TL

for the TP algorithm. To choose a more suitable TL structure, the following TL structures

are used and examined

1. TL1: The tabu list stores some information about the structure of current tabu

programs (the number of nodes, the depth, the width, and the number of function

nodes). Therefore, the TL1 is a list of nTL vectors, each consisting of four elements,

which contain the structure information of the last nTL visited solutions.

2. TL2: The tabu list stores vectors of bits corresponding to the genome representa-

tions of current tabu programs. Specifically, the TL2 is a list of nTL vectors of bits

gotten from the genome representations of the last nTL visited solutions, where 1

corresponds to a function node, and 0 corresponds to a terminal node.

3.3 Numerical Experiments 33

Table 3.2: Performance of the TP algorithm with different tabu list structures.

TL AV ME R%

TL1 4,171 5,000 31
TL2 3,476 4,239 67
TL3 1,485 1,015 95
TL4 795 681 100

3. TL3: The tabu list stores the same vectors of bits in TL2, as well as some information

about the latest operations performed to get the tabu programs. Specifically, the

TL3 is a list of nTL vectors, where each vector stores bit values that correspond to

the genome representation of a program, the latest gene changed, the latest node

processed, and the latest local search procedure used to generate this program.

4. TL4: The tabu list stores the genome representations of the latest nTL visited

solutions. Therefore, the TL4 is a list that contains nTL vectors of strings. In

addition, storing a program in the TL4 as a vector of strings is not costly in terms

of memory.

The algorithm may generate many trees that have the same number of nodes, the

same depth, the same width, and the same number of function nodes, but have different

structures or different results. The TL1, TL2 and TL3 will therefore reject some (may

be a lot) of the new unvisited programs if they share the same attributes with one of

the tabu programs. On the other hand, the TL4 will reject a new program if it exactly

matches one of the tabu programs. In fact, TLi is considered more restrictive than TLi+1

for i = 1, 2, 3, in terms of accepting new solutions.

For each TL structure discussed above, we performed 100 runs of the TP algorithm for

the SR-QP problem. The values of the TP parameters are set as in Table 3.1, except

FunCnt = 5000. The results of the TP algorithm with the above-mentioned four TL

structures are compared in Table 3.2, in terms of the average (AV) and the median

(ME) of the number of fitness evaluations as well as the rate of success (R). It is clear

from these results that a less restrictive tabu list yields a more efficient TP algorithm.

In particular, the TL4 is the best choice for the current version of the TP algorithm.

In the rest of this section, we adjust the TL to store the last nTL visited solutions in its

34 Tabu Programming

Figure 3.2: Two different trees that are represent the same formula.

genome coding representation. This means each element in the TL is a vector of strings

that represents a program. If there is one program in the TL that has the same number

of nodes as the new program, then the complete test is performed. If the new program

matches to some program in the TL, it will be rejected. Otherwise, the new program will

be accepted.

Suppose that the TP algorithm generates the two trees in Fig. 3.2 as two programs for

the SR-QP problem. One can note that these two trees represent the same formula, i.e.,

x2. However, the first tree Fig. 3.2(A) can be evolved easily to get the optimal solution

of the SR-QP problem, by changing the root function node from “%” to be “+”. On

the other hand, extensive steps of grafting, shaking and maybe pruning procedures are

needed to evolve the second tree to get the optimal formula. Therefore, a solution for a

given problem can be represented by many different trees generated by the TP algorithm.

Moreover, the TP algorithm can accept a new tree even if the formula represented by

this tree is already represented by a different tree that already exists in the TL. In fact,

this is acceptable since the TP algorithm deals with trees not formulas.

Efficiency of Local Search Procedures

In this part, we try to get some indicators about the efficiency of the local search pro-

cedures. We have applied four different versions of the TP algorithm to the SR-QP

problem, and observed the influence of those differences on the performance of the TP

algorithm

3.3 Numerical Experiments 35

Table 3.3: Comparison among four versions of the TP algorithm for the SR-QP problem.

Algorithm AV ME R%

TP-ShPr 1,948 2,500 28
TP-ShGr 1,608 2,021 57
TP-GrPr 1,611 1,772 67
TP 1,238 1,029 85

1. TP-ShPr: TP algorithm with the shaking and the pruning procedures.

2. TP-ShGr: TP algorithm with the shaking and the grafting procedures.

3. TP-GrPr: TP algorithm with the grafting and the pruning procedures.

4. TP: The proposed TP algorithm as described in Algorithm 3.1.

We performed 100 runs for each version of the algorithm using the parameter values

shown in Table 3.1, except for hLen = 15. Comparisons with respect to the average

and the median of the number of fitness evaluations as well as the rate of success are

displayed in Table 3.3. In addition, Fig. 3.3 shows the relation between the number of

fitness evaluations and the rate of success to show the efficiency of each algorithm.

From these comparisons, we can observe that the proposed TP algorithm has the best

performance among the four versions. On the other hand, the TP-ShPr algorithm is the

worst one in terms of AV, ME and R. In addition, the importance of the local search

can be confirmed by comparing the results of the TP and TP-GrPr algorithms. Using

the shaking procedure to refine the current solution and search its neighborhood locally,

the TP algorithm can reduce the number of fitness evaluations and increase the rate of

success significantly.

It is important to note that the parameter hLen has a great influence on the perfor-

mance of the TP-ShGr and TP-ShPr algorithms. In the TP-ShGr algorithm, the size of a

current tree always increased during the search, which means that starting the TP-ShGr

algorithm with a small value of hLen may increase the probability of finding a good so-

lution. On the other hand, the size of a current tree always decreased during the search

in the TP-ShPr algorithm, which suggests that starting the TP-ShPr algorithm with a

large value of hLen may increase the probability of finding a good solution. However, the

36 Tabu Programming

Figure 3.3: Comparison among four versions of the TP algorithm.

TP-ShPr algorithm that relies on the shaking and pruning procedures seems to be an

unwise choice because the tree will eventually reduce to one node and this will prevent

the algorithm from finding a good solution.

Parameters Setting

In this subsection, we study the effect of the TP parameters and discuss the choice of

their proper values for each problem. For each parameter, we select a set of values, and

for each value, we performed 100 independent runs to compute the average of the number

of fitness evaluations as well as the rate of success. Other parameters are fixed at their

standard values given in Table 3.1.

The computational results are displayed in Table 3.4. It is clear from these results that

the crucial parameters in the TP algorithm are nGenes, nTrs and MnNonImp, while other

parameters affect the success rate only slightly. In addition, although the best value for

nGenes depends on the problem itself, appropriate values are roughly 2 ≤ nGenes ≤ 5

for the SR-QP and 3-BEP problems, and 3 ≤ nGenes ≤ 9 for the 6-BM problem. As

to nTrs, it should be large enough but should not be too large (to avoid consuming

the allowed number of fitness evaluations in earlier stages of the algorithm) and suitable

values are roughly 5 ≤ nTrs ≤ 9. Lastly, a proper choice for StNonImp is a large value,

e.g., 5 ≤ StNonImp ≤ 9.

3.3 Numerical Experiments 37

Table 3.4: Performance of the TP algorithm with different values of each TP parameter.

SR-QP 6-BM 3-BEP

Param. Val. AV R% Val. AV R Val. AV R%

1 1,092 90 1 8,062 96 1 7,311 96
3 870 97 3 7,739 96 3 7,958 92

hLen 5 897 94 5 7,985 97 5 7,206 98
7 964 92 7 8,074 94 7 6,853 98
9 1,147 88 9 7,646 95 9 7,847 96

1 1,098 84 1 16,268 63 1 16,074 57
2 981 95 3 9,432 91 2 9,383 86

nGenes 3 801 99 5 7,606 95 3 6,840 99
4 963 90 7 8,198 95 4 7,540 96
5 1,068 89 9 9,102 95 5 7,693 96

2 1,597 61 2 21,451 43 2 18,905 48
3 1,274 82 3 12,295 89 3 9,123 94

nTrs 5 901 94 5 7,971 95 5 6,477 99
7 1,012 91 7 7,825 98 7 6,973 96
9 1,068 86 9 8,593 96 9 7,185 99

1 1,143 85 1 10,569 90 1 9,507 92
3 906 93 3 8,419 96 3 6,825 98

StNonImp 5 1,028 91 5 8,353 96 5 6,841 99
7 967 96 7 7,829 98 7 6,483 98
9 1,107 89 9 8,070 95 9 5,897 97

1 1,242 80 1 14,592 76 1 12,972 80
3 1,146 89 3 9,635 96 3 7,640 94

MnNonImp 5 1,097 91 5 7,093 96 5 7,524 96
7 987 93 7 8,527 95 7 7,450 94
9 1,005 93 9 8,037 97 9 5,612 100

1 1,073 85 1 7,488 98 1 7,211 96
3 1,279 80 3 8,157 97 3 6,704 97

nTL 5 914 94 5 7,928 99 5 6,755 98
7 971 90 7 9,659 97 7 7,055 97
9 1,035 89 9 6,988 98 9 7,429 94

38 Tabu Programming

In fact, we may expect that increasing the size of a tree horizontally reduces the bad

effect of dormant nodes, where a dormant node is a node that does not contribute to the

fitness value of a program [58]. Therefore, a high value of nGenes parameter is preferable

to a small one, since the high value of nGenes increases the size of a tree horizontally.

On the other hand, the nTrs and MnNonImp parameters control the number of trial

programs that will be generated around the current program. Therefore, it is reasonable

to expect that increasing the values of those parameters improves the performance of

the TP algorithm.

3.3.4 TP vs GP

To examine the performance of the TP algorithm compared to the GP algorithm, we

performed several experiments for different problems. First, we compared the results of

the TP algorithm with the results of the release 3.0 of the Genetic Programming Lab

(GPLab) toolbox [105]. Second, the results of the TP algorithm were compared with the

results of different versions of the GP algorithm that appeared in the literature. Finally,

we performed some experiments for the TP and GP algorithms using different sets of

operators, to show the effects of our local search procedures.

In fact, a perfect comparison between the TP algorithm and the GP algorithm cannot

be made due to the differences in the search techniques, since TP is a point-to-point

algorithm, while GP is a population-based algorithm. But here, we just try to show their

performance in terms of the rate of success and the number of fitness evaluations needed

to get a desired solution. Throughout the experiments in this subsection, the parameter

values for the TP algorithm, the GPLab toolbox and the standard GP algorithm are set

as in Table 3.5.

TP Algorithm vs GPLab Toolbox

GPLab [105] is a free Matlab toolbox that can be used under general public license

(GNU) software regulations. In addition, the current release of GPLab includes most of

the traditional features usually found in GP tools and it has the ability to accommodate

a wide variety of usages. For more details about GPLab and its usage, see [116].

We show the performance of TP compared to GPLab in the case where both of them

have a limited number of fitness evaluations. So, we performed 100 independent runs for

both of TP and GPLab under the same limitation on the number of fitness evaluations.

The parameter values for the TP and GPLab toolbox are shown in Table 3.5. For the

GPLab toolbox, we set its parameter values as the standard values [105], except for the

3.3 Numerical Experiments 39

Table 3.5: Parameter values for the TP algorithm, the GPLab toolbox and the standard
GP algorithm.

Algorithm Parameter SR-QP SR-Poly-4 6-BM 3-BEP

TP hLen 3 3 3 3
nGenes 3 3 7 3
nTrs 5 9 7 5
StNonImp 3 7 7 3
MnNonImp 7 9 7 9
IntNonImp 3 3 3 3
nTL 7 7 7 7
LnkFun + + IF AND

GPLab nPop 50 - 500 500
nGnrs 50 - 50 50

GP nPop 50 - - 500
nGnrs 50 - - 50
Crossover probability: 0.8
Mutation probability: 0.2
Selection: the tournament selection of size 4

population size nPop and the number of generations nGnrs to meet the condition for

the maximum number of fitness evaluations. Note that, the maximum number of fitness

evaluations for TP and GPLab is nPop*nGnrs. The results are shown in Table 3.6, where

comparisons are made in terms of the average and the median of the number of fitness

evaluations as well as the rate of success.

It is clear, from the results shown in Table 3.6, that the TP algorithm generally

outperforms the GPLab toolbox. Specifically, the TP algorithm was able to obtain good

and acceptable solutions in an early stage of computations, compared with the GPLab

toolbox. At the same time, the rate of success for the TP algorithm is better than the

corresponding rate of success for the GPLab toolbox, especially for the 3-BEP problem.

40 Tabu Programming

Table 3.6: Comparison among the TP algorithm and the GPLab toolbox for the SR-QP,
6-BM and 3-BEP problems.

TP GPLab

Prob. AV ME R% AV ME R%

SR-QP 801 652 99 1,303 1,075 81
6-BM 7,829 6,393 98 8,445 7,500 100
3-BEP 5,612 4,272 100 11,175 6,500 77

TP vs GP, BC-GP, CGP and ECGP

Here, we compare the TP algorithm with different versions of the GP algorithm that

appeared in the literature, and show that the TP algorithm performs well compared to

all those versions of the GP algorithms. The parameter values for the TP algorithm are

set as in Table 3.5.

Poli and Langdon [96] conducted extensive numerical experiments to compare the

backward-chaining GP (BC-GP) algorithm and the standard GP algorithm. They con-

sidered two types of symbolic regression problems; the SR-QP problem and the SR-Poly-4

problem with the same settings in Subsection 3.3.2. In addition, they performed two in-

dependent experiments for each of the SR-QP and the SR-Poly-4 problems, to compare

between the BC-GP and GP algorithms using different population sizes. In the first two

experiments, they performed 5000 independent runs using nPop = 100 and nPop = 1, 000

for the SR-QP and SR-Poly-4 problems, respectively. In the other experiments, they per-

formed 1000 independent runs using nPop = 1, 000 and nPop = 10, 000 for the SR-QP

and SR-Poly-4 problems, respectively. For all experiments they used nGnrs = 30. The

results shown in Fig. 3.4 for the BC-GP and GP algorithms are taken from Figs. 8-11

in the original reference [96].

We performed the same experiments for the SR-QP and SR-Poly-4 problems using the

TP algorithm to compare its results with those of Poli and Langdon [96]. The parameter

values for the TP algorithm are shown in Table 3.5, and the results of the TP, BC-GP

and GP algorithms are shown in Fig. 3.4. As we can see from these figures, the TP

algorithm can obtain a desired solution very fast compared to both of the BC-GP and

GP algorithms, especially for the more difficult problem SR-Poly-4. It is clear that the

TP algorithm can save a lot of efforts and computations compared to the BC-GP and

3.3 Numerical Experiments 41

GP algorithms.

Figure 3.4: Comparison among the TP, BC-GP and GP algorithms for the SR-QP and
SR-Poly-4 problems.

Walker and Miller [114] conducted extensive numerical experiments to examine the

performance of the Cartesian GP (CGP) algorithm and the Embedded CGP (ECGP)

algorithm. They reported a lot of results for several test problems with the CGP and

ECGP algorithms, and showed that those algorithms outperformed the standard GP

algorithm and several contemporary algorithms. In particular, the ECGP algorithm is a

generalization of the CGP algorithm that utilizes an automatic module acquisition tech-

nique to automatically build and evolve modules, and re-use these modules as functions

in the main program. Here, we consider the results of the CGP and ECGP algorithms

for the 3-BEP problem.

Walker and Miller [114] used the Boolean functions {AND, OR, NAND, NOR} as the

function set and the arguments {a0, a1, a2} as the terminal set for the 3-BEP problem.

In addition, they used the module technique to automatically build and evolve modules

42 Tabu Programming

Table 3.7: Comparison among the TP, CGP and ECGP algorithms for the 3-BEP prob-
lem, in terms of median (ME) number of evaluations, median absolute deviation (MAD),
and interquartile range (IQR) for 50 independent runs.

Algorithm ME MAD IQR

CGP 5,993 2,936 6,610
ECGP (with modules) 5,931 3,804 10,372
TP 4,170 2,296 6,511

in the ECGP algorithm. They performed 50 independent runs for the 3-BEP problem

and, for each run, the algorithm was run until the exact solution was found. Then, they

made some statistical analysis for their results to discuss the performance of the CGP

and ECGP algorithms.

Here, we also performed 50 independent runs for the 3-BEP problem using the TP

algorithm, where the parameter values for the TP algorithm are shown in Table 3.5. For

each run, the TP algorithm was run until the exact solution was obtained. A comparison

of the performance of the CGP, ECGP and TP algorithms is shown in Table 3.7. From

these results, we can see that the TP algorithm performs well compared to the CGP

and ECGP algorithms. The results for the CGP and ECGP algorithms have been taken

from Table IV in the original reference [114].

Koza [68] published a book on GP, which contains numerical results for a large number

of problems. In addition, a book chapter by Azad and Ryan [5] also contains a lot of

numerical results. These two references also contain results for some of the problems

used in this chapter, and our results seem to compare favorably to those reported there.

TP with Mutation vs GP with Local Search

In the previous subsections, we saw that TP outperforms the standard GP and various

contemporary versions of GP. In this subsection, we study the performance of the local

search procedures introduced in Section 2.3, compared to the ordinary mutation operator

in the standard GP algorithm. Therefore, several comparisons, in terms of the average

and the median of the number of fitness evaluations as well as the rate of success, will

be given for the following algorithms:

1. GP: The standard GP.

3.3 Numerical Experiments 43

Table 3.8: Comparison among the GP, GP-LS, TP and TP-Mut algorithms for the
SR-QP and 3-BEP problems.

SR-QP 3-BEP

Algorithm AV ME R% AV ME R%

GP 1,056 700 79 13,960 10,750 76
GP-LS 783 625 96 13,600 11,500 82
TP-Mut 1,615 1,851 62 3,969 3,261 100
TP 801 652 99 5,612 4,272 100

2. GP-LS: The standard GP using the local search procedures in Section 2.3 instead

of the mutation operator.

3. TP: The proposed TP algorithm as described in Algorithm 3.1.

4. TP-Mut: The proposed TP algorithm using the mutation operator instead of the

local search procedures in Section 2.3.

To make comparisons, we performed 100 independent runs of each algorithm for the

SR-QP and 3-BEP problems. The parameter values are set as shown in Table 3.5. When

applying the mutation, a node is chosen randomly from a program, and the subtree

rooted at this node is replaced by a new subtree generated randomly as a gene in the

initial population [68, 69]. The initial populations for the GP and GP-LS algorithms are

generated and represented in the same way as TP generates and represents genes, where

each program in GP and GP-LS is represented as one gene according to the standard GP

algorithm. The results are shown in Table 3.8, where the maximum number of fitness

evaluations for the GP, GP-LS, TP and TP-Mut algorithms is nPop*nGnrs.

From Table 3.8, we observe that, for the SR-QP problem, TP and GP with local

search procedures performed better GP and TP with the mutation operator, in terms

of AV, ME and R. For the 3-BEP problem, the mutation operator helped to improve

the results slightly compared with the local search procedures, in terms of AV and ME.

Nevertheless, the local search procedures were slightly more effective than the mutation

operator in terms of the rate of success especially for the GP algorithm. Although

it is not a completely fair comparison, one can see that the two versions of the TP

algorithm outperform the current two versions of the standard GP algorithm for the

44 Tabu Programming

3-BEP problem. However, the two versions of the GP algorithm slightly outperform

the two versions the TP algorithm for the SR-QP problem. From the previous results

of the GP, GP-LS, TP and TP-Mut algorithms, one may conclude that no algorithm

can be the absolute winner. Each algorithm can outperform other algorithms for some

set of problems, but it cannot outperform them for all problems. This may be a good

motivation for those who introduce new algorithms.

3.4 Conclusions

The Tabu Programming (TP) algorithm has been proposed by incorporating the basic

idea in the Tabu Search (TS) algorithm, a popular point-to-point meta-heuristic method.

The main difference between TP and TS lies in the representation of a solution and

the neighborhood structure. More specifically, every solution in the TP algorithm is a

computer program represented by a parse tree. Therefore, the search space of the TP

algorithm is the set of computer programs that can be represented by parse trees. In

addition, the neighborhoods of a solution X are defined and explored using the proposed

local search procedures.

We have tested the performance of the TP algorithm for three types of benchmark

problems and made some experiments to analyze the main components of the TP algo-

rithm. From these numerical experiments, we have shown that the TP algorithm is a

promising algorithm compared with the GP algorithm. In fact, the TP algorithm per-

forms better than the GP algorithm in terms of the rate of success and the number of

fitness evaluations at least for the considered test problems.

Chapter 4

Memetic Programming

4.1 Introduction

The aim of this chapter is to introduce a hybrid evolutionary algorithm, called Memetic

Programming (MP) algorithm, as an improvement of the GP algorithm. The term

“memetic” comes from memetic algorithms since the MP algorithm inherits the basic idea

from memetic algorithms [43, 72, 73, 88, 89, 90], while the term “programming” comes

from GP since MP deals with computer programs represented by trees. Specifically,

the proposed algorithm hybridizes GP with new local search procedures over a tree

space to intensify promising programs generated by the GP algorithm. These local

searches are used to generate trial programs in the neighborhood of the current one by

changing it in small scales. In addition, the proposed algorithm can easily incorporate the

Automatically Defined Function (ADF) technique to exploit the modularities in problem

environments [69]. We will show through numerical experiments that the proposed MP

algorithm is more efficient in finding an optimal solution than the GP algorithm especially

when using the ADF technique.

The rest of the chapter is organized as follows. In the next section, we introduce

the proposed MP algorithm. In Section 4.3, more explanations about the practical

implementation of the MP algorithm are given. In Section 4.4, we report numerical

results for some benchmark problems. Finally, conclusions make up Section 4.5.

4.2 Memetic Programming

In this section a new hybrid evolutionary algorithm is presented as an improvement to

the GP algorithm. The proposed algorithm hybridizes GP with the local search proce-

dures introduced in Section 2.3 to improve individuals generated by using GP operators.

46 Memetic Programming

In the next subsection, a new local search algorithm over a tree space called Local Search

Programming algorithm is discussed. In Subsection 4.2.2, the proposed Memetic Pro-

gramming (MP) algorithm is described. Finally, the MP algorithm will be extended to

deal with the ADF technique in Subsection 4.2.3.

4.2.1 Local Search Programming

A local search algorithm starts with an initial solution, and subsequently applies some

operators to generate new solutions in a neighborhood of the current one. This process

iterates until no better solution can be found in the neighborhood, and then the algorithm

is terminated. In this subsection, a new local search algorithm over a tree space, called

Local Search Programming (LSP) algorithm, is proposed to find the best program in the

neighborhood of the current program X. The proposed LSP algorithm mainly uses the

local search procedures described in Section 2.3. The details of the proposed algorithm

are shown below.

Algorithm 4.1. Local Search Programming

1. Initialization: Choose an initial program X, set Xbest := X and set the counter
k := 0. Choose the values of nFails and nTrs.

2. While k ≤ nFails, repeat Steps 2.1-2.5.

2.1 Static Structure Search

2.1.1 Generate a set Y={Yi| Yi=Shaking(X, i), i = 1, · · · ,nTrs}.
2.1.2 Let Ybest be the best program in the set Y.

2.1.3 If Ybest is better than X, then set X := Ybest and go back to Step 2.1.1.
Otherwise, set k := k + 1 and proceed to Step 2.2.

2.2 If X is better than Xbest, then set Xbest := X.

2.3 If k > nFails, then go to Step 3. Otherwise, proceed to Step 2.4.

2.4 Dynamic Structure Search

2.4.1 Select Grafting or Pruning procedure randomly and denote the selected
one by R.

2.4.2 Generate a set Z={Zi| Zi=R(X, i, ζ), i = 1, · · · ,nTrs}.
2.4.3 Replace X by the best program in the set Z.

2.5 If X is better than Xbest, then set Xbest := X. Go back to Step 2.1.

3. Termination: Stop and return with Xbest, the best program found.

4.2 Memetic Programming 47

In the initialization step, Step 1, the algorithm starts with a program X that is gen-

erated randomly or received from another algorithm. In addition, Xbest and a counter

k take their initial values. In fact, the counter k is used to count the number of non-

improvements during the search process. In Step 1, the user must choose two posi-

tive integers nFails and nTrs. Specifically, nFails is the maximum number of non-

improvements and nTrs represents the number of trial programs generated in the neigh-

borhood of the current program using static and dynamic structure searches. For the

shaking procedure, we put nTrs := min(nTrs, |X|), and for the pruning procedure, we

put nTrs := min(nTrs, d(X)).

Step 2 consists of five substeps 2.1-2.5. In Step 2.1, an inner loop using the shaking

procedure is iterated until it finds a better program near to X. In Step 2.1.1, the

algorithm generates a set Y of trial programs using the shaking procedure. In Steps

2.1.2 and 2.1.3, if the best program, Ybest, in Y is better than X, then it replaces the

current program X and the algorithm goes back to Step 2.1.1. Otherwise, the algorithm

updates the counter k and proceeds to Step 2.2 to update Xbest if better programs have

already been explored.

In Step 2.3, when the algorithm reaches the maximum number of non-improvements

nFails, it will stop and return with Xbest. Otherwise, it proceeds to Step 2.4 to diversify

the search process using a new program with different structure by applying either the

grafting or the pruning procedure, which is chosen randomly. In Step 2.4.2, a set Z of

trial programs is generated by the selected procedure. In Step 2.5, the algorithm replaces

X by the best program in Z and goes back to Step 2.1. Finally, when the termination

condition is satisfied, the algorithm stops at Step 3 and returns with the best program

found. Fig. 4.1 shows the flowchart of the proposed LSP algorithm.

In Algorithm 4.1, the main loop starts in Step 2.1 by generating nTrs programs using

the shaking procedure. If there is no improvement occurred in the current program,

then the counter k is increased by 1, and the algorithm keeps working and generating

new programs according to the following two processes. First, the algorithm proceeds

to generate two sets of nTrs programs; the first nTrs programs are generated using

the grafting or pruning procedures in Step 2.4, and the remaining nTrs programs are

generated using the shaking procedure in Step 2.1. Second, the algorithm increases

the counter k by one if no improvement occurred in the current program. These two

processes are repeated as long as the value of the counter k does not exceed the maximum

value nFails. Therefore, the number of fitness evaluations needed during a single run of

the LSP algorithm varies depending on the improvement of the current program. If the

algorithm completely fails to improve the current program, then the number of fitness

48 Memetic Programming

Figure 4.1: The flowchart of LSP

evaluations consumed during the run of the algorithm is

minFitLSP = (2 nFails + 1) nTrs. (4.1)

In fact, the value minFitLSP represents the minimum value of the number of fitness

evaluations needed during the run of the LSP algorithm. However, if the algorithm

succeeds to improve the current program, then the number of fitness evaluations needed

during the run of the LSP algorithm will exceed the value minFitLSP .

4.2.2 Proposed Algorithm

The main target of the MP algorithm is to improve the behavior of the GP algorithm

by reducing the disruption effect of the crossover and mutation operators. Performing a

local search for some promising programs during the search process can improve these

programs. Moreover, if the search process succeeds to reach the area near an optimal

4.2 Memetic Programming 49

solution, then a simple local search algorithm can capture that optimal solution easily.

On the contrary, if the GP algorithm continues to be applied without the help of local

search, there is a high probability of losing such promising solutions due to the disrup-

tion effect of crossover and mutation operators. In the MP algorithm, we use the LSP

algorithm described in the previous subsection to improve some programs chosen from

the current population based on their fitness values. Figure 4.2 shows the main structure

of the proposed MP algorithm, and its formal is stated as follows:

Algorithm 4.2. (MP Algorithm)

1. Initialization.

1.1. Generate a random population of programs and evaluate the fitness value for
each program. Set the initial values of controlling parameters needed in the
search process.

1.2. Select some promising programs according to their fitness values.

1.3. Apply the LSP algorithm, Algorithm 4.1, to the selected programs.

1.4. Update the controlling parameters.

2. Main Loop. Repeat the following Steps 2.1-2.6 until a termination condition is
satisfied. If a termination condition is satisfied, proceed to Step 3.

2.1. Select a set of parents from the current population, according to their fitness
values.

2.2. Generate a new population using crossover and mutation operators, and eval-
uate the fitness value for each program in the new population.

2.3. Select a set of promising programs according to their fitness values.

2.4. Apply the LSP algorithm, Algorithm 4.1, to the selected programs.

2.5. Update the controlling parameters.

2.6. Return to Step 2.1 to breed a new population.

3. Stop with the best program found.

The controlling parameters set in the Step 1.1 may store the number of generations

that have been performed, the number of fitness evaluations that have been used, the

fitness value of the best program found so far, and the number of consecutive non-

improvements. These information can be used to terminate the algorithm in a suitable

time. Therefore, the termination conditions in the MP algorithm may consist of one or

more of the following events; reaching the highest fitness value, reaching the maximum

50 Memetic Programming

Figure 4.2: The MP flowchart.

number of fitness evaluations, or reaching the maximum number of consecutive non-

improvements for the best program during the course of generating populations.

Step 2.2, in the main loop, generates a new population using the crossover and muta-

tion operators as follows: First, pick up an operator randomly from the set of reproduc-

tion (copy), crossover and mutation operators. Second, pick up one or two program(s),

depending on the selected operator, randomly from the pool set generated in Step 2.5.

Third, get new offsprings by applying the selected operator for the selected program(s).

Fourth, replace the parent(s) in the current population by the new offsprings. Repeat

these steps until all programs in the population are modified.

It is worthwhile to note that the main loop in Step 2 of Algorithm 4.2 can be divided

into two phases, the diversification phase in Steps 2.1-2.2 and the intensification phase

in Steps 2.3-2.4. The diversification phase follows the GP strategy, where choosing a

suitable selection strategy and using the crossover and mutation operations guarantee the

diversity in the current population. On the other hand, the intensification phase, which

uses the LSP algorithm to intensify promising programs obtained in the diversification

4.2 Memetic Programming 51

Figure 4.3: Example of representing a program in MP using ADF technique

phase, tries to catch the best solution. We note that, the MP algorithm at least behaves

like the GP algorithm in case that no improvement occurs in the intensification phase.

However, in this case the MP algorithm will be more costly than the GP algorithm,

because of the computational effort spent in the intensification phase.

4.2.3 Memetic Programming with ADF Technique

In this subsection, we focus on the effect of using the ADF technique within the proposed

MP algorithm. The proposed MP algorithm uses the multigenic representation to express

programs in the population, where each program is represented as a tree consisting of

several genes, see Section 2.2. Actually, the multigenic strategy enables MP to deal easily

with ADFs for reusing codes. Since each program in MP can contain more than one gene,

we can adopt one or more of these genes to work as ADF(s). In other words, each program

in MP with ADFs contains two types of genes, ADF genes which represent function-

defining branches, and regular genes which represent the result-producing branches. The

result-producing branches are linked together by a suitable function to produce the final

form of the program. Fig. 4.3 shows an example of the structure of a MP program using

the ADF technique. In the next section, we will show more details and explanations

about implementing the ADF technique with MP.

52 Memetic Programming

4.3 Implementation of MP

In this subsection, we illustrate the details of some basic topics that are essential in

the implementation of the MP algorithm, Algorithm 4.2, concerning representation of

individuals, breeding operators, selection techniques, and so on.

4.3.1 Individuals Representation and Breeding Operators

The MP algorithm uses the tree data structure to represent a solution like the GP algo-

rithm. However, the MP algorithm represents a solution according to the representation

strategy described in Section 2.2. Therefore, each solution in the MP algorithm is called

a program, and it consisting of one or more genes. These genes are linked together using

a linking function to produce the final form of a program. For the initial population, we

generate its genes randomly using the strategy described in Section 2.2.

As we described in the previous section, the main loop of Algorithm 4.2 can be divided

into two phases, the diversification phase and the intensification phase. In the diversifica-

tion phase, the algorithm uses the classical crossover and mutation operators, Procedures

1.1 and 1.2, respectively, as breeding operators. When applying the mutation operator,

the algorithm needs to generate a new subtree to exchange it with an alternative one

chosen randomly from the current program. This subtree is generated using the same

strategy of generating a new gene in the initial population, see [67, 68, 69]. On the other

hand, the algorithm uses the shaking grafting and pruning procedures, Procedures 2.1,

2.2 and 2.3, respectively, as breeding operators in the intensification phase. Throughout

this chapter, we use ζ = 1, where ζ is the depth of branches added to and removed from

a tree X in the grafting search (Procedure 2.2) and the pruning search (Procedure 2.3),

respectively.

4.3.2 Selection Techniques

The proposed MP algorithm, Algorithm 4.2, mainly contains two selection steps: First,

Step 2.1 selects a pool of programs to breed a new population using the crossover and

mutation operators. Second, Step 2.3 (as well as Step 1.2) selects a set of promising

programs to improve them by the LSP algorithm. In the present chapter, we use three

different selection techniques that have shown promise in our extensive numerical experi-

ments. In Step 2.1, we use the tournament selection [122] of size 4 as the default selection

strategy, and the roulette wheel selection will be used for some special experiments, as

shown later. In Steps 1.2 and 2.3, we always select the best nLs programs from the

4.3 Implementation of MP 53

current population, where nLs is a positive integer less than or equal to the population

size.

For the tournament selection of size 4, the MP algorithm chooses 4 programs randomly

from the current population, and the one with the best fitness is selected as the winner.

However in the roulette wheel selection, the algorithm specifies a probability value for

each program in the population based on its fitness value compared to the fitness values

of other programs in the current population. Specifically, the probability value pi of the

i-th program in the current population is computed as:

pi =


fi∑nPop

j=1 fj
, for positive fitness values,

(af)i∑nPop
j=1(af)j

, for non-positive fitness values,

(4.2)

where fi and (af)i = 1
1−fi

are the fitness value (the raw fitness value) and the adjusted

fitness value, respectively, of the i-th program in the current population of size nPop.

See [68] for more details about the raw fitness and the adjusted fitness.

4.3.3 Set of Parameters in MP

The proposed MP algorithm makes use of a set of parameters that can be classified into

two types of parameters; representation parameters and search parameters. We list these

parameters in the following:

• Representation Parameters

◦ hLen: The head length for every gene generated randomly in the initial program.

◦ MaxLen: The maximum length, i.e., the number of nodes, of a gene allowed in

the search process.

◦ nGenes: The number of genes in each program.

◦ LnkFun: The function used to link genes in each program.

• Search Parameters

◦ nPop: The population size.

◦ nGnrs: The maximum number of generations.

◦ nLs: The number of programs selected to apply local search procedures at the

intensification phase in Steps 2.3-2.4 in Algorithm 4.2.

54 Memetic Programming

◦ nTrs: The number of trial programs generated in the neighborhood of the

selected program using a local search procedure, i.e., shaking, grafting or

pruning.

◦ nFails: The maximum number of non-improvements for each call of the LSP

algorithm in Step 2.4 of the MP algorithm.

If no improvements occurs in the intensification phase in Steps 2.3-2.4 of Algorithm

4.2, then the number of fitness evaluations consumed in this phase is minFitIntP =

nLs (2 nFails+1) nTrs. This is because Algorithm 4.2 calls the LSP algorithm nLs times

during the intensification phase in Steps 2.3-2.4, while the number of fitness evaluations

during one call of the LSP algorithm is (2 nFails+1) nTrs, equation (4.1). If the values

of nLs, nFails and nTrs are large, the MP algorithm will need a lot of fitness evaluations

in the intensification phase in Steps 2.3-2.4.

Certainly, if the LSP algorithm succeeds to improve the chosen programs in Steps 2.3

of Algorithm 4.2, then we do not mind the increase of the number of fitness evaluations in

the intensification phase, since it increases the probability of finding an optimal solution.

On the other hand, if the LSP algorithm fails to improve the chosen programs in Steps 2.3

of Algorithm 4.2, then the MP algorithm will not gain benefits by using a large number

of fitness evaluations. For that reason, we let minFitIntP be the maximum number of

fitness evaluations in the intensification phase. Specifically, we set minFitIntP = α nPop,

where α is a positive constant determined before calling the algorithm. Then the values

of nLs, nTrs and nFails must be chosen to satisfy the equation

nLs (2 nFails + 1) nTrs = α nPop. (4.3)

In practice, we first choose the values of nTrs and nFails, and then determine the

value of nLs (from (4.3)) by

nLs =
⌈ α nPop

(2 nFails + 1) nTrs

⌉
, (4.4)

where dxe means the smallest integer greater than or equal to x. In particular, if α = 0,

then no program will be processed by the LSP algorithm.

4.3.4 Building and Evolving ADFs in MP

Actually, based on the individual representation in MP, we can easily extend the MP

algorithm to build and reuse ADFs. For each program in MP, we can exploit one or

more genes to work as ADF(s), which will be created and evolved during the run of

4.3 Implementation of MP 55

Figure 4.4: Example of representing a program in MP using ADFs technique. Last two
lines represent the function and terminal sets for each gene.

the algorithm. In addition, these ADFs will be added automatically to the function set

of other genes, the result-producing branches, in the same program that contains these

ADFs. In this case, the fitness value for a program in MP with ADFs will be computed

from the result-producing branches by linking all of them using a suitable function, e.g.,

a primitive function or one of the ADFs themselves.

Suppose that {ADF1, ADF2, · · · , ADFn} is the set of ADFs used for the problem at

hand, where each ADF has its own set of dummy arguments. As in GP with ADFs, the

function set used to build the ADFs is the original function set F, and it is possible to

include one or more function(s) from the set {ADFi|i = 1, · · · , j − 1} in the body of

ADFj, where j = 2, · · · , n. In addition, the function set for result-producing branches

(regular genes) is F∪{ADF1, · · · , ADFn}, while the terminal set is the original terminal

set T. Fig. 4.4 shows an example of the overall structure of a program in the MP

algorithm using two ADFs and two result-producing branches.

In fact, ADFs can increase the size of genes dramatically, especially if there exist

several ADFs in the body of genes. In other words, if one replaces each ADF in the body

of a regular gene by its equivalent subtree, then the number of nodes of this regular

gene can increase rapidly according to the number of ADFs in its main tree. Fig. 4.5

shows the actual trees of genes 3 and 4 in Fig. 4.4 by replacing ADF1 and ADF2 by

their equivalent subtrees. In Fig 4.4, one can notice that the number of nodes of gene 3

is 5, and the number of nodes of gene 4 is 5. However, by replacing each ADF function

by its equivalent subtree as in Fig. 4.5, we can see that the actual number of nodes for

56 Memetic Programming

Figure 4.5: The actual tree representations of genes 3 and 4 in Fig. 4.4

genes 3 and 4 are 9 and 27, respectively. In addition, in case of using a function from

the set {AND, OR, NOR} to link genes 3 and 4 in Fig. 4.5, the total number of nodes

in the program will be 37. On the other hand, if the LnkFun in Fig. 4.4 is ADF1 or

ADF2, then the total number of nodes in the program in Fig. 4.5 will be 93 or 103,

respectively. Therefore, the values of hLen and MaxLen parameters must be chosen small

enough in case of using the ADF technique. In this chapter we set hLen := (h1, h2) and

MaxLen := (m1,m2), which means hLen = h1 and MaxLen = m1 for ADFs genes, and

hLen = h2 and MaxLen = m2 for regular genes.

It is important to note that special care is needed to use the crossover operator in MP

with ADFs, since each program contains two different types of genes, i.e., ADF genes and

regular genes. Specifically, we choose two parents randomly from the current population

and choose a gene randomly from the first one. If the chosen gene is an ADF gene,

then we have to select the corresponding gene in the second parent. Otherwise, we can

choose any gene randomly from the set of regular genes in the second parent, and use

the crossover operator normally for the selected genes.

4.4 Numerical Experiments

This section discusses the performance of the MP algorithm on some well-known bench-

mark problems. First, we introduce the benchmark problems under consideration in

4.4 Numerical Experiments 57

Subsection 4.4.1. Then, we examine the performance of the MP algorithm through ex-

tensive experiments. In these experiments, we focus on the performance of the proposed

MP algorithm under different environments. Specifically, we study the performance

of MP under different selection strategies and different values for the nLs, nTrs and

nFails parameters. These parameter settings are performed for the MP algorithm with

and without the use of the ADF technique. Finally, we make a set of comparisons, be-

tween the MP algorithm and various recent versions of the GP algorithm, to show the

efficiency of the proposed MP algorithm. In fact, the proposed MP algorithm shows

promising performance compared to recent GP algorithms as we will see later. In all the

experiments, we terminate the algorithm as soon as an optimal solution with the highest

fitness value is found, or the maximum number of fitness evaluations, i.e., nPop*nGnrs,

is reached.

Through the subsequent numerical experiments, we will perform a lot of comparisons

in terms of the computational effort CE defined in Equation (1.1) using z = 0.99 as in

Koza [68]. However, in the MP algorithm, the number of fitness evaluations per each

generation varies according to the performance of the LSP algorithm. Therefore, we will

slightly modify the definition of CE for the MP algorithm. Specifically, we define the

computational effort CE for the MP algorithm by (1.1), where Ns(i) is the number of

successful independent runs using up to i∗nPop fitness evaluations in the MP algorithm,

which is equal to the number of successful independent runs up to generation i in the

GP algorithm with fixed population size nPop.

4.4.1 Test Problems

In the rest of this section, we test the performance of the TP algorithm through the

SR-POLY-4, N -BEP and 6-BM problems, see Appendix A for more details. In addition,

we use the following settings, unless otherwise stated, for our test problems:

• For the SR-POLY-4 problem, the set of independent variables {x1, x2, x3, x4} is

regarded as the terminal set, and the set of functions {+,−, ∗, %} is regarded as

the function set, where x%y := x if y = 0; x%y := x/y otherwise.

• For the N -BEP problem, the set of arguments {a0, a1, · · · , aN−1} is used as the

terminal set, and the set of Boolean functions {AND, OR, NAND, NOR} is used

as the function set. In fact, the GP research community considers evolving the

N -BEP function by using those Boolean functions as a good benchmark problem

for testing the efficiency of new GP techniques [68, 114].

58 Memetic Programming

• For the 6-BM problem, the set of arguments {a0, a1, d0, d1, d2, d3} is used as the

terminal set, and the set of Boolean functions {AND, OR, NOT, IF} is used as the

function set, where IF(x, y, z) returns y if x is true, and it returns z otherwise.

For the SR-POLY-4 problem, the algorithm starts a run by generating a dataset ran-

domly under the conditions described in Subsections A.1.2. Moreover, the generated

dataset will be fixed during the running time of the algorithm for each independent run.

4.4.2 Performance Analysis

In this subsection, we study the setting of MP parameters and components, and its effect

on the performance of the MP algorithm. Specifically, we mainly focus on the selection

strategy and the parameter setting associated with the LSP algorithm, i.e., nLs, nTrs

and nFails. A set of different values for each of these parameters is chosen, and for each

value, 100 independent runs are performed to compute the average number of evaluations

(AV), the computational effort (CE) and the rate of success (R). In this subsection, the

values of the parameters under consideration will be specified for each set of experiments.

The values of other parameters are set to their standard values shown in Table 4.1, which

are determined from our pilot experiments or the common setting in the literature.

Performance under Different Selection Strategies

In this set of experiments, we use the MP algorithm with two different selection strate-

gies; the tournament selection and the roulette wheel selection. Since the fitness values

of the SR-POLY-4 are always non-positive, the algorithm computes the corresponding

probability values for the roulette wheel selection using the adjusted fitness values. How-

ever, the probability values corresponding to the fitness values of the 3-BEP and 6-BM

problems are computed using the row fitness values.

For each selection strategy, we performed 100 independent runs to compute the aver-

age number of evaluations (AV), the computational effort (CE) and the rate of success

(R). The performance of the MP algorithm with these two selection strategies is shown

in Table 4.2. From these results, we can see that the tournament selection gives better

results than the roulette wheel selection. When the LSP algorithm is not employed, i.e.,

α = 0, changing the selection strategy from the tournament to the roulette wheel caused

a collapse in the rate of success, and increased the computational efforts unreasonably,

in particular, for the 6-BM problem. On the other hand, by using the LSP algorithm,

the effect of changing the selection strategy is not high compared to the previous case.

Therefore, one can conclude that the LSP algorithm increases the stability of the MP

4.4 Numerical Experiments 59

Table 4.1: The standard values of the MP parameters for the benchmark problems.

MP without ADFs MP with ADFs

Parameter SR-POLY-4 3-BEP N -BEP16BF 6-BM SR-POLY-4 N -BEP

hLen 3 3 1 3 (3,1) (3,1)
MaxLen 30 30 15 30 (7,3 (7,3)
nGenes 3 2 N 3 4 N + 1
nPop 50 500 50 500 50 250(N − 1)
nGnrs 100 100 → ∞ 100 100 → ∞
LnkFun + AND XOR IF + ADF1

Equation (4.4): α := 1/2, nTrs := 2 and nFails := 1
Crossover probability:= 0.9
Mutation probability:= 0.05
Reproduction (Copy) probability:= 0.05
Selection strategy: Tournament selection of size 4

algorithm with different selection strategies. This impressive property can save compu-

tations for learning experiments to detect desirable environments for the problem under

consideration.

Parameter nLs

Here, we focus on the parameter nLs, the number of programs in the population to

which local search is applied, and its effect on the performance of the MP algorithm.

Different values for the constant α in (4.4) are chosen, and 100 independent runs of

the MP algorithm are performed for each value. Comparisons, in terms of the average

number of evaluations, the computational efforts and the rate of success, are made for

these different settings of the MP algorithm. Mainly, we focus here on four cases:

1. α = 0, which means there is no use for the LSP algorithm.

2. α = 1/2, which means the intensification phase will cost at least nPop/2 fitness

evaluations for each generation of Algorithm 4.2.

3. α = 1, which means the intensification phase will cost at least nPop fitness evalu-

ations for each generation of Algorithm 4.2.

60 Memetic Programming

Table 4.2: Comparison of selection strategies.

Problem α Selec. AV CE R%

SR-POLY-4 0 Tour. 2,155 7,000 72
Roul. 3,639 26,250 44

1
2

Tour. 1,165 4,400 96
Roul. 1,804 7,400 91

3-BEP 0 Tour. 19,225 60,000 80
Roul. 48,030 1,550,000 14

1
2

Tour. 15,568 54,000 90
Roul. 37,403 245,000 62

6-BM 0 Tour. 9,075 25,000 100
Roul. 49,965 21,343,500 1

1
2

Tour. 9,019 21,500 100
Roul. 41,587 350,000 50

4. Applying the LSP algorithm for all programs in the current population, i.e., nLs =

nPop which implies α = 6 by (4.3), since nFail = 1 and nTrs = 2 in Table 4.1.

From Table 4.3, we see that the LSP algorithm has great influence on the MP algo-

rithm. It improves performance of the MP algorithm in both the number of evaluations

and the rate of success. In addition, applying the LSP algorithm for all programs in the

current population is costly in terms of AV and CE, but it improved the rate of success.

Throughout this section, we use α = 1
2

as recommended from the results in Table 4.3.

Parameters nTrs and nFails

We conducted experiments in which SR-POLY-4, 3-BEP and 6-BM problems were solved

using the MP algorithm without ADFs. The main parameters we focus here are the pa-

rameters nTrs and nFails. The chosen values for these parameters are nTrs = 1, 2, 3, 4, 5

and nFails = 1, 2, 3. For each combination of these parameter values, we performed 100

independent runs of the MP algorithm for each problem. The results of these experi-

ments are shown in Table 4.4. It is worthwhile to note that for most values of nTrs and

nFails, the use of local search helps to improve the performance of the MP algorithm;

4.4 Numerical Experiments 61

Table 4.3: Comparisons in terms of parameter nLs

Problem α nLs AV CE R%

SR-POLY-4 0 0 2,155 7,000 72
1
2

dnPop/10e 1,165 4,400 96
1 dnPop/5e 1,229 4,500 99
6 nPop 2,290 5,000 99

3-BEP 0 0 19,225 60,000 80
1
2

dnPop/10e 15,568 54,000 90
1 dnPop/5e 16,894 62,000 90
6 nPop 31,417 97,000 92

6-BM 0 0 9,075 25,000 100
1
2

dnPop/10e 9,019 21,500 100
1 dnPop/5e 10,118 29,000 100
6 nPop 26,653 73,000 100

see the row labeled ‘Without LSP’ in Table 4.4.

It is clear from the results in Table 4.4 that the nTrs and nFails parameters affect

the success rate only slightly. This is because the total number of programs treated by

the LSP algorithm is almost similar for all combinations of the nTrs and nFails values,

Equation (4.4).

Parameter Setting for MP with ADFs

The previous experiments, which mainly focus on the effects of the parameters nTrs and

nFails, indicate that our results are promising compared to recent algorithm as we will

see later. Nevertheless, we still have a chance to improve further these results especially

for the N -BEP problem by the use of the ADF technique. The GP research community

usually uses the ADF technique to exploit the modularity in a problem, especially the

N -BEP problem [69, 114]. Using GP with the ADF technique, Koza [69] has succeeded

to get the exact solutions for the N -BEP problem with N = 3, · · · , 11, with less CE

compared to the standard GP algorithm without the ADF technique.

What we want to show here is that the MP algorithm not only can improve the results

of the standard GP algorithm by using the new set of operations introduced in Section

62 Memetic Programming

Table 4.4: Results of the MP algorithm in terms of parameters nTrs and nFails

Parameters SR-POLY-4 3-BEP 6-BM

nTrs nFails CE R% CE R% CE R%

Without LSP 7,000 72 60,000 80 25,000 100
1 1 3,750 99 55,500 92 18,500 100
1 2 5,200 92 54,000 89 25,000 100
1 3 5,400 92 70,000 83 29,000 99
2 1 4,400 96 54,000 90 21,500 100
2 2 4,800 96 48,000 88 28,500 100
2 3 5,250 93 52,000 89 22,500 99
3 1 5,600 90 60,000 86 19,500 100
3 2 4,600 96 60,000 83 31,000 98
3 3 5,400 92 52,500 92 28,000 99
4 1 5,250 97 52,000 87 31,000 99
4 2 6,000 93 51,000 92 33,000 98
4 3 4,800 94 64,000 88 32,000 100
5 1 5,400 89 54,000 86 30,000 100
5 2 5,750 91 58,000 90 29,000 99
5 3 6,900 94 62,500 87 26,500 99

2.3, but also can deal with the ADF technique to represent programs more professionally

to exploit the modularity in a problem. In this set of experiments specifically, we use the

MP algorithm with the ADF technique to solve the SR-POLY-4 and N -BEP problems.

For the SR-POLY-4 problem, we use the same terminal and function sets as in the pre-

vious experiments. In addition, for each program in the population, an additional ADF

function (gene) of two dummy arguments is defined, evolved and included automatically

in the function set for that program. The terminal and function sets for that ADF gene

(called ADF1) are {arg0, arg1} and {+, -, *, %}, respectively, while the terminal and

function sets for regular genes are {x1, x2, x3, x4} and {ADF1, +, -, *, %}, respectively.

For the N -BEP problem, we use two additional ADFs, ADF1 and ADF2, each of

which has two dummy arguments, arg0 and arg1. For each program in the population,

ADF1 and ADF2 are defined, evolved and included automatically in the function set for

that program. The terminal sets for ADF1, ADF2 and regular genes are {arg0, arg1},
{arg0, arg1} and {a0, · · · , aN−1}, respectively. The function sets for them are {AND,

4.4 Numerical Experiments 63

OR, NAND, NOR} {ADF1, AND, OR, NAND, NOR} and {ADF1, ADF2, AND, OR,

NAND, NOR}, respectively.

In the current set of experiments, we still focus on detecting the best values of nTrs and

nFails parameters. Several values are chosen such as nTrs = 1, 2, 3, 4, 5 and nFails =

1, 2, 3, and for each combination of these values, we performed 100 independent runs for

each problem using the MP algorithm with ADFs. Other MP parameters are shown in

Table 4.1, while the results of this experiment is shown in Table 4.5. It is clear from

these results that the MP algorithm significantly reduces the computational effort and

improves the rate of success by means of ADFs.

Table 4.5: Results of MP with the ADF technique in terms of parameters nTrs and
nFails.

Parameters SR-POLY-4 3-BEP

nTrs nFails CE R% CE R%

Without LSP 2,700 82 32,500 85
1 1 2,500 87 17,000 98
1 2 2,400 97 15,500 99
1 3 2,600 95 22,000 99
2 1 2,600 89 20,000 97
2 2 2,400 98 21,000 99
2 3 2,400 100 24,000 100
3 1 2,600 99 20,000 99
3 2 2,400 100 21,000 100
3 3 2,400 99 20,000 100
4 1 3,000 99 22,500 99
4 2 3,000 100 18,000 98
4 3 2,800 99 20,000 100
5 1 2,250 98 20,000 99
5 2 3,150 96 21,000 98
5 3 2,850 99 18,000 99

Moreover, we performed a set of experiments to solve the 6-BM problem using the

MP algorithm with the ADF technique. Unfortunately, we could not improve the per-

formance of the MP algorithm by using one ADF or two ADFs. This show that the

ADF technique is useful for problems which have special characteristics, e.g., similar-

64 Memetic Programming

ity and modularity. Nevertheless, our results for the 6-BM problem are still good and

competitive, without the use of the ADF technique, as we will see in the next subsection.

It is worthwhile to mention that the Boolean even parity functions are compactly

represented using XOR and XNOR Boolean functions [114]. Therefore, by evolving

ADF1 to produce the XOR or XNOR Boolean function, an optimal solution can be

found easily using the MP algorithm, especially by using the ADF1 to link genes of a

program. For example, the ADF1 and the ADF2 of the 100 final output programs in

Table 4.5 for nTrs = 2 and nFails = 1 produce the XOR Boolean function 47 times

and 10 times, respectively, and produce the XNOR Boolean function 53 times and 6

times, respectively. This example can give us a clear vision about the effect of the ADF

technique and its exploitations for the similarity and modularity of a given problem.

4.4.3 MP vs GP

In this subsection, we study the performance of the MP algorithm, with and without

ADFs, compared to contemporary versions of the GP algorithm.

The SR-POLY-4 Problem

Poli and Langdon [96] conducted a lot of numerical experiments for the SR-POLY-4

problem using the backward-chaining GP (BC-GP) algorithm, and made a comparison

between the BC-GP algorithm and the standard GP algorithm. They performed 5000

independent runs to solve the SR-POLY-4 problem using the BC-GP and standard GP

algorithms without the use of ADFs, where nPop = 1, 000 and nGnrs = 30. The results

of their experiments show a good performance of the BC-GP algorithm compared to the

standard GP algorithm.

Here, we compare the results of the MP algorithm with those of the BC-GP algorithm

in terms of fitness evaluations and the rate of success. We implement the MP algorithm

(without ADFs) for the SR-POLY-4 problem three times using different population sizes.

For each implementation, we performed 5000 independent runs for the MP algorithm

using nTrs = 1 and nFails = 1 (as recommended from the results in Table 4.4), while

the other parameters are set as shown in Table 4.1. The results of this experiment are

summarized in Fig. 4.6, where the results of the BC-GP algorithm have been taken from

Fig. 10 in the original reference [96].

Fig. 4.6 shows that the MP algorithm significantly outperforms the BC-GP algorithm.

The MP algorithm gets the 100% success for all 5000 runs using 10,000 fitness evaluations

at most, even by using a very small population size nPop = 50. On the other hand,

4.4 Numerical Experiments 65

Figure 4.6: Comparison between the MP algorithm and the backward-chaining GP al-
gorithm for the SR-POLY-4 problem in terms of the rate of success

the BC-GP hardly succeeds to find the exact solution for 35% of total runs by using

30,000 fitness evaluations. Poli and Langdon in the same paper [96] repeated the same

experiment using a large population size, nPop = 10, 000 and nGnrs = 30. Then, they

were able to improve their results and the rate of success reached approximately 98%

after 300,000 fitness evaluations. Nevertheless, one can see that the MP algorithm is

faster than the BC-GP algorithm by more than 30 times for the SR-POLY-4 problem.

Although, for the SR-POLY-4 problem, the results of the MP algorithm with ADFs

are better than those of the MP algorithm without ADFs, we did not try to compare

the MP algorithm with ADFs and the BC-GP algorithm. This is because the BC-GP

algorithm did not use the idea of ADFs, so it would not be a fair comparison if we used

ADFs in the MP algorithm.

The N-BEP Problem

Walker and Miller [114] conducted a lot of numerical experiments to show the perfor-

mance of the Cartesian GP (CGP) algorithm and the Embedded CGP (ECGP) algo-

rithm. The ECGP algorithm generalizes the CGP algorithm by utilizing the automatic

module acquisition technique to automatically build and evolve modules. Walker and

Miller [114] reported good results for several test problems, compared to the standard GP

algorithm and several contemporary algorithms. Here, we are interested in comparing

their results for the Boolean even parity problems with the results of the MP algorithm

66 Memetic Programming

for the same problems.

Walker and Miller [114] used the Embedded Cartesian GP (ECGP) algorithm to solve

the N -BEP problem using the set of Boolean functions {AND, OR, NAND, NOR} as

the function set, and the set of arguments {a0, · · · , aN−1} as the terminal set. For each

of the N -BEP problems with N = 3, · · · , 8, they performed 50 independent runs with

nGnrs → ∞, i.e., for each run the algorithm works until the exact solution was found.

Walker and Miller [114] measure the performance of the ECGP algorithm in terms of

CE and other statistical measures. Undoubtedly, the results of Walker and Miller [114]

for the N -BEP problem are significant, as they showed through several comparisons with

other extensions of the GP algorithms. Our target here is to make a comparison between

the ECGP algorithm (with modules) and the MP algorithm with ADFs for the N -BEP

problem with N = 3, · · · , 8.

For the N -BEP problem, We have used the MP algorithm with two ADFs, ADF1 and

ADF2, each of which has two dummy arguments, arg0 and arg1. For each program in

the population, ADF1 and ADF2 are defined, evolved and included automatically to the

function set for that program. The terminal sets for ADF1, ADF2 and regular genes are

{arg0, arg1}, {arg0, arg1} and {a0, a1, · · · , aN−1}, respectively, while the function sets

for them are {AND, OR, NAND, NOR} {ADF1, AND, OR, NAND, NOR} and {ADF1,

ADF2, AND, OR, NAND, NOR}, respectively.

We performed 50 independent runs for the N -BEP problem with N = 3, · · · , 8, using

nTrs = 1 and nFails = 2, and the values of the remaining parameters are shown in Table

4.1. A comparison, in terms of CE, between the ECGP algorithm (with modules) and

the MP algorithm with ADFs are presented in Table 4.6. In addition, Table 4.7 shows

additional comparisons between ECGP and MP, in terms of median (ME) number of

evaluations, median absolute deviation (MAD), and interquartile range (IQR). All the

results for the standard GP algorithm and the ECGP algorithm shown in Tables 4.6 and

4.7 have been taken from [114]. It is clear from Tables 4.6 and 4.7 that the MP algorithm

with ADFs outperforms the standard GP algorithm and the ECGP algorithm.

The results for the N -BEP problem encouraged us to tackle higher order even parity

problems. In fact, we have succeeded to find the exact solution for the N -BEP problem

with N = 3, · · · , 15 using a reasonable number of fitness evaluations. We believe that we

still have a chance to solve the N -BEP problem with N > 15 using the MP algorithm

with ADFs. Because of the exponential increase of fitness cases, 2N , it become very

difficult to compute the fitness function values for all fitness cases when N increases.

In the future work, we wish to find another way to compute the fitness function values

faster for large N .

4.4 Numerical Experiments 67

Table 4.6: The CE for the standard GP, ECGP and MP algorithms for the N -BEP
problem

GP ECGP MP
N with ADFs with modules with ADFs

3 64,000 37,446 17,000
4 176,000 201,602 22,500
5 464,000 512,002 42,000
6 1,344,000 978,882 77,500
7 - 1,923,842 108,000
8 - 4,032,002 178,500

Table 4.7: The ME, MAD and IQR for the ECGP and MP algorithms for the N -BEP
problem

ECGP with modules MP with ADFs

N ME MAD IQR ME MAD IQR

3 5,931 3,804 10,372 4,795 1,268 3,030
4 37,961 21,124 49,552 6,611 2,460 4,919
5 108,797 45,402 98,940 13,597 3,034 6,041
6 227,891 85,794 190,456 23,574 6,631 13,261
7 472,227 312,716 603,643 37,012 11,341 20,493
8 745,549 500,924 1,108,934 57,603 18,095 34,437

The N-BEP Problem with 16 Boolean Functions

Poli and Page [97] introduced various extensions of the GP algorithm by using new

search operators and a new node representation together with a tree evaluation method

known as sub-machine-code GP. The sub-machine-code GP technique allows the parallel

evaluation of 32 or 64 fitness cases per program execution, which gives their algorithms

the ability to evaluate the fitness values faster than the usual way. Poli and Page [97]

succeeded to solve the N -BEP problems, up to N = 22, with the function set consisting

of all 16 Boolean functions of two arguments [97].

68 Memetic Programming

Table 4.8: The CE for the standard GP, GP-UX, GP-SUX and MP algorithms using the
16 boolean functions of 2 arguments for the N -BEP problems

N GP GP-UX GP-SUX MP

3 5,550 850 900 300
4 11,250 4,200 2,250 550
5 - - - 1,800
6 - 34,850 17,000 3,200
7 - - - 6,800
8 - - - 18,000

Poli and Page [97] conducted experiments to show the performance of their algorithms

on the N -BEP problem with N = 3, · · · , 6, using a small population size, nPop = 50.

They performed 50 independent runs for each problem to compute the CE of their

algorithms using the set of all 16 Boolean functions of two arguments as the function

set.

In our experiments, we compare results of the MP algorithm with those appeared in

[97] for the N -BEP problem with N = 3, · · · , 6. We performed 50 independent runs for

each N -BEP problem with N = 3, · · · , 8, using the same function set and the population

size as those used by Poli and Page [97]. The parameter values for the MP algorithm

are shown in Table 4.1, while nTrs = 2 and nFails = 1. The results are shown in Table

4.8, where the results of the standard GP, the GP-UX and the GP-SUX algorithms are

taken from Poli and Page [97].

From the results in Table 4.8, it is clear that the MP algorithm outperforms other

algorithms. As a matter of fact, the high performance of the MP algorithm and other

algorithms comes from the modularity of the problem itself. The Boolean even parity

functions are compactly represented using XOR and XNOR Boolean functions [114].

Therefore, by adjusting the function set to contain XOR and XNOR functions, all ver-

sions of the GP algorithm can find the exact solution for the N -BEP problem easily.

In particular, since the MP algorithm expresses a solution with more than one genes

and uses the Boolean function XOR to link these genes, it is possible to find the exact

solution of the N -BEP problem easily and fast.

4.4 Numerical Experiments 69

The 6-BM Problem

Poli and Page [97] also conducted a set of experiments on the 6-BM problem to study

the performance of the standard GP, GP-UX and GP-SUX algorithms in terms of the

CE. They used the set of all 256 Boolean functions of three arguments [97]. Indeed, our

results for the 6-BM problem in Table 4.4 seem to outperform their results shown in

Table 2 in their paper [97]. However, we do not consider that this is a fair comparison,

since the function set used for the MP algorithm is not the same as the one used for

their algorithms.

Jackson [58] introduced a new technique to detect dormant nodes in GP programs and

to prevent the neutral crossover process. A dormant node is a node in a program that does

not contribute to the fitness value of the program. When the crossover operator switches

a subtree rooted at a dormant node in a program, the resulting child will have the same

fitness value as the parent, and this process is called a fitness-preserving crossover (FPC)

[58]. Jackson [58] states that preventing the FPC improves the performance of GP in at

least three ways; improving the execution efficiency, increasing the rate of success, and

simplifying evolved programs.

Jackson [58] carried out a set of experiments on the 6-BM problem using the standard

GP algorithm with and without preventing FPCs. For each algorithm, 100 independent

runs were made using nPop = 500 and nGnrs = 50. A comparison between these two

versions of the GP algorithm was made in terms of the CE and the rate of success. In

fact, as reported in [58], GP with preventing FPCs improved the CE and the rate of

success for all test problems, except the 6-BM problem. For the 6-BM problem, the GP

algorithm with preventing FPCs succeeded to reduce the CE, but it failed to improve

the rate of success.

Table 4.9 shows a comparison between the MP algorithm and standard GP algorithm

with and without preventing FPCs. We implemented the MP algorithm using different

values for the parameters nPop and nGnrs. For each implementation, we performed 100

independent runs to compute the CE and the rate of success. The parameter values for

the MP algorithm are nTrs = 1, nFails = 1 and the other parameters are set as shown

in Table 4.1. The values of the parameters nPop and nGnrs are shown in Table 4.9 with

the corresponding results of the MP algorithm. The results of GP with and without

preventing FPCs are taken from the original paper [58]. As observed in Table 4.9, the

MP algorithm outperforms the standard GP algorithm with and without preventing

FPCs in terms of both the CE and the rate of success.

70 Memetic Programming

Table 4.9: The CE and the rate of success for the standard GP algorithm, with and
without preventing FPCs, and the MP algorithm for the 6-BM problem

Algorithm nPop nGnrs CE R%

GP 500 50 44,000 68
GP, preventing FPCs 500 50 38,500 65
MP 500 50 18,000 100
MP 250 100 23,250 98
MP 100 250 29,400 87
MP 50 500 37,800 74

Table 4.10: Comparison among the TP algorithm and the MP algorithm for the 6-BM
and 3-BEP problems.

TP MP

Prob. AV ME R% AV ME R%

6-BM 7,829 6,393 98 9,019 8,158 100
3-BEP 5,612 4,272 100 12,934 10,641 84

4.4.4 MP vs TP

In this subsection we aim to compare between the TP algorithm, described in Chapter

3, and the MP algorithm for the SR-POLY-4, 6-BM and 3-BEP problems. During these

comparisons, the results of the TP algorithm are taken from Fig. 3.4 for the SR-POLY-4

problem, and from Table 3.6 for the 6-BM and 3-BEP problems. On the other hand,

the results of the MP algorithm for the SR-POLY-4 problem are taken form Fig. 4.6.

In addition, 100 runs are performed using the MP algorithm for each of the 6-BM and

3-BEP problems. The parameter values of the MP algorithm are shown in Table 4.1,

except for nGnrs = 50 to meet the maximum number of fitness evaluations used for the

TP algorithm. Fig. 4.7 and Table 4.10 show the comparisons between the performance

of the TP and the MP algorithms for the SR-POLY-4, 6-BM and 3-BEP problems.

From Fig. 4.7, one can note that the MP algorithm performs better than the TP

4.5 Conclusions 71

Figure 4.7: Comparison between the MP, TP and BC-GP algorithms for the SR-POLY-4

algorithm for the SR-POLY-4. Specifically, the MP algorithm can find an optimal solu-

tion for the SR-POLY-4 faster than the TP algorithm. Nevertheless, the TP algorithm

outperforms the MP algorithm for the 6-BM and 3-BEP problems as shown in Table

4.10. Therefore, no one can argue that the TP algorithm is absolutely better than the

MP algorithm or vise versa. Each algorithm can be more efficient for a specified set of

problems.

4.5 Conclusions

We have proposed the MP algorithm that hybridizes the GP algorithm with a new set of

local search procedures over a tree space to intensify promising programs generated by

the GP algorithm. The performance of the proposed algorithm has been tested through

extensive numerical experiments for some benchmark problems. The results of these

experiments have shown that the MP algorithm outperforms the standard GP algorithm

and recent versions of GP algorithm at least for the considered benchmark problems. In

addition, we have shown that the MP algorithm can deal easily with the ADF technique

to exploit the modularities in problem environments.

72 Memetic Programming

Chapter 5

Applications

5.1 Introduction

A natural number greater than 1 is called a prime if it is only divisible by 1 and itself.

For centuries, the study of prime numbers has been regarded as a subject of number

theory in pure mathematics. Recently, this vision has changed and the importance of

prime numbers increased rapidly especially in information technology, e.g., public key

cryptography algorithms, hash tables, and pseudorandom number generators. One of the

most popular topics that attract attention is to find a formula that maps the set of inte-

gers into the set of prime numbers. However, up to now there is no known formula that

produces all primes. On the other hand, Pseudorandom Number Generators (PRNGs)

play a key role in numerous algorithms of Computer Science and security. Because of the

high cost of hardware implementations of True Random Number Generators (TRNGs),

it is important to develop powerful and efficient PRNGs that can be implemented in

hardware and software.

In this chapter, we aim to give real meaning for the proposed TP and MP algorithms

by exploiting their high performances in useful applications of information technology.

In the next section, we use the MP algorithm to discover a new set of mathematical

formulas that can produce distinct prime numbers. In Section 5.3, the TP algorithm will

be used to generate a set of highly nonlinear functions used as cores for high efficient

PRNGs. Finally, conclusions make up Section 5.4.

5.2 Prime Number Generation

The study of prime numbers and their properties have attracted mathematicians for

several centuries. Questions related to prime numbers have puzzled mathematicians for

74 Applications

many years, e.g., “is there a formula that maps the set of integers into the set of primes?”

Recently, several applications in the field of information technology have increased the

importance of prime numbers, and changed the vision that classifies the study of primes

as pure mathematics.

The Memetic Programming (MP) algorithm is a new evolutionary algorithm that

hybridizes the well-known Genetic Programming (GP) algorithm [68] with some local

search procedures over a tree space to intensify promising programs generated by the

GP algorithm. In this section, we use the MP algorithm to generate some mathematical

formulas which produce distinct primes for a set of consecutive integers. In the next

subsection, we give a brief reminder about the MP algorithm, which was presented in

Chapter 4. Then, we end this section by some numerical experiments in which a new

set of mathematical formulas are generated by the MP algorithm and these formulas can

produce some distinct primes for consecutive integers.

5.2.1 MP Algorithm

The MP algorithm is a hybrid evolutionary algorithm that searches for desirable com-

puter programs as outputs. Computer programs treated in the MP algorithm are rep-

resented as trees in which leaf nodes are called terminals and internal nodes are called

functions. Depending on the problem at hand, the user defines the domains of termi-

nals and functions. In the coding process, the tree structure of a solution should be

transformed to an executable code.

The main loop of the MP algorithm consists of two phases; diversification phase and

intensification phase. In the diversification phase, the MP algorithm guarantees the

diversity in the current population by using the GP strategy. Specifically, the MP al-

gorithm selects some programs using a suitable selection strategy, and generates a new

population from the current one by using crossover and mutation operators. In the in-

tensification phase, the MP algorithm uses a set of local search procedures to intensify

elite programs of the current population through the LSP algorithm. The LSP is used

to discover the best program in the neighborhood of the current program X, where

X is generated using the crossover and mutation operations through the diversification

phase. If the search process succeeds to reach the area near an optimal solution, then the

LSP algorithm can capture that optimal solution easily. Moreover, the MP algorithm at

least behaves like the GP algorithm if the LSP algorithm fails to improve the selected

programs.

Procedures of the main loop in the MP algorithm, i.e., diversification and intensifica-

5.2 Prime Number Generation 75

tion phases, are repeated until a termination condition is satisfied. Then, the algorithm

stops with the best program obtained.

5.2.2 Numerical Experiments

In this subsection we report the results of three different experiments for the MP al-

gorithm to generate formulas that produce primes. The parameter values for the MP

algorithm during all experiments in this section are hLen = 3, MaxLen = 40, nGenes = 3,

nTrs = 4, nFails = 1, nPop = 100 and nGnrs = 100. Other parameters are set as those

in Table 4.4. The fitness value for each program is computed as the maximum number of

consecutive integers in the interval [−100, 100] for which the program produced distinct

primes.

Polynomials

In this experiment, we used the set of binary functions {+, −, ∗} as the function set,

i.e., each program generated by the MP algorithm represents a polynomial. In addition,

we used {x, 2, 3, 5, 7, 9} as the terminal set, where x is an integer. We performed 1000

independent runs for the MP algorithm, and we got a number of polynomials with the

fitness values up to 40.

Table 5.1 shows some of polynomials which generated by the MP algorithm. The first

three polynomials in Table 5.1 have already been found in the literature. Specifically,

the first two polynomials are the Euler and Legendre polynomials, and the third one is

the polynomial generated by the CGP algorithm [113]. During our experiments, these

three polynomials were found frequently. To the best of the authors’ knowledge, the

other polynomials seem to be new polynomials.

In the literature, researchers consider the first three polynomials in Table 5.1 to be

different polynomials. However, all of these polynomials produce the same set of primes

for different values of the independent variable x. Specifically, one can generate those

entire polynomials one after another by using x := x−λ for some integers λ. On the other

hand, the last three polynomials in Table 5.1 produce different sets of distinct primes

for different sets of consecutive integers. Therefore, we consider these three polynomials

to be the best results for the current experiment since all of them are different and

independent.

76 Applications

Table 5.1: Polynomials generated by the MP algorithm to produce distinct primes

Polynomial Fitness x

1 x2 − x + 41 40 {1,...,40}
2 x2 + x + 41 40 {0,...,39}
3 x2 − 3x + 43 40 {2,...,41}
4 9x2 + 33x + 71 40 {-28,...,11}
5 4x2 − 50x + 197 40 {-13,...,26}
6 8x2 − 22x − 647 40 {-19,...,20}

Rational Functions

We performed another experiment to find formulas that produce primes with fitness

values greater than 40. In this experiment, we modified the function set in the previous

experiment to include the protected division operator %, where x%y = 1 if y = 0, and

x%y = x/y otherwise. In this case, programs of the MP algorithm will produce real

values. Therefore, we let the nearest integer less than or equal to the produced real

value be the output of the program. Using the new function set, we got several new

formulas that produce up to 42 distinct primes for a set of consecutive integers. For

example, f(x) =
∣∣⌊−8x3+69x2−461x−176

8x+3

⌋∣∣, with fitness value 42.

Composition Functions

Since we have already got new independent polynomials that can generate different

sets of distinct primes, we can use these polynomials to composite new formulas. In

this experiment, the output of a program evolved by the MP algorithm is expressed

as a linear composition of its genes with some independent polynomials that produce

distinct primes. Suppose that G1, G2 and G3 are the genes of a program evolved by

the MP algorithm. Then, the output formula of this program is composed as f(x) =

bG1c∗P1+bG2c∗P2+bG3c∗P3, where P1, P2 and P3 are independent polynomials. Using

this strategy, we got new formulas that produce distinct primes up to 59, for example,

f(x) =
∣∣⌊ 7

81x+27

⌋
(x2 + x + 41) +

⌊
9

5−45x

⌋
(8 ∗ x2 − 22 ∗ x − 647)

∣∣, with fitness value 59.

5.3 Efficient Pseudorandom Number Generators 77

5.3 Efficient Pseudorandom Number Generators

One of the most important problems in computer security and cryptography is the de-

signing of efficient Pseudorandom Number Generators (PRNGs). In fact, a function with

a high degree of nonlinearity is essential for designing efficient PRNGs, since it has an

excellent cryptographic property [75, 95]. In this section, we use the TP algorithm to

generate a set of highly nonlinear functions, each of which can be used as the core of

an efficient PRNG. In the next subsection, we show a mathematical property, called the

Avalanche Effect, that can be used as a measure of the nonlinearity of a given func-

tion. Then, we speak about the TP briefly and this section is ended by some numerical

experiments.

5.3.1 Avalanche Effect

The Avalanche Effect (AE) is an important property that reflects the intuitive idea of

high nonlinearity of functions for cryptographic algorithms [75]. The AE property is

evident if a very small change in the input of a function F produces an avalanche of

changes in the output of F . Specifically, if H(a, b) is the Hamming distance [41] between

a and b, then the function F : {0, 1}m → {0, 1}n has the AE property if it satisfies the

following condition:

∀a, b|H(a, b) = 1 ⇒ Average
(
H(F (a), F (b))

)
=

n

2
. (5.1)

That is, flipping randomly one single bit (a minimum change) of the input changes a

half of the bits (a maximum change) of the output, on average. Actually, a perfect ran-

dom function has a perfect AE property [75]. In practical implementations, researchers

used to seek a function F that satisfies a more strong property called the Strict Avalanche

Criterion [28] as in the following:

∀a, b|H(a, b) = 1 ⇒ H(F (a), F (b)) ∼ B(n, 1/2), (5.2)

where B(n, 1/2) is the Binomial distribution with parameters n and 1/2. Consequently,

a function that satisfies the Strict Avalanche Criterion (5.2) satisfies the AE property

(5.1), since the mean value of the Binomial distribution B(n, 1/2) is n/2. Now, our

aim is to optimize the amount of the AE for programs generated by the TP algorithm.

Therefore, in the next subsection, we will adapt the TP algorithm to discover functions

that satisfy (5.2) to guarantee that the function has the AE property in (5.1).

78 Applications

5.3.2 TP algorithm

The proposed TP algorithm invokes three basic search stages; local search, diversification

and intensification. In the local search stage, the TP algorithm uses the shaking, grafting

and pruning procedures using branches of small depth. However, the Diversification

procedure is applied (if needed) in order to diversify the search for new tree structures.

Finally, in order to explore close tree structures around the best programs visited so

far, the Intensification procedure is applied to improve these best programs further.

Figure 3.1 shows the main structure of the TP algorithm.

The main loop in the algorithm starts with the static structure search, where the

shaking procedure is used to generate a set of trial programs around the current one,

based on the tabu restrictions. Then, the best program in the trial set replaces the

current program, and the TL and other memory elements are updated. This process is

repeated until a non-improvements condition is satisfied. Then, the algorithm proceeds

to perform the dynamic structure search using the grafting and pruning procedures to

explore new programs a little bit far from the current one. The best program generated

using the grafting and pruning procedures replaces the current one, and the TL and other

memory elements are updated. Then, the algorithm goes back to perform a new course

of the static structure search using the new program generated by the dynamic structure

search.

The procedures of the main loop in the TP algorithm are repeated until a termination

condition is satisfied. If a diversification search is needed, the algorithm uses a diversifi-

cation procedure to explore a new diverse program and goes back to the static structure

search again. Otherwise, the algorithm refines the best programs found during the search

process, and stops with the best program obtained.

5.3.3 Numerical Experiments

In this subsection we prepare the tools needed to apply the TP algorithm for generating

highly nonlinear functions, e.g., the set of terminals, the set of functions, and the fitness

function. Finally, our results for this experiment and the best program found are reported

at the end of this subsection.

Terminal and Function Sets

In this experiment, we used eight unsigned integers, a0, a1, a2, a3, a4, a5, a6, and a7, as

the terminal set. Moreover, each one of these terminals is represented as a binary number

of 32-bit to produce a final input of a 256-bit. For more security, a constant c of a 32-bit

5.3 Efficient Pseudorandom Number Generators 79

binary number generated randomly is used independently of the inputs, [75]. On the

other hand, we included the most common efficient functions (i.e., easy to implement

both in hardware and software) appeared in other implementations of PRNGs as the

function set. Specifically, we included the following functions:

• ROTR(a): A one-bit right rotation for the input a.

• ROTL(a): A one-bit left rotation for the input a.

• SHFR(a): A one-bit right shift for the input a.

• SHFL(a): A one-bit left shift for the input a.

• NOT(a): The bitwise NOT for the input a.

• ROTRk(a, b): A k-bit right rotation for the input a, where k is the Hamming

weight [115] of the input b.

• ROTLk(a, b): A k-bit left rotation for the input a, where k is the Hamming weight

of the input b.

• SHFRk(a, b): A k-bit right shift for the input a, where k is the Hamming weight

of the input b.

• SHFLk(a, b): A k-bit left shift for the input a, where k is the Hamming weight of

the input b.

• SUM(a, b): The sum mod 232 for the two inputs a and b.

• MULT(a, b): The multiplication mod 232 for the two inputs a and b.

• AND(a, b): The bitwise AND for the two inputs a and b.

• OR(a, b): The bitwise OR for the two inputs a and b.

• XOR(a, b): The bitwise XOR for the two inputs a and b.

In fact, some researchers claim about the cost of the MULT function, e.g., the multi-

plication of two 32-bit values can be up to fifty times costlier than the AND operation

[53]. Nevertheless, there are some widely used cryptographic primitives that use mul-

tiplication operator, like RC6 [100]. In addition, after extensive experimentation, we

noticed that including the MULT function improve the results. For more details about

the previous functions, see [26, 52, 75].

80 Applications

Fitness Function

We employ the following fitness function that is used frequently in such implementations

[26, 52, 75]

Fit(X) = 109/χ2, (5.3)

where χ2 is the χ2 goodness-of-fit test [37] that describes how well the Hamming dis-

tances, computed from the program X, follows the Binomial distribution B(n, 1/2).

Therefore, the aim here is to maximize the fitness function Fit, i.e., minimizing χ2, for a

program X. Because of the extremely high value of the χ2 in the beginning of the search

process, we amplified the fitness function by multiplying it by 109. Formally, we use the

following procedure to compute the fitness value of a program X.

Procedure 5.1. Fit(X)

1 Start with an empty vector RES. Specify positive integers M and N .

2 Repeat the following Steps 2.1 - 2.5 N times.

2.1 Original Input. Generate the tuple (a0, a1, a2, a3, a4, a5, a6, and a7) of
256-bit randomly.

2.2 Original Output. Compute the value of X using the original input in Step
2.1, and label it as ORG.

2.3 New Input. Flips M bits chosen randomly from the 256-bit input in Step
2.1.

2.4 New Output. Compute the value of X using the new input in Step 2.3, and
label this value as NEW.

2.5 Hamming Distance. Compute the Hamming distance H(ORG, NEW), and
then add it to the vector RES.

3 Compute χ2 for the observed values in RES, using the χ2 goodness-of-fit test.

4 Return the fitness value Fit(X) computed from Equation (5.3).

In Step 2.1, the Mersenne Twister generator [86] is used to generate the tuple (a0, a1,

a2, a3, a4, a5, a6, a7) randomly. In Step 2.3, the algorithm chooses M bits randomly from

the original 256-bit input. The number M is determined from M = max(1, poissrnd),

where poissrnd is a random value from the Poisson distribution [2] with parameter

λ = 0.5. In fact, M = 1 for more than 90% of the total generated numbers using

the previous strategy. In Step 3, the χ2 goodness-of-fit test is used to detect how well

the observed distribution of those computed Hamming distances follow their theoretical

5.3 Efficient Pseudorandom Number Generators 81

Table 5.2: Results of the TP algorithm for the PRNGs experiment

Run Best Fitness AE value Nodes No.

1 150,652,713.977 15.996 77
2 67,884,951.914 15.972 89
3 93,479,161.160 15.987 97
4 70,892,813.815 15.974 87
5 40,806,006.562 16.003 96
6 90,378,284.297 15.973 103
7 130,947,491.044 15.961 63
9 125,490,171.392 16.028 73

10 175,107,851.825 15.977 96

distribution B(32, 1/2) under the perfect Strict Avalanche Criterion (5.2). Finally, the

loop in Step 2 of Procedure 5.1 is repeated N = 214 times, which is shown experimentally

to be enough and its results are trusted, see [75].

Results

For this problem, we performed 10 runs using the TP algorithm. The representation

parameter values in this implementation of the TP algorithm are hLen = 3, MaxLen = 33,

nGenes = 3 and LnkFun = SUM , while the search parameter values are nTrs = 5,

StNonImp = 3, MnNonImp = 7, IntNonImp = 3, nTL = 7 and FunCnt = 3000.

In this experiment, we obtained numerous highly nonlinear functions that seem to be

very nice compared to those results appeared in the literature. The fitness value, the

amount of AE (the average of computed Hamming distances), and the number of nodes

in the best program found in each run are shown in Table 5.2. It is clear from these

results that all functions generated by the TP algorithm are highly nonlinear functions,

where flipping one single bit of 256-bit input changes, approximately, 16 bits (the optimal

value) on average for the 32-bit output.

Lamenca-Martinez et al. [75] have used the lil-gp library [126] of the GP algorithm

to generate a highly nonlinear function as an efficient PRNG. Using the settings shown

in the previous subsections, they have performed 20 runs for the GP algorithm with a

population size of 150 individuals and 250 generations. The fitness value of the best

program found by their experiment is 6,237,837.6345 and its AE value is 15.9631. In

82 Applications

addition, that program was discovered after performing 153 generations (22,950 fitness

evaluations). On the other hand, we performed 10 runs of the TP algorithm with a

maximum number of 3000 fitness evaluations for each run. The fitness value of the best

program of our experiment is 175,107,851.825 and its AE value is 15.977. This means

the fitness value of our best program is 28 times better than the fitness value of the best

program found in Lamenca-Martinez et al. [75]. Moreover, the TP algorithm discovered

the best program 7 times faster than the one obtained by the GP algorithm [75] for the

same problem.

The genome representation of the best program discovered through our experiment is

shown below, and its tree representation is shown in Fig. 5.1, where the hexadecimal

format of the constant c is 1D416164. In addition, the SUM function is used to link

genes of the TP programs.

Gene1. ROTLk XOR MULT a2 ROTLk XOR ROTRk a5 a3 SUM SHFLk ROTL

ROTLk SUM ROTRk c a5 AND NOT a2 a5 c SHFLk a1 a1 ROTLk MULT a6

a2 a6 a0 a1 a4.

Gene2. ROTLk ROTRk XOR SHFR ROTRk SHFR ROTRk SHFL XOR SHFRk

ROTR SHFL a2 a0 NOT ROTLk SHFRk a0 a0 a1 a4 XOR a7 a2 a5 XOR ROTLk

a6 a2 a7 a5.

Gene3. ROTRk SHFR XOR MULT SHFL NOT AND SHFL XOR ROTLk NOT a7 a0

SHFRk NOT SHFL XOR a1 a6 SHFLk MULT a3 a6 c a7 a1 SHFRk a5 a7 c.

Figure 5.1: The overall structure of the best program found. Gene1, Gene2 and Gene3

are shown in Figs. 5.2-5.4.

5.4 Conclusions 83

Figure 5.2: Gene1 of the program shown in Fig. 5.1.

Figure 5.3: Gene2 of the program shown in Fig. 5.1.

5.4 Conclusions

The MP algorithm has been used to generate new formulas that can produce sets of

distinct primes. In fact, several mathematical formulas have been discovered by the MP

algorithm. Some of the new formulas are polynomials that are able to produce up to

40 distinct primes for a set of consecutive integers. Other rational functions are also

84 Applications

Figure 5.4: Gene3 of the program shown in Fig. 5.1.

generated and they are able to produce up to 59 distinct primes for a set of consecutive

integers.

On the other hand, the TP algorithm has been used to generate highly nonlinear

functions as the cores for efficient Pseudorandom Number Generators (PRNGs). We have

succeeded to discover a set of very efficient highly nonlinear functions. In the experiment,

the TP algorithm not only succeeded to find very efficient nonlinear functions, but also

discovered these efficient functions very fast compared to the implementations of the GP

algorithm in the literature for the same problem.

Chapter 6

Summary and Conclusions

In this thesis, a set of local search procedures over a tree space has been used to propose

a new comprehensive framework called the Meta-Heuristic Programming as a generator

for machine learning tools. Specifically, the MHP framework uses the tree data struc-

ture to represent a solution, and uses the proposed local search procedures as breeding

operators. Within the layout of the MHP framework, two new algorithms, the Tabu Pro-

gramming (TP) and the Memetic Programming (MP) algorithms, have been proposed

as alternatives to the well-known Genetic Programming (GP) algorithm. Moreover, the

proposed algorithms have been used efficiently for two important applications in infor-

mation technology, cryptography and security algorithms, the prime number generation

and the designing of efficient Pseudorandom Number Generators (PRNGs).

The TP algorithm has been proposed in Chapter 3 to incorporate the search strategy

of the well-known Tabu Search (TS) with the proposed local searches over a tree space.

On the other hand, the MP algorithm in Chapter 4 hybridizes the standard GP algorithm

with the proposed set of local search procedures to refine programs generated by the GP

algorithm. Moreover, the proposed MP algorithm can deal easily with the Automatically

Defined Functions (ADFs) technique based on the strategy of individual representation

used in this thesis. Through extensive numerical experiments introduced in Chapters 3

and 4, we can conclude with the following remarks:

• The proposed TP and MP algorithms have shown promising behavior and both of

them have outperformed the standard GP algorithm and several recent versions of

it at least for the considered test problems.

• The MP algorithm has succeeded to use the ADF technique efficiently for the

Boolean N -bit even-parity (N -BEP) problem of higher order.

86 Summary and Conclusions

• In Chapter 3, the GP algorithm using our local search procedures, instead of the

mutation operator, has shown a promising performance for symbolic regression

problems in comparison with two versions of the TP algorithm. However, the TP

algorithm has outperformed the GP algorithm for the 3-BEP problem, even by

using the local search procedures for the GP algorithm.

• In Chapter 4, the MP algorithm has shown to be more efficient than the TP

algorithm for symbolic regression problems. On the other hand, the TP algorithm

has shown to perform better than the MP algorithm for the 6-BM and 3-BEP

problems.

• From the previous two points, one may conclude that the idea of finding an algo-

rithm that always wins is impractical. Each algorithm has its own set of problems

that it fits.

In Chapter 5, The MP algorithm has been used to detect new prime number generators.

It has succeeded to discover a new set of polynomials that are able to produce up to

40 distinct primes for a set of consecutive integers. Moreover, rational functions that

are able to produce up to 59 distinct primes for a set of consecutive integers have been

discovered also. In a similar way, the TP algorithm has succeeded to generate a set of

highly nonlinear functions. In fact, each function generated by the TP algorithm has the

perfect Avalanche Effect property that enables those functions to work as an efficient

PRNGs in cryptography and security algorithms. Moreover, the TP algorithm has shown

high performance compared to the corresponding implementations of the GP algorithm

for such applications.

Appendix A

Test Problems

A.1 Symbolic Regression Problem

The symbolic regression (SR) problem is the problem of fitting a dataset {(xj1, · · · , xjm,

fj)}n
j=1, by a suitable mathematical formula g such that the absolute error

∑n
j=1 |fj −

g(xj1, · · · , xjm)|, is minimized.

A.1.1 Quartic Polynomial Problem

For the quartic polynomial function f(x) = x4 + x3 + x2 + x, a dataset consisting of 20

fitness cases of the form (x, f(x)) has been obtained by choosing x uniformly at random

in the interval [−1, +1] [96]. The target in the problem (which will be referred to as the

SR-QP problem) is to detect a function g(x) that approximates the original polynomial

QP, with the minimum error, by using the dataset. The fitness value for a program is

calculated as the sum, with the sign reversed, of the absolute errors between the output

produced by a program and the desired output for each of the fitness cases. Therefore,

the maximum fitness value for this problem is 0.

A.1.2 Multivariate Polynomial Problem

For the multivariate polynomial function f(x1, · · · , x4) = x1x2 + x3x4 + x1x4, a dataset

consisting of 50 fitness cases of the form (x1, x2, x3, x4, f(x1, x2, x3, x4)) has been

generated randomly with xi ∈ [−1, +1], i = 1, 2, 3, 4 [96]. The target in the problem

(which will be referred to as the SR-POLY-4 problem) is to detect a function g(x1, x2,

x3, x4) that approximates the original polynomial POLY-4, with the minimum error, by

using the dataset. The fitness value for a program is calculated as the sum, with the

sign reversed, of the absolute errors between the output produced by a program and the

88 Test Problems

desired output for each of the fitness cases. Therefore, the maximum fitness value for

this problem is 0.

A.2 Boolean N-Bit Even-Parity Problem

The Boolean N -bit even-parity (N -BEP) function is a function of N -bit arguments,

namely a0, a1, · · · , aN−1. It returns 1 (True) if the arguments contain an even number of

1’s and it returns 0 (False) otherwise. All 2N combinations of the arguments, along with

the associated correct values of the N -BEP function, are considered to be the fitness

cases. The fitness value for a program is the number of fitness cases where the Boolean

value returned by the program for a given combination of the arguments is the correct

Boolean value. Therefore, the maximum fitness value for the N -BEP problem is 2N .

A.3 Boolean N-Bit Multiplexer Problem

An input to the Boolean N -bit multiplexer (N -BM) function consists of k “address” bits

ai and 2k “data” bits di as a string of length N = k + 2k of the form a0, a1, · · · , ak−1,

d0, d1, · · · , d2k−1. The value of the N -BM function is the value (0 or 1) of the particular

data bit that is singled out by the k address bits of the multiplexer. All 2N combinations

of the arguments, along with the associated correct values of the N -BM function, are

considered the fitness cases. The fitness value for a program is the number of fitness

cases where the Boolean value returned by the program for a given combination of the

arguments is the correct Boolean value. Therefore, the maximum fitness value for the

N -BM problem is 2N .

Bibliography

[1] A. Abraham, C. Grosan and C. Martin-Vide, Evolutionary design of intrusion

detection programs, International Journal of Network Security 4(3) (2007) 328–

339.

[2] J.H. Ahrens and U. Dieter, Computer methods for sampling from Gamma, Beta,

Poisson and Binomial distributions, Computing 12(3) (1974) 223–246.

[3] T. Andersson, Solving the flight perturbation problem with meta heuristics, Jour-

nal of Heuristics 12 (2006) 37–53.

[4] M.S. Arumugam and M.V.C. Rao, On a class of hybrid systems via a novel ap-

proach for real-coded genetic algorithm with hybrid selection, International Journal

of Information Technology & Decision Making 6(2) (2007) 315–332.

[5] R.M.A. Azad and C. Ryan, An examiation of simultaneous evolution of grammars

and solutions, in Genetic Programming: Theory and Practice III, eds. T. Yu, R.L.

Riolo and B. Worzel (Springer-Verlag, 2006), pp. 141–158.

[6] M.B. Bader-El-Den, R. Poli and S. Fatima, Evolving timetabling heuristics us-

ing a grammar-based genetic programming hyper-heuristic framework, Memetic

Computing 1 (2009) 205–219.

[7] J. Balicki, Tabu programming for multiobjective optimization problems, Interna-

tional Journal of Computer Science and Network Security 7(10) (2007) 44–51.

[8] Z. Bankovic, J.M. Moya, A. Araujo, S. Bojanic and O. Nieto-Taladriz, Improv-

ing network security using genetic algorithm approach, Computers & Electrical

Engineering 33(5-6) 2007 438–451.

[9] W. Banzhaf, P. Nordin, R.E. Keller and F.D. Francone, Genetic Programming An

Introduction; On the Automatic Evolution of Computer Programs and its Applica-

tions (Morgan Kaufmann, San Francisco, CA, 1998).

90 BIBLIOGRAPHY

[10] M. Birattari, L. Paquete, T. Sttzle and K. Varrentrapp, Classification of meta-

heuristics and design of experiments for the analysis of components, Technical

Report AIDA-01-05, Darmstadt University of Technology (2001).

[11] T. Blickle and L. Thiele, Genetic programming and redundancy, in Proc. Genetic

Algorithms within the Framework of Evolutionary Computation (Workshop at KI-

94, Saarbrucken, 1994), pp. 33–38.

[12] T. Blickle and L. Thiele, Comparison of selection schemes used in evolutionary

algorithms, Evolutionary Computation 4 (1997) 361–394

[13] C. Blum and A. Roli, Metaheuristics in combinatorial optimization: Overview and

conceptual comparison, ACM Computing Surveys 35(3) (2003) 268–308.

[14] M. Boryczka, Eliminating introns in ant colony programming, Fundamenta Infor-

maticae 68 (2005) 1–19.

[15] M. Boryczka and Z.J. Czech, Solving approximation problems by ant colony pro-

gramming, in Proc. Genetic and Evolutionary Computation Conference GECCO

2002 (New York, NY, 2002), pp. 39–46.

[16] M. Brameier and W. Banzhaf, A comparison of linear genetic programming and

neural networks in medical data mining. IEEE Transactions on Evolutionary Com-

putation, 5(1) (2001) 17–26.

[17] E.C Brown, C.T. Ragsdale and A.E. Carter, A grouping genetic algorithm for

the multiple traveling salesperson problem, International Journal of Information

Technology & Decision Making 6(2) (2007) 333–347.

[18] L. Bull, E. Bernad-Mansilla and J. Holmes, Learning classifier systems in data

mining: An introduction, in Learning Classifier Systems in Data Mining, Studies

in Computational Intelligence, eds. L. Bull, E. Bernadó-Mansilla and J.H. Holmes

(2008), pp. 1–16.

[19] E.K. Burke, S. Gustafson and G. Kendall, Diversity in genetic programming: An

analysis of measures and correlation with fitness, IEEE Transactions on Evolution-

ary Computation 8(1) (2004) 47–62.

[20] T. Castle and C.G. Johnson, Positional effect of crossover and mutation in gram-

matical evolution, Lecture Notes in Computer Science 6021 (2010) 26–37.

BIBLIOGRAPHY 91

[21] N.L. Cramer, A representation for the adaptive generation of simple sequential

programs, in Proc. International Conference on Genetic Algorithms and their Ap-

plications (Carnegia Mellon University, Pittsburgh, USA, 1985), pp. 183–187.

[22] I.G. Damousis, A.G. Bakirtzis and P.S. Dokopoulos, A solution to the unit-

commitment problem using integer-coded genetic algorithm, IEEE Transactions

on Power Systems 19(2) (2004) 1165–1172.

[23] R. Diestel, Graph Theory (Springer-Verlag, Berlin, 2005).

[24] M. Dorigo and T. Stützle, Ant Colony Optimization (The MIT Press, 2004).

[25] A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing (Springer-

Verlag, Berlin, 2003).

[26] C. Estébanez, J.C. Hernández-Castro, A. Ribagorda and P.I. Vióuela, Finding

state-of-the-art non-cryptographic hashes with genetic programming, Lecture Notes

in Computer Science 4193 (2006) 818–827.

[27] C. Ferreira, Gene expression programming: A new adaptive algorithm for solving

problems, Complex Systems 13 (2001) 87–129.

[28] R. Forré, The strict avalanche criterion: Spectral properties of Boolean functions

and an extended definition, Lecture Notes in Computer Science 403 (1990) 450468.

[29] J. Garcia-Nieto, J. Toutouh and E. Alba, Automatic tuning of communication pro-

tocols for vehicular ad hoc networks using metaheuristics, Engineering Applications

of Artificial Intelligence 23(5) (2010) 795-805.

[30] F. Glover, Future paths for integer programming and links to artificial intelligence,

Computers & Operations Research 13 (1986) 533–549.

[31] F. Glover and M. Laguna, Tabu Search (Kluwer Academic Publishers, Boston,

MA, 1997).

[32] F. Glover and G. Kochenberger (eds.), Handbook of MetaHeuristics (Kluwer Aca-

demic Publishers, Boston, MA, 2002).

[33] F. Glover and G. Kochenberger, New optimization models for data mining, In-

ternational Journal of Information Technology & Decision Making 5(4) (2006)

605–609.

92 BIBLIOGRAPHY

[34] F. Glover, M. Laguna and R. Marti, Fundamentals of scatter search and path

relinking, Control and Cybernetics 39(3) (2000) 653–684 .

[35] F. Glover and R. Marti, Tabu search, in Metaheuristic Procedures for Training

Neutral Networks, eds. E. Alba and R. Marti (Springer-Verlag, Berlin, Germany,

2006), pp. 53–69.

[36] F. Glover, E. Taillard and D. Werra, A user’s guide to tabu search, Annals of

Operations Research 41(1993) 3–28.

[37] D.M. Glover, W.J. Jenkins and S.C. Doney, Least Squares and regression tech-

niques, goodness of fit and tests, non-linear least squares techniques, in Modeling

Methods for Marine Science (Woods Hole Oceanographic Institution, 2008), pp.

45–66.

[38] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning

(New York: Addison-Wesley, 1989).

[39] D.E. Goldberg, The Design of Innovation: Lessons from and for Competent Ge-

netic Algorithms (New York: Addison-Wesley, 2002).

[40] C. Grosan, A. Abraham and S.Y. Han, MEPIDS: Multi-expression programming

for intrusion detection system, Lecture Notes in Computer Science 3562 (2005)

163–172.

[41] R.W. Hamming, Error detecting and error correcting codes, Bell System Technical

Journal 29(2) (1950) 147–160.

[42] J.V. Hansen, P.B. Lowry, R.D. Meservy and D.M. McDonald, Genetic program-

ming for prevention of cyberterrorism through dynamic and evolving intrusion

detection, Decision Support Systems 43(4) (2007) 1362–1374.

[43] W. Hart, N. Krasnogor and J. Smith (eds.), Recent Advances in Memetic Algo-

rithms (Springer, Berlin, Heidelberg, New York, 2004).

[44] E. Hart and J. Timmis, Application areas of AIS: The past, the present and the

future, Applied Soft Computing 8 (2008) 191–201.

[45] A. Hedar and M. Fukushima, Hybrid simulated annealing and direct search method

for nonlinear unconstrained global optimization, Optimization Methods and Soft-

ware 17 (2002) 891–912.

BIBLIOGRAPHY 93

[46] A. Hedar and M. Fukushima, Heuristic pattern search and its hybridization with

simulated annealing for nonlinear global optimization, Optimization Methods and

Software 19 (2004) 291-308.

[47] A. Hedar and M. Fukushima, Tabu search directed by direct search methods

for nonlinear global optimization, European Journal of Operational Research 170

(2006) 329–349.

[48] A. Hedar and M. Fukushima. Derivative-free filter simulated annealing method

for constrained continuous global optimization, Journal of Global Optimization 35

(2006) 521–549.

[49] A. Hedar and M. Fukushima, Meta-heuristics programming, in Proc. 2nd Interna-

tional Workshop on Computational Intelligence & Applications (Okayama, Japan,

2006).

[50] A. Hedar and M. Kamel, Scatter programming, in Proc. 7th International Confer-

ence on Informatics and Systems (INFOS 2010) (Cairo, Egypt, 2010).

[51] A. Hedar, E. Mabrouk and M. Fukushima, Tabu programming: A new problem

solver through adaptive memory programming over tree data structures, The Inter-

national Journal of Information Technology & Decision Making, to appear (2011).

[52] J.C. Hernández-Castro, P.I. Viñuela and C.L. del Arco-Calderón, Finding efficient

nonlinear functions by means of genetic programming, Lecture Notes in Computer

Science 2773 (2003) 1192–1198.

[53] G. Hinton et al., The microarchitecture of the pentium 4 processor, Intel Technology

Journal Q1 2001.

[54] N.X. Hoai, R.I. McKay and D. Essam, Representation and structural difficulty

in genetic programming, IEEE Transactions on Evolutionary Computation 10(2)

(2006) 157–166.

[55] T.H. Hoang, N.X. Hoai, R.I. McKay and D. Essam, The importance of local search:

A grammar based approach to environmental time series modelling, in Genetic

Programming: Theory and Practice III, Vol 9 (Springer-Verlag, 2006), pp. 159–

175.

[56] J. Howe, Artificial intelligence at Edinburgh University: A perspective, School of

Informatics, Edinburgh University (2008).

94 BIBLIOGRAPHY

[57] T. Ito, H. Iba and S. Sato, Non-destructive depth-dependent crossover for genetic

programming, Lecture Notes in Computer Science 1391 (1998) 71–82.

[58] D. Jackson, The identification and exploitation of dormancy in genetic program-

ming, Genetic Programming and Evolvable Machines 11 (2010) 89–121.

[59] C.G. Johnson, Genetic Programming Crossover: Does It Cross over?, Lecture Notes

in Computer Science 5481 (2009) 97–108.

[60] M. Keijzer, C. Ryan, M. ONeill, M. Cattolico and V. Babovic, Ripple crossover in

genetic programming, Lecture Notes in Computer Science 2038 (2001) 74–86.

[61] M. Kessler and T. Haynes, Depth-fair crossover in genetic programming, in Proc.

1999 ACM Symposium on Applied Computing (San Antonio, Texas, US, 1999), pp.

319–323.

[62] K.E. Kinnear Jr. (ed.), Advances in Genetic Programming (MIT Press, Cambridge,

MA, 1994).

[63] S. Kirkpatrick, C.D. Gelatt Jr. and M.P. Vecchi, Optimisation by simulated an-

nealing, Science 220 (1983) 671–680.

[64] J.K. Kishore, L.M. Patnaik, V. Mani and V.K. Agrawal, Application of genetic

programming for multicategory pattern classification, IEEE Transactions on Evo-

lutionary Computation 4 (2000) 242–258.

[65] P. Kouchakpour, A. Zaknich and T. Bräunl, A survey and taxonomy of perfor-

mance improvement of canonical genetic programming, Knowledge and Informa-

tion Systems 21 (2009) 1–39.

[66] J.R. Koza, Hierarchical genetic algorithms operating on populations of computer

programs, in Proc. 11th Int. Joint Conference on Artificial Intelligence (Morgan

Kaufmann: Los Altos, CA, 1989), pp. 768–774.

[67] J.R. Koza, Genetic programming: A paradigm for genetically breeding popula-

tions of computer programs to solve problems. Technical Report: CS-TR-90-1314,

Stanford University (1990).

[68] J.R. Koza, Genetic Programming: On the Programming of Computers by Means

of Natural Selection (Cambridge, MA: MIT Press, 1992).

BIBLIOGRAPHY 95

[69] J.R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs

(Cambridge, MA: MIT Press, 1994).

[70] J.R. Koza, F.H. Bennett III, D. Andre and M.A. Keane, Genetic Programming III:

Darwinian Invention and Problem Solving (Morgan Kaufmann, San Francisco, CA,

1999).

[71] J.R. Koza, M.A. Keane, M.J. Streeter, W. Mydlowec, J. Yu and G. Lanza, Ge-

netic Programming IV: Routine Human-Competitive Machine Intelligence (Kluwer

Academic Publishers, Boston, 2003).

[72] O. Kramer, Iterated local search with Powell’s method: a memetic algorithm for

continuous global optimization, Memetic Computing 2 (2010) 69–83.

[73] N. Krasnogor and J.E. Smith, A tutorial for competent memetic algorithms: model,

taxonomy and design issues, IEEE Transactions on Evolutionary Computation 9

(2005) 474–488.

[74] M. Laguna and R. Marti, Scatter Search: Methodology and Implementations in C

(Kluwer Academic Publishers, Boston, 2003).

[75] C. Lamenca-Martinez, J.C. Hernández-Castro, J.M. Estévez-Tapiador and A. Rib-

agorda, Lamar: A new pseudorandom number generator evolved by means of ge-

netic programming, Lecture Notes in Computer Science 4193 (2006) 850–859.

[76] W.B. Langdon and R. Políı, Foundations of Genetic Programming (Springer-Verlag

2002).

[77] X.Y. Li, X.Y. Shao and L. Gao, Optimization of flexible process planning by genetic

programming. International Journal of Advanced Manufacturing Technology 38

(2008) 143–153.

[78] M.A.C. Lima, A.F.R. Araujo and A.C. Cesar, Adaptive genetic algorithms for dy-

namic channel assignment in mobile cellular communication systems, IEEE Trans-

actions On Vehicular Technology 56(5) (2007) 2685–2696.

[79] L. Lin and M. Gen, Auto-tuning strategy for evolutionary algorithms: balancing

between exploration and exploitation, Soft Computing 13 (2009) 157–168.

[80] T.-Y. Liu, Learning to rank for information retrieval, Foundations and Trends in

Information Retrieval 3(3) (2009) 225–331.

96 BIBLIOGRAPHY

[81] H.S. Lopes, Genetic programming for epileptic pattern recognition in electroen-

cephalographic signals, Applied Soft Computing 7(1)(2007) 343–352.

[82] E. Mabrouk, A. Hedar and M. Fukushima, Memetic programming with adaptive

local search using tree data structures, in Proc. 5th International Conference on

Soft Computing as Transdisciplinary Science and Technology (Cergy-Pontoise,

Paris, France, 2008), pp. 258–264.

[83] E. Mabrouk, A. Hedar and M. Fukushima, Tabu programming: a machine learning

tool using adaptive memory programming, in Proc. 6th International Conference

on Modeling Decisions for Artificial Intelligence (Awaji Island, Japan, 2009), pp.

187–198.

[84] E. Mabrouk, J.C. Hernández-Castro and M. Fukushima, Prime number generation

using memetic programming, in Proc 16th International Symposium on Artificial

Life and Robotics (B-Con Plaza, Beppu, Oita, Japan, 2011).

[85] H. Majeed and C. Ryan, On the constructiveness of context-aware crossover, in

Proc. 9th Annual Conference on Genetic and Evolutionary Computation (London,

England, 2007), pp. 1659–1666.

[86] M. Matsumoto and T. Nishimura, Mersenne twister: A 623-dimensionally equidis-

tributed uniform PRNG. ACM Transactions on Modeling and Computer Simula-

tion 8(1) (1998) 3–30.

[87] P. McCorduck, Machines Who Think (2nd ed.) (Natick, MA: A K Peters, Ltd.,

2004).

[88] P. Moscato, On evolution, search, optimization, genetic algorithms and martial

arts: towards memetic algorithms, Technical report 826, California Institute of

Technology (1989).

[89] P. Moscato and C. Cotta, A gentle introduction to memetic algorithms, in Hand-

book of Metaheuristics, eds. F. Glover and G. Kochenberger (Kluwer Academic

Publishers, Boston MA, 2003), pp. 105–144.

[90] P. Moscato, C. Cotta and A. Mendes, Memetic algorithms, in New Optimization

Techniques in Engineering, eds. G.C. Onwubolu and B.V. Babu (Springer-Verlag,

Berlin Heidelberg, 2004), pp. 53–85.

BIBLIOGRAPHY 97

[91] L. Nie, X. Xu and D. Zhan, Collaborative planning in supply chains by Lagrangian

relaxation and genetic algorithms, International Journal of Information Technology

& Decision Making 7(1) (2008) 183–197.

[92] P. Nordin and W. Banzhaf, Complexity compression and evolution, in Proc. 6th

International Conference on Genetic Algorithms (Morgan Kaufmann, Pittsburgh,

PA, USA, 1995), pp. 310–317.

[93] P. Nordin, F. Francone and W. Banzhaf, Explicitly defined introns and destructive

crossover in genetic programming, in Proc. Workshop on Genetic Programming:

From Theory to Real-World Applications (Tahoe City, California, USA, 1995), pp.

6–22.

[94] A. Orfila, J.M. Estvez-Tapiador and A. Ribagorda, Evolving high-speed, easy-to-

understand network intrusion detection rules with genetic programming, Lecture

Notes in Computer Science 5484 (2009) 93–98.

[95] P. Peris-Lopez, Lightweight cryptography in radio frequency identification (RFID)

systems, PhD Thesis, Computer Science Department, Universidad Carlos III de

Madrid (2008).

[96] R. Poli and W.B. Langdon, Backward-chaining evolutionary algorithms, Artificial

Intelligence 170 (2006) 953-982.

[97] R. Poli and J. Page, Solving high-order Boolean parity problems with smooth

uniform crossover, sub-machine code GP and demes, Genetic Programming and

Evolvable Machines 1 (2000) 37–56.

[98] C.C. Ribeiro and P. Hansen (eds.), Essays and Surveys in Metaheuristics (Kluwer

Academic Publishers, Boston, MA, 2002).

[99] R. Riolo, T. Soule and B. Worzel (eds.), Genetic Programming Theory and Practice

V (Springer-Verlag, Berlin, 2008).

[100] R.L. Rivest, M.J.B. Robshaw, R. Sidney and Y.L. Yin, The RC6 block cipher, v1.1

(1998).

[101] F. Rothlauf, On optimal solutions for the optimal communication spanning tree

problem, Operations Research 57(2) (2009) 413–425.

98 BIBLIOGRAPHY

[102] F. Rothlauf, An encoding in metaheuristics for the minimum communication span-

ning tree problem, INFORMS Journal on Computing 21(4) (2009) 575–584.

[103] S.J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach (2nd ed.)

(Upper Saddle River, New Jersey: Prentice Hall, 2003).

[104] S. Salcedo-Sanz et al., Optimal switch location in mobile communication networks

using hybrid genetic algorithms, Applied Soft Computing 8 (2008) 1486-1497.

[105] S. Silva, GPLAB: A genetic programming toolbox for MATLAB,

http://gplab.sourceforge.net/

[106] W.A. Tackett, Recombination, selection and the genetic construction of computer

programs, PhD Thesis, Department of Electrical Engineering Systems, University

of Southern California (1994).

[107] W.A. Tackett and A. Carmi, The unique implications of brood selection for genetic

programming, in Proc. first IEEE Conference on Evolutionary Computation (IEEE

Press, Volume 1, New York, NY, 1994), pp. 160–165.

[108] M.D. Terrio and M.I. Heywood, Directing crossover for reduction of bloat in GP, in

Proc. Canadian Conference on Electrical and Computer Engineering (Piscataway,

NJ: IEEE Press, 2002), pp. 1111–1115.

[109] K.P. Vekaria, Selective crossover as an adaptive strategy for genetic algorithms,

PhD Thesis, University College (1999).

[110] E. Vladislavleva, Model-based problem solving through symbolic regression via

Pareto genetic programming, PhD Thesis, Tilburg University (2008).

[111] E. Vladislavleva, G. Smits and D. den Hertog, Order of nonlinearity as a complexity

measure for models generated by symbolic regression via Pareto genetic program-

ming, IEEE Transactions on Evolutionary Computation 13(2) (2009) 333–349.

[112] M.D. Vose, The Simple Genetic Algorithm: Foundations and Theory (Cambridge,

MA: MIT Press, 1999).

[113] J.A. Walker and J.F. Miller, Predicting prime numbers using Cartesian genetic pro-

gramming, in Proc. 10th European Conference on Genetic Programming (Valencia,

Spain, 2007), pp. 205–216.

BIBLIOGRAPHY 99

[114] J.A. Walker and J.F. Miller, The automatic acquisition, evolution and reuse of

modules in cartesian genetic programming, IEEE Transactions on Evolutionary

Computation 12(4) (2008) 397–417.

[115] P. Wegner, A technique for counting ones in a binary computer, Communications

of the ACM 3(5) (1960) 322.

[116] E. William and J. Northern, Genetic programming lab (GPLab) tool set version

3.0, In: Proc. IEEE Region 5 Technical, Professional, and Student Conference

(Kansas City, Kansas, 2008), pp. 1–6.

[117] S. Winkler, M. Affenzeller and S. Wagner, Advanced genetic programming based

machine learning, Journal of Mathematical Modelling and Algorithms 6(3) (2007)

455–480.

[118] D.H. Wolpert and W.G. Macready, No free lunch theorems for search, Technical

Report: SFI-TR-05-010, Santa Fe Institute, Sante Fe, NM (1995).

[119] D.H. Wolpert and W.G. Macready, No free lunch theorems for optimization, IEEE

Transactions on Evolutionary Computation 1(1) (1997) 67–82.

[120] A.S. Wu and W. Banzhaf, Introduction to the special issue: Variable-length repre-

sentation and noncoding segments for evolutionary algorithms, Evolutionary Com-

putation 6(4) (1998) iii–vi.

[121] C. Wu, H. Chou and W. Su, Direct transformation of coordinates for GPS po-

sitioning using the techniques of genetic programming and symbolic regression,

Engineering Applications of Artificial Intelligence 21(8) (2008) 1347–1359.

[122] H. Xie, An analysis of selection in genetic programming, PhD Thesis, Victoria

University of Wellington (2009).

[123] M. Zhang, X. Gao and W. Lou, A new crossover operator in genetic programming

for object classification, IEEE Transactions on Systems Man and Cybernetics Part

B 37 (2007) 1332–1343.

[124] L. Zhang and A.K. Nandi, Fault classification using genetic programming, Me-

chanical Systems and Signal Processing 21(3) (2007) 1273–1284.

100 BIBLIOGRAPHY

[125] L. Zhang and A.K. Nandi, Diversity-preserving non-destructive operators in genetic

programming and their application to breast cancer diagnosis, Transactions of the

Institute of Measurement and Control, 31(6) (2009) 533–550.

[126] The lil-gp GP system. http://http://garage.cse.msu.edu/software/lil-gp/.

