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Preface

In this thesis, we study the block coordinate gradient methods for two kinds of the nonlinear

optimization problems with separable structure: the classical optimization problem and

the online optimization problem. These two optimization problems are highly constructed

models arising from practical problems in science and engineering, and the corresponding

applications are typically built on large scales. Hence, proposing efficient and practical

solution methods to solve them is a worth studying topic.

Due to the large scales, the classical second order methods, such as the Newton method,

the interior point method, can not be applied successfully. Practical experiments indicate

that the first order methods are more efficient. The block coordinate descent (BCD) method

is one of the oldest first order methods, whereby a part of the variable is updated at each

iteration. It is very efficient for large scale problems. However, its convergence requires re-

strictive conditions, such as the strict convexity and the differentiability. Thus, this method

did not get too much attention in the mathematical optimization field. Recently, as many

large scale problems in engineering arise, such as the machine learning, the image recon-

struction, etc., the block type methods have been revived. Although there are some existing

results on the block type methods for large scale problems, there still remain unknown prob-

lems. For example, most of the existing results are established on the assumption that the

subproblem is solved exactly. This assumption is difficult to satisfy in practice. How about

the case where the subproblem is solved inexactly? Moreover, the convergence rate of the

BCD method for the nonsmooth problem is still unknown.

The main contribution of this thesis is to propose efficient block coordinate gradient

methods for solving large scale nonlinear optimization problems with separable structure.

We propose two novel classes of methods. One is the inexact coordinate descent method,

where we give a new criterion for the inexact solution of the subproblem and only require

an approximate solution at each iteration. The other method is a class of block coordinate

proximal gradient methods with variable Bregman functions. In this class of methods, using

the variable kernels is the innovation, which offers great advantages to both algorithm anal-

ysis and practical implementation. We establish its global and R-linear convergence rate for

the nonconvex nonsmooth problem. With special kernels, we even show the R-linear conver-
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gence rate of the (inexact) BCD method, which is the first result on the linear convergence of

the BCD method for the nonsmooth problem. Moreover, for both proposed methods, some

numerical experiments have been carried out, which demonstrate the excellent performances

of the proposed methods.

Another contribution of this thesis is to propose a new Lipschitz continuity-like defini-

tion, called the “block lower triangular Lipschitz continuous”, which helps us to supplement

and improve the theoretical analysis of the block coordinate gradient (BCG) method. In

particular, we obtain a tighter iteration complexity bound of the BCG method for the non-

linear convex optimization problem with separable structure and improve the convergence

rate of the BCG method for the online and the stochastic optimization problem.

The author hopes that the results in this thesis will contribute for the further studies on

the block type solution methods for the nonlinear optimization problems and their related

problems.

Xiaoqin Hua

December 2014
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Chapter 1

Introduction

The mathematical optimization is one of the mature areas of the applied mathematics, which

aims at finding a solution to a given model by optimization algorithms or methods. It was

introduced by professor Robert Dorfman in 1940s, and became more and more active with

the rapid development of the computer technology. Recently, its theories and techniques are

used widely in the industrial designs, the computer science and the economics management.

In this chapter, we give an overview of the research problems, their characteristics, the

research motivations and contributions. We refer to some basic optimization terminologies

and names of the algorithms directly, whose precise definitions are given in Chapter 2.

1.1 Nonlinear optimization problem

The nonlinear optimization problem [8, 13, 41] is a main subfield of the mathematical pro-

gramming, which has the following general form.

minimize F (x)

subject to hi(x) = 0, i ∈ {1, . . . , p}, (1.1.1)

gj(x) ≤ 0, j ∈ {1, . . . ,m},

where x ∈ Rn, function F : Rn → R is the objective function (alternatively, the loss function

or the cost function), and functions hi, gj : Rn → R, i = 1, . . . , p, j = 1, . . . ,m, are the

constraint functions. The set

F := {x ∈ Rn | hi(x) = 0, gj(x) ≤ 0, i = 1, . . . , p, j = 1, . . . ,m} (1.1.2)

is called the feasible set.

Note that problem (1.1.1) may or may not be a convex problem. In general, there are

significant differences in the characteristics of the solutions between the convex and the

nonconvex cases. The convex optimization problem [6, 13] is relatively simple, in which
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both objective and constraint are convex functions. It has the following two important

characteristics [8]. One is that any local minimum of the convex optimization problem is also

the global minimum. Of course, its local minimum solution may not be unique. Another is

that the first order optimality condition (Theorems 2.2.1 and 2.2.2 in Subsection 2.2.3) is also

sufficient for guaranteeing the optimality. These two characteristics are the foundations of

the analysis of the theories and algorithms for the convex optimization problems. Moreover,

if additional conditions are satisfied for problem (1.1.1), the existence and uniqueness of the

optimal solutions can be guaranteed. For example, if the objective function is strictly convex

and the feasible set is convex, there exists at most one optimal minimum. Additionally, if the

feasible set is compact, there exists only one minimum. See [8, Proposition A.8] for details.

For the general nonconvex optimization problem [15, 34], in which the objective function

is nonlinear and/or the feasible region is determined by nonlinear constraints, the optimal

solution may not always exist, or it may have multiple locally optimal solutions. Hence,

the solutions in this case are more complicated. Generally, we study the stationary points

instead.

In addition, according to the differentiability of the functions in problem (1.1.1), the

nonlinear optimization problem can be divided into the smooth optimization problem and

the nonsmooth optimization problem. The most well known algorithm for the nonlinear

smooth optimization problem is the Newton method, which is extremely powerful in general.

Even today, Newton method is still the most widely used and studied algorithm. However,

this method is not perfect. For example, at each iteration we need to compute the Hessian

of the objective function, which needs O(n2) computation, generally. As the scale n becomes

large, the computation at each iteration will be very expensive. For this reason, it is not

worth to be applied to the large scale problems directly. For the nonsmooth optimization

problems, we usually try to find the source of the “nonsmoothness”, and further develop

some techniques for its particular structure.

1.2 Nonlinear optimization problems with separable

structure

In this thesis, we consider the nonlinear optimization problems with separable structure,

which are highly structured optimization models. In these models, we minimize the sum

of a smooth function and a “simple” nonsmooth convex function, where the simple convex

function has block separable structure. Hence, they belong to the nonsmooth subfield of the

nonlinear optimization problem. In this thesis, we study two kinds of these nonlinear opti-

mization problems: the classical nonlinear optimization problem and the online optimization

problem, which are briefly outlined in the subsequent subsections.
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1.2.1 Nonlinear optimization problem with separable structure

The nonlinear optimization problem with separable structure, considered in this thesis, has

the following form.

minimize
x

F (x) := f(x) + τψ(x), (1.2.1)

where function f is smooth on an open subset of Rn containing domψ := {x ∈ Rn | ψ(x) <
∞}, τ is a positive constant, and ψ : Rn → (−∞,∞] is a proper, convex and lower semi-

continuous (l.s.c.) function with the block separable structure 1.

Such problems arise in various practical problems of science and engineering, such as the

machine learning [35, 77], the data mining [55] and the network routing [19]. When function

f in problem (1.2.1) is convex, problem (1.2.1) becomes a convex optimization problem. In

this thesis, we propose several efficient methods for problem (1.2.1) with particular forms,

including the convex and nonconvex cases.

1.2.2 Online optimization problem with separable structure

The online optimization problem is a powerful learning model, which has attracted great

attention in many large scale optimization fields, such as the machine learning [3], the

network routing [3], and the investment decisions [27]. By this model, a decision maker

makes a sequence of accurate decisions for his/her practical problems, where his/her possible

options are given as a convex set in advance. The precise definition of the online convex

optimization problem is recalled by Definition 2.2.8 in Subsection 2.2.4. Roughly speaking,

its main characteristics include the following two aspects in contrast to the classical nonlinear

optimization problem.

• We minimize a sequence of dynamically generated loss functions {F t(x), t = 1, 2, . . . }
in the online optimization problem, where t denotes the time step when new function

is generated.

• We must make a decision at the time step t, denoted by xt, before getting the true loss

function F t(x).

In this thesis, we consider an online convex optimization problem with separable struc-

ture, whose loss function F t : Ω → R at time step t is given as follows.

F t(x) := f t(x) + τψ(x), t = 1, 2, . . . , (1.2.2)

1We say that function ψ is block separable with respect to nonempty subset J ⊆ {1, 2, . . . , n} if there exist
some proper, convex, l.s.c. functions ψJ : R|J| → R and ψJ : R|J| → R such that ψ(x) = ψJ(xJ) + ψJ (xJ)

holds for all x ∈ Rn.
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where Ω ⊆
∩∞
t=1 domF t, f t : Ω → R is smooth and convex, τ is a positive constant, and

ψ : Ω → (−∞,∞] is a proper, convex and lower semicontinuous (l.s.c.) function with the

block separable structure.

From the characteristics of the online convex optimization problem, we know that it is

impossible to select a point xt that exactly minimizes the loss function F t(x) at the t-th

time step, because we do not know the true loss function F t(x) until the prediction xt is

determined. Instead, the researchers, who study the online optimization problem, focus on

proposing an algorithm to generate predictions {xt, t = 1, 2, . . . }, with which, for given T >

0, the practical total loss
∑T

t=1 F
t(xt) is not much larger than the ideal total loss

∑T
t=1 F

t(x∗),

where x∗ is an optimal solution in some sense, e.g., x∗ ∈ argminx∈Ω
1
T

∑T
t=1 F

t(x) [81]. For

convenience, we call the difference between these two values the “regret” [81], which is

formally defined by Definition 2.2.9 in Subsection 2.2.4. Hence, the goal of the online convex

optimization problem is to construct an algorithm, with which the generating decisions make

us to achieve a regret as low as possible. We say that an algorithm is a no internal regret

algorithm if the regret R(T ) is an infinitesimal of higher order than T [27].

1.2.3 Applications

The problems (1.2.1) and (1.2.2) appear in many applications. Usually, functions f and

f t represent as empirical loss functions, and function ψ(x) acts as a regularization term to

introduce additional information or to prevent overfitting. Some examples of functions f

and f t in applications are described as follows.

(1) In the compressed sensing [77], which is a classical nonlinear optimization problem,

function f represents the error between the noiseless signal and the transformation of

the elementary signals. In this application, function f can be written by a quadratic

function with

f(x) =
1

2
∥Ax− y∥22,

where A ∈ Rm×n, the set {Aj, j = 1, 2, . . . , n} comprises the elementary signals, and

y ∈ Rm denotes the noiseless signal.

In the online regression problem [14, 53], function f t is used for estimating the rela-

tionships among variables. In the simple linear regression model, function f t can be

represented by a quadratic function.

f t(x) =
m∑
i=1

(
bti − v − ⟨Ati, w⟩

)2
,

where x = (w, v) ∈ Rn with w ∈ Rn−1 and v ∈ R. For any t > 0, and i = 1, . . . ,m,

bti ∈ R, At ∈ R(n−1)×m. The set {(Ati, bti), i = 1, . . . ,m} denotes the data points at the

t-th time step.
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(2) In the data classification [35] and the data mining [55], which belong to the classical

nonlinear optimization (1.1.1), function f is used for predicting the outcome of a

categorical dependent variable based on many predictor variables or features. In these

applications, function f is given by the logistic function.

f(x) =
1

m

m∑
j=1

log
(
1 + exp

(
− (wT qj + vpj)

))
, (1.2.3)

where x = (w, v) ∈ Rn and qj = pjzj. Moreover, {(zj, pj) ∈ Rn−1 × {−1, 1}, j =

1, 2, . . . ,m} is a set of training examples.

In the sequential investment problem [14], which is an online optimization problem

(1.2.2), f t denotes the logistic wealth ratio, given by a logistic function.

f t(x) = −log
n∑
i=1

(xtiz
t
i),

where vector zt ∈ Rn with zti > 0, i = 1, . . . , n, represents the price relatives for the

trading period t, and xt ∈ Rn denotes the investment proportions on the period t, such

that
∑n

i=1 x
t
i = 1, xti > 0, i = 1, . . . , n.

The most common variants of function ψ(x) are listed as follows.

(1) l1-regularization [35, 38, 64, 65, 72], i.e.,

ψ(x) = ∥x∥1.

(2) Elastic net regularization [82], i.e.,

ψ(x) = λ1∥x∥1 + λ2∥x∥22.

(3) Block l2-regularization [47, 78], i.e.,

ψ(x) =
N∑
i=1

∥xJ i∥2,

where {xJ i , i = 1, 2, . . . , N} denote the disjoint subvectors of vector x.

(4) Mixed norm penalty [33, 36], i.e.,

ψ(x) = ∥x∥1 +
N∑
i=1

∥xJ i∥2,

where {xJ i , i = 1, 2, . . . , N} denote the disjoint subvectors of vector x.
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(5) Indicator function. For the smooth optimization problem with simple separable con-

straints, e.g., box constraints [48] and separable simplex constraints [19], ψ can be

rewritten as an indicator function with respect to closed separable convex set X, i.e.,

ψ(x) =

0 if x ∈ X,

∞ otherwise.
(1.2.4)

Note that these regularization terms have their own respective characteristics in the ap-

plications. The l1-regularization [65] helps us to get relatively sparse solutions, i.e., many

elements of the variable x are 0. This is a good technique for obtaining sparse solutions,

but not perfect. If the solutions are strongly correlated, the l1-regularization does not work

well. In this case, the elastic net regularization is better [82]. The block l2-regularization

[47] is an extension of the l1-regularization. Its sparsity is obtained at the group level, that

is to say, a group is picked or dropped. But it does not yield sparsity within a group. The

mixed norm penalty [33, 36] yields solutions, which are sparse at both group and individual

elements. Apparently, the above regularization terms have different forms. However, from

the optimization point of view, all of them are special forms of models (1.2.1) and (1.2.2).

1.3 Solution methods

The applications of the separable optimization problems (1.2.1) and (1.2.2) are mostly built

on a large scale. In general, the number of the variables is of order 104 or even higher.

Roughly speaking, there are two approaches to deal with them. One is to solve an equivalent

reformulation problem, which is called the indirect solution method. The other is to solve

the original problem directly, which is referred to as the direct solution method. Next, we

take problem (1.2.1) as an example to introduce some existing solution methods.

For the indirect solution methods, when φ(x) is an indicator function with respect to

a convex set, problem (1.2.1) is equivalent to a constrained smooth optimization. Then it

can be solved by some efficient methods, such as the gradient projection method, the trust

region method, the active set method, etc.

When problem (1.2.1) is an unconstrained l1-regularization problem, i.e., φ(x) = ∥x∥1, it
can be reformulated as a 2n-dimensional bounded constrained smooth optimization problem

with the following form [69].

minimize
y,z

f(y − z) + τ⟨e, y + z⟩,

subject to y ≥ 0,

z ≥ 0,

(1.3.1)
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where vector e ∈ Rn is defined by e = (1, . . . , 1)T . For the reformulated problem (1.3.1),

many effective methods or softwares have been developed, such as the L-BFGS method

[80] and the MINOS software [49]. The drawback of this type of reformulation is that the

dimension of the reformulated problem (1.3.1) is 2n, a double size of the original problem,

which is unfavorable for the large scale problems.

When problem (1.2.1) is an unconstrained problem with a general regularization term,

it can be reformulated as an (n+1)-dimensional smooth optimization problem over a closed

convex set by some optimization techniques [69]. The new reformulation has the following

form.
minimize

x,ϑ
F (x) := f(x) + τϑ,

subject to φ(x) ≤ ϑ.
(1.3.2)

Then the reformulated problem (1.3.2) can be solved by some state of art methods theo-

retically, such as the interior point method [46] and the sequential quadratic programming

algorithm [21]. Yet, such a reformulation still has its drawbacks. The main disadvantage

is that the existing methods can not exploit the block separable structure of the original

problem (1.2.1). Moreover, as the size n becomes large, the storage and the computation

of the Hessian will become huge, which shows that the second order methods [21, 46] can

hardly be carried out.

For the direct solution methods, in consideration of the computation time and storage,

first order methods are shown to be more efficient. The existing results on algorithms or

methods are developed from the following two aspects.

(a) Global convergence, i.e., the generated sequence converges to a solution of the separable

problems (1.2.1) and (1.2.2) in some sense. This is the most basic topic, and the global

convergence property ensures to obtain a solution from an arbitrary initial point.

(b) Convergence speed. Commonly, we evaluate the convergence speed of an algorithm for

problem (1.2.1) by the following two approaches. One is the local convergence rate,

such as the linear convergence, super linear convergence, and quadratic convergence,

which describes the speed of obtaining a solution when the generated point is near

the solution. However, the local convergence rate does not care about the whole

performance of the iterative method from the initial point. The other approach is

the iteration complexity, by which we estimate the order of the iterations required

by the proposed method to find a solution within ε error tolerance, such as O(1/ε),

O(1/ε2). In contrast to the convergence rate, the iteration complexity focuses on entire

information from the initial point, rather than the local behavior near the solution. For

the online optimization problem (1.2.2), we evaluate the proposed algorithm for the

regret by the iteration complexity in this thesis, since every decision xt, t = 1, 2, . . . , T,

is important during the T time steps.
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In the next subsections, we introduce existing results on the block coordinate gradient solu-

tion methods for problems (1.2.1) and (1.2.2), respectively.

1.3.1 Existing methods for problem (1.2.1)

In this subsection, we introduce existing work on the efficient solution methods for problem

(1.2.1), including the latest results on their convergence rates and iteration complexities.

When functions f and φ in problem (1.2.1) have particular forms, some special solution

methods are proposed. For the l1-regularized least square problem in the compressed sensing,

the software SpaRSA is well developed for finding the sparse approximate solution, which

can be downloaded from http://www.lx.it.pt/∼mtf/SpaRSA/. For the Group LASSO, which

is a generalization of the lasso for group-wise variable selection, a software program, called

R package gglasso, has been implemented, which is publicly available from http://cran.r-

project.org/web/packages/gglasso.

For a more general setting problem, due to its large size, practical experiments indicate

that first order methods are more suitable.

Among them, the (block) coordinate descent (CD) method, also called the nonlinear

Gauss-Seidel method, is an attractive one. In this method, the variable is partitioned into

several blocks and we only update one of the blocks at every iteration, while the other blocks

are held fixed. In particular, at the r-th iteration, we choose a nonempty set J ⊆ {1, 2, . . . , n}
and obtain an update for the block vector xr+1

J by

xr+1
J = argmin

xJ∈R|J|
F (xJ , x

r
J
). (1.3.3)

The subproblem (1.3.3) is a |J |-dimensional problem. When |J | ≪ n, its computation is

much cheaper than the batch type method 2. When |J | = 1 for each r, the block coordinate

descent method reduces to the coordinate descent method, and it can be solved quickly by

some second order methods, such as the Newton method and the quasi-Newton method.

When |J | = n, problem (1.3.3) is the same as the original optimization problem.

The greatest advantage of the (block) CD method is that the storage requirement of the

calculation is small. In some special cases, it can be implemented in parallel. Due to these

properties, the block CD has been used for various large scale problems [7, 38, 43, 58, 59,

67, 69, 72, 78].

However, the global convergence of the (block) CD method requires restrictive conditions.

Mainly, it depends on two factors. One is the order (alternatively, the rule) of choosing the

block J at each iteration. The typical rules to choose block J are the Gauss-Seidel rule

2The optimization method is said to be a batch type method if it updates all elements of the variable

together at a time.
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[67], the Gauss-Southwell rule [69] and the random rule [50]. For details, see Section 2.4.

Note that the Gauss-Southwell rule is less appealing than the Gauss-Seidel rule, because it

requires the knowledge of the full gradient. For the random rule, the global convergence of

an algorithm is obtained in terms of statistic.

Another critical factor is the inherent property of the objective function F . Generally,

the global convergence of the CD method can not be guaranteed even for the smooth or

convex optimization problem. When ψ(x) = 0 for any x ∈ domF , i.e., problem (1.2.1) is a

smooth problem, and the function f is not (pseudo) convex, Powell gave an example to show

that the CD method may not approach any stationary point [57]. When the cost function is

not differentiable, Auslender showed that the CD method may stagnate at a nonstationary

point even when it is a convex problem [1]. Therefore, in general, it is difficult to show the

global convergence of the CD method for an optimization problem, when it is neither convex

nor smooth. The existing results on the convergence of the (block) CD method are mostly

developed for some particular cases. For example, for the smooth optimization, if the cost

function is a strictly convex (or quasiconvex or hemivariate) function, it is shown in [43]

that the CD method is convergent. For the nonsmooth problem, when the nondifferentiable

part of the cost function is separable, Tseng [67] proved that the block coordinate descent

method is convergent under certain convexity and regularity assumptions. When problem

(1.2.1) is a convex problem, and function ψ is an indicator function with respect to a special

box constraint x ≥ 0, Luo and Tseng [43] proved that the block CD method has global and

linear convergence rate. For general separable problem (1.2.1), its convergence rate is still

unknown.

Moreover, the existing results on the global convergence of the CD method are established

on the assumption that the subproblem (1.3.3) is solved exactly [43, 67]. It is possible for

special problems, such as the l1-l2 problem, but hard for the general separable optimization

problem (1.2.1), even if it is a l1-regularized convex problem. To get around this difficulty,

some variants of the CD method have been proposed, such as the inexact block coordinate

descent method [11], the block coordinate gradient descent (BCGD) method [69] and the

block coordinate proximal point method [74]. The BCGDmethod is executed with one step of

the gradient method for the subproblem (1.3.3), while the method [74] exploits the proximal

point method to find an approximate solution. Thus, they are regarded as the inexact CD

methods. Bonettini [11] proposed an inexact version of the CD method. He gave appropriate

conditions about the inexactness of the solution for the subproblem (1.3.3), and has shown

that the proposed method with the proposed conditions has global convergence. However,

he only focused on the smooth optimization problem, i.e., ψ(x) = 0, for all x ∈ domF , and

did not show the rate of the convergence of the proposed method.

In addition to the block CD method, the proximal gradient (PG) method is also an
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efficient method, because it only requires the evaluation of the gradient at each iteration.

The search direction of the PG method at point xr ∈ Rn is defined by

dηr(x
r) = argmin

d∈Rn

{⟨∇f(xr), d⟩+Bηr(x
r + d, xr) + τψ(xr + d)} , (1.3.4)

where function Bηr(·, ·) : X × intX → R is called the Bregman function defined by

Bηr(x, y) := ηr(x)− ηr(y)− ⟨∇ηr(y), x− y⟩, (1.3.5)

where function ηr : X → R, called the “kernel of Bηr”, is assumed to be convex and

continuously differentiable on intX, and X ⊆ domF ⊆ Rn is a closed convex set. The

common selections for the kernel η(x) include 1
2
∥x∥2, 1

2
xT∇2f(xr)x, x lnx, etc. For different

regularization term ψ(x), the proximal gradient method reduces to many well known methods

with suitable kernel η(x). See Table 4.1 in Chapter 4 for details.

The proximal gradient method [37] has been widely studied on its convergence rate and its

iteration complexity. When function f in problem (1.2.1) is convex, the kernel η(x) = 1
2
∥x∥2,

and the step size is set with the fix constant 1/Lf or chosen by the line search, it is shown

in [52, Theorem 2.1.14] and [70] that

F (xr)− inf F ≤ O(
Lf
r
), (1.3.6)

where Lf is the Lipschitz constant for ∇f , and inf F denotes the infimum of function F .

Hence, the proximal gradient method has O(
Lf
ε
) iteration complexity in the convex case,

where ε donotes the approximation accuracy. Moreover, under the “local Lipschitz error

bound” assumption, its convergence rate can be further improved. It is shown that the

proximal gradient method with the quadratic kernel has the R-linear convergence rate [69]

even if problem (1.2.1) is nonconvex. Additionally, a series of accelerated proximal gradient

methods have been proposed. See [66, 68, 71] and references therein for details.

Although the proximal gradient method is very efficient for large scale problems, there

still have lots of problems for further improvement. For example, since the subproblem (1.3.4)

for getting the search direction is an |n|-dimensional problem, it is still time consuming as

n becomes very large.

Motivated by this, the block coordinate gradient descent (BCGD)method is proposed [69].

Namely, this method is a hybrid of the gradient method and the block coordinate descent

method. As mentioned before, the requirement of the convergence of the block CD method

is restrictive. Hence, to show the global convergence of the block coordinate gradient descent

method is nontrivial. In [69], Tseng and Yun studied a block coordinate gradient descent

method with the quadratic kernel ηr(x) = 1
2
xTHrx, where matrix Hr ∈ Rn×n is symmetric

and positive definite, and matrix Hr is often chosen to be an approximation to the Hessian
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∇2f(xr). In [69], at each iteration, we first choose a nonempty block J ⊆ {1, 2, . . . , n}. Then
we get a search direction by solving the following subproblem.

dH(x; J) = argmin
d∈Rn

{
⟨∇f(x), d⟩+ 1

2
dTHd+ τψ(x+ d)

∣∣∣ dJ̄ = 0

}
. (1.3.7)

Under the “local Lipschitz error bound” assumption, Tseng and Yun [69] showed that

the block coordinate proximal gradient method with the Gauss-Seidel rule or the Gauss-

Southwell rule also has the R-linear convergence rate for general separable optimization

problem (1.2.1).

Additionally, the topic of the iteration complexity of this method has also been extensively

discussed. For smooth convex problems, Beck and Tetruashvili [7] showed that the block

coordinate gradient projection (BCGP) method with a cyclic rule has the O(
NLf
ε

) iteration

complexity, where Lf is the Lipschitz constant for∇f , N is the number of blocks, and ε > 0 is

the approximation accuracy. In [32], Hong et al. proposed a general block coordinate descent

(BCD) type method for general separable optimization (1.2.1), and proved that it obtains an

ε-accurate solution in O(
NLf
ε

) iterations when the blocks are updated with the cyclic rule.

However, for some special cases of problem (1.2.1), the iteration complexity bound can be

sharpened. For example, Saha and Tewari [62] showed that the iteration complexity of the

coordinate descent (CD) method for the l1-regularized problem can be improved to O(
Lf
ε
)

under an isotonicity assumption. It is worth noting that this upper bound does not depend

on the number N of blocks and the size n.

1.3.2 Existing methods for the online problem (1.2.2)

The applications of the online optimization problem are mostly built on a large scale. Some

researchers have studied the performance of the gradient methods for the online convex op-

timization problem (1.2.2) [73, 81]. When ψ(x) in (1.2.1) is an indicator function, Zinkevich

[81] proved that the greedy projection method for the online convex optimization problem

has a regret O(
√
T ). When ψ(x) in (1.2.1) is a general regularization function, Xiao [73]

proposed a dual averaging method, which is first proposed by Nesterov for classical con-

vex optimization problems. He showed that the proposed method achieves the same regret

O(
√
T ) for the online optimization problem. However, both of these two methods are full

gradient methods, i.e., they update all components of the variable x at each iteration. When

the scale of the problem becomes very large, the evaluation for updating the gradient of each

iteration would take much time.

Recently, the “block” type methods are becoming very popular, especially for the large

scale classical optimization problems [59, 66, 67]. Compared to the full gradient methods,

the block type methods can reduce the calculation time at each iteration. Quite recently,

Xu and Yin [75] proposed a block coordinate stochastic gradient method with the cyclic rule
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for a regularized stochastic optimization problem, which relates to the online optimization

problem. Under the Lipschitz continuity-like assumption, they showed that the proposed

method converges with O(1+log T√
1+T

N), where N is the number of blocks. Note that, as the

number of blocks reduces to 1, i.e., N = 1, this upper bound reduces to O(1+log T√
1+T

), which is

still bigger than the average regret R(T )
T

= O( 1√
T
) of the greedy projection method [81].

1.4 Motivations and contributions

As mentioned above, the block type methods are verified to be very efficient for the large

scale optimization problems [7, 38, 43, 58, 59, 67, 69, 72, 78]. Although this type of methods

have been widely studied, there still exist unknown problems. For example, does the (block)

CD method converge linearly for the general nonsmooth optimization problem? Is there

any tighter iteration complexity bound for the BCPG method for the nonsmooth problem?

These problems motivate us to join the research on the block coordinate gradient methods.

In this thesis, we carry out our study from the following two aspects, one is to propose

new algorithms for problem (1.2.1), the other is to supplement and improve the theoretical

analysis of the existing block coordinate gradient methods. In particular, the contributions

of this thesis are itemized as follows.

(1) We present a new inexact CD method with an inexactness description for a class of

weighted l1-regularized convex optimization problem with a box constraint. Under the

same assumptions in [43], we show that the proposed inexact CD method is not only

globally convergent but also with at least R-linear convergence rate under the almost

cycle rule. At each iteration step, we only need to find an approximate solution for

a one dimensional problem, which raises the possibility to solve general l1-regularized

convex problems.

(2) We propose a novel class of block coordinate proximal gradient (BCPG) methods with

variable Bregman functions for solving the general nonsmooth nonconvex problem

(1.2.1). For the proposed methods, we establish their global convergence and R-linear

convergence rate with the Gauss-Seidel rule. The idea of using the variable kernels is

the innovation, which enables us to obtain many well-known algorithms from the pro-

posed BCPG methods, including the (inexact) BCD method. Moreover, some special

kernels allow the proposed BCPG methods to adopt the fixed step size, and help us to

construct accelerated algorithms.

(3) We improve the iteration complexity of the block coordinate gradient descent (BCGD)

method with the cyclic rule for the convex separable optimization (1.2.1). The great

point of the improvement lies in proposing a new Lipschitz continuity-like assumption.
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Furthermore, we study the relations between the proposed assumption and the Lipchitz

continuity, and show that M ≤
√
NLf or M ≤ 2Lf , where M is the constant given in

the proposed assumption, and Lf is the Lipschitz constant. These results yield that

the iteration complexity bound derived in this thesis is sharper than existing results.

(4) We investigate the performance of the block coordinate gradient (BCG) method with

the cyclic rule for the online and stochastic optimization problems. For the separable

online optimization problem (1.2.2), we show that the proposed method has the same

regret as the greedy projection (GP) method, where the GP method is a full gradient

projection method. For the stochastic optimization problem, the results in this thesis

are shown to be tighter than the existing results.

For convenience, we use the following abbreviations of some well known methods in the

subsequent sections.

Table 1.1: Abbreviations for the well known methods

Methods with full name Abbreviation

coordinate descent method CD method

inexact coordinate descent method ICD method

block coordinate descent method BCD method

proximal gradient method PG method

coordinate gradient descent method [69] CGD method

block coordinate gradient descent method [69] BCGD method

block coordinate proximal gradient method BCPG method

1.5 Overview of the thesis

This thesis is organized as follows.

In Chapter 2, we introduce some notations, basic definitions, the proximal gradient meth-

ods and preliminary results, which will be used in the subsequent chapters.

In Chapter 3, we propose an inexact CD method with a new inexactness description for a

class of weighted l1-regularized convex optimization problem with a box constraint, and show

that the proposed method has global and R-linear convergence rate. Moreover we propose

a specific ICD algorithm, and report numerical results on the comparison of the proposed

algorithm and the CGD method.

In Chapter 4, we propose a class of block coordinate proximal gradient (BCPG) meth-

ods with variable Bregman functions for solving the general nonsmooth nonconvex problem
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(1.2.1). We establish their global convergence and R-linear convergence rate with the Gauss-

Seidel rule. Moreover, we propose a specific algorithm of the BCPG methods with variable

kernels for a convex problem with separable simplex constraints. The numerical results on

the proposed algorithm and the algorithm with a fixed kernel are reported.

In Chapter 5, we investigate the iteration complexity of the block coordinate gradient

descent (BCGD) method with the cyclic rule for the convex separable optimization (1.2.1).

With the new Lipschitz continuity-like assumption, we improve the iteration complexity of

the BCGD method.

In Chapter 6, we investigate the performance of the block coordinate gradient (BCG)

method with the cyclic rule for the online separable optimization problem and the stochastic

optimization problem. We show that the proposed method has the same regret as the greedy

projection method [81] for the online optimization problem (1.2.2). Moreover, we extend our

results to the regularized stochastic optimization problem, and show that the results in this

thesis are tighter than that in [75].

Finally, in Chapter 7, we summarize this thesis and mention some issues for the future

research.



Chapter 2

Preliminaries

In this chapter, we introduce some notations, definitions, some versions of the proximal

gradient methods and preliminary results, which will be used in the subsequent chapters.

2.1 Notations

For any vectors x, y ∈ Rn, the Euclidean inner product ⟨x, y⟩ is defined by

⟨x, y⟩ := x1y1 + x2y2 + · · ·+ xnyn.

For a vector x ∈ Rn and a matrix G ∈ Rn×n, G ≽ 0, the norms ∥x∥1, ∥x∥2, and ∥x∥G
are defined as follows.

∥x∥1 := |x1|+ · · ·+ |xn|,

∥x∥2 :=
√
⟨x, x⟩ =

√
x21 + · · ·+ x2n,

∥x∥G :=
√

⟨x,Gx⟩.

Unless otherwise stated, we let ∥ · ∥ denote the norm ∥ · ∥2. For a matrix A ∈ Rn×n, norm

∥A∥ is defined by

∥A∥ := max
x ̸=0, x∈Rn

∥Ax∥
∥x∥

.

For a differentiable function h : Rn → R, the gradient ∇h(x) ∈ Rn is defined by

∇h(x) :=


∂h(x)
∂x1
...

∂h(x)
∂xn

 .
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Moreover, if function h is twice differentiable, the Hessian matrix ∇2h(x) ∈ Rn×n is defined

by

∇2h(x) :=


∂2h(x)

∂x21
· · · ∂2h(x)

∂x1∂xn
...

. . .
...

∂2h(x)
∂xn∂x1

· · · ∂2h(x)
∂x2n

 .

2.2 Definitions

In this section, we introduce some basic definitions, which will be used in this thesis. For

more details, see [13, 52, 60].

2.2.1 Convexity

In this subsection, we give the definitions and relevant properties related to the convexity.

Definition 2.2.1. Let X ⊆ dom f be a convex set and f : X → R be a scalar function.

(1) Function f is convex if it holds that

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y), ∀x, y ∈ X, t ∈ (0, 1).

(2) Function f is strictly convex if it holds that

f(tx+ (1− t)y) < tf(x) + (1− t)f(y), ∀x, y ∈ X, t ∈ (0, 1).

(3) Function f is µf -strongly convex on X, µf > 0, if it holds that

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− 1

2
µf t(1− t)∥x− y∥22, ∀x, y ∈ X, t ∈ (0, 1).

Additionally, if function f is differentiable, the (strong) convexity can be described as

follows.

Lemma 2.2.1 ([13, Section 3.1.3], [52, Theorem 2.1.9]). Let X ⊆ dom f be a convex set and

f : X → R be a differentiable function.

(1) Function f is convex if and only if

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩, ∀x, y ∈ X.

(2) Function f is µf -strongly convex on X, µf > 0, if and only if

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µf
2
∥y − x∥22, ∀x, y ∈ X.
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In other words, the convex differentiable function is lower bounded by its first order

Taylor approximation, while the strongly convex function is lower bounded by a quadratic

function.

When the function is nondifferentiable and convex, it has a similar character as Lemma

2.2.1 (1), where the gradient is replaced by the “subgradient”.

Definition 2.2.2. Let function f : Rn → R be convex. A vector ξ ∈ Rn is a subgradient of

function f at point x ∈ dom f if

f(y) ≥ f(x) + ⟨ξ, y − x⟩, ∀y ∈ dom f.

The set of all subgradients of function f at point x ∈ dom f , denoted by ∂f(x), is called the

subdifferential of function f at point x ∈ dom f , i.e.,

∂f(x) := {ξ | f(y) ≥ f(x) + ⟨ξ, y − x⟩,∀y ∈ dom f}.

When function f is proper, convex and x ∈ int dom f , subdifferential ∂f(x) is nonempty,

bounded and convex [52, Theorem 3.1.13]. In addition, when function f is convex and

differentiable at x, the element of the subdifferential ∂f(x) is unique, and ∂f(x) = {∇f(x)}.
We let ∂Jf ∈ R|J | denote the subdifferential of function f with respect to variable xJ .

2.2.2 Lipschitz continuity

In this subsection, we introduce the definition of some types of the Lipschitz continuities

and their related results.

Definition 2.2.3. Let function f : Rn → R be continuously differentiable and let {J i, i =

1, . . . , N} be a partition of the set N = {1, . . . , n} 1. The gradient ∇f is said to be block-wise

Lipschitz continuous with respect to blocks {J i, i = 1, . . . , N} if for any i ∈ {1, . . . , N} there

exists a positive constant Li such that

∥∇J if(y)−∇J if(x)∥ ≤ Li∥y − x∥, ∀x, y ∈ dom f with yJ̄ i = xJ̄ i . (2.2.1)

The constant Li is called the Lipschitz constant of gradient ∇f with respect to block J i.

Note that when the number N of blocks reduces to 1, Definition 2.2.3 reduces to the

standard Lipschitz continuity. In this thesis, we let constant Lf > 0 denote the Lipschiz

constant of ∇f with respect to the whole variable x.

The Lipschitz continuity plays an important role for the linear convergence or the iteration

complexity. Next, we recall a lemma, which states the properties of function f with the

Lipschitz continuity.

1A family of sets {J i, i = 1, 2, . . . , N} is said to be a partition of set N = {1, 2, . . . , N} if (i) J i ⊆
N , i = 1, 2, . . . , N , is nonempty. (ii)

∪N
i=1J i = {1, 2, . . . , n}. (iii) J i ∩ J j = ∅, ∀i, j ∈ {1, 2, . . . , N}, i ̸= j.
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Lemma 2.2.2 ([7, Lemma 3.2], [50, Lemma 2]). Let {J i, i = 1, . . . , N} be a partition of the

set N = {1, . . . , n}. Suppose that the gradient ∇f is block-wise Lipschitz continuous with

respect to blocks {J i, i = 1, . . . , N}. Then, the following statements hold.

(i) For any i ∈ {1, . . . , N} and any y, x ∈ dom f with xJ̄ i = yJ̄ i, f(y) ≤ f(x)+⟨∇J if(x), yJ i−
xJ i⟩+ Li

2
∥yJ i − xJ i∥2.

(ii) There exists a positive constant Lf such that Lf ≤
N∑
i=1

Li and ∥∇f(y) − ∇f(x)∥ ≤

Lf∥y − x∥ hold for any y, x ∈ dom f .

Lemma 2.2.2 (i) implies that the gradient Lipschitz continuous function is upper bounded

by a quadratic function. If function f is both gradient block Lipschitz continuous and

strongly convex, it follows from Lemma 2.2.1 (2) and Lemma 2.2.2 (i) that µf ≤ Li holds for

any i ∈ {1, . . . , N}. Lemma 2.2.2 (ii) states the relations between the Lipschitz constants

Lf and Li, i ∈ {1, . . . , N}.
Next, we give a new Lipschitz continuity-like definition, which helps us to improve the

iteration complexity of the block type methods.

Definition 2.2.4. Let {J i, i = 1, . . . , N} be a partition of the set N = {1, . . . , n}. We say

that gradient ∇f is block lower triangular Lipschitz continuous with respect to blocks {J i,

i = 1, 2, . . . , N}, if there exists a nonnegative constant M such that

∥g(x, y)−∇f(x)∥ ≤M∥y − x∥, ∀x, y ∈ dom f, (2.2.2)

where g : Rn+n → Rn with

gJ i(x, y) = ∇J if(yJ 1 , . . . , yJ i−1 , xJ i . . . , xJN ), i = 1, . . . , N. (2.2.3)

Note that the constant M in inequality (2.2.2) of Definition 2.2.4 is different from the

Lipschitz constant Lf . The relation between the constants M and Lf is summarized by the

following remark.

Remark 2.2.1. When N = 1, we have g(x, y) = ∇f(x), which yields that M = 0 in (2.2.2).

When N > 1, it is shown in Section 5.4 that M ≤ 2Lf holds for many classes of functions

f . For general continuously differentiable function f , we have M ≤
√
NLf , which is proven

in Section 5.4.

2.2.3 Optimal solution and optimal conditions

In this subsection, we give the definitions of optimal solution, stationary point, as well as

the first order optimality condition of problem (1.2.1). For details, see [8, 13, 52, 60] and

references therein.
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Definition 2.2.5. (1) A vector x∗ ∈ domF is a locally optimal solution of problem (1.2.1)

if there exists a scalar R > 0 such that

F (x∗) ≤ F (x), ∀x ∈ {x | ∥x− x∗∥ ≤ R, x ∈ domF}.

Function value F (x∗) is called the local minimum of problem (1.2.1).

(2) A vector x∗ ∈ domF is a globally optimal solution of problem (1.2.1) if it holds that

F (x∗) ≤ F (x), ∀x ∈ domF.

Function value F (x∗) is called the global minimum of problem (1.2.1).

When problem (1.2.1) is a smooth problem, i.e, function ψ(x) = 0 for any x ∈ domF ,

we provide its first order necessary optimality condition as follows.

Theorem 2.2.1 ([8, Propositions 1.1.1 and 1.1.2]). Suppose that ψ(x) = 0 in problem (1.2.1)

for any x ∈ domF . If vector x∗ ∈ domF is a locally optimal solution, then we have

∇f(x∗) = 0.

Moreover, if function f is convex, then condition ∇f(x∗) = 0 is a necessary and sufficient

condition for a vector x∗ ∈ domF to be a globally optimal solution.

When problem (1.2.1) is a nonsmooth convex problem, its optimality condition can be

described as follows.

Theorem 2.2.2 ([52, Theorem 3.1.15], [12, Propositions 2.1.1 and 2.1.2]). Suppose that

problem (1.2.1) is a convex problem. A vector x∗ ∈ domF is a locally optimal solution of

problem (1.2.1) if and only if one of the following statements holds.

(1) 0 ∈ ∂F (x∗), i.e., vector 0 ∈ Rn is a subgradient of F at x∗.

(2) F ′(x∗; d) ≥ 0 holds for any d ∈ Rn, where F ′(x∗; d) is a direction derivative at the vector

x∗ with respect to the direction d ∈ Rn, i.e., F ′(x∗; d) := lim
t→0+

F (x∗ + td)− F (x∗)

t
.

The condition 0 ∈ ∂F (x∗) reduces to ∇f(x∗) = 0 if φ(x) = 0 for any x ∈ domF . When

problem (1.2.1) is a general nonconvex nonsmooth problem, the vector x∗ ∈ Rn satisfying

the condition in Theorem 2.2.2 (2) is referred to as a stationary point.

The next theorem states the optimality condition of the constrained nonsmooth convex

problem.

Theorem 2.2.3 ([8, Proposition B.24 (f)]). Let F : Rn → R in problem (1.2.1) be a convex

function. A vector x∗ ∈ domF minimizes F over a convex set Ω ⊆ Rn if and only if there

exists a subgradient η ∈ ∂F (x∗) such that

⟨η, x− x∗⟩ ≥ 0, ∀x ∈ Ω.
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2.2.4 Convergence rate and regret

In this subsection, we give several definitions on the convergence speed, such as the linear

convergence and the iteration complexity. Moreover, we give a precise definition of the online

optimization problem and the related definition regret. See [52, 56, 81] and references therein

for details.

Definition 2.2.6. Let {xr} be a sequence generated by an iterative method. Suppose that

the sequence {xr} converges to the vector x∗.

(1) The sequence {xr} is said to converge Q-linearly, if there exists a constant µ ∈ (0, 1)

such that

lim
r→∞

∥xr+1 − x∗∥
∥xr − x∗∥

= µ.

In this case, we also say that the iterative method has Q-linear convergence rate.

(2) The sequence {xr} is said to converge R-linearly, if there exist constants µ ∈ (0, 1) and

c > 0 such that

∥xr − x∗∥ ≤ cµr.

In this case, we also say that the iterative method has R-linear convergence rate.

Unless otherwise stated, “linear convergence” means the “Q-linear convergence” in this

thesis. The following theorem states the relation between the Q-linear and R-linear conver-

gence.

Theorem 2.2.4 ([56, Proposition 1.3]). If sequence {xr} converges Q-linearly, then it con-

verges R-linearly, but not vice versa.

The iteration complexity can be defined formally as follows.

Definition 2.2.7. Let {xr} be the sequence generated by an iterative method. Let F ∗ be

an optimal value and ε > 0 be an approximation accuracy. The global iteration complexity

bound of the iterative method is an iteration number r0 ≥ 1 such that, for any r > r0,

F (xr)− F ∗ ≤ ε.

We also say that the iterative method has r0 iteration complexity.

For example, if there exist constants c > 0 and p > 0 such that

F (xr)− F ∗ ≤ cr−
1
p ,
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by setting r0 = ( c
ε
)p, for any r ≥ r0, we have F (xr) − F ∗ ≤ ε. Hence, the corresponding

iterative method has ( c
ε
)p iteration complexity. For simplicity, we say that the iterative

method has O( 1
εp
) iteration complexity, or say that the sequence {F (xr)} converges to F ∗

with O( 1
εp
).

Next, we introduce the formal definition of the online optimization problem.

Definition 2.2.8 ([81]). An online convex optimization problem consists of a feasible set

Ω ⊆ Rn and an infinite sequence {F 1, F 2, . . . }, where F t : Ω → R is a convex function. At

each time step t, an algorithm selects a vector xt ∈ Ω. After the vector is selected, it receives

the loss function F t.

As mentioned in Chapter 1, for the online optimization problem, a primary concept is

the regret, which is defined as follows.

Definition 2.2.9. For the online optimization problem (1.2.2), for given T > 0, the regret,

denoted by R(T ), is defined by

R(T ) :=
T∑
t=1

F t(xt)−
T∑
t=1

F t(x∗), (2.2.4)

where {x1, . . . , xT} are decision vectors generated by an iterative method, and x∗ is an optimal

solution in some sense.

Note that the common selection of the optimal solution x∗ for the online problem is

x∗ ∈ argminx∈Ω
∑T

t=1 F
t(x) [81].

2.3 (Block) proximal gradient methods and related re-

sults

In this section, we take problem (1.2.1) as an example to introduce several existing versions

of the (block) proximal gradient methods with Bregman functions and the related results.

The (block) proximal gradient method with Bregman functions for the online problem (1.2.2)

can be described similarly.

First, we introduce the framework of the proximal gradient method with Bregman func-

tions without block for problem (1.2.1).
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Proximal gradient (PG) method with Bregman functions:

Step 0: Choose an initial point x0 ∈ intX and choose a kernel function η. Let r = 0.

Step 1: Solve the following subproblem and obtain a direction dr = dη(x
r).

dη(x
r) = argmin

d∈Rn

{⟨∇f(xr), d⟩+Bη(x
r + d, xr) + τψ(xr + d)} , (2.3.1)

Step 2: Choose a stepsize αr > 0. Set xr+1 = xr + αrdr and r = r + 1. Go to Step 1.

The most common and easy setting for the kernel η is the quadratic function 1
2
∥x∥2. The

following existing methods can be looked on as special cases of the above PG method.

(1) The gradient projection method, i.e., when function ψ(x) is an indicator function with

respect to a convex set X, the sequence {xr} is generated by

xr+1 = PX(x
r − αr∇f(xr)),

where PX is a projection operator, defined by PX(x) = argmin
u∈X

∥u− x∥22.

This method is included in the PG method with kernel η(x) = ∥x∥2.

(2) The soft-thresholding method, i.e., when function ψ(x) = ∥x∥1, the sequence {xr} is

generated by

xr+1 = Tαrτ (x
r − αr∇f(xr)),

where mapping Tαrτ : Rn → Rn is the soft-thresholding operator, defined as follows.

Tαrτ (u)i :=


ui − αrτ if ui ≥ αrτ,

0 if − αrτ ≤ ui ≤ αrτ,

ui + αrτ if ui ≤ −αrτ.

(2.3.2)

This method can be deduced from the above PG method with kernel η(x) = ∥x∥2.

(3) The exponentiated gradient method, i.e., when function ψ(x) is an indicator function

with respect to a simplex
∑n

i=1 xi = 1, xi ≥ 0, i = 1, . . . , n, the sequence {xr} is

generated by

xr+1
i =

xri e
−αr∇if(xr)∑n

i=1 x
r
i e

−αr∇if(xr)
.

This method is a special PG method with kernel η(x) =
∑n

i=1 xi lnxi.
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Note that in the case (1), subproblem (1.3.4) must be solved by an iterative solution

method. In the cases (2) and (3), subproblem (1.3.4) has a closed form solution (alternatively,

analytic solution).

Next, we introduce the existing block coordinate gradient descent method for problem

(1.2.1), which is proposed in [69]. The particular framework is described as follows.

Block coordinate gradient descent (BCGD) method:

Step 0: Choose an initial point x0 ∈ domF and let r = 0.

Step 1: Choose a nonempty Jr ⊆ {1, 2, . . . , n} and a symmetric matrix Hr ∈ Rn×n, Hr ≻ 0.

Step 2: Solve the following subproblem and obtain a direction dr = dηr(x
r).

dηr(x
r) = argmin

d∈Rn

{
⟨∇f(xr), d⟩+ 1

2
dTHrd+ τψ(xr + d)

∣∣∣ dJ̄r = 0

}
. (2.3.3)

Step 3: Choose a stepsize αr > 0. Set xr+1 = xr + αrdr and r = r + 1. Go to Step 1.

Note that matrix Hr ≻ 0 is usually chosen to be an approximation of the Hessian

∇2f(xr). This BCGD method is closely related to the PG method. If we choose kernel

ηr(x) = 1
2
xTHrx in the PG method, we have Bηr(x

r + d, xr) = 1
2
dTHrd. With different

matrix Hr, the directions dηr(x
r) in (2.3.3) are different. The following existing methods

can be regarded as special cases of this BCGD method.

(1) The Newton method, i.e., when function ψ(x) = 0 for any x ∈ dom f , the sequence {xr}
is generated by

xr+1 = xr − αr(∇2f(xr))−1∇f(xr).

This method can be regarded as a special case of the BCGD method with Hr = ∇2f(xr)

and Jr = {1, 2, . . . , n}.

(2) The regularized Newton method, i.e., when function ψ(x) = 0 for any x ∈ dom f , the

sequence {xr} is generated by

xr+1 = xr − αr(∇2f(xr) + µI)−1∇f(xr).

This method can be deduced from the BCGD method with Hr = ∇2f(xr) + µI and

Jr = {1, 2, . . . , n}.

In the existing works on the convergence of the (block) proximal gradient method, the

following lemma is necessary, which is called the “three-point property”.

Lemma 2.3.1 ([68, Property 1]). For any proper l.s.c. convex function φ : X → (−∞,∞]

and any z ∈ X, if

z+ := argmin
x∈X

{φ(x) + Bη(x, z)} ,
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where Bη(x, z) := η(x)− η(z)−⟨∇η(z), x− z⟩ and η : X → (−∞,∞] is differentiable at z+,

then

φ(x) +Bη(x, z) ≥ φ(z+) +Bη(z+, z) + Bη(x, z+),∀x ∈ X.

The existing results on the iteration complexity of (block) proximal gradient methods

are summarized in Table 2.1, where the constant N denotes the number of blocks, Lf is the

Lipschitz constant for ∇f , and ε is the approximation accuracy.

Table 2.1: The existing iteration complexity of the (block) proximal gradient methods

when f is convex or strongly convex

Method Complexity (convex) Complexity (strongly convex)

proximal gradient method[45] O(
Lf
ε
) O(log 1

ε
)

BCGD method [7, 50, 59, 70] O(
NLf
ε

) or O(
NLf
ε

log 1
ε
) O(N log 1

ε
)

2.4 Rules for choosing blocks

In this subsection, we introduce the rules to select a block for the block type method.

The following generalized Gauss-Seidel rule [69, 71] is an extension of the classical cycle

rule [41].

Generalized Gauss-Seidel rule: Choose {Jr} to satisfy the following condition.

There exists an integer B ≥ 1 such that J0, J1, . . . collectively cover the setN = {1, 2, . . . , n}
for every B consecutive iterations.

This rule implies that the index set Jr satisfies

Jr
∪

Jr+1
∪

· · ·
∪

Jr+B−1 = N ,∀r = 0, 1, . . . . (2.4.1)

Note that the blocks {Jr+j, j = 0, 1, . . . , B − 1} in the generalized Gauss-Seidel rule can be

overlapping.

The following restricted Gauss-Seidel rule [69] is a special case of the generalized Gauss-

Seidel rule.

Restricted Gauss-Seidel rule: Choose {Jr} to satisfy the following condition.

There exists a subsequence Γ ⊆ {0, 1, . . . } such that

0 ∈ Γ, N =
(
disjoint union of Jr, Jr+1, . . . , Jφ(r)−1

)
,∀r ∈ Γ, (2.4.2)

where φ(r) is defined as φ(r) := min{r′ ∈ Γ | r′ > r}.
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It is worth mentioning that the blocks {Jr+j, j = 0, 1, . . . , φ(r)−1, r ∈ Γ} in the restricted

Gauss-Seidel rule cannot be overlapping. Thus, if the convex function ψ in problem (1.2.1)

is block separable with respect to each block Jr, then ψ(xr) can be rewritten as

ψ(xr) =

φ(r)−1∑
i=r

ψJi(x
r
Ji), ∀r ∈ Γ. (2.4.3)

The following cyclic rule [41] is the simplest Gauss-Seidel rule, which is a special case of

the restricted Gauss-Seidel rule with φ(r) = r +N and Γ = {0, N, 2N, . . . }.

Cyclic rule: Let {J i, i = 1, . . . , N} be a partition of the set N = {1, . . . , n}. Choose blocks
in a cyclic order.

The Gauss-Southwell rule [69] is a general name for the Gauss-Southwell-r rule and the

Gauss-Southwell-q rule, which are described as follows.

Gauss-Southwell-r rule: Choose {Jr} to satisfy the following condition.

∥dDr(xr; Jr)∥∞ ≥ ν∥dDr(xr;N )∥∞,

where direction dDr(x
r; Jr) is defined by (1.3.7) with H = Dr ∈ Rn×n such that Dr is

diagonal with Dr ≻ 0 and constant ν ∈ (0, 1].

Gauss-Southwell-q rule: Choose {Jr} to satisfy the following condition.

qDr(x
r; Jr) ≥ νqDr(x

r;N ),

where value qH(x; J) is defined by

qH(x; J) :=
(
⟨∇f(x), d⟩+ 1

2
dTHd+ τψ(x+ d)

)
d=dH(x;J)

− τψ(x),

direction dH(x; J) is defined by (1.3.7), constant ν ∈ (0, 1], and matrixDr ∈ Rn×n is diagonal

with Dr ≻ 0.

Note that in the Gauss-Southwell-r rule and Gauss-Southwell-q rule, we need to compute

dDr(x
r;N ), which needs to solve an n-dimensional problem.

The random rule [59] is described as follows.

Random rule: Let {J i, i = 1, . . . , N} be a partition of set N = {1, . . . , n}, and let {pi, i =
1, . . . , N} be a set of probability vector such that, for any i ∈ {1, 2, . . . , N}, pi > 0, and
N∑
i=1

pi = 1. At each iteration, we choose a block J i ∈ {J 1,J 2, . . . ,J N} with probability pi.





Chapter 3

An inexact coordinate descent

method for the weighted l1-regularized

convex optimization problem

3.1 Introduction

In this chapter, we consider the following weighted l1-regularized convex optimization prob-

lem with box constraints.

minimize F (x) := g(Ax) + ⟨b, x⟩+
n∑
i=1

τi|xi|

subject to l ≤ x ≤ u,

(3.1.1)

where g : Rm → (−∞,∞] is a strictly convex and continuously differentiable function, A ∈
Rm×n and b ∈ Rn. Moreover, τ, l and u are n-dimensional vectors such that li ∈ [−∞,∞),

ui ∈ (−∞,∞], τi ∈ [0,∞) and li < ui for each i = 1, . . . , n. The nonnegative scalar constant

τi is called the weight and the term
∑n

i=1τi|xi| is called the l1-regularization function. For

convenience, we denote the differentiable term of F by f , that is, f(x) := g(Ax) + ⟨b, x⟩.
When li = −∞, ui = ∞ and τi = τ hold for any i = 1, 2, . . . , n, problem (3.1.1)

reduces to the unconstrained separable optimization problem (1.2.1). Additionally, it is

worth mentioning that problem (3.1.1) is a convex problem since function g is assumed to be

strictly convex. However, the optimal solutions are possibly not unique because the matrix

A may not have the full column rank.

As described in Subsection 1.2.3, the applications [29, 35, 55, 77] of problem (3.1.1)

typically have large scales, and the CD method [38, 43, 67, 72] is shown to be an efficient

method to solve it. Luo and Tseng [43] proved that it has global and linear convergence

for a smooth problem, that is, τi = 0 for all i. For more complicate regularization problem,

in 2001, Tseng [67] showed the global convergence of a block coordinate descent (BCD)
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method for minimizing a nondifferentiable function with certain separability. However, its

convergence rate is still unknown. Moreover, in the most of the existing works, we assume

that the exact minimizers of the subproblem can be found at each iteration in [67, 43]. It is

possible for the l1-l2 problem, while usually it is hard for the general l1-regularized convex

problem.

In order to improve the applicability of the CD method, some inexact CD methods are

proposed [11, 69, 74], such as the inexact block coordinate descent method [11], the coordi-

nate gradient descent (CGD) method [69] and the coordinate proximal point method [74].

The CGD method is executed with one step of the gradient method for the subproblem

of the CD method, while the method [74] exploits the proximal point method to find an

approximate solution. Thus they are regarded as the inexact CD methods. Bonettini [11]

proposed an inexact version of the CD method. He gave some appropriate conditions about

the inexactness of the solution for the subproblem, and has shown that the proposed method

with these conditions has global convergence. However, he only focused on a smooth op-

timization problem, i.e., τi = 0, for all i, and did not show the rate of convergence of the

proposed method.

In this chapter, we present a new inexact coordinate descent (ICD) method with a new

inexactness description, which is an extension of the result of Luo and Tseng [43]. In par-

ticular, we extend in the following three aspects.

• The smooth convex problem is extended to that with the l1-regularized function.

• At each iteration, we accept an inexact solution of the subproblem instead of the exact

solution.

• The linear convergence rate is proven for the nonsmooth problem.

Under the same assumptions in [43], we show that the proposed ICD method is not only

globally convergent but also with at least R-linear convergence rate under the almost cycle

rule (Theorem 3.4.2 in Section 3.4 for details).

This chapter is organized as follows. In Section 3.2, we derive optimality conditions for

problem (3.1.1) and also define ε-optimality conditions which are related to an inexact solu-

tion. In Section 3.3, we present a framework of the ICD method and make some assumptions

for the “inexact solutions”. The global convergence and linear convergence rate are estab-

lished in Section 3.4. In Section 3.5, we report some numerical experiments for the proposed

ICD method and show the comparison with the coordinate gradient descent (CGD) method

[69]. Finally, we conclude this chapter in Section 3.6.
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3.2 Preliminaries

Throughout the chapter, we make the following basic assumptions for problem (3.1.1).

Assumption 3.2.1. For problem (3.1.1), we assume that

(a) Aj is a nonzero vector for all j ∈ {1, 2, . . . , n}.

(b) li < 0 < ui for all i ∈ {1, 2, . . . , n}.

(c) The set of the optimal solutions, denoted by X∗, is nonempty.

(d) The effective domain of g, denoted by dom g, is nonempty and open.

(e) g is twice continuously differentiable on dom g.

(f) ∇2g(Ax∗) is positive definite for every optimal solution x∗ ∈ X∗.

We make a few remarks on these assumptions. In Part (a), if Aj is zero, then x
∗
j of the

optimal solution x∗ can be easily determined. Thus we can remove xj from problem (3.1.1).

Part (b) is just for simplification. If both li and ui are positive for some i ∈ {1, 2, . . . , n}, we
may replace xi, li and ui by x̄i +

li+ui
2

, li−ui
2

and ui−li
2

. Then problem (3.1.1) is reformulated

into the case without l1-regularized term for the index i. If g is strongly convex and twice

differentiable on dom g, then Parts (e) and (f) are satisfied automatically. For example,

a quadratic function, an exponential function, and even some complicate functions in the

l1-regularized logistic regression problem satisfy (e) and (f). Note that we do not assume

the boundedness of the optimal solution set X∗.

Next, we present some properties under Assumption 3.2.1 that are used in the subsequent

sections. From (e) and (f) in Assumption 3.2.1, there exists a sufficiently small closed

neighborhood B(Ax∗) of Ax∗ such that B(Ax∗) ⊆ dom g and ∇2g is positive definite in

B(Ax∗). Furthermore, it implies that g is strongly convex in B(Ax∗), i.e., there exists a

scalar µg > 0 such that

g(y)− g(z)− ⟨∇g(z), y − z⟩ ≥ µg
2
∥y − z∥2, ∀y, z ∈ B(Ax∗). (3.2.1)

3.2.1 Optimality conditions

The KKT conditions [60] for problem (3.1.1) are described as follows.

∇if(x) + τi∂|xi| − µi + νi ∋ 0,

xi ≥ li, µi ≥ 0, µi(xi − li) = 0,

xi ≤ ui, νi ≥ 0, νi(ui − xi) = 0,

i = 1, . . . , n, (3.2.2)
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where ∂| · | is the subdifferential of the absolute value function. Since problem (3.1.1) is

convex, x satisfying (3.2.2) is an optimal solution of problem (3.1.1). The KKT conditions

(3.2.2) can be rewritten as follows.

Lemma 3.2.1. A vector x is an optimal solution of problem (3.1.1) if and only if one of

the following statements holds for each i ∈ {1, . . . , n}.

(i) ∇if(x) ≥ τi and xi = li.

(ii) ∇if(x) = τi and li ≤ xi ≤ 0.

(iii) |∇if(x)| ≤ τi and xi = 0.

(iv) ∇if(x) = −τi and 0 ≤ xi ≤ ui.

(v) ∇if(x) ≤ −τi and xi = ui.

Next, we represent these conditions as a fixed point of some operator. To this end, we first

use the soft-thresholding operator, given in Section 2.3, to define a mapping Tτ : Rn → Rn

as

Tτ (x)i := (|xi| − τi)+sgn(xi), (3.2.3)

where the scalar function (a)+ is defined by (a)+ := max(0, a), and sgn(a) is a sign function

defined as follows.

sgn(a) :=


−1 if a < 0,

0 if a = 0,

1 if a > 0.

It can be verified that mapping Tτ is nonexpansive, i.e., ∥Tτ (y)− Tτ (z)∥ ≤ ∥y − z∥, for any
y, z ∈ domF .

Let [x]+[l,u] denote the orthogonal projection of a vector x onto the box [l, u]. This projec-

tion is also nonexpansive and its i-th coordinate can be written as [xi]
+
[li,ui]

:= mid{xi, li, ui},
where mid{xi, li, ui} is defined by mid{xi, li, ui} := max{li,min{ui, xi}}.

By using the mappings Tτ and [·]+[l,u], we define a mapping Pτ,l,u(x) : Rn → Rn by

Pτ,l,u(x) := [Tτ (x−∇f(x))]+[l,u]. (3.2.4)

Since [x]+[l,u] and Tτ are nonexpansive, we have that

∥Pτ,l,u(y)− Pτ,l,u(z)∥ ≤ ∥y − z −∇f(y) +∇f(z)∥, ∀y, z ∈ domF. (3.2.5)

Now, the optimal solutions can be described as a fixed point of the mapping Pτ,l,u.
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Theorem 3.2.1. For problem (3.1.1), a vector x belongs to the optimal solution set X∗ if

and only if x = Pτ,l,u(x), i.e., X
∗ = {x| x ∈ dom g, x = Pτ,l,u(x)}.

Proof. This theorem is a direct consequence of Theorem 3.2.2 that will be shown in

Subsection 2.2.

Since the solution set X∗ is not necessarily bounded, the level set of F may not be

bounded. Nevertheless, as an extension of [43, Lemma 3.3], we can show the compactness

of the set Ω(ζ) := {t| t = Ax, F (x) ≤ ζ, x ∈ [l, u]}.

Lemma 3.2.2. For a given constant value ζ, the set Ω(ζ) is a compact subset of dom g.

Proof. The l1-regularized convex problem (3.1.1) can be transformed into a smooth

optimization problem with box constraints.

minimize
x+, x−∈Rn

F̄ (x+, x−) := g(Ax+ − Ax−) + ⟨b, x+ − x−⟩+
n∑
i=1

τi(x
+
i + x−i )

subject to 0 ≤ x+i ≤ ui, i = 1, . . . , n,

0 ≤ x−i ≤ |li|, i = 1, . . . , n.

(3.2.6)

Note that if (x+, x−) is feasible for problem (3.2.6), then x = x+ − x− is also feasible for

problem (3.1.1) due to l ≤ x ≤ u.

Let Ω̄(ζ) be defined as follows.

Ω̄(ζ) := {Ax+ − Ax−| F̄ (x+, x−) ≤ ζ, x+ ∈ [0, u], x− ∈ [0, |l|]}
= {Ax| x = x+ − x−, F̄ (x+, x−) ≤ ζ, x+ ∈ [0, u], x− ∈ [0, |l|]},

where |l| = (|l1|, . . . , |ln|)T . Then Ω̄(ζ) is a compact set of dom g from Appendix in [43].

In the rest part, we only need to show Ω̄(ζ) = Ω(ζ). In fact, for every t ∈ Ω̄(ζ), there

exists (x, x+, x−) such that t = Ax, x = x+−x−, F̄ (x+, x−) ≤ ζ, x+ ∈ [0, u], and x− ∈ [0, |l|].
Then we have x ∈ [l, u] and ζ ≥ F̄ (x+, x−) ≥ F (x). It further implies that t ∈ Ω(ζ), i.e.,

Ω̄(ζ) ⊆ Ω(ζ).

Conversely, for every t ∈ Ω(ζ), there exists a vector x such that t = Ax, F (x) ≤ ζ, and

x ∈ [l, u]. Let x+i := max{xi, 0} and x−i := max{−xi, 0} for each i = 1, . . . , n. Then we have

x+ ∈ [0, u], x− ∈ [0, |l|], x = x+ − x−, and F̄ (x+, x−) = F (x). Therefore, we deduce that

t ∈ Ω̄(ζ), which implies that Ω(ζ) ⊆ Ω̄(ζ). Consequently, the relation Ω̄(ζ) = Ω(ζ) holds.

Next, we show that ∇g is Lipschitz continuous on some compact set including Ω(ζ). For

this purpose, we define a set Ω(ζ) + B(ϵ0) as Ω(ζ) + B(ϵ0) := {p + v| p ∈ Ω(ζ), ∥v∥ ≤ ϵ0},
where ϵ0 is a positive constant. It is easy to see that the set Ω(ζ) +B(ϵ0) is compact.
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Lemma 3.2.3. There exist constants Lg > 0 and ϵ0 > 0 such that Ω(ζ) + B(ϵ0) ⊆ dom g

and ∥∇g(y)−∇g(z)∥ ≤ Lg∥y − z∥ for all y, z ∈ Ω(ζ) +B(ϵ0).

Proof. Since set Ω(ζ) is closed from Lemma 3.2.2 and dom g is open, there exists a

positive constant ϵ0 such that Ω(ζ) +B(ϵ0) ⊆ dom g. Furthermore, since g is twice continu-

ously differentiable on dom g, and Ω(ζ)+B(ϵ0) is compact, we have that ∇2g(x) is bounded

in Ω(ζ) + B(ϵ0), that is, there exists a constant Lg > 0 such that ∥∇2g(x)∥ ≤ Lg for all

x ∈ Ω(ζ) +B(ϵ0). Then, this lemma holds from the mean value theorem.

Similar to [44, Lemma 2.1], we can prove the following invariant property of the optimal

solution set X∗. For simplicity, we omit the proof here.

Lemma 3.2.4. For any x∗, y∗ ∈ X∗, we have Ax∗ = Ay∗.

3.2.2 ε-optimality conditions

In this subsection, we give a definition of the relaxed optimality conditions, and show a

relation between the conditions and the mapping Pτ,l,u.

Definition 3.2.1. We say that the ε-optimality conditions for problem (3.1.1) hold at x if

one of the following statements holds for each i.

(i) ∇if(x)− τi ≥ −ε and |xi − li| ≤ ε.

(ii) |∇if(x)− τi| ≤ ε and li − ε ≤ xi ≤ ε.

(iii) |∇if(x)| ≤ τi + ε and |xi| ≤ ε.

(iv) |∇if(x) + τi| ≤ ε and −ε ≤ xi ≤ ui + ε.

(v) ∇if(x) + τi ≤ ε and |xi − ui| ≤ ε.

Definition 3.2.2. We say that x is an ε-approximate solution of problem (3.1.1) if the

ε-optimality conditions hold at x.

Note that the optimality conditions in Lemma 3.2.1 can be obtained by Definition 3.2.1

with ε = 0.

For convenience, we define the following five index sets.

J1(x, ε) := {i| ∇if(x)− τi ≥ −ε, |xi − li| ≤ ε};
J2(x, ε) := {i| |∇if(x)− τi| ≤ ε, li − ε ≤ xi ≤ ε};
J3(x, ε) := {i| |∇if(x)| ≤ τi + ε, |xi| ≤ ε};
J4(x, ε) := {i| |∇if(x) + τi| ≤ ε,−ε ≤ xi ≤ ui + ε};
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J5(x, ε) := {i| ∇if(x) + τi ≤ ε, |xi − ui| ≤ ε}.

Then the ε-optimality conditions hold at x if and only if
∪5
i=1 Ji(x, ε) = {1, 2, . . . , n}.

Throughout the chapter, for simplicity, we assume that

ε <
1

2
min

i=1,...,n
{−li, ui}. (3.2.7)

The next theorem gives an equivalent description of the ε-optimality conditions, which

will be used for constructing an inexact CD method and investigating its convergence prop-

erties.

Theorem 3.2.2. The ε-optimality conditions hold at x if and only if |xi − Pτ,l,u(x)i| ≤ ε

holds for each i ∈ {1, 2, . . . , n}.

Proof. By the definitions of Tτ (x) and Pτ,l,u(x) in (3.2.3) and (3.2.4), we have that

|xi − Pτ,l,u(x)i| = |xi −mid{li, ui,max {0, |xi −∇if(x)| − τi}sgn(xi −∇if(x))}|

=



|xi − li| if xi −∇if(x) ∈ (−∞, li − τi],

|∇if(x)− τi| if xi −∇if(x) ∈ (li − τi,−τi],

|xi| if xi −∇if(x) ∈ (−τi, τi],

|∇if(x) + τi| if xi −∇if(x) ∈ (τi, ui + τi],

|xi − ui| if xi −∇if(x) ∈ (ui + τi,∞).

(3.2.8)

We firstly consider the “ if ” part of this theorem. It is sufficient to show that if |xi −
Pτ,l,u(x)i| ≤ ε holds for each i ∈ {1, 2, . . . , n}, then for each i ∈ {1, 2, . . . , n} there exists a

j ∈ {1, 2, . . . , 5} such that i ∈ Jj(x, ε). We can prove this according to the distinct cases in

(3.2.8). If xi−∇if(x) ∈ (−∞, li−τi], then it follows from |xi−Pτ,l,u(x)i| ≤ ε and (3.2.8) that

|xi−Pτ,l,u(x)i| = |xi−li| ≤ ε, that is, xi−li ≥ −ε. Moreover, since xi−∇if(x) ∈ (−∞, li−τi]
implies that ∇if(x)− τi ≥ xi − li, we have ∇if(x)− τi ≥ −ε. Therefore, i ∈ J1(x, ε) holds.

Similarly, we can show that if xi − ∇if(x) is located in other intervals, the corresponding

results also hold.

Conversely, suppose that x is an ε-approximate solution, i.e., for each i ∈ {1, 2, . . . , n},
there exists a j ∈ {1, 2, . . . , 5} such that i ∈ Jj(x, ε). Thus, it is sufficient to show that for

each i and j such that i ∈ Jj(x, ε), the inequality |xi − Pτ,l,u(x)i| ≤ ε holds.

Case 1: i ∈ J1(x, ε) or i ∈ J5(x, ε). First suppose that i ∈ J1(x, ε). Then we have

∇if(x)− τi ≥ −ε and |xi − li| ≤ ε. (3.2.9)

They imply that xi−∇if(x) ≤ li−τi+2ε. It then follows from (3.2.7) that xi−∇if(x) ∈
(−∞,−τi). Thus, we focus on (3.2.8) in two intervals (−∞, li− τi] and (li− τi,−τi]. If
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xi−∇if(x) ∈ (−∞, li−τi], it follows from (3.2.8) that |xi−Pτ,l,u(x)i| = |xi− li|. Then
the inequality |xi − Pτ,l,u(x)i| ≤ ε holds due to (3.2.9). If xi −∇if(x) ∈ (li − τi,−τi],
then we have ∇if(x)− τi < xi− li and |xi−Pτ,l,u(x)i| = |∇if(x)− τi| , which together

with (3.2.9) imply |xi−Pτ,l,u(x)i| ≤ ε. A symmetric argument can prove the case with

i ∈ J5(x, ε).

Case 2: i ∈ J2(x, ε) or i ∈ J4(x, ε). First suppose that i ∈ J2(x, ε). Then we have

|∇if(x)− τi| ≤ ε and li − ε ≤ xi ≤ ε. (3.2.10)

We obtain −τi − ε ≤ −∇if(x) ≤ ε − τi from the first inequality. Adding these

inequalities and the second inequalities of (3.2.10), we have li−τi−2ε ≤ xi−∇if(x) ≤
2ε − τi. With the assumption (3.2.7) on ε, we have xi − ∇if(x) ∈ [li − τi − 2ε, ui).

Now we show |xi − Pτ,l,u(x)i| ≤ ε from (3.2.8) and (3.2.10) by dividing the interval

[li − τi − 2ε, ui) into [li − τi − 2ε, li − τi], (li − τi,−τi], (−τi, τi] and (τi, ui).

(i) If xi −∇if(x) ∈ (li − τi − 2ε, li − τi], it follows from (3.2.8) that |xi − Pτ,l,u(x)i| =
|xi−li|. Meanwhile, we obtain xi−li ≤ ∇if(x)−τi. Then we have xi−li ≤ ε from

the first inequality in (3.2.10). On the other hand, we have xi− li ≥ −ε from the

inequalities li − ε ≤ xi ≤ ε in (3.2.10). Hence, the inequality |xi − Pτ,l,u(x)i| ≤ ε

holds.

(ii) If xi−∇if(x) ∈ (li− τi,−τi], then the inequality |xi−Pτ,l,u(x)i| ≤ ε holds due to

(3.2.8) and (3.2.10).

(iii) If xi−∇if(x) ∈ (−τi, τi], then we have |xi−Pτ,l,u(x)i| = |xi| by (3.2.8). Moreover,

it yields xi ≥ ∇if(x) − τi. It then follows from the inequality |∇if(x) − τi| ≤ ε

in (3.2.10) that xi ≥ −ε. Furthermore, we have xi ≤ ε from (3.2.10). Hence,

|xi − Pτ,l,u(x)i| = |xi| ≤ ε.

(iv) If xi − ∇if(x) ∈ [τi, ui], we have |xi − Pτ,l,u(x)i| = |∇if(x) + τi| from (3.2.8).

Thus, |xi − Pτ,l,u(x)i| ≤ ε is equivalent to −τi − ε ≤ ∇if(x) ≤ ε − τi. First,

we have ∇if(x) ≤ xi − τi ≤ ε − τi, where the first inequality follows from the

assumption xi−∇if(x) ∈ [τi, ui], and the second inequality follows from (3.2.10).

Next, we obtain ∇if(x) ≥ −ε + τi ≥ −ε − τi, where the first inequality follows

from (3.2.10), and the second inequality holds due to τi ≥ 0.

In the case where i ∈ J4(x, ε), a similar analysis shows |xi − Pτ,l,u(x)i| ≤ ε.

Case 3: i ∈ J3(x, ε). Then we have

|∇if(x)| ≤ τi + ε and |xi| ≤ ε. (3.2.11)
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These inequalities imply −τi−2ε ≤ xi−∇if(x) ≤ τi+2ε.Moreover, we have by (3.2.7)

that li − τi < xi − ∇if(x) < ui + τi. Then we prove |xi − Pτ,l,u(x)i| ≤ ε by dividing

the interval (li− τi, ui+ τi) into the following three intervals: (li− τi,−τi], (−τi, τi] and
(τi, ui + τi).

(i) If li − τi ≤ xi −∇if(x) ≤ −τi, then we have |xi − Pτ,l,u(x)i| = |∇if(x)− τi| from
(3.2.8). Thus, |xi − Pτ,l,u(x)i| ≤ ε is equivalent to τi − ε ≤ ∇if(x) ≤ τi + ε. We

first have τi − ε ≤ ∇if(x) from (3.2.11) and the ineqaulity xi − ∇if(x) ≤ −τi.
Next, we have ∇if(x) ≤ τi + ε since the inequality |∇if(x)| ≤ τi + ε in (3.2.11)

holds.

(ii) If −τi < xi − ∇if(x) ≤ τi, then we have |xi − Pτ,l,u(x)i| = |xi| from (3.2.8). It

then follows from (3.2.11) that |xi − Pτ,l,u(x)i| ≤ ε.

(iii) If τi ≤ xi −∇if(x) ≤ τi + ui, then we have |xi − Pτ,l,u(x)i| = |∇if(x) + τi| from
(3.2.8). Meanwhile, ∇if(x) ≤ xi − τi holds. Then the inequality ∇if(x) ≤ ε− τi

holds due to xi ≤ ε in (3.2.11). Moreover, we have ∇if(x) ≥ −τi − ε by (3.2.11).

Hence the inequality |xi − Pτ,l,u(x)i| ≤ ε holds.

Upon the preceding proof, the necessary condition of this theorem is confirmed.

3.3 Inexact coordinate descent (ICD) method

In this section, we first present a framework for the ICD method, and then give some

assumptions for the “inexact solutions”.

A general framework of the ICD method can be described as follows.

Inexact coordinate descent (ICD) method:

Step 0: Choose an initial point x0 ∈ [l, u] and let r = 0.

Step 1: If some termination condition holds, then stop.

Step 2: Choose an index i(r) ∈ {1, . . . , n}, and get an approximate solution xr+1
i(r) of the

following one dimensional subproblem:

minimize
xi(r)∈{li(r)≤xi(r)≤ui(r)}

F (xr1, x
r
2, . . . , x

r
i(r)−1, xi(r), x

r
i(r)+1, . . . , x

r
n). (3.3.1)

Step 3: Set xr+1
j = xrj for all j ∈ {1, . . . , n} such that j ̸= i(r), and let r = r + 1. Go to

Step 1.

Note that the exact solution of the subproblem (3.3.1) is unique from Assumption 3.2.1(a)

and the strict convexity of g. We use the notation i(r) for the index chosen at the r-th

iteration. For simplicity, we use i instead of i(r) when i(r) is clear from the context.
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For the global convergence of the ICD method, it is important to define the inexactness

of the approximate solutions of the subproblem (3.3.1) and to choose an appropriate index

i(r) in Step 2.

For the inexactness, we require the following assumptions.

Assumption 3.3.1. We assume that the following statements hold:

(i) F (xr1, x
r
2, . . . , x

r
i−1, x

r+1
i , xri+1, . . . , x

r
n) ≤ min

xi∈{li,0,ui,xri }
F (xr1, x

r
2, . . . , x

r
i−1, xi, x

r
i+1, . . . , x

r
n).

(ii) xr+1
i is feasible, i.e., xr+1

i ∈ [li, ui].

(iii) xr+1
i is an εr+1-approximate solution of the subproblem (3.3.1).

(iv) Conditions on εr+1: εr+1 ≤ min{δr, αr|xr+1
i −xri |, εr}, where {δr} is a monotonically

decreasing sequence such that lim
r→∞

δr = 0, and αr ∈ [0, ᾱ] holds with a positive constant

ᾱ.

(v) Conditions on αr: αr <
µgmin

j
∥Aj∥2

2Lgmax
j

∥Aj∥2 + 2
holds for sufficiently large r, where µg is

a positive constant defined in (3.2.1), and Lg is the Lipschitz constant of ∇g given in

Lemma 3.2.3.

Here we make a simple explanation. Part (i) enforces not only that {F (xr)} is decreasing

but also that {F (xr+1)} is less than F (xr1, x
r
2, . . . , x

r
i−1, xi, x

r
i+1, . . . , x

r
n) at the point where F

is nonsmooth. This condition is easy to check when computing. It also plays a key role for

the convergence of {xr} when the objective function is not differentiable. In Part (iii), recall

that the ε-optimality conditions for the one dimensional subproblem (3.3.1) is that one of

(i)-(v) in Definition 3.2.1 holds at xi(r). The assumptions (i)-(iv) are necessary for the global

convergence while the assumption (v) on αr is used to guarantee the linear convergence rate

of {xr}.
Note that if we obtain the exact solution of the subproblem (3.3.1) at each iteration, then

the sequence {xr} satisfies Assumption 3.3.1 automatically. Hence, the classical CD method

is a special case of the ICD method.

For the choice of the coordinate i(r) in Step 2, we adopt the “generalized Gauss-Seidel

rule” [69, 71] with |Jr| = 1, r = 1, 2, . . . , which is precisely defined in Section 2.4. For

simplicity, in this chapter, we call it the “almost cyclic rule”, which is described as follows.

Almost cyclic rule:

There exists an integer B ≥ n, such that every coordinate is iterated upon at least once

every B successive iterations.

In the next section, we will show the ICD method with the almost cycle rule converges

R-linearly to a solution under Assumptions 3.2.1 and 3.3.1.
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3.4 Global and linear convergence

In this section, we show the global and linear convergence of the ICD method. Compared

with the classical exact CD method, the ICD method has many “inexact” factors. Thus we

need some preparations.

First of all, we illustrate a brief outline of the proof.

(1) lim
r→∞

{xr+1 − xr} = 0. (Lemma 3.4.3)

(2) Axr → Ax∗, where x∗ is one of the optimal solutions. (Theorem 3.4.1)

(3) Sufficient decreasing: F (xr) − F (xr+1) ≥ η∥xr − xr+1∥2 for some positive constant η.

(Lemma 3.4.8)

(4) Error bound: ∥Axr − Ax∗∥ ≤ κ∥xr − Pτ,l,u(x
r)∥ for some κ. (Lemma 3.4.9)

(5) Linear convergence. (Theorems 3.4.2 and 4.5.2)

Note that since it is not necessary for the matrix A to have full column rank, Axr → Ax∗

(Theorem 3.4.1) does not imply xr → x∗.

For convenience, we define two vectors x̃r+1 and xr+1 as follows.

x̃r+1 := (xr1, x
r
2, . . . , x

r
i(r)−1, x̃

r+1
i(r) , x

r
i(r)+1, . . . , x

r
n), (3.4.1)

and

xr+1 := (xr1, x
r
2, . . . , x

r
i(r)−1, x

r+1
i(r) , x

r
i(r)+1, . . . , x

r
n), (3.4.2)

where xr+1
i(r) and x̃r+1

i(r) are an εr+1-approximate solution and the exact solution of the sub-

problem (3.3.1), respectively.

In the first part of this section, we show lim
r→∞

{F (x̃r)− F (xr)} = 0 and lim
r→∞

{xr+1 − xr} = 0.

To this end, we need the following function hi : Rn ×Rn → R and Lemma 3.4.1.

hi(y, z) := ∇if(z)(yi − zi) + τi(|yi| − |zi|)

=


(∇if(z) + τi)(yi − zi) if yi ≥ 0, zi ≥ 0,

∇if(z)(yi − zi) + τi(yi + zi) if yi ≥ 0, zi ≤ 0,

∇if(z)(yi − zi) + τi(−yi − zi) if yi ≤ 0, zi ≥ 0,

(∇if(z)− τi)(yi − zi) if yi ≤ 0, zi ≤ 0.

(3.4.3)

Lemma 3.4.1. There exists a positive constant M such that |xr+1
i(r) − x̃r+1

i(r) | ≤
2M

∥Ai(r)∥
for all

r.
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Proof. By lemma 3.2.2, we have that the set Ω(F (x0)) is compact. Since {Axr+1},
{Ax̃r+1} ⊆ Ω(F (x0)) holds, we further obtain that {Axr+1} and {Ax̃r+1} are bounded, that

is, there exists a constant M > 0 such that ∥Axr+1∥, ∥Axr∥ ≤ M for all r. Then we deduce

∥Ai(r)∥|xr+1
i(r) − x̃r+1

i(r) | = ∥Axr+1 − Ax̃r+1∥ ≤ ∥Axr+1∥+ ∥Ax̃r+1∥ ≤ 2M,

which implies the conclusion since Ai is nonzero for all i.

Lemma 3.4.2. lim
r→∞

{F (x̃r)− F (xr)} = 0.

Proof. Since x̃r+1
i(r) is the exact solution of subproblem (3.3.1), the inequality

F (x̃r+1)− F (xr+1) ≤ 0 (3.4.4)

always holds. On the other hand, by the convexity of f , we have

F (x̃r+1)− F (xr+1) ≥ ∇i(r)f(x
r+1)(x̃r+1

i(r) − xr+1
i(r) ) + τi(r)(|x̃r+1

i(r) | − |xr+1
i(r) |)

= hi(r)(x̃
r+1, xr+1).

(3.4.5)

Let index sets ZA and ZB be defined by

ZA := {r| |x̃ri(r) − xri(r)| ≤ εr}, ZB := {r| |x̃ri(r) − xri(r)| > εr},

respectively. First we consider the subsequence {xr+1}ZA of {xr}. Since {Axr} is bounded,

{∇f(xr)} is also bounded from the continuity of ∇g. It then follows from (3.4.4), (3.4.5)

and εr+1 → 0 that lim
r→∞, r∈ZA

{F (x̃r+1)− F (xr+1)} = 0.

Next we consider the subsequence {xr+1}ZB . We will show the following inequality

hi(r)(x̃
r+1, xr+1) ≥ −Pεr+1,∀ r + 1 ∈ ZB (3.4.6)

holds, where P = 2M
∥Ai(r)∥

+2τi(r)+2εr+1. Then it is easy to show lim
r→∞, r∈ZB

{F (x̃r+1)− F (xr+1)} = 0

from (3.4.4), (3.4.5), (3.4.6) and εr → 0.

Recall that xr+1
i(r) is an εr+1-approximate solution of the subproblem (3.3.1), i.e., there

exists a j ∈ {1, 2, . . . , 5} such that i(r) ∈ Jj(x
r+1, εr+1). Suppose that r + 1 ∈ ZB. In

the rest part, we show that (3.4.6) holds for i(r) ∈ Jj(x
r+1, εr+1), j ∈ {1, 2, . . . , 5}. For

simplicity, we only show the cases i(r) ∈ Jj(x
r+1, εr+1), j ∈ {1, 2, 3}. The cases j ∈ {4, 5}

can be deduced in a similar way.

Case 1: i(r) ∈ J1(x
r+1, εr+1). We have ∇i(r)f(x

r+1)−τi(r) ≥ −εr+1 and |xr+1
i(r) − li(r)| ≤ εr+1.

Since εr+1 ≤ 1

2
min{−li(r), ui(r)}, the inequality xr+1

i(r) < 0 holds.
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(a) If x̃r+1
i(r) ≥ 0, then it follows from (3.4.3), Lemma 3.4.1 and ∇i(r)f(x

r+1) − τi(r) ≥
−εr+1 that

hi(r)(x̃
r+1, xr+1) = (∇i(r)f(x

r+1) + τi(r))x̃
r+1
i(r) − (∇i(r)f(x

r+1)− τi(r))x
r+1
i(r)

≥ (2τi(r) − εr+1)x̃r+1
i(r) − xr+1

i(r) (−ε
r+1)

≥ − εr+1(x̃r+1
i(r) − xr+1

i(r) )

≥ − εr+1 2M
∥Ai(r)∥

.

(b) If x̃r+1
i(r) < 0, then x̃r+1

i(r) − xr+1
i(r) > 0 holds by |xr+1

i(r) − li(r)| ≤ εr+1 and r + 1 ∈ ZB.

We further have hi(r)(x̃
r+1, xr+1) = (∇i(r)f(x

r+1) − τi(r))(x̃
r+1
i(r) − xr+1

i(r) ) ≥ −εr+1 2M
∥Ai(r)∥

from (3.4.3), ∇i(r)f(x
r+1)− τi(r) ≥ −εr+1 and Lemma 3.4.1. Therefore, the inequality

(3.4.6) holds when i(r) ∈ J1(x
r+1, εr+1).

Case 2: i(r) ∈ J2(x
r+1, εr+1). We have |∇i(r)f(x

r+1)−τi(r)| ≤ εr+1 and li(r)−εr+1 ≤ xr+1
i(r) ≤

εr+1. Now,

hi(r)(x̃
r+1, xr+1) = (∇i(r)f(x

r+1)− τi(r))(x̃
r+1
i(r) − xr+1

i(r) ) + T (xr+1
i(r) , x̃

r+1
i(r) , τi(r)), (3.4.7)

where

T (xr+1
i(r) , x̃

r+1
i(r) , τi(r)) := τi(r)

(
x̃r+1
i(r) + |x̃r+1

i(r) | − xr+1
i(r) − |xr+1

i(r) |
)

=



0 if x̃r+1
i(r) ≤ 0, xr+1

i(r) ≤ 0,

2τi(r)x̃
r+1
i(r) if 0 < x̃r+1

i(r) , x
r+1
i(r) ≤ 0,

−2τi(r)x
r+1
i(r) if x̃r+1

i(r) ≤ 0, 0 < xr+1
i(r) ,

2τi(r)

(
x̃r+1
i(r) − xr+1

i(r)

)
if 0 < x̃r+1

i(r) , 0 < xr+1
i(r) .

(3.4.8)

Suppose first that one of x̃r+1
i(r) and x

r+1
i(r) is nonpositive. It is easy to see that T (x

r+1
i(r) , x̃

r+1
i(r) , τi(r))

is no less than −2τi(r)ε
r+1. It then follows from |∇i(r)f(x

r+1) − τi(r)| ≤ εr+1, Lemma

3.4.1 and (3.4.7) that

hi(r)(x̃
r+1, xr+1) ≥ −εr+1(

2M
∥Ai(r)∥

+ 2τi(r)).

Next suppose that both x̃r+1
i(r) and xr+1

i(r) are positive. Then

hi(r)(x̃
r+1, xr+1) = (∇i(r)f(x

r+1) + τi(r))x̃
r+1
i(r) − xr+1

i(r) (∇i(r)f(x
r+1) + τi(r))

≥ (2τi − εr+1)x̃r+1
i(r) − xr+1

i(r) (2τi(r) + εr+1)

≥ − εr+1(
2M

∥Ai(r)∥
+ xr+1

i(r) )− xr+1
i(r) (2τi(r) + εr+1)
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≥ − (
2M

∥Ai(r)∥
+ 2τi(r) + 2εr+1)εr+1,

where the first inequality follows from |∇i(r)f(x
r+1) − τi(r)| ≤ εr+1, x̃r+1

i(r) > 0 and

xr+1
i(r) > 0, the second inequality follows from x̃r+1

i(r) > 0 and Lemma 3.4.1, and the last

inequality follows from 0 ≤ xr+1
i(r) ≤ εr+1. Thus, the inequality (3.4.6) is confirmed.

Case 3: i(r) ∈ J3(x
r+1, εr+1). We have |∇i(r)f(x

r+1)| ≤ τi(r)+ε
r+1 and |xr+1

i(r) | ≤ εr+1. More-

over, we deduce ∇i(r)f(x
r+1)+ τi(r) ∈ [−εr+1, 2τi+ ε

r+1] from the first inequality. Next

we only show that the inequality (3.4.6) holds when 0 ≤ xr+1
i(r) ≤ εr+1. A symmetric

argument can prove the case −εr+1 ≤ xr+1
i(r) ≤ 0.

(a) Suppose that x̃r+1
i(r) ≥ 0. If ∇if(x

r+1)+τi(r) ∈ [−εr+1, 0), then we have from Lemma

3.4.1 that

hi(r)(x̃
r+1, xr+1) = (∇i(r)f(x

r+1) + τi(r))(x̃
r+1
i(r) − xr+1

i(r) )

≥ − |∇i(r)f(x
r+1) + τi(r)||x̃r+1

i(r) − xr+1
i(r) |

≥ − εr+1 2M
∥Ai(r)∥

.

If ∇if(x
r+1) + τi(r) ∈ [0, 2τi(r) + εr+1], then x̃r+1

i(r) (∇i(r)f(x
r+1) + τi(r)) ≥ 0. Since

0 ≤ xr+1
i(r) ≤ εr+1, we have

hi(r)(x̃
r+1, xr+1) = x̃r+1

i(r) (∇i(r)f(x
r+1) + τi(r))− xr+1

i(r) (∇i(r)f(x
r+1) + τi(r))

≥ − εr+1(εr+1 + 2τi(r)).

(b) Suppose that x̃r+1
i(r) < 0. Then it follows from |∇i(r)f(x

r+1)| ≤ τi(r) + εr+1, 0 ≤
xr+1
i(r) ≤ εr+1 and Lemma 3.4.1 that

hi(r)(x̃
r+1, xr+1) = (∇i(r)f(x

r+1)− τi(r))x̃
r+1
i(r) − xr+1

i(r) (∇if(x
r+1) + τi(r))

≥ εr+1x̃r+1
i(r) − xr+1

i(r) (2τi(r) + εr+1)

= εr+1(x̃r+1
i(r) − xr+1

i(r) )− 2τi(r)x
r+1
i(r)

≥ − εr+1

(
2M

∥Ai(r)∥
+ 2τi(r)

)
.

It is clear that hi(r)(x̃
r+1, xr+1) in both cases (a) and (b) satisfies (3.4.6).

Using the above lemmas, we can show that {xr+1 − xr} converges to 0.

Lemma 3.4.3. For the sequence {xr} generated by the ICD method, we have lim
r→∞

{xr+1 − xr} = 0.
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Proof. We argue it by contradiction. Suppose that xr+1−xr 9 0. Then there exists at

least one coordinate i ∈ {1, 2, . . . , n}, a scalar γ > 0 and an infinite subset Z̃ of nonnegative

integers such that |xr+1
i − xri | ≥ γ for all r ∈ Z̃. Since γ > 0, the index i is the index i(r)

chosen in Step 2 of the ICD method at the r-th step. Therefore, for any j ̸= i(r), we have

xr+1
j = xrj , which together with the assumption |xr+1

i(r) − xri(r)| ≥ γ implies that

∥A(xr+1 − xr)∥ = ∥Ai(r)∥|xr+1
i(r) − xri(r)| ≥ ∥Ai(r)∥γ, ∀r ∈ Z̃. (3.4.9)

Since {Axr} is bounded, there exist t1,∞, t2,∞ ∈ Rn and an infinite set H ⊆ Z̃ such that

lim
r→∞, r∈H

Axr = t1,∞, lim
r→∞, r∈H

Axr+1 = t2,∞. (3.4.10)

Note that t1,∞ ̸= t2,∞ due to (3.4.9). It then follows from the continuity of g on Ω(F (x0))

and (3.4.10) that

lim
r→∞, r∈H

g(Axr) = g(t1,∞), lim
r→∞, r∈H

g(Axr+1) = g(t2,∞). (3.4.11)

Since F (xr) is monotonically decreasing from Assumption 3.3.1(i) and F (xr) ≥ F (x∗)

holds for any optimal solution x∗, the sequence {F (xr)} is convergent. Let F∞ be its limit.

Then we have

lim
r→∞, r∈H

F (xr) = F∞, lim
r→∞, r∈H

F (xr+1) = F∞. (3.4.12)

Moreover, by Lemma 3.4.2 and (3.4.12), we obtain

lim
r→∞, r∈H

F (x̃r+1) = lim
r→∞, r∈H

F (xr+1)− lim
r→∞, r∈H

(F (xr+1)− F (x̃r+1)) = F∞, (3.4.13)

where x̃r+1 is defined in (3.4.1). Since F is convex and F (x̃r+1) ≤ F (xr+1) ≤ F (xr) hold, we

have

F (x̃r+1) ≤ F

(
xr + xr+1

2

)
≤ 1

2
F (xr) +

1

2
F (xr+1) ≤ F (xr).

Taking a limit on these inequalities, we obtain

lim
r→∞, r∈H

F

(
xr+1 + xr

2

)
= F∞. (3.4.14)

On the other hand,

lim
r→∞, r∈H

F

(
xr+1 + xr

2

)
≤ lim

r→∞, r∈H
g(
Axr+1 + Axr

2
) + lim sup

r→∞, r∈H

{
⟨b, x

r+1 + xr

2
⟩+

n∑
i=1

τi(r)

∣∣∣∣∣x
r+1
i(r) + xri(r)

2

∣∣∣∣∣
}
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≤ g(
t1,∞ + t2,∞

2
) +

1

2
lim sup
r→∞, r∈H

{⟨b, xr⟩+
n∑
i=1

τi(r)|xri(r)|}+
1

2
lim sup
r→∞, r∈H

{⟨b, xr+1⟩+
n∑
i=1

τi(r)|xr+1
i(r) |}

= g(
t1,∞ + t2,∞

2
) +

1

2
lim sup
r→∞, r∈H

{F (xr)− g(Axr)}+ 1

2
lim sup
r→∞, r∈H

{F (xr+1)− g(Axr+1)}

= g(
t1,∞ + t2,∞

2
) +

1

2
(F∞ − g(t1,∞)) +

1

2
(F∞ − g(t2,∞))

<
1

2
(g(t1,∞) + g(t2,∞)) +

1

2
(F∞ − g(t1,∞)) +

1

2
(F∞ − g(t2,∞))

= F∞,

where the second inequality follows from the continuity of g and (3.4.10), the first equality

follows from the definition of F , the second equality follows from (3.4.11) and (3.4.12), and

the third inequality follows from the strict convexity of g and t1,∞ ̸= t2,∞. But this inequality

contradicts (3.4.14). Thus lim
r→∞

{xr+1 − xr} = 0.

In the second part of this section, we will show the convergence of {Axr}. Since {Axr}
is bounded, there exist t∞ ∈ Rn and an infinite set X such that

lim
r→∞, r∈X

Axr = t∞. (3.4.15)

Then with the continuity of ∇g, we have

lim
r→∞, r∈X

∇f(xr) = d∞, (3.4.16)

where

d∞ := AT∇g(t∞) + b. (3.4.17)

For the set X , we have the following result with Lemma 3.4.3, which provides an inter-

esting property associated with {∇f(xr)}.

Lemma 3.4.4. For any s ∈ {0, 1, . . . , B − 1}, where B is the integer defined in the almost

cycle rule, we have lim
r→∞, r∈X

∇f(xr−s) = d∞.

Proof. For any s ∈ {0, 1, . . . , B − 1}, we have Axr−s =
∑s−1

k=0A(x
r−s+k − xr−s+k+1) +

Axr. It then follows from Lemma 3.4.3 and (3.4.15) that

lim
r→∞, r∈X

Axr−s = lim
r→∞, r∈X

s−1∑
k=0

A(xr−s+k − xr−s+k+1) + lim
r→∞,r∈X

Axr = t∞.

From the continuity of ∇g, we have lim
r→∞, r∈X

∇f(xr−s) = lim
r→∞, r∈X

AT∇g(Axr−s) + b =

AT∇g(t∞) + b, which together with (3.4.17) shows this lemma.
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Lemma 3.4.4 implies that for each i ∈ {1, 2, . . . , n}, and s ∈ {0, 1, . . . , B − 1}, we have

lim
r→∞, r∈X

∇if(x
r−s) = d∞i . (3.4.18)

For a fixed coordinate i, let φ(r, i) denote the largest integer r̄, which does not exceed

r, such that the i-th coordinate of x is iterated upon at the r̄-th iteration, that is, for all

r ∈ X , we have

xri = x
φ(r,i)
i . (3.4.19)

Since the coordinate is chosen by the almost cycle rule, the relation r −B + 1 ≤ φ(r, i) ≤ r

holds for all r ∈ X . From (3.4.18), we further obtain

lim
r→∞, r∈X

∇if(x
φ(r,i)) = d∞i . (3.4.20)

Now we define the following six index sets associated with d∞i as

J∞
1 := {i| d∞i > τi};
J∞
2 := {i| d∞i < −τi};
J∞
3 := {i| |d∞i | < τi};
J∞
4 := {i| d∞i = τi, τi > 0};
J∞
5 := {i| d∞i = −τi, τi > 0};
J∞
6 := {i| d∞i = 0, τi = 0}.

Note that
∪6
i=1 J

∞
i = {1, 2, . . . , n}. Next two lemmas give sufficient conditions under which

{xri}X is fixed or lies in some interval.

Lemma 3.4.5. Suppose that Assumption 3.3.1(i) and (iii) hold. Let Lg and ε0 be the

constants given in Lemma 3.2.3. If εφ(r,i) < ε0, then the following statements hold for any

fixed i:

(i) If ∇if(x
φ(r,i))− τi > Lg∥Ai∥2εφ(r,i) and xφ(r,i)i ≤ εφ(r,i) + li hold, then x

φ(r,i)
i = li.

(ii) If ∇if(x
φ(r,i)) + τi < −Lg∥Ai∥2εφ(r,i) and ui − εφ(r,i) ≤ x

φ(r,i)
i hold, then x

φ(r,i)
i = ui.

(iii) If ∇if(x
φ(r,i)) + τi > Lg∥Ai∥2εφ(r,i) and |xφ(r,i)i | ≤ εφ(r,i) hold, then x

φ(r,i)
i ≤ 0.

(iv) If ∇if(x
φ(r,i))− τi < −Lg∥Ai∥2εφ(r,i) and |xφ(r,i)i | ≤ εφ(r,i) hold, then x

φ(r,i)
i ≥ 0.

Proof. Here, we only show (i) and (iii). The rest can be obtained similarly.

To show (i), we argue by contradiction. If it is not true, then we have li < x
φ(r,i)
i ≤ εφ(r,i)+

li by Assumption 3.3.1(ii). From the Lipschitz continuity of ∇g in Lemma 3.2.3, we obtain
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that |∇if(x̂
φ(r,i))−∇if(x

φ(r,i))| ≤ Lg∥Ai∥2|li − x
φ(r,i)
i |, where x̂φ(r,i) := (xr1, . . . , x

r
i−1, li, x

r
i+1,

. . . , xrn).We further can ensure ∇if(x̂
φ(r,i))−τi ≥ −Lg∥Ai∥2εφ(r,i)+∇if(x

φ(r,i))−τi > 0 with

the assumptions li < x
φ(r,i)
i ≤ εφ(r,i)+ li and ∇if(x

φ(r,i))− τi > Lg∥Ai∥2εφ(r,i). It then follows

from the KKT conditions in Lemma 3.2.1 that li is the exact solution of the subproblem

(3.3.1). Since the solution of the subproblem (3.3.1) is unique, we have F (xφ(r,i))−F (x̂φ(r,i)) >
0, which contradicts Assumption 3.3.1(i). Therefore, we have x

φ(r,i)
i = li.

For (iii), we also prove by contradiction. Suppose that the contray holds, i.e., x
φ(r,i)
i ∈

(0, εφ(r,i)]. Let x̃φ(r,i) := (xr1, . . . , x
r
i−1, 0, x

r
i+1, . . . , x

r
n). Then, by Lemma 3.2.3 and the as-

sumption x
φ(r,i)
i ∈ (0, εφ(r,i)], we have

|∇if(x̃
φ(r,i))−∇if(x

φ(r,i))| ≤ Lg∥Ai∥2|0− x
φ(r,i)
i | ≤ Lg∥Ai∥2εφ(r,i),

which implies

−Lg∥Ai∥2εφ(r,i) +∇if(x
φ(r,i)) ≤ ∇if(x̃

φ(r,i)).

By the convexity of f , 0 < x
φ(r,i)
i ≤ εφ(r,i) and∇if(x

φ(r,i))+τi > Lg∥Ai∥2εφ(r,i), we further
have that

F (xφ(r,i))− F (x̃φ(r,i)) ≥ ∇if(x̃
φ(r,i))(x

φ(r,i)
i − 0) + τix

φ(r,i)
i > 0, (3.4.21)

which contradicts Assumption 3.3.1(i).

Lemma 3.4.6. Suppose that Assumption 3.3.1 holds. Then, for sufficiently large r, we have

{xri}X = li,∀i ∈ J∞
1 ; (3.4.22)

{xri}X = ui, ∀i ∈ J∞
2 ; (3.4.23)

{xri}X = 0, ∀i ∈ J∞
3 ; (3.4.24)

li ≤ {xri}X ≤ 0, ∀i ∈ J∞
4 ; (3.4.25)

0 ≤ {xri}X ≤ ui,∀i ∈ J∞
5 ; (3.4.26)

li ≤ {xri}X ≤ ui,∀i ∈ J∞
6 . (3.4.27)

Proof. Here we only show (3.4.22) and (3.4.25). Since the rest part can be shown in

a similar way, we omit the proof.

Case 1: i ∈ J∞
1 . To show (3.4.22), it is sufficient to show

{xφ(r,i)i }X = li, (3.4.28)

since xri = x
φ(r,i)
i holds by (3.4.19). From (3.4.20), we have that for ε̄ =

d∞i −τi
2

> 0,

i ∈ J∞
1 , there exists a nonnegative integer r̄ such that

d∞i − ε̄ ≤ ∇if(x
φ(r,i)) ≤ d∞i + ε̄, ∀r ≥ r̄, r ∈ X .
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It is easy to see that d∞i − τi − ε̄ is positive. Then we have

∇if(x
φ(r,i))− τi ≥ d∞i − τi − ε̄ > max{1, Lg∥Ai∥2}εφ(r,i) ≥ εφ(r,i) (3.4.29)

for sufficiently large r, since εr → 0 and ∇if(x
φ(r,i)) → d∞i hold. Furthermore, we

ensure i ∈ J1(x
φ(r,i), εφ(r,i)), since x

φ(r,i)
i is an εφ(r,i)-approximate solution of the sub-

problem (3.3.1). It implies that |xφ(r,i)i − li| ≤ εφ(r,i). Then by the Assumption 3.3.1(ii)

and (3.2.7), we have

li ≤ x
φ(r,i)
i ≤ εφ(r,i) + li < 0. (3.4.30)

Thus, the equality (3.4.28) follows from (3.4.29), (3.4.30) and Lemma 3.4.5(i), and

hence (3.4.22) holds.

Case 2: i ∈ J4. In this case, we have d∞i = τi and τi > 0. Let ε̃ = τi
2
. It then follows from

(3.4.20) that there exists an r̃, such that 1
2
τi < ∇if(x

φ(r,i)) < 3
2
τi hold for all r ∈ X ,

r ≥ r̃. Then for sufficiently large r, the inequalities

∇if(x
φ(r,i)) + τi >

3

2
τi > max{1, Lg∥Ai∥2}εφ(r,i) ≥ εφ(r,i) (3.4.31)

hold due to εr → 0. We further obtain i ∈
3∪
j=1

Jj(x
φ(r,i), εφ(r,i)) from Definition 3.2.1.

Therefore, we have

x
φ(r,i)
i ∈ [li, ε

φ(r,i)]. (3.4.32)

It finally follows from (3.4.31), (3.4.32) and Lemma 3.4.5(iii) that x
φ(r,i)
i ∈ [li, 0]. Then,

(3.4.25) holds from (3.4.19).

Next, we will show that Axr → Ax∗, where x∗ is an arbitrary optimal solution of problem

(3.1.1). For this purpose, we recall Hoffman’s error bound [31].

Lemma 3.4.7. Let B ∈ Rk×n, C ∈ Rk×n and e ∈ Rk, d ∈ Rk. Suppose that the linear

system By = e, Cy ≤ d is consistent. Then there exists a scalar θ > 0 depending only

on B and C such that, for any x̄ ∈ [l, u], l, u ∈ Rn, there is a point ȳ ∈ Rn satisfying

Bȳ = e, Cȳ ≤ d and ∥x̄− ȳ∥ ≤ θ(∥Bx̄− e∥+ ∥(Cx̄− d)+∥), where (xi)+ := max{0, xi} .

Theorem 3.4.1. Let x∗ be an optimal solution of problem (3.1.1). Then we have

lim
r→∞

Axr = Ax∗.
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Proof. In the first step, we show that Axr → Ax∗ holds for r ∈ X , where X is an

infinite set given in (3.4.15). To this end, we consider the following linear system of y:

Ay = Axr, yi = xri (i ∈ J∞
1 ∪ J∞

2 ∪ J∞
3 ), yi ≤ 0 (i ∈ J∞

4 ), and yi ≥ 0 (i ∈ J∞
5 ), y ∈ [l, u].

It follows from (3.4.22)-(3.4.27) that xr is a solution of this system for sufficiently large

r, that is, the system is consistent. For any fixed point x̄ in [l, u], by Lemma 3.4.7, there

exists a solution yr ∈ [l, u] of the above system and a constant θ, which is independent of

xr, such that

∥yr − x̄∥ ≤ θ

(
∥Ax̄− Axr∥+

∑
i∈J1∪J2∪J3

|x̄i − xri |+
∑
i∈J4

max{0, x̄i}+
∑
i∈J5

max{0,−x̄i}

)
.

From the boundedness of {Axr} and (3.4.22)-(3.4.24), we further have that the right-hand

side of this inequality is bounded. It implies that {yr}X is also bounded, and hence it has at

least one accumulation point. We denote it by y∞. Furthermore, from (3.4.15) and Lemma

3.4.6, we have that y∞ satisfies the following system:

Ay∞ = t∞, y∞i = li (i ∈ J1), y∞i = ui (i ∈ J2), y∞i = 0 (i ∈ J3),

li ≤ y∞i ≤ 0 (i ∈ J4), 0 ≤ y∞i ≤ ui (i ∈ J5), li ≤ y∞i ≤ ui (i ∈ J6).

It then follows from (3.4.17) that ∇f(y∞) = AT∇g(Ay∞) + b = d∞. Moreover, the

relation y∞ = Pτ,l,u(y
∞) holds from the above system and Lemma 3.2.1. Thus, y∞ is an

optimal solution of problem (3.1.1) by Lemma 3.2.1. From Lemma 3.2.4, we have Ay∞ =

Ax∗, i.e., t∞ = Ax∗.

In the second step, we show lim
r→∞

Axr = Ax∗. Since {Axr} is bounded, it is sufficient to

show that any accumulation point of {Axr} is Ax∗. Let X̂ be any subset of nonnegative

integers such that {Axr} is convergent, and let t̂∞ be a limit of {Axr}X̂ . Then we can show

that t̂∞ = Ax∗ holds for the set X̂ as Lemmas 3.4.4-3.4.6. Moreover, the first step of the

current proof, i.e., {Axr}X̂ → Ax∗ holds. Thus, {Axr} → Ax∗ holds for r → ∞.

Theorem 3.4.1 implies that there exists a scalar r̄ > 0, such that Axr ∈ B(Ax∗) for any

r ≥ r̄, where B(Ax∗) is the closed ball defined before (3.2.1). Note that g is strongly convex

on B(Ax∗).

In the third part of this section, we show the sufficient decreasing of {F (xr)} for suffi-

ciently large r.

Lemma 3.4.8. Under Assumption 3.3.1, there exists a scalar η > 0 such that F (xr) −
F (xr+1) ≥ η∥xr − xr+1∥2 holds for sufficiently large r.
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Proof. Note that Axr, Axr+1 ∈ B(Ax∗) holds for sufficiently large r. It then follows

from Assumption 3.2.1 that g is strongly convex in B(Ax∗). Furthermore, we have

F (xr)− F (xr+1) = g(Axr)− g(Axr+1)− ⟨AT∇g(Axr+1), xr − xr+1⟩
+ ⟨∇f(xr+1), xr − xr+1⟩+ τi(r)|xri(r)| − τi(r)|xr+1

i(r) |

≥ µg
2
∥A(xr − xr+1)∥2 + ⟨∇i(r)f(x

r+1), xri(r) − xr+1
i(r) ⟩+ τi(r)

(
|xri(r)| − |xr+1

i(r) |
)

=
µg
2
∥Ai(r)∥2|xri(r) − xr+1

i(r) |
2 + hi(r)(x

r, xr+1)

≥ µg
2
min
j

∥Aj∥2∥xr − xr+1∥2 + hi(r)(x
r, xr+1),

where hi(r) is defined in (3.4.3), and i(r) denotes the index chosen on the r-th step.

Next, we show the inequality

hi(r)(x
r, xr+1) ≥ −αrL̃(xri(r) − xr+1

i(r) )
2, (3.4.33)

where L̃ := max
j

{1, Lg∥Aj∥2}, and αr is given in Assumption 3.3.1(v). Note that L̃ ≥ 1.

We show it by considering 6 cases: i(r) ∈ J∞
j , j = 1, 2, . . . , 6. First, we have from Lemma

3.4.6 that

hi(r)(x
r, xr+1) = 0, ∀ i(r) ∈

3∪
j=1

J∞
j .

Hence, (3.4.33) holds for i(r) ∈ J∞
j , j = 1, 2, 3. Then, we only need to consider the other

three cases i ∈ J∞
4 , i ∈ J∞

5 and i ∈ J∞
6 . Here, for simplicity, we only show the case i ∈ J∞

4 .

The rest two cases can be obtained in a similar way.

If i(r) ∈ J∞
4 , then it follows from Lemma 3.4.6 that for the sufficiently large r, xri(r), x

r+1
i(r) ∈

[li(r), 0] holds. Then we have

hi(r)(x
r, xr+1) = ⟨∇i(r)f(x

r+1)− τi(r), x
r
i(r) − xr+1

i(r) ⟩

≥ − |∇i(r)f(x
r+1)− τi(r)||xri(r) − xr+1

i(r) |.
(3.4.34)

From the proof of (3.4.25) in Lemma 3.4.6, we have i(r) ∈
3∪
j=1

Jj(x
r+1, εr+1). Thus we show

(3.4.33) by considering the following three distinct cases.

Case 1: i(r) ∈ J1(x
r+1, εr+1). We have by Assumption 3.3.1(ii) that

∇i(r)f(x
r+1)− τi(r) ≥ −εr+1 and li(r) ≤ xr+1

i(r) ≤ li(r) + εr+1. (3.4.35)

The first inequality means that ∇i(r)f(x
r+1) − τi(r) ∈ [−εr+1,∞) = [−εr+1, L̃εr+1] ∪

(L̃εr+1,∞). First suppose that ∇i(r)f(x
r+1) − τi(r) ∈ [−εr+1, L̃εr+1]. It then follows
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from (3.4.34) and Assumption 3.3.1(iv) that hi(r)(x
r, xr+1) ≥ −L̃εr+1|xri(r) − xr+1

i(r) | ≥
−αrL̃|xri(r) − xr+1

i(r) |2, which satisfies (3.4.33).

Next suppose that ∇i(r)f(x
r+1) − τi(r) ∈ (L̃εr+1,∞). Then xr+1

i(r) = li(r) holds from

li(r) ≤ xr+1
i(r) ≤ li(r) + εr+1 and Lemma 3.4.5(i). Therefore, we get hi(r)(x

r, xr+1) =

⟨∇i(r)f(x
r+1)− τi(r), x

r
i(r) − li(r)⟩ ≥ 0, which implies (3.4.33) obviously.

Case 2: i(r) ∈ J2(x
r+1, εr+1). In this case, we have |∇i(r)f(x

r+1)− τi(r)| ≤ εr+1 and li(r) ≤
xr+1
i(r) ≤ 0. From Assumption 3.3.1(iv) and (3.4.34), we have hi(r)(x

r, xr+1) ≥ −εr+1|xri(r)−
xr+1
i(r) | ≥ −αr|xri(r) − xr+1

i(r) |2, which also implies (3.4.33).

Case 3: i(r) ∈ J3(x
r+1, εr+1). We have |∇i(r)f(x

r+1)| ≤ τi(r) + εr+1 and −εr+1 ≤ xr+1
i(r) ≤ 0,

hence we have ∇i(r)f(x
r+1) − τi(r) ∈ [−2τi(r) − εr+1, εr+1]. If ∇i(r)f(x

r+1) − τi(r) ∈
[−L̃εr+1, εr+1], then (3.4.33) holds from Assumption 3.3.1(iv). If ∇i(r)f(x

r+1)− τi(r) ∈
[−2τi(r)−εr+1,−L̃εr+1), then we have xr+1

i(r) = 0 from Lemma 3.4.5 and xr+1
i(r) ∈ [−εr+1, 0].

Hence, we have hi(r)(x
r, xr+1) = (∇i(r)f(x

r+1)− τi(r))x
r
i(r) ≥ 0 ≥ −αrL̃(xri(r) − xr+1

i(r) )
2.

Consequently, the inequality (3.4.33) holds.

The sequence {αr} satisfies αr <
µgmin

j
∥Aj∥2

2max
j

{1, Lg∥Aj∥2}
for sufficiently large r from the As-

sumption 3.3.1(v). Then the inequality of this theorem holds for sufficiently large r with

η = µg
2
min
j

∥Aj∥2 − αrmax
j

{1, Lg∥Aj∥2} > 0.

In the last part of this section, before showing the global and linear convergence of {xr},
we first recall a kind of the Lipschitz error bound in [66, 67, 44].

Lemma 3.4.9. There exists a scalar constant κ > 0 such that

∥Axr − Ax∗∥ ≤ κ∥xr − Pτ,l,u(x
r)∥ (3.4.36)

holds for any Axr ∈ B(Ax∗).

Proof. Since g is strongly convex on B(Ax∗) and ∇g is Lipschitz continuous, there

exists a constant κ̂ > 0 such that ∥xr − x∗(r)∥ ≤ κ̂∥xr −Pτ,l,u(x
r)∥, where x∗(r) is a nearest

solution from xr [44, Lemma 4.4]. It then follows from Lemma 3.2.4 and ∥Axr − Ax∗∥ ≤
∥A∥∥xr − x∗∥ that (3.4.36) holds with κ := ∥A∥κ̂.

The following result is a direct extension of [43, Lemma 4.5(a)] to problem (3.1.1).

Lemma 3.4.10. Under Assumption 3.3.1, there exists a constant ω > 0 such that the

inequality ∥Axr − Ax∗∥ ≤ ω

r+B−1∑
h=r

∥xh − xh+1∥ holds for sufficiently large r.
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Proof. To show this lemma, by Lemmas 3.4.9, it is sufficient to show that there exists a

constant ω̂ > 0 such that ∥xr−Pτ,l,u(xr)∥ ≤ ω̂
∑r+B−1

h=r ∥xh − xh+1∥. Since ∥xr−Pτ,l,u(xr)∥ ≤
√
n max

i
|xri − Pτ,l,u(x

r)i|, we only need to show that there exists a constant ω̃ > 0 such that

|xri − Pτ,l,u(x
r)i| ≤ ω̃

∑r+B−1
h=r ∥xh − xh+1∥ holds for each i ∈ {1, 2, . . . , n}.

Note that Axr ∈ B(Ax∗) for sufficiently large r. For any fixed index i ∈ {1, 2, . . . , n}, let
ψ(r, i) be the smallest integer N (N ≥ r) such that xri is updated on the N-th step. Then,

we have

|xri − Pτ,l,u(x
r)i|

=

∣∣∣∣∣∣
ψ(r,i)−1∑
h=r

[
(xhi − Pτ,l,u(x

h)i)− (xh+1
i − Pτ,l,u(x

h+1)i)
]
+ (x

ψ(r,i)
i − Pτ,l,u(x

ψ(r,i))i)

∣∣∣∣∣∣
≤
ψ(r,i)−1∑
h=r

∣∣[(xhi − Pτ,l,u(x
h)i)− (xh+1

i − Pτ,l,u(x
h+1)i)

]∣∣+ ∣∣∣xψ(r,i)i − Pτ,l,u(x
ψ(r,i))i

∣∣∣ ,
where the inequality follows from the triangle inequality.

It then follows from the the nonexpansive property (3.2.5) of the projection Pτ,l,u(x),

Assumption 3.3.1(iv) and Theorem 3.2.2 that

|xri − Pτ,l,u(x
r)i| ≤

ψ(r,i)−1∑
h=r

(
2
∣∣xhi − xh+1

i

∣∣+ ∣∣∇if(x
h)−∇if(x

h+1)
∣∣)+ αr

∣∣∣xψ(r,i)i − x
ψ(r,i)−1
i

∣∣∣ .
Since r + 1 ≤ ψ(r, i) ≤ r +B holds by the almost cycle rule, we obtain

|xri − Pτ,l,u(x
r)i| ≤

r+B−1∑
h=r

(
2
∣∣xhi − xh+1

i

∣∣+ ∣∣∇if(x
h)−∇if(x

h+1)
∣∣)+ αr

∣∣∣xψ(r,i)i − x
ψ(r,i)−1
i

∣∣∣ .
It then follows from the Lipschitz continuity of ∇g and Assumption 3.3.1 that

|xri − Pτ,l,u(x
r)i| ≤ (2 + ∥A∥2Lg)

r+B−1∑
h=r

∥∥xh − xh+1
∥∥+ αr

∥∥xψ(r,i) − xψ(r,i)−1
∥∥

≤

2 + ∥A∥2Lg +
µgmin

j
∥Aj∥2

2max
j

{1, Lg∥Aj∥2}

 r+B−1∑
h=r

∥∥xh − xh+1
∥∥ ,

where the first inequality follows from ∥xh − xh+1∥ ≥ |xhi − xh+1
i |.

Let ω̃ = 2 + ∥A∥2Lg +
µgmin

j
∥Aj∥2

2max
j

{1, Lg∥Aj∥2}
. Then it is easy to see that ω̃ > 0. Thus the

inequality of this lemma holds with ω = κ
√
nω̃, where κ is given in Lemma 3.4.9.

Now we are ready to show the linear convergence of {F (xr)} and {xr}.
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Theorem 3.4.2. Suppose that {xr} is generated by the ICD method with the almost cycle

rule. Let F ∗ denote the optimal value of problem (3.1.1). Then {F (xr)} converges to F ∗ at

least B-step Q-linearly.

Proof. In the first step, we show the global convergence of the sequence {F (xr)}. Let
x∗ be an optimal solution of problem (3.1.1). Then we have F ∗ = F (x∗). It follows from

the mean value theorem that there exists ξ ∈ Rn, which is on the line segment that joins xr

with x∗, such that g(Axr)− g(Ax∗) = ⟨AT∇g(Aξ), xr − x∗⟩.
Since Axr → Ax∗and ∇f(xr) → d∞ hold, we have

d∞ = lim
x→∞

∇f(xr) = lim
x→∞

AT∇g(Axr) + b = AT∇g(Ax∗) + b = ∇f(x∗). (3.4.37)

Thus, we have

F (xr)− F ∗

= ⟨AT∇g(Aξ)− AT∇g(Ax∗), xr − x∗⟩+ ⟨AT∇g(Ax∗) + b, xr − x∗⟩+
n∑
i=1

τi(|xri | − |x∗i |)

≤ Lg∥Aξ − Ax∗∥∥A(xr − x∗)∥+ ⟨AT∇g(Ax∗) + b, xr − x∗⟩+
n∑
i=1

τi(|xri | − |x∗i |)

≤ Lg∥A(xr − x∗)∥2 + ⟨d∞, xr − x∗⟩+
n∑
i=1

τi(|xri | − |x∗i |)

= Lg∥A(xr − x∗)∥2 +
n∑
i=1

[d∞i (xri − x∗i ) + τi(|xri | − |x∗i |)] , (3.4.38)

where the first inequality follows from the Lipschitz continuity of ∇g, and the second in-

equality follows from (3.4.37).

With the special structure of problem (3.1.1), we can show that for sufficiently large r,

d∞i (xri − x∗i ) + τi(|xri | − |x∗i |) = 0, ∀i ∈ {1, 2, . . . , n}. (3.4.39)

We prove this by considering the distinct cases about the index sets J∞
j , j = {1, 2, . . . , 6}

since {1, 2, . . . , n} =
∪6
j=1 J

∞
j . For simplicity, we only prove the cases i ∈ J∞

1 and i ∈ J∞
4 .

The other cases can be shown in a similar way. If i ∈ J∞
1 , i.e., d∞i > τi, then it follows from

Lemma 3.4.6 that xri = li for sufficiently large r. On the other hand, we have ∇if(x
∗) > τi

by (3.4.37). It then follows from Lemma 3.2.1 that x∗i = li. These two relations imply that

(3.4.39) holds. If i ∈ J4, i.e., d
∞
i = τi, it then follows from Lemma 3.4.6 that for sufficiently

large r, li ≤ xri ≤ 0. On the other hand, we have τi = ∇if(x
∗) by (3.4.37). It further implies

that li ≤ x∗ ≤ 0 from Lemma 3.2.1. Combining these three relations, we have that (3.4.39)

holds.
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Consequently, we have 0 ≤ F (xr) − F ∗ ≤ Lg∥A(xr − x∗)∥2 by (3.4.38) and (3.4.39). It

implies F (xr) → F ∗, since Axr → Ax∗ holds, that is, {F (xr)} is globally convergent.

In the second step, we show the B-step Q-linear convergence rate of {F (xr)}. To this

end, we need to ensure that there exists a constant c ∈ (0, 1) such that

F (xr+B)− F ∗ ≤ c (F (xr)− F ∗) . (3.4.40)

From (3.4.38), (3.4.39) and Lemma 3.4.10, we have

F (xr)− F ∗ ≤ Lgω
2

(
r+B−1∑
h=r

∥xh − xh+1∥

)2

.

Letting k = h− r + 1, we further have that

F (xr)− F ∗ ≤ Lgω
2

(
B∑
k=1

∥xk+r−1 − xk+r∥

)2

≤ Lgω
2B

B∑
k=1

(
∥xk+r−1 − xk+r∥

)2
.

It then follows from Lemma 3.4.8 that

F (xr)− F ∗ ≤ Lgω
2B

η

B∑
k=1

(
F (xk+r−1)− F (xk+r)

)
=
Lgω

2B

η

(
F (xr)− F (xr+B)

)
.

By rearranging the items of the above inequality, we have

F (xr+B)− F ∗ ≤ c (F (xr)− F ∗) , (3.4.41)

where c = 1− η
Lgω2B

. Since η
Lgω2B

> 0 and c < 1, it means that {F (xr)} converges to F ∗ at

least B-step Q-linearly.

Theorem 3.4.3. Suppose that {xr} is generated by the ICD method with the almost cycle

rule. Then {xr} converges to an optimal solution of problem (3.1.1) at least R-linearly.

Proof. First we show that {xr} is convergent. Let F ∗ be the optimal value of problem

(3.1.1). Since F (xr) converges to F ∗ at least Q-linearly by Theorem 3.4.2, we have that

F (xr) converges to F ∗ at least R-linearly, that is, there exist constants K > 0 and ĉ ∈ (0, 1)

such that

F (xr)− F ∗ ≤ Kĉr. (3.4.42)
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From Lemma 3.4.8, we have for sufficiently large r,

0 ≤ ∥xr − xr+1∥2 ≤ 1

η
(F (xr)− F ∗) +

1

η

(
F ∗ − F (xr+1)

)
≤ 1

η
(F (xr)− F ∗) , (3.4.43)

where the last inequality holds since F ∗ − F (xr+1) ≤ 0.

By combining (3.4.42) with (3.4.43), we have that ∥xr − xr+1∥2 ≤ K
η
ĉr, that is, ∥xr −

xr+1∥ ≤
√

K
η
ĉ
r
2 . Let c̄ := ĉ

1
2 . Then, we have c̄ ∈ (0, 1). Moreover, we obtain, for any positive

integer m,n and m > n,

∥xm − xn∥ ≤
m−n−1∑
k=0

∥xm−k − xm−k−1∥ ≤

√
K

η

m−n−1∑
k=0

c̄m−k−1 =

√
K

η

c̄n − c̄m

1− c̄
≤

√
K

η

c̄n

1− c̄
,

which implies that {xr} is a cauchy sequence due to 0 < c̄ < 1. Therefore, {xr} is convergent.
In the rest, we show that {xr} converges to an optimal solution at least R-linearly. Let

x∞ denote the limit point of {xr}. Since ∥xm − xn∥ ≤
√

K
η
c̄n−c̄m
1−c̄ , we have

∥x∞ − xn∥ = lim
m→∞

∥xm − xn∥ ≤ lim
m→∞

√
K

η

c̄n − c̄m

1− c̄
=

√
K

η

c̄n

1− c̄
,

which implies that {xr} converges to x∞ at least R-linearly since 0 < c̄ < 1 holds.

Finally, we complete the proof by showing that the x∞ is an optimal solution. With the

continuity of F , we have lim
r→∞

F (xr) = F (x∞). It then follows from F (xr) → F ∗ in Theorem

3.4.2 that F (x∞) = F ∗, that is, x∞ is also an optimal solution of problem (3.1.1).

3.5 Numerical experiments

In this section, we present some numerical experiments of the ICD method (the proposed

method) for the following unconstrained l1-regularized logistic regression problem.

minimize
w∈Rn−1,v∈R

F (x) :=
1

m

m∑
j=1

log(1 + exp(−(wT qj + vpj))) + µ∥w∥1, (3.5.1)

where x = (w, v) ∈ Rn and qj = pjzj. Moreover, (zj, pj) ∈ Rn−1 × {−1, 1}, j = 1, 2, . . . ,m

are a set of training examples. For simplicity, we let f(x) = 1
m

∑m
j=1 log(1 + exp(−(wT qj + vpj)))

and τ = (µ, . . . , µ, 0)T ∈ Rn. Note that the computational costs of evaluating f(x), ∇if(x)

and ∇2
iif(x) are O(m) if we update only one variable xi on each step and store β = Bx,

where B = [Q, p] with QT = [q1, . . . , qm] and p = (p1, . . . , pm)T ∈ Rm. This is because

f(x) = 1
m

∑m
j=1 log(1 + exp(−βj)) and βnew = βold + (xnewi − xoldi )Bi.

We report some numerical results on randomly generated problems for various inexact

criteria satisfying Assumption 3.3.1. We also show the comparison with the CGD method

[69].
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3.5.1 Implementations

We exploit the following gradient method with line search to solve the one dimensional sub-

problem (3.3.1) in the ICD method.

Algorithm 3-1:

Step 0: Let i := i(r) and Gi := ∇if(x
r). If mid{Gi+ τi, Gi− τi, x

r
i} = 0, then set xr+1

i = xri
and return. Otherwise let k = 0, G0

i = Gi, and y
0 = xr. Go to step 1.

Step 1: Choose a scaling factor skii > 0. Calculate a search direction dk as follows.

dk = argmin
d∈R

{
Gk
i d+ τi|yki + d|+ skii

2
d2
}
.

Step 2: Determine a stepsize αk by the Armijo rule in [69] with γ = 0.

Step 3: Set yk+1
i = yki +αkdk, yk+1

j = xrj for all j ̸= i, and Gk+1
i = ∇if(y

k+1). If the inexact

criterion is satisfied, then set xr+1
i = yk+1

i and return. Otherwise let k = k + 1. Go to Step

1.

The difference between the ICD method and the CGD method [69] lies in Step 3 of

Algorithm 3-1. The CGD method does not check the inexact criterion in Step 3 and always

returns to the main algorithm with k = 0. On the other hand, the ICD method returns to

the main algorithm only when the inexact criterion holds. Note that if the criteria are weak,

then the ICD method may be regarded as the CGD method.

In the numerical experiments, we choose the scaling factor skii in Step 1 according to the

following three options.

(i) skii = ∇2
iif(y

k);

(ii) skii = 1;

(iii) s0ii = 1 and skii =
Gki−G

k−1
i

yki −y
k−1
i

for k ≥ 1.

The choice (i) corresponds to the Newton method, while choice (ii) conforms to the steepest

descent method. The option (iii) is motivated by the quasi-Newton method.

Additionally, we exploit the under/over-relaxation technique in the numerical experi-

ments. Note that Pτ,l,u(x) = Tτ (x − ∇f(x)) when l = −∞ and u = +∞. Let xr+1
i be an

εr+1-approximate solution of subproblem (3.3.1), i.e., |xr+1
i − Tτ (x

r+1 −∇f(xr+1))i| ≤ εr+1,

and x̄r+1 be an under/over-relaxation estimator to xr+1 with parameter ω such that

x̄r+1
i = ωxr+1

i + (1− ω)xri ,

x̄r+1
j = xr+1

j , ∀j ̸= i.
(3.5.2)
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If the gradient of the function f in (3.5.1) is Lipschitz continuous with Lipschitz constant

Lf , we have

|x̄r+1
i − Tτ (x̄

r+1 −∇f(x̄r+1))i| ≤
∣∣xr+1
i − Tτ (x

r+1 −∇f(xr+1))i
∣∣+ (2 + Lf )

∣∣(ω − 1)(xr+1
i − xri )

∣∣
≤ εr+1 + (2 + Lf )|ω − 1|

∣∣xr+1
i − xri

∣∣
≤ (ar + (2 + Lf )|ω − 1|)

∣∣xr+1
i − xri

∣∣ ,
where the last inequality follows from Assumption (3.3.1). Let ār = ar+(2+Lf )|ω−1|. If δr >
ār|xr+1

i −xri |, then x̄r+1
i is an ε̄r+1-approximate solution, where ε̄r+1 = min{δr, ār|xr+1

i −xri |}.
This condition usually holds when δr slowly converges to 0, e.g., δr = O(1

r
).

3.5.2 Test problems

We generate the training examples randomly as in [35]. In our implementation, we have

generated 8 random problems. Four of them have the scale of n = 1001,m = 100, and

the others are n = 101,m = 1000. All training examples have an equal number of positive

(pj = 1) and negative (pj = −1) training examples. Each feature qji of positive (negative)

examples qj obeys independent and identical distribution. In our implementation, we adopt

the normal distribution N (υ, 1), where the mean υ is drawn from a uniform distribution on

[0, 1] for positive examples ([−1, 0] for negative examples).

We choose the regularized parameter µ based on µmax =
1
m

∥∥∥m−
m
µgpj=1q

j + m+

m
µgpj=−1q

j
∥∥∥
∞
,

where m− denotes the number of negative examples, and m+ denotes the number of positive

examples. It is shown in [35] that the vector x = 0 ∈ Rn is the optimal solution of problem

(3.5.1) if µ ≥ µmax. In our implementation, we let µ = 0.1µmax or µ = 0.01µmax.

3.5.3 Numerical results

In this subsection, we give some numerical examples to illustrate the performances of the

ICD method. The algorithm is implemented in MATLAB (Version 7.10.0), and run on an

Intel(R) Core(TM)2 Duo CPU E6850 @3.00GHz. We terminate the algorithms when

∥xr − Tτ (x
r −∇f(xr))∥∞ ≤ 10−3. (3.5.3)

To save the CPU time, we check the termination condition in every 100 iterations. Through-

out the experiments, we choose all initial points x0 = 0, and adopt the simple cycle rule to

choose i for the ICD method and the CGD method.
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Investigation of the inexact criteria

To see the performances of the ICD method on various inexact criteria, we solve two random

problems with

εr = min{ 10

r⌊
r
n
⌋ , a

⌊ r
n
⌋|xr+1

i − xri |}, (3.5.4)

where a varies from 0.1 to 0.8. Here, we use ⌊ r
n
⌋ to reduce its sensitivity to r. In these

experiments, we choose skii = ∇2
iif(y

k) in Step 2 of Algorithm 3-1. We also use the same skii
for the CGD method.

Table 3.1: Performances of the ICD method with various a in (3.5.4) and the CGD method.

ICD (a = 0.1) ICD (a = 0.3) ICD (a = 0.5) ICD (a = 0.8) CGD

Problem 1 n = 1001,m = 100, µ = 0.01µmax

iteration 9200 9200 9200 9200 9200

♯ of g 10334 9974 9856 9856 9199

♯ of f 2002 1485 1316 1316 1316

CPU time (s) 1.3125 1.1875 1.0469 1.0468 0.9531

Problem 2 n = 101,m = 1000, µ = 0.1µmax

iteration 3300 3300 3300 3300 3300

♯ of g 9904 9299 8634 6014 3299

♯ of f 14262 13493 12235 5432 5432

CPU time (s) 3.9218 3.5781 3.3593 1.9062 1.6406

Table 3.1 presents the total number of evaluating Gk
i and f , the iteration r, and the CPU

time (in seconds) for these two problems. From Table 3.1, we find that the ICD method

performs better when a approaches to 1, yet it is worse than the CGD method. The results

indicate that the solution of the subproblem (3.3.1) with high accuracy does not always

improve the convergence. Note that the number of the gradient evaluations for the ICD

method is larger than that for the CGD method. This is because the ICD method evaluates

both G0
i = ∇if(y

0) and G1
i = ∇if(y

1) even if the Algorithm 3-1 is terminated at Step 3

with k = 0. However, the CGD method only evaluates G0
i at each iteration.

Comparison of the ICD method and the CGD method

We first show some numerical results for the ICD method and the CGD method with the Hes-

sian information, that is, skii = ∇2
iif(y

k). The ICD method is implemented with under the re-

laxation technique (ω = 0.5 ∼ 1.0 in (3.5.2)) and εr = max{10−4,min{10/r⌊ rn ⌋, 0.8⌊ rn ⌋|xr+1
i −
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xri |}}. Table 3.2 reports the numerical results for four instances. From Table 3.2, we see

that the performances on the ICD method with ω = 1.0 and the CGD method are roughly

same since both of them exploit the Hessian information. The ICD method with appropriate

relaxation factor (ω < 1.0) is faster than the CGD method for some problems. The perfor-

mances of the ICD method with over relaxation, i.e., ω > 1, is worse for these four instances

and hence we omit them.

Next we consider the case where the Hessian ∇2
iif(y

k) is not available. Then we may

choose skii as in the steepest descent method (skii = 1) or in the quasi-Newton method. Note

that the CGD method can not adopt the quasi-Newton method since it returns with k = 0

in Algorithm 3-1. Table 3.3 reports the performances of the ICD method combined with the

quasi-Newton method and the CGD method with skii = 1. We also give results for the CGD

method with skii = ∇2
iif(y

k) for the better understanding.

From Table 3.3, we find that the ICD method combined with the quasi-Newton method

performs similarly as the CGD method with skii = ∇2
iif(y

k), but much better than the CGD

method with skii = 1. Hence, if the Hessian computation for the function f is expensive,

then the ICD method combined with the quasi-Newton method is an efficient alternative

approach.

3.6 Conclusion

In this chapter, we have presented a framework of the ICD method for solving l1-regularized

convex optimization (3.1.1). We also have established the R-linear convergence rate of this

method with the almost cycle rule. The key to the ICD method lies in Assumption 3.3.1 for

the “inexact solutions”. At each iteration, we only need to find an approximate solution,

which raises the possibility to solve general l1-regularized convex problems.

If we set ε = 0 in Assumption 3.3.1, then the ICD method reduces to the classical CD

method. It then follows from Theorem 4.5.2 that the classical CD method has R-linear

convergence rate for the l1-regularized optimization problem (3.1.1) as well.
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Table 3.2: Comparison of the ICD method and the CGD method for skii = ∇2
iif(y

k).

ICD ICD ICD ICD ICD ICD

(ω = 0.5) (ω = 0.6) (ω = 0.7) (ω = 0.8) (ω = 1.0) CGD

Problem 3 n = 1001,m = 100, µ = 0.01µmax

iteration 13200 12200 9200 11200 13200 13200

♯ of g 15299 13945 10377 12620 14247 13199

♯ of f 4064 3494 2358 2844 2098 2098

CPU time (s) 1.8281 1.6406 1.2187 1.5468 1.5000 1.4375

Problem 4 n = 1001,m = 100, µ = 0.1µmax

iteration 28400 28400 31000 31000 34100 34100

♯ of g 32504 32174 34507 34115 36086 34099

♯ of f 8212 7552 7018 6234 3976 3976

CPU time (s) 3.6093 3.5156 3.7968 3.562 3.7031 3.6406

Problem 5 n = 101,m = 1000, µ = 0.01µmax

iteration 400 500 500 600 700 700

♯ of g 747 915 899 1070 1204 699

♯ of f 698 834 802 944 1012 1012

CPU time (s) 0.2656 0.2968 0.3906 0.3437 0.5156 0.3750

Problem 6 n = 101,m = 1000, µ = 0.1µmax

iteration 1700 1900 1900 2600 2700 2700

♯ of g 3191 3570 3554 4896 4882 2699

♯ of f 2986 3344 3312 4596 4368 4368

CPU time (s) 1.1093 1.2812 1.2656 1.6718 1.6250 1.4687
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Table 3.3: Performances of the ICD method and the CGD method when ∇2
iif(y

k) is not

available.

ICD (quasi-Newton) CGD (skii = 1) CGD (skii = ∇2
iif(y

k))

Problem 7 n = 1001,m = 100, µ = 0.1µmax

iteration 33100 95000 34100

♯ of g 37909 94999 34099

♯ of f 8922 17384 3976

CPU time (s) 3.9843 9.9218 3.5937

Problem 8 n = 101,m = 1000, µ = 0.01µmax

iteration 700 4400 700

♯ of g 1815 4399 699

♯ of f 1730 8800 1012

CPU time (s) 0.6406 2.1875 0.3437



Chapter 4

Block coordinate proximal gradient

methods with variable Bregman

functions for nonsmooth separable

optimization problem

4.1 Introduction

In this chapter, we consider the following nonsmooth nonconvex optimization problem.

minimize
x

F (x) := f(x) + τψ(x), (4.1.1)

where ψ : Rn → (−∞,∞] is a proper, convex, and l.s.c. function with a block separable

structure, f : Rn → R is smooth on an open subset of Rn containing domψ = {x ∈
Rn | ψ(x) <∞}, and τ is a positive constant.

Throughout this chapter, we do not assume that the function f is convex, and hence, we

are only concerned about obtaining the stationary points of problem (4.1.1).

As described in Subsection 1.2.3, the applications [29, 35, 55, 77] of problem (4.1.1)

are mostly built on large scales. In general, the number of the variables is of order 104

or even higher. Hence, the classical second order methods can not be applied efficiently.

Recently, “block” type first order methods have been investigated extensively for solving

these large-scale problems. Tseng [67] proposed a block coordinate descent (BCD) method

to solve a nondifferentiable nonconvex optimization problem with certain separability of the

objective function. He proved that the BCD method has a global convergence property

under appropriate assumptions. However, the convergence rate of the BCD method remains

unknown. Tseng and Yun [69] proposed a block coordinate gradient descent (BCGD) method

for problem (4.1.1), which may be viewed as a hybrid of the BCD and gradient methods.
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In [69], the global convergence and the R-linear convergence rate of the BCGD method

are established. Another related method, called the accelerated block coordinate relaxation

(ABCR) method, has been proposed by Wright [71]. One of his significant contributions is

that he adopted the reduced Newton step to achieve rapid convergence.

In this chapter, we propose a class of block coordinate proximal gradient (BCPG) meth-

ods for solving the nonsmooth nonconvex problem (4.1.1). As presented in Subsection 1.3.1,

the search direction of the BCPG method at the r-th step is generated by

dηr(x
r; Jr) = argmin

d∈Rn

{⟨∇f(xr), d⟩+Bηr(x
r + d, xr) + τψ(xr + d)| dJ̄r = 0} , (4.1.2)

where Jr ⊆ N is the index set selected at the r-th step, Bηr(·, ·) : X × intX → R is the

Bregman function, defined by (1.3.5) in Chapter 1.3.1, and function ηr : X → R, called

the “kernel of Bηr”, is assumed to be convex and continuously differentiable on intX and

X ⊆ domF is a closed convex set. For simplicity, we use the notation dr instead of dηr(x
r; Jr)

in this chapter when it is clear from the context.

It is worth mentioning that kernels {ηr} are not fixed for different iterations in this

chapter, which yield at least three advantages.

• They allow us to obtain many well-known algorithms from the proposed BCPG meth-

ods. See Table 4.1, Subsections 4.3.1 and 4.6.1 for details.

• Some special kernels enable the BCPG methods to adopt a fixed step size. See Lem-

ma 4.5.1, Theorems 4.6.1 and 4.6.5, and Algorithm 4-1 for details. This property is

appealing when the evaluations of the functions in the line search are expensive.

• We may obtain accelerated algorithms by changing kernels when the iteration point is

close to a solution. See Algorithm 4-1 in Section 4.7 for details.

For the proposed BCPG methods, we first prove their global convergence (Theorem 4.4.1

in Section 4.4) with the generalized Gauss-Seidel rule and establish theirR-linear convergence

rate (Theorem 4.5.2 in Section 4.5) under certain additional assumptions. As a consequence

of this result, the (inexact) BCD method is shown to have at least an R-linear convergence

rate for solving nonsmooth problem (4.1.1) (Theorems 4.6.2 and 4.6.5 in Section 4.6). To

our knowledge, this is the first result on the linear convergence of the BCD type methods for

nonsmooth problem (4.1.1). Finally, we propose a specific algorithm of the BCPG methods

with variable kernels for a convex problem with separable simplex constraints (Algorithm

4-1 in Section 4.7). The numerical results show that the proposed algorithm performs better

than the algorithm with a fixed kernel.

This chapter is organized as follows. In Section 4.2, we introduce some basic concepts

and properties, which will be used in the subsequent analysis. In Section 4.3, we present a
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framework of the BCPG methods and introduce propositions about the stationary points.

Then, we investigate their global convergence in Section 4.4 and determine the linear con-

vergence rate in Section 4.5. Some special BCPG methods are further discussed in Section

4.6, and the numerical experiments are presented in Section 4.7. Finally, we conclude this

chapter in Section 4.8.

Table 4.1: Reduced BCPG methods with special kernels

Special Kernel Reduced BCPG Methods

ηr(v) := f(vJr , v
r
J̄r
) + 1

2
|vJ̄r |2

Coordinate descent method1

Jr = {(r mod n) + 1}
ηr(v) := 1

2
vTHrv, Hr ≽ 0 BCGD method [69]

ηr(v) is fixed for all r, Jr = N

Proximal gradient method [66]

Steepest descent method

Proximal point method

Exponentiated gradient method

ηr(v) := 1
2
vTBrv, J

r = N
Quasi-Newton method

Newton method

Regularized Newton method

4.2 Preliminaries

In this section, we introduce some useful properties for the Bregman function Bηr(·, ·) defined
in (1.3.5), and present some important properties for a convex function. First, we define a

class of kernel functions (strongly convex functions) for the Bregman function Bηr(·, ·).

Definition 4.2.1. For a given positive constant µ, let Φ(X;µ) denote a set of functions

η : X → R such that the following conditions hold.

(i) The function η is a closed proper differentiable function on intX;

(ii) The function η is µη-strongly convex on X, i.e., η(y) ≥ η(x)+⟨∇η(x), y−x⟩+ µη
2
∥y−x∥2

holds for any y ∈ X, x ∈ intX, where µη ≥ µ > 0.

1For the coordinate descent method, we assume that function f is strongly convex with respect to each

element. Note that function f can be nonconvex with respect to the whole variable in this case. It is shown

in [74] that the block coordinate descent method is convergent when f is only block wise strongly convex.
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For simplicity, we define a subset Ψ(X;µ, L) of Φ(X;µ) as follows.

Ψ(X;µ, L) := {η ∈ Φ(X;µ) | ∥∇η(x)−∇η(y)∥ ≤ Lη∥x− y∥, 0 < Lη ≤ L, ∀x, y ∈ intX}.

Note that any function in Ψ(X;µ, L) is not only strongly convex but also gradient Lips-

chitz continuous. A simple example in the class Ψ(X;µ, L) is ηr(x) = 1
2
⟨Hrx, x⟩+ ⟨b, x⟩+ a,

where a, b ∈ Rn and Hr ∈ Rn×n is a symmetric positive definite matrix such that

LI ≽ Hr ≽ µI. The inequality Bηr(x, y) ≥ 0 holds for all x, y ∈ intX since ηr ∈ Φ(X;µ)

is convex. For convenience, we use Bη(x, y) instead of Bηr(x, y) when it is clear from the

context.

Next, we state some useful properties related to the Bregman function Bη(·, ·). Let

∇1Bη(·, ·) denote the gradient of Bη(·, ·) with respect to the first variable, i.e.,

∇1Bη(x, y) = ∇η(x)−∇η(y). (4.2.1)

The following lemma, called the“three-point identity theorem”, is originally presented in

[17, Lemma 3.1].

Lemma 4.2.1. For any η ∈ Φ(X;µ), a, b∈ intX, and c ∈ X, we have

Bη(c, a) + Bη(a, b)−Bη(c, b) = ⟨∇η(b)−∇η(a), c− a⟩, (4.2.2)

Bη(a, b)−Bη(c, b) ≤ −⟨∇1Bη(a, b), c− a⟩. (4.2.3)

Proof. By the definition of Bη in (1.3.5), we can verify equality (4.2.2) easily. In-

equality (4.2.3) holds because of (4.2.1) and Bη(c, a) ≥ 0.

Lemma 4.2.2. For any η ∈ Ψ(X;µ, L), the following two inequalities hold.

L
2
∥x− y∥2 ≥ Bη(x, y) ≥

µ

2
∥x− y∥2, ∀x, y ∈ intX, (4.2.4)

⟨∇1Bη(x, y), x− y⟩ ≥ µ∥x− y∥2,∀x, y ∈ intX. (4.2.5)

Proof. The first inequality in (4.2.4), originally presented in [52, Theorem 2.1.5], fol-

lows from the Lipschitz continuity of ∇η. The second inequality in (4.2.4) and inequality

(4.2.5) hold because of the strong convexity of η.

For the global convergence of the proposed BCPG methods, the variable kernels in this

chapter are required to satisfy the following condition.

Definition 4.2.2. Let {ηr} ⊆ Φ(X;µ). The group of kernels {ηr} is (ϱ, η̄)-upper bounded

on X if there exists a function η̄(x) ∈ Φ(X;µ) and ϱ > 1 such that the inequality

Bηr(x, y) ≤ ϱBη̄(x, y) (4.2.6)

holds for any x ∈ X, y ∈ intX and r > 0.
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Definition 4.2.2 is an extension of that in [19, Definition 5.1]. The condition (4.2.6) is

weaker than gradient Lipschitz continuity assumption on {ηr}, that is, ηr ∈ Ψ(X;µ, L) for

all r. The following two examples demonstrate this assertion further.

Example 4.2.1. Let {ηr} ⊆ Ψ(X;µ, L). It can be easily verified that η̄(x) =
µ

2
∥x∥2 ∈

Φ(X;µ) and Bη̄(x, y) =
µ

2
∥x − y∥2. Then {ηr} is (L

µ
, η̄)-upper bounded on X from (4.2.4)

in Lemma 4.2.2.

Example 4.2.2. Let X = {x ∈ Rn | xi ≥ 0,
n∑
i=1

xi = 1}, η1(x) =
n∑
i=1

xilnxi, and η
r(x) ∈

Ψ(X; 1, L), r = 2, 3, . . . . It is shown in [6, Proposition 5.1] that η1(x) ∈ Φ(X; 1), that is,

Bη1(x, y) ≥
1

2
∥x− y∥2.

Moreover, it follows from (4.2.4) in Lemma 4.2.2 that for any r ≥ 2,

Bηr(x, y) ≤
L

2
∥x− y∥2 ≤ LBη1(x, y).

Hence, for any r ≥ 1, we have that

Bηr(x, y) ≤ max{1, L}Bη1(x, y).

Then the kernels {ηr} is (max{1, L}, η1)-upper bounded on X.

The following lemma shows some elementary inequalities on a convex function ψ.

Lemma 4.2.3. Let ψ : Rn → R be convex. Then, the following inequalities hold for any

x, y ∈ Rn and t ∈ [0, 1].

ψ(x+ ty)− ψ(x) ≤ t[ψ(x+ y)− ψ(x)], (4.2.7)

ψ(x+ ty)− ψ(x+ y) ≤ (t− 1)[ψ(x+ y)− ψ(x)]. (4.2.8)

Proof. Since x+ ty = t(x+ y) + (1− t)x, from the convexity of ψ, we have

ψ(x+ ty) ≤ tψ(x+ y) + (1− t)ψ(x), ∀t ∈ [0, 1],

which yields the desired results.

4.3 Block coordinate proximal gradient (BCPG) meth-

ods

In this section, we first present the BCPG methods for solving problem (4.1.1). Then, we

prove that the search direction dr defined in (4.1.2) is a feasible descent direction of problem

(4.1.1). Finally, we show the explicit rules to select the block Jr and the step size αr.
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4.3.1 The proposed BCPG methods

Block coordinate proximal gradient (BCPG) methods:

Step 0: Select an initial point x0 ∈ intX, and let r = 0.

Step 1: If some termination condition holds, then stop.

Step 2: Select a block Jr ⊆ {1, . . . , n} by one of the Gauss-Seidel rules and select a strongly

convex function ηr : X → R as a kernel.

Step 3: Solve the following subproblem with the variable d to obtain a search direction dr.

minimize ⟨∇f(xr), d⟩+Bηr(x
r + d, xr) + τψ(xr + d)

subject to dJ̄r = 0.
(4.3.1)

Step 4: Determine step size αr by the Armijo rule.

Step 5: Set xr+1
Jr = xrJr + αrdrJr , x

r+1
J̄r

= xr
J̄r
, and r = r + 1. Go to Step 1.

Note that we can adopt a different kernel function at each iteration. In the remainder of

this chapter, for the global convergence, we assume that there exists a constant µ > 0 such

that ηr ∈ Φ(X;µ) for all r. The Gauss-Seidel rules in Step 2 and the Armijo rule in Step 4

are presented in Section 2.4 and Subsection 4.3.3, respectively.

Remark 4.3.1. Steps 3 and 4 of the above BCPG methods are different from those in [71].

The search direction in [71] conforms to the gradient projection method with the Armijo

rule along the projection arc. Such an approach in [71] tends to obtain sparse (or active)

solutions, whereas it requires solving subproblem (4.3.1) repeatedly. We can also construct

the BCPG methods with the step size rule in [71], and show the same convergence properties.

As mentioned in the introduction of this chapter, the BCPG methods include many well-

known optimization methods. Among them, the following two methods are of particular

interest in this chapter.

(i) A Block Coordinate Descent method

Suppose that function f is strongly convex with respect to each block. Let

ηr(x, xrJ̄r) := f(xJr , x
r
J̄r) +

1

2
∥xJ̄r − xrJ̄r∥

2. (4.3.2)

Then, it can be verified that ηr is also strongly convex. Moreover, we have ⟨∇f(xr), d⟩+
Bηr(x

r + d, xr) = f(xrJr + dJr , x
r
J̄r
) − f(xr) + ⟨∇J̄rf(x

r
Jr , x

r
J̄r
), dr

J̄r
⟩ + 1

2
∥dJ̄r∥2. Hence,

subproblem (4.3.1) is equivalent to the problem

minimize
dJr

f(xrJr + dJr , x
r
J̄r) + τψJr(x

r
Jr + dJr). (4.3.3)
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Note that, in (4.3.3), dJr ∈ R|Jr|, where |Jr| denotes the number of elements in Jr. Re-

placing subproblem (4.3.1) by (4.3.3), the BCPG methods are reduced to the classical

block coordinate descent method [67].

(ii) Inexact BCPG methods

When subproblem (4.3.1) is difficult to solve exactly, we accept an approximate solution

as a compromise. Next, we give a definition for the approximate solution of subproblem

(4.3.1), under which the inexact BCPG methods are also regarded as certain “exact”

BCPG methods.

Definition 4.3.1. We say that dr is an approximate solution of subproblem (4.3.1)

with error εr if the pair (dr, εr) ∈ Rn ×Rn satisfies∇Jrf(x
r) +∇Jrη(x

r + dr)−∇Jrη(x
r) + εrJr ∈ −τ∂Jrψ(xr + dr),

dr
J̄r

= 0, εr
J̄r

= 0.
(4.3.4)

Note that if dr satisfies (4.3.4) with εr = 0, then dr is the exact solution of (4.3.1).

Now, suppose that (dr, εr) ∈ Rn×Rn satisfies (4.3.4). Let Er ∈ Rn×n be the diagonal

matrix, for which Er
ii is given by

Er
ii :=


εri
dri

if dri ̸= 0,

0 if dri = 0.
(4.3.5)

Then, we have εr = Erdr. Combining it with (4.3.4), we have∇Jrf(x
r) +∇Jrη(x

r + dr)−∇Jrη(x
r) + (Erdr)Jr ∈ −τ∂Jrψ(xr + dr),

dr
J̄r

= 0,
(4.3.6)

which are equivalent to the optimality conditions of subproblem (4.3.1) whose kernel

ηr(x) is replaced by ηr(x) + xTErx. Hence, when εr is sufficiently small, the inexact

version BCPG methods (inexactness is described as (4.3.4)) are reformulated as the

proposed BCPG methods with the kerenl

η̃r(x) = ηr(x) + xTErx. (4.3.7)

The conditions on εr for global convergence are given in Section 4.6.

4.3.2 A feasible descent property of dr

In this subsection, we show the descent property of the search direction dr given in Step 3,

and present elementary results about the stationary points of subproblem (4.3.1) and the

original problem (4.1.1). The next lemma states that the direction dr is a feasible descent

direction of F , which is a natural generalization of [69, Lemma 1].
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Lemma 4.3.1. For any xr ∈ X and Jr ⊆ N , we have

F (xr + tdr) ≤ F (xr) + tΘ(xr, dr) + o(t), ∀t ∈ (0, 1], (4.3.8)

where Θ(xr, dr) := ⟨∇f(xr), dr⟩+ τψ(xr + dr)− τψ(xr). Moreover, if ηr ∈ Φ(X;µ), then we

have

Θ(xr, dr) ≤ −⟨∇1Bηr(x
r + dr, xr), dr⟩ ≤ 0. (4.3.9)

In particular, Θ(xr, dr) < 0 holds if dr ̸= 0.

Proof. Inequality (4.3.8) follows from [69, Lemma 1]. Next, we show inequalities

(4.3.9). For any t ∈ (0, 1), using (4.2.3) with a = xr + tdr, b = xr and c = xr + dr, we have

Bηr(x
r + tdr, xr)−Bηr(x

r + dr, xr) ≤ −(1− t)⟨∇1Bηr(x
r + tdr, xr), dr⟩. (4.3.10)

Since dr is a solution of subproblem (4.3.1), we obtain

⟨∇f(xr), dr⟩+Bηr(x
r + dr, xr) + τψ(xr + dr)

≤ t⟨∇f(xr), dr⟩+Bηr(x
r + tdr, xr) + τψ(xr + tdr).

Then, it follows from (4.2.8) and (4.3.10) that

(1− t)⟨∇f(xr), dr⟩+ (1− t) (τψ(xr + dr)− τψ(xr)) ≤ −(1− t)⟨∇1Bηr(x
r + tdr, xr), dr⟩.

Since 1− t > 0 for any t ∈ (0, 1), dividing the above inequality by 1− t, we have

⟨∇f(xr), dr⟩+ τ(ψ(xr + dr)− ψ(xr)) ≤ −⟨∇1Bηr(x
r + tdr, xr), dr⟩.

We obtain the first inequality of (4.3.9) by letting t → 1 in the above inequality. The

second inequality of (4.3.9) can be proved easily from Lemma 4.2.2. Further, if dr ̸= 0, then

it follows from (4.2.5) that ⟨∇1Bηr(x
r+ dr, xr), dr⟩ ≥ µ∥dr∥2 > 0, which yields Θ(xr, dr) < 0

from (4.3.9).

Next, we present the definition of the stationary point and its sufficient and necessary

conditions.

Definition 4.3.2. We say that x∗ ∈ domF is a stationary point of F with respect to the

block J if F ′(x∗; d) ≥ 0 holds for all d ∈ Rn with dJ̄ = 0, where F ′(x∗; d) denotes the

directional derivatives of F at the vector x∗ with respect to the direction d.

Lemma 4.3.2. For any η ∈ Φ(X;µ), dη(x
∗, J) = 0 holds if and only if the vector x∗ ∈ domF

is a stationary point of F with respect to the block J .
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Proof. First, we prove the “if ” part by contradiction. Suppose that dη(x
∗, J) ̸= 0

holds. Then it follows from Lemma 4.3.1 that

F ′(x∗, dη(x
∗, J)) = lim

t↓0

F (x∗ + tdη(x
∗, J))− F (x∗)

t

≤ lim
t↓0

tΘ(x∗, dη(x
∗, J)) + o(t)

t

= Θ(x∗, dη(x
∗, J))

< 0,

where the first inequality follows from (4.3.8) and the second inequality follows from (4.3.9)

and the assumption dη(x
∗, J) ̸= 0. However, it contradicts with Definition 4.3.2.

Conversely, if dη(x
∗, J) = 0 holds, for all t > 0, y ∈ Rn with yJ̄ = 0, we have from (4.1.2)

t⟨∇f(x∗), y⟩+Bη(x
∗ + ty, x∗) + τψ(x∗ + ty) ≥ τψ(x∗). (4.3.11)

Then, for any y ∈ Rn such that yJ̄ = 0, we have

F ′(x∗, y) = lim
t↓0

f(x∗ + ty)− f(x∗) + τψ(x∗ + ty)− τψ(x∗)

t

≥ lim
t↓0

f(x∗ + ty)− f(x∗)− t⟨∇f(x∗), y⟩ −Bη(x
∗ + ty, x∗)

t

= lim
t↓0

−η(x∗ + ty) + η(x∗) + t⟨∇η(x∗), y⟩
t

= 0,

where the first inequality follows from (4.3.11), the second equality follows from the definition

of Bη and the differentiability of f , and the last equality follows from the differentiability of

η. Therefore, x∗ is a stationary point of F with respect to the block J from Definition 4.3.2.

The following corollary follows immediately from Lemma 4.3.2 by setting J = N .

Corollary 4.3.1. For any η ∈ Φ(X;µ), dη(x
∗,N ) = 0 holds if and only if x∗ is a stationary

point of problem (4.1.1).

4.3.3 Gauss-Seidel rules and Armijo rule

For establishing the global convergence, we assume that the rules to select a block in Step

2 is the generalized Gauss-Seidel rule. To show the linear convergence rate, we employ the

restricted Gauss-Seidel rule [69]. For the formal definitions, see Section 2.4 for details.

To find the step size αr in Step 4, we adopt the following generalized Armijo rule [69].
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Armijo rule:

Select any scalar αrinit > 0 with supr α
r
init < ∞, and let αr be the largest element of the

sequence {αrinitβj}j=0,1,... such that

F (xr + αrdr) ≤ F (xr) + αrσ∆(xr + dr), (4.3.12)

where β, σ ∈ (0, 1), γ ∈ [0, 1), and

∆(xr + dr) := ⟨∇f(xr), dr⟩+ γ⟨∇1Bηr(x
r + dr, xr), dr⟩+ τψ(xr + dr)− τψ(xr). (4.3.13)

We make a few remarks on this Armijo rule. The assumption supr α
r
init <∞ implies that

both {αrinit} and {αr} are bounded. However, it is still possible that {αr} → 0 as r → ∞.

If the smooth part f of problem (4.1.1) is gradient Lipschitz continuous, then we can ensure

that infrα
r > 0. This assertion will be shown by Lemma 4.5.2 in Section 4.5.

By the definition of Θ(xr, dr) in Lemma 4.3.1, ∆(xr + dr) in (4.3.13) can be rewritten as

∆(xr + dr) = Θ(xr, dr) + γ⟨∇1Bηr(x
r + dr, xr), dr⟩. (4.3.14)

The following lemma states that the term ∆(xr + dr) is nonpositive, which is important

for the validity of the above Armijo rule. The proof can be easily deduced by using (4.2.5),

(4.3.9), and (4.3.14).

Lemma 4.3.3. For any ηr ∈ Φ(X;µ), γ ∈ [0, 1), and dr ∈ Rn, we have

∆(xr + dr) ≤ (γ − 1)⟨∇1Bηr(x
r + dr, xr), dr⟩ ≤ (γ − 1)µ∥dr∥2 ≤ 0. (4.3.15)

Furthermore, ∆(xr + dr) < 0 holds if dr ̸= 0.

The following two remarks further illustrate the role of Lemma 4.3.3.

Remark 4.3.2. Lemma 4.3.3 implies that αr in the Armijo rule is well defined. It is

illustrated by Lemma 4.3.1 that the nonzero dr is a descent direction of F . Thus, there

exists a constant t > 0 such that F (xr + tdr) ≤ F (xr) + tσ∆(xr + dr) since σ ∈ (0, 1) and

Θ(xr, dr) ≤ ∆(xr + dr) < 0 hold for any nonzero dr. Hence, the existence of αr satisfying

(4.3.13) is confirmed.

Remark 4.3.3. The sequence {F (xr)} generated by the Armijo rule is not increasing since

∆(xr + dr) < 0 holds for any nonzero dr. Therefore, we have either {F (xr)} ↓ −∞ or

{F (xr)} > −∞. If {F (xr)} > −∞, then the limit of {F (xr)} exists.

4.4 Global convergence

In this section, we show the global convergence of the BCPG methods. Since the proof is

an extension of that for the BCGD method in [69], we refer some lemmas from [69] and
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omit the corresponding proofs. Throughout this section, {xr}, {αr}, and {dr} denote the

sequences generated by the BCPG methods.

The following lemma, corresponding to Theorem 1(b) in [69], shows that the search

direction dr vanishes when {xr} is bounded. It can be proved by replacing dk
T
Hkdk by

⟨∇1Bηr(x
r + dr, xr), dr⟩ in the proof of [69, Theorem 1(b)].

Lemma 4.4.1. If there exists an infinite set X ⊆ {0, 1, . . . } and a vector x̄ such that

lim
r→∞, r∈X

xr = x̄ ∈ X, then the following statements hold.

(i) lim
r→∞

αr∆(xr + dr) = 0.

(ii) lim
r→∞, r∈X

dr = 0.

Next, we prove the global convergence of {xr}.

Theorem 4.4.1. Suppose that ψ is block separable with respect to each block Jr, and that

kernels {ηr} are (ϱ, η̄)-upper bounded on X with ϱ > 1 and η̄ ∈ Φ(X;µ). Let {xr} be

generated by the BCPG methods. Then, any accumulation point of {xr} is a stationary

point of problem (4.1.1).

Proof. Let x̄ be an accumulation point of {xr}. Then, there exists an infinite set

Z ⊆ {0, 1, . . . } such that lim
r→∞, r∈Z

xr = x̄.

To prove this theorem, first, we show that there exists a block denoted by Q0 such that

x̄ is a stationary point of F with respect to the block Q0, i.e.,

F ′(x̄, d) ≥ 0, ∀d ∈ Rn with dQ0 = 0. (4.4.1)

From Lemma 4.3.2, it is equivalent to show that dη̂(x̄;Q
0) = 0 for certain η̂ ∈ Φ(X;µ).

In fact, at each iteration, there are limited alternatives (no more than 2n−1) for selecting

a block. Hence, we can suppose that there exists a block Q0 and an infinite subset Z0 ⊆ Z
such that Jr = Q0 for all r ∈ Z0. Further, since lim

r→∞, r∈Z
xr = x̄ and Z0 ⊆ Z, we have

lim
r→∞, r∈Z0

xr = x̄. (4.4.2)

Then, for any r ∈ Z0, d
r, and x ∈ Rn such that xQ0 = xr

Q0
, we have

⟨∇f(xr), dr⟩+
µ

2
∥dr∥2 + τψ(xr + dr)

≤ ⟨∇f(xr), dr⟩+Bηr(x
r + dr, xr) + τψ(xr + dr)

≤ ⟨∇f(xr), x− xr⟩+Bηr(x, x
r) + τψ(x)

≤ ⟨∇f(xr), x− xr⟩+ ϱBη̄(x, x
r) + τψ(x), (4.4.3)
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where the first inequality follows from Lemma 4.2.2, the second inequality holds since dr is

a solution of subproblem (4.3.1), and the last inequality follows from Definition 4.2.2.

From (4.4.2) and Lemma 4.4.1(ii), we have lim
r→∞, r∈Z0

dr = 0. Further, letting r → ∞ with

r ∈ Z0 in (4.4.3), we have

τψ(x̄) ≤ ⟨∇f(x̄), x− x̄⟩+ ϱBη̄(x, x
r) + τψ(x), ∀x ∈ Rn with xQ0 = x̄Q0 ,

which implies that dη̂(x̄;Q
0) = 0, where η̂(x) = ϱη̄(x). It then follows from ϱ > 1 that

η̂(x) ∈ Φ(X; ϱµ) ⊆ Φ(X;µ).

In the second step, we show that there exist other B−1 blocks Qi, i = 1, . . . , B−1, such

that F ′(x̄, d) ≥ 0 holds for any d ∈ Rn with dQi = 0 and
∑B−1

i=0 Qi = N .

Since αr is bounded, we have from (4.4.2) and Lemma 4.4.1 that

lim
r→∞, r∈Z0

xr+1 = lim
r→∞, r∈Z0

{xr + αrdr} = x̄.

By the same argument as in the first step, there exists a block Q1 and an infinite subset

Z1 ⊆ Z0 such that Jr+1 = Q1 for all r ∈ Z1. Further, we obtain dη̂(x̄;Q
1) = 0 with

η̂(x) = ϱη̄(x) ∈ Φ(X;µ), i.e., x̄ is a stationary point of F with respect to block Q1. From

Definition 4.3.2, we have

F ′(x̄, d) ≥ 0, ∀d ∈ Rn with dQ1 = 0. (4.4.4)

Similarly, there exist B − 2 blocks Qi, i = 2, . . . , B − 1 such that

F ′(x̄, d) ≥ 0,∀d ∈ Rn with dQi = 0. (4.4.5)

From the generalized Gauss-Seidel rule, we have N =
∪B−1
i=0 Jr+i =

∪B−1
i=0 Qi.

Finally, we show that x̄ is a stationary point of problem (4.1.1). From Corollary 4.3.1,

we only need to show F ′(x̄, d) ≥ 0 for all d ∈ Rn. In fact, we can obtain B disjoint blocks

J̃ i ⊆ Qi, i = 0, 1, . . . , B−1, such that
∪B−1
i=1 J̃

i = N and J̃ i∩J̃ j = ∅ for any i, j such that i ̸= j.

Hence, we have ⟨∇f(x̄), d⟩ =
∑B−1

i=0 ⟨∇
J̃i
f(x̄), d

J̃i
⟩ and ψ(x̄+ td) =

∑B−1
i=0 ψ

J̃i
(x̄

J̃i
+ td

J̃i
) for

any d ∈ Rn. For convenience, we denote do
J̃i

= (0, . . . , 0, dT
J̃i
, 0, . . . , 0)T ∈ Rn. Note that

F ′(x̄, do
J̃i
) ≥ 0 (4.4.6)

holds for all i from (4.4.1), (4.4.4), and (4.4.5).

Then, we obtain

F ′(x̄, d) = lim
t↓0

f(x̄+ td)− f(x̄) + τψ(x̄+ td)− τψ(x̄)

t

=
B−1∑
i=0

⟨∇
J̃i
f(x̄), d

J̃i
⟩+ τ lim

t↓0

B−1∑
i=0

ψ
J̃i
(x̄

J̃i
+ td

J̃i
)− ψ

J̃i
(x̄

J̃i
)

t
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=
B−1∑
i=0

F ′(x̄, do
J̃i
)

≥ 0,

where the second equality follows from the differentiability of f and the block separability of

ψ, the third equality follows from the definition of directional derivative, and the inequality

follows from (4.4.6). Hence, the proof is completed.

4.5 Linear convergence rate

In this section, we establish the linear convergence rate for the BCPG methods with the

restricted Gauss-Seidel rule. Throughout this section, {xr}, {αr}, and {dr} are sequences

generated by the BCPG methods with the restricted Gauss-Seidel rule.

We make some further assumptions on the objective function F and the smooth part f

for linear convergence. For convenience, we denote the set of stationary points of problem

(4.1.1) by X̄ in the rest of this chapter.

Assumption 4.5.1. The gradient ∇f is Lf -Lipschitz continuous, i.e., ∥∇f(x)−∇f(y)∥ ≤
Lf∥x− y∥ holds for any x, y ∈ Rn.

Assumption 4.5.2. There exists a scalar δ > 0 such that ∥x− y∥ ≥ δ, whenever x, y ∈ X̄

and F (x) ̸= F (y).

Assumption 4.5.2 means that the stationary point set X̄ has a separable property. It

holds when X̄ contains only a finite number of values, or the components of X̄ are prop-

erly separable. Note that, if the objective function F is convex, then Assumption 4.5.2

automatically holds.

Assumption 4.5.3. The set X̄ is nonempty. Moreover, for any ζ ∈ R, there exist scalars

κ > 0 and ϵ > 0 such that dist(x, X̄) ≤ κ∥dη̄(x;N )∥, whenever F (x) ≤ ζ and ∥dη̄(x;N )∥ ≤ ϵ.

Here, η̄(x) := 1
2
µxTx and dist(x, X̄) = min

x̄∈X̄
∥x− x̄∥.

Assumption 4.5.3 is called the “local Lipschitz error bound assumption” in [69]. Note

that it holds whenever one of the following conditions holds (See [66, 69] for details).

(C1) f = 1
2
xTEx+ ⟨q, x⟩ for all x ∈ Rn, where E ∈ Rn×n, q ∈ Rn, and ψ is polyhedral.

(C2) f(x) = g(Ex) + ⟨q, x⟩ for all x ∈ Rn, where E ∈ Rm×n, q ∈ Rn, and g is a strong-

ly convex differentiable function on Rm with ∇g Lipschitz continuous on Rm. ψ is

polyhedral.
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(C3) f(x) = maxy∈Y {⟨Ex, y⟩ − g(y)} + ⟨q, x⟩ for all x ∈ Rn, where Y is a polyhedral set

in Rm, E ∈ Rm×n, q ∈ Rn, and g is a strongly convex differentiable function on Rm

with ∇g Lipschitz continuous on Rm. ψ is polyhedral.

(C4) f is strongly convex and ∇f is Lipschitz continuous.

(C5) f(x) = g(Ex) for all x ∈ Rn, where E ∈ Rm×n, g is a strongly convex differentiable

function on Rm and ∇g Lipschitz continuous on Rm. ψ :=
N∑
i=1

ωi∥xJ i∥2.

Moreover, it can be easily verified that the functions in (C1)-(C5) satisfy Assumption

4.5.1. When matrix E in (C1) is symmetric and positive semidefinite, the functions in

(C1)-(C5) satisfy Assumption 4.5.2 as well.

Before presenting the main theorem of this section, we introduce some technical lemmas.

Under Assumption 4.5.1, we have the following two lemmas, which are originally given

in [69, Lemma 5(b)] and [69, Theorem 1(f)]. We omit their proofs. Lemma 4.5.1 gives an

estimation for the step size αr generated by the Armijo rule, and Lemma 4.5.2 shows that

the direction dr is globally convergent to 0, which is sharper than Lemma 4.4.1(ii).

Lemma 4.5.1. Suppose that Assumption 4.5.1 holds. For any ηr ∈ Φ(X;µ), σ ∈ (0, 1), and

α ∈ [0,min{1, 2µ(1− σ + σγ)/Lf}], we have

F (xr + αdr)− F (xr) ≤ σα∆(xr + dr). �

Note that Step 4 can adopt αrinit = 1 and α = min{1, 2µ(1−σ+σγ)/Lf} without evaluat-
ing F when Lf is known previously. It is useful when the evaluation of F is computationally

expensive. In the rest of this chapter, for simplicity, we assume that αrinit = 1.

Lemma 4.5.2. Suppose that Assumption 4.5.1 holds. Then, infr α
r > 0. Further, lim

r→∞
dr = 0

holds if lim
r→∞

F (xr) > −∞.

From the above lemmas, we find that step size αr is away from zero.

The next lemma shows a relation between the distinct directions generated with respect

to different kernels.

Lemma 4.5.3. For any ηr ∈ Ψ(X;µ, L), let η̄(x) = 1
2
µxTx, dr := drηr(x

r; Jr), and d̄r :=

drη̄(x
r; Jr). Then, we have

∥d̄r∥ ≤ w1∥dr∥, (4.5.1)

where w1 =

√
(L+µ)2−4µ2

2µ
+

L+µ

2µ
> 0.
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Proof. For simplicity, we only show (4.5.1) with Jr = N . Using Fermat’s rule, we

obtain

dr ∈ argmin
u

{⟨∇f(xr) +∇1Bηr(x
r + dr, xr), u⟩+ τψ(xr + u)} , (4.5.2)

d̄r ∈ argmin
u

{
⟨∇f(xr) +∇1Bη̄(x

r + d̄r, xr), u⟩+ τψ(xr + u)
}
. (4.5.3)

These two relations imply that

⟨∇f(xr)+∇1Bηr(x
r + dr, xr), dr⟩+ τψ(xr + dr)

≤ ⟨∇f(xr) +∇1Bηr(x
r + dr, xr), d̄r⟩+ τψ(xr + d̄r),

⟨∇f(xr)+∇1Bη̄(x
r + d̄r, xr), d̄r⟩+ τψ(xr + d̄r)

≤ ⟨∇f(xr) +∇1Bη̄(x
r + d̄r, xr), dr⟩+ τψ(xr + dr).

Summing these two inequalities and rearranging it, we have

⟨∇1Bηr(x
r + dr, xr), dr⟩+ ⟨∇1Bη̄(x

r + d̄r, xr), d̄r⟩
− ⟨∇1Bηr(x

r + dr, xr), d̄r⟩ − ⟨∇1Bη̄(x
r + d̄r, xr), dr⟩ ≤ 0.

(4.5.4)

From Lemma 4.2.2, we have that

⟨∇1Bηr(x
r + dr, xr), dr⟩ ≥ µ∥dr∥2, ⟨∇1Bη̄(x

r + d̄r, xr), d̄r⟩ ≥ µ∥d̄r∥2.

Since ∇ηr and ∇η̄ are Lipschitz continuous, from the Hölder inequality we have

⟨∇1Bηr(x
r + dr, xr), d̄r⟩ ≤ L∥dr∥∥d̄r∥, ⟨∇1Bη̄(x

r + d̄r, xr), dr⟩ ≤ µ∥dr∥∥d̄r∥.

Combining them with (4.5.4), we have

µ∥dr∥2 − (L+ µ)∥dr∥∥d̄r∥+ µ∥d̄r∥2 ≤ 0.

Dividing both sides by µ and completing the square for the first two terms, we have(
∥d̄r∥ −

L+ µ

2µ
∥dr∥

)2

≤

[
(L+ µ)2 − 4µ2

4µ2

]
∥dr∥2.

Since (L+ µ)2 ≥ 4Lµ ≥ 4µ2, we have

∥d̄r∥ ≤


√
(L+ µ)2 − 4µ2

2µ
+
L+ µ

2µ

 ∥dr∥.

Let w1 =

√
(L+µ)2−4µ2

2µ
+

L+µ

2µ
. Then, we obtain the desired inequality.

The next lemma illustrates the Lipschitz continuity of the search direction d with respect

to ∇f .
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Lemma 4.5.4. Suppose that φ is block-separable with respect to the block Jr. For any

xr ∈ intX, and a ∈ Rn, we define

dr(a) = argmin
d

{
⟨a, d⟩+ 1

2
µdTd+ τψ(xr + d) | dJ̄r = 0

}
.

Then, we have

∥dr(a)− dr(b)∥ ≤ 1

µ
∥a− b∥, for all a, b ∈ Rn. (4.5.5)

Proof. This lemma follows immediately from [69, Lemma 4] with h(u) = 1
2
µuTu,

p = 2, and ρ = µ.

The following technical lemma is an extension of [69, Lemma 5(a)], which will be used

for Lemma 4.5.8.

Lemma 4.5.5. Suppose that φ is block-separable with respect to the block Jr. For any

ηr ∈ Φ(X;µ), xr ∈ intX, γ ∈ [0, 1), and t ∈ (0, 1], we have

⟨∇f(xr)+∇1Bηr(x
r + dr, xr), x̂r(t)− x̄r⟩+ τψ(x̂r(t))− τψ(x̄r)

≤ (t− 1) [(1− γ)⟨∇1Bηr(x
r + dr, xr), dr⟩+∆(xr + dr)] ,

where x̂r(t) := xr + tdr, dr
J̄r

= 0, and x̄r ∈ Rn with x̄r
J̄r

= xr
J̄r
.

Proof. Since dr is the solution of (4.1.2), by Fermat’s rule, we get that

dr ∈ argmin
d∈Rn

{⟨∇f(xr) +∇1Bηr(x
r + dr, xr), d⟩+ τψ(xr + d)| dJ̄r = 0} ,

which implies that

⟨∇f(xr)+∇1Bηr(x
r + dr, xr), dr⟩+ τψ(xr + dr)

≤ ⟨∇f(xr) +∇1Bηr(x
r + dr, xr), x̄r − xr⟩+ τψ(x̄r)

holds for all x̄r ∈ Rn with x̄r
J̄r

= xr
J̄r
, i.e.,

⟨∇f(xr) +∇1Bηr(x
r + dr, xr), dr − x̄r + xr⟩ ≤ τψ(x̄r)− τψ(xr + dr). (4.5.6)

Hence, we obtain

⟨∇f(xr) +∇1Bηr(x
r + dr, xr), x̂r(t)− x̄r⟩+ τψ(x̂r(t))− τψ(x̄r)

= ⟨∇f(xr) +∇1Bηr(x
r + dr, xr), xr + tdr − x̄r⟩+ τψ(xr + tdr)− τψ(x̄r)

= ⟨∇f(xr) +∇1Bηr(x
r + dr, xr), xr + dr − x̄r⟩+ τψ(xr + tdr)− τψ(x̄r)

+ (t− 1)⟨∇f(xr) +∇1Bηr(x
r + dr, xr), dr⟩
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≤ τψ(x̄r)− τψ(xr + dr) + (t− 1)⟨∇f(xr) +∇1Bηr(x
r + dr, xr), dr⟩+ τψ(xr + tdr)− τψ(x̄r)

≤ (t− 1) [τψ(xr + dr)− τψ(xr) + ⟨∇f(xr) +∇1Bηr(x
r + dr, xr), dr⟩]

= (t− 1) [(1− γ)⟨∇1Bηr(x
r + dr, xr), dr⟩+∆(xr + dr)] ,

where the first inequality follows from (4.5.6), the second inequality follows from (4.2.8), and

the last inequality follows from (4.3.13).

The next lemma presents a relation of the directions generated with the blocks N and

J . Recall that φ(r) and Γ are defined in the restricted Gauss-Seidel rule.

Lemma 4.5.6. Suppose that Assumption 4.5.1 holds. Let η̄(x) = 1
2
µxTx. Then, the follow-

ing statements hold for any ηr ∈ Ψ(X;µ, L).

(a) ∥dη̄(xr;N )∥ ≤ w2

φ(r)−1∑
i=r

∥dηi(xi; J i)∥ for all r ∈ Γ, where w2 =

√
(L+µ)2−4µ2

2µ
+

L+µ

2µ
+

Lf
µ

suprα
r > 0.

(b) If lim
r→∞

F (xr) > −∞, then lim
r→∞,r∈Γ

φ(r)−1∑
i=r

∥dηi(xi; J i)∥ = 0.

(c) If lim
r→∞

F (xr) > −∞, then lim
r→∞,r∈Γ

dη̄(x
r;N ) = 0.

Proof. (a) By using Lemmas 4.5.1, 4.5.3, and 4.5.4, we can show this inequality in a

similar manner to [69, Theorem 2(a)]. Here, we omit the details.

(b) Under Assumption 4.5.1 and the assumption lim
r→∞

F (xr) > −∞, we have from Lemma

4.5.2 that lim
r→∞

dηr(x
r; Jr) = 0. Moreover, we obtain lim

r→∞,r∈Γ

φ(r)−1∑
i=r

∥dηi(xi; J i)∥ = 0 since

φ(r)− r ≤ n for all r ∈ Γ.

(c) Combining (b) with (a) in this lemma, we have lim
r→∞, r∈Γ

dη̄(x
r;N ) = 0.

Suppose that lim
r→∞

F (xr) > −∞. From Lemma 4.5.6 (b), we have lim
r→∞,r∈Γ

φ(r)−1∑
i=r

∥dηi(xi; J i)∥ =

0, which yields

lim
r→∞, r∈Γ

{xφ(r) − xr} = 0, (4.5.7)

since xφ(r) − xr =
∑φ(r)−1

i=r αrdr and 0 ≤ αr ≤ supr α
r
init <∞.

Further, from Assumptions 4.5.1, 4.5.3, and Lemma 4.5.6 (c), we obtain lim
r→∞, r∈Γ

dist(xr, X̄) =

0, i.e.,

lim
r→∞, r∈Γ

∥xr − x̄r∥ = 0, (4.5.8)
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where x̄r denotes the stationary point nearest to xr. Then, it yields lim
r→∞, r∈Γ

{xφ(r) − xr −

x̄φ(r) + x̄r} = 0. Hence, we have from (4.5.7) that

lim
r→∞, r∈Γ

{x̄φ(r) − x̄r} = 0. (4.5.9)

Then, it follows from Assumption 4.5.2 that there exist scalars r̄ > 0 and F ∗ ∈ R such that

F (x̄r) = F ∗, ∀r ∈ Γ, r ≥ r̄. (4.5.10)

The following lemma states that the value F ∗ defined in (4.5.10) is a lower bound for the

sequence {F (xr)}.

Lemma 4.5.7. Suppose that Assumptions 4.5.1-4.5.3 hold. If lim
r→∞

F (xr) > −∞, then

lim
r→∞, r∈Γ

F (xr) ≥ F ∗, where F ∗ is defined in (4.5.10).

Proof. The existence of the limit of {F (xr)}r∈Γ is guaranteed by Remark 4.3.3. Next,

we only need to show lim
r→∞, r∈Γ

F (xr) ≥ F ∗.

Let x̄r be a stationary point of problem (4.1.1). From Corollary 4.3.1 , we have F ′(x̄r, d) ≥
0 for any d ∈ Rn. Then, for any xr satisfying (4.5.8), we get

⟨∇f(x̄r), xr − x̄r⟩+ τψ(xr)− τψ(x̄r) ≥ 0. (4.5.11)

Since f is smooth, using the mean value theorem, we have

f(xr)− f(x̄r) = ⟨∇f(ξr), xr − x̄r⟩, (4.5.12)

where ξr lies on the line segment joining xr and x̄r.

Then, we obtain

F ∗ − F (xr) = f(x̄r)− f(xr) + τψ(x̄r)− τψ(xr)

≤ ⟨∇f(ξr)−∇f(x̄r), x̄r − xr⟩
≤ ∥∇f(ξr)−∇f(x̄r)∥∥x̄r − xr∥
≤ Lf∥x̄r − xr∥2,

where the first inequality follows from (4.5.11) and (4.5.12), and the last inequality follows

from Assumption 4.5.1 and the inequality ∥x̄r − ξr∥ ≤ ∥x̄r − xr∥.
Letting r → ∞ and r ∈ Γ, we get the desired inequality by (4.5.8).

The next result presents an estimator for the distance between F (xr) and F ∗. It is a

modification of [69, (40) on Page 408] and plays a key role to prove the convergence rate of

the BCPG methods for the nonsmooth problem (4.1.1).
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Lemma 4.5.8. Suppose that Assumptions 4.5.1-4.5.3 hold. Then, there exists a positive

constant ϖ such that F (xφ(r)) − F ∗ ≤ −ϖ
φ(r)−1∑
i=r

∆(xi + di) holds for any sufficiently large

r ∈ Γ, where φ(r) is defined in the restricted Gauss-Seidel rule, and F ∗ is defined in (4.5.10).

Proof. Let x̄r be a stationary point of problem (4.1.1). From the restricted Gauss-

Seidel rule, we have

ψ(x̄r) =

φ(r)−1∑
i=r

ψJi(x̄
r
Ji), ∀r ∈ Γ. (4.5.13)

Then, for a sufficiently large r ∈ Γ, we have

F (xφ(r))− F ∗

= f(xφ(r))− f(x̄r) + τψ(xφ(r))− τψ(x̄r)

= ⟨∇f(ξ̄r), xφ(r) − x̄r⟩+ τ

φ(r)−1∑
i=r

[
ψJi(x

φ(r)

Ji
)− ψJi(x̄

r
Ji)
]

=
{
⟨∇f(ξ̄r)−∇f(xr), xφ(r) − x̄r⟩

}
+


φ(r)−1∑
i=r

⟨∇Jif(x
r)−∇Jif(x

i), x
φ(r)

Ji
− x̄rJi⟩


+


φ(r)−1∑
i=r

[
⟨∇Jif(x

i) +
(
∇1Bηi(x

i + di, xi)
)
Ji
, x

φ(r)

Ji
− x̄rJi⟩+ τψJi(x

φ(r)

Ji
)− τψJi(x̄

r
Ji)
]

+


φ(r)−1∑
i=r

⟨∇1Bηi(x
i + di, xi)Ji , x̄

r
Ji − x

φ(r)

Ji
⟩


:= S1 + S2 + S3 + S4,

where the second equality follows from (4.5.13) and the mean value theorem (ξ̄r lies on the

line segment joining xφ(r) and x̄r), and Si, i = 1, . . . , 4, denotes the four terms in the above

braces, respectively.

For S1, S2, and S4, we can show that there exists a positive constant w3 = nLf (κw2 +

2n) + nL such that S1, S2, S4 ≤ w3

∑φ(r)−1
i=r ∥di∥2 from Lemma 4.5.6 (a) and Assumptions

4.5.1 and 4.5.3.

For S3, we get for all γ ∈ [0, 1) that

S3 ≤
φ(r)−1∑
i=r

(αi − 1)[(1− γ)⟨∇1Bηi(x
i + di, xi), di⟩+∆(xi + di)]

≤
φ(r)−1∑
i=r

(αi − 1)∆(xi + di),
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where the first inequality follows from Lemma 4.5.5, and the second inequality follows from

⟨∇1Bηi(x
i + di, xi), di⟩ ≥ 0, αi ≤ 1, and γ ∈ [0, 1).

Thus, we obtain

F (xφ(r))− F ∗ ≤ 3w3

φ(r)−1∑
i=r

∥di∥2 +
φ(r)−1∑
i=r

(αi − 1)∆(xi + di)

≤ −
(

3w3

(1− γ)µ
+ 1

) φ(r)−1∑
i=r

∆(xi + di),

where the second inequality follows from Lemma 4.3.3 and αi > 0. Setting ϖ = 3w3

(1−γ)µ + 1,

we complete the proof.

Now, we show the linear convergence rates for {F (xr)}Γ and {xr}Γ.

Theorem 4.5.1. Suppose that Assumptions 4.5.1-4.5.3 hold. Let ηr ∈ Ψ(X;µ, L) and {xr}
be generated by the BCPG methods with the restricted Gauss-Seidel rule. Then, we have

either {F (xr)} ↓ −∞ as r → ∞ or {F (xr)}Γ converges to F ∗ at least Q-linearly, where F ∗

is defined in (4.5.10).

Proof. From Remark 4.3.3, we have either {F (xr)} ↓ −∞ or {F (xr)} > −∞ as

r → ∞. Next, we only suppose that {F (xr)} > −∞.

From the Armijo rule and Lemma 4.5.1, for any r ∈ Γ, we have

F (xi+1)− F (xi) ≤ σαi∆(xi + di) ≤ σ∆(xi + di), ∀i ∈ {r, r + 1, . . . , φ(r)− 1}.

Summing over i = r, r + 1, . . . , φ(r)− 1, we have

F (xφ(r))− F (xr) ≤ σ

φ(r)−1∑
i=r

∆(xi + di), ∀r ∈ Γ. (4.5.14)

Using (4.5.14), Lemmas 4.5.7 and 4.5.8, we obtain for any sufficiently large r ∈ Γ that

0 ≤ F (xφ(r))− F ∗ ≤ −ϖ
φ(r)−1∑
i=r

∆(xi + di) ≤ w4(F (x
r)− F (xφ(r))),

where w4 =
ϖ
σ
> 0.

Rearranging the above inequalities, we have

F (xφ(r))− F ∗ ≤ w4

1 + w4

(F (xr)− F ∗), (4.5.15)

which implies that {F (xr)}Γ converges to F ∗ at least Q-linearly.
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Remark 4.5.1. From (4.5.15), we find that constant w4 has impact on the convergence of

{F (xr)}. By w2, w3 and ϖ in Lemmas 4.5.6 (a) and 4.5.8, we have that w4 =
1
σ

{
1 + 1

(1−γ)µ

[6n2Lf + 3nL+ 3nLfκ(

√
(L+µ)2−4µ2

2µ
+

L+µ

2µ
+

Lf
µ
)]

}
. If constant w4 is not very big for some

µ, L > 0, µ ≤ L, it follows from (4.5.15) that we may achieve good convergence by choosing

kernels such that µ is set as high as possible, and L̄ is set as low as possible. If w4 is

sufficiently large for any µ, L > 0, µ ≤ L, w4

1+w4
approaches to constant 1. Then the influence

of constants µ and L is negligible.

Theorem 4.5.2. Suppose that Assumptions 4.5.1-4.5.3 hold. Let ηr ∈ Ψ(X;µ, L) and {xr}
be generated by the BCPG methods with the restricted Gauss-Seidel rule. If {F (xr)} > −∞,

then {xr}Γ converges to a stationary point of problem (4.1.1) at least R-linearly.

Proof. First, we show the global convergence of {xr}Γ. For convenience, we denote

Γ = {k1, k2, . . . }. Since {F (xr)}Γ converges to F ∗ at least Q-linearly by Theorem 4.5.1,

{F (xkt)} also converges to F ∗ at least R-linearly, where F ∗ is defined in (4.5.10). Thus,

there exist constants K > 0, ĉ ∈ (0, 1), and an integer t̂ such that

F (xkt)− F ∗ ≤ Kĉt (4.5.16)

for any t > t̂. Using (4.5.14) and Lemma 4.3.3, we have

F (xkt)− F (xkt+1) ≥ −σ
kt+1−1∑
i=kt

∆(xi + di) ≥ −σ(γ − 1)µ

kt+1−1∑
i=kt

∥di∥2.

Since xi+1 = xi + αidi and supr α
r ≤ 1, we further have

F (xkt)− F (xkt+1) ≥ σ(1− γ)µ

kt+1−1∑
i=kt

∥xi+1 − xi∥2. (4.5.17)

Hence, we obtain

∥xkt+1 − xkt∥ ≤

√√√√(kt+1 − kt)

kt+1−1∑
i=kt

∥xi+1 − xi∥2

≤
√

n

σ(1− γ)µ
(F (xkt)− F (xkt+1))

=

√
n

σ(1− γ)µ
(F (xkt)− F ∗ + F ∗ − F (xkt+1))

≤
√

n

σ(1− γ)µ
(F (xkt)− F ∗)

≤
√

n

σ(1− γ)µ
Kĉt,
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where the second inequality follows from kt+1 − kt ≤ n and (4.5.17), the third inequality

follows from Lemma 4.5.7, and the last inequality follows from (4.5.16).

We denote p :=
√

n
σ(1−γ)µK and c̄ := ĉ

1
2 . Then, for any positive integers m, n with

m > n, we have

∥xkm − xkn∥ ≤
km−kn−1∑

l=0

∥xkm−l − xkm−l−1∥ ≤ p
km−kn−1∑

l=0

c̄km−l−1 = p
c̄kn − c̄km

1− c̄
≤ p

c̄kn

1− c̄
,

which implies that {xkt} is a Cauchy sequence because of 0 < c̄ = ĉ
1
2 < 1. Hence, {xkt}

is convergent, i.e., {xr}Γ is convergent. Let x∞ denote the limit of {xr}Γ. Then, x∞ is a

stationary point of F from Theorem 4.4.1.

Finally, we complete the proof by showing the linear convergence rate of {xr}Γ.
Since ∥xkm − xkn∥ ≤ p c̄

kn−c̄km
1−c̄ , by letting m→ ∞, we have

∥x∞ − xkn∥ = lim
m→∞

∥xkm − xkn∥ ≤ lim
m→∞

p
c̄kn − c̄km

1− c̄
= p

c̄kn

1− c̄
,

which implies that {xkt} converges to x∞ at least R-linearly, since 0 < c̄ < 1.

4.6 Special BCPG methods

In this section, we discuss three special BCPG methods: the block coordinate descen-

t method, the inexact BCPG methods and an inexact block coordinate descent method.

We present some sufficient conditions for their global convergence.

4.6.1 The block coordinate descent (BCD) method

In this subsection, first, we show that the unit step size is acceptable for the BCD method

presented in Subsection 4.3.1. Then, we note that the requirement for its linear convergence

in Theorem 4.5.2 can be weakened. To this end, we require the following definitions.

Definition 4.6.1. A function f : X → R is strongly convex with respect to the block J if

the inequality f(yJ , xJ̄) − f(xJ , xJ̄) − ⟨∇Jf(xJ , xJ̄), yJ − xJ⟩ ≥ µf
2
∥yJ − xJ∥2 holds for any

xJ , yJ ⊆ R|J |, and (xJ , xJ̄), (yJ , xJ̄) ∈ X, where µf is a positive constant.

Note that, if f is strongly convex with respect to a block J , then the solution of the

subproblem (4.3.3) is unique.

Remark 4.6.1. If Definition 4.6.1 does not hold for a certain block J , we may take f(x) +

µ∥x∥2 (µ > 0) instead of f(x) in (4.3.2). In this case, the BCPG methods reduce to the

block coordinate proximal point method [74].
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Based on the Definitions 4.6.1 and 2.2.3, we assume that the smooth part f satisfies the

following conditions.

Assumption 4.6.1. (1) The function f is strongly convex with respect to each block.

(2) The gradient ∇f is block-wise Lipschitz continuous with respect to each block, which is

precisely defined by Definition 2.2.3 in Subsection 2.2.2.

For convenience, we let the scalar µmin denote the smallest strongly convex parameter

for different blocks, and let the scalar Lmax denote the largest Lipschitz constant of f for

different blocks.

The following theorem states that the unit step size (αr = 1) can be adapted for the

BCD method.

Theorem 4.6.1. Suppose that Assumption 4.6.1 holds. Then, the unit step size αr = 1 is

acceptable for the BCD method.

Proof. Without loss of generality, we consider the case at the r-th iteration. Thus,

we obtain dr
J̄r

= 0. Since the BCD method is a special case of the BCPG method, we can

prove the following inequality by a similar argument for (4.3.9) in Lemma 4.3.1.

τψ(xr + dr)− τψ(xr) ≤ −⟨∇f(xr + dr), dr⟩. (4.6.1)

Then, ∆(xr + dr) in (4.3.13) can be rewritten as follows.

∆(xr + dr) = ⟨∇f(xr), dr⟩+ γ⟨∇f(xr + dr)−∇f(xr), dr⟩+ τψ(xr + dr)− τψ(xr). (4.6.2)

Hence,

F (xr + dr)− F (xr)− σ∆(xr + dr)

= f(xr + dr)− f(xr)− σ(1− γ)⟨∇f(xr), dr⟩ − σγ⟨∇f(xr + dr), dr⟩
+ (1− σ)[τψ(xr + dr)− τψ(xr)]

≤ f(xr + dr)− f(xr)− ⟨∇f(xr + dr), dr⟩ − σ(1− γ)⟨∇f(xr)−∇f(xr + dr), dr⟩

≤
(
−µmin

2
+ σ(1− γ)Lmax

)
∥dr∥2,

where the first equality follows from (4.6.2), the first inequality follows from (4.6.1), and

the last inequality follows from the block strong convexity and block gradient Lipschitz

continuity of f .

Note that the parameters µmin and Lmax are fixed constants. By selecting appropriate

parameters σ and γ in the Armijo rule, we can ensure that −µmin
2

+ σ(1 − γ)Lmax < 0 for

all r, i.e., αr = 1 is acceptable for the BCD method.

The next theorem states the convergence rate of the BCD method, which is a direct

corollary of Theorem 4.5.2.
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Theorem 4.6.2. Suppose that function f in problem (4.1.1) is strongly convex and As-

sumption 4.5.1 holds. Let {Jr} be selected by the restricted Gauss-Seidel rule. Then {xr}Γ
generated by the BCD method converges to an optimal solution of problem (4.1.1) at least

R-linearly.

Note that, Theorem 4.6.2 holds even if f is block strongly convex and block gradient

Lipschitz continuous for each block. To the best of our knowledge, this is the first linear con-

vergence result on the classical block coordinate descent method for the nonsmooth problem

(4.1.1).

4.6.2 Inexact BCPG methods

As described in Subsection 4.3.1, the inexact BCPG methods with the criterion (4.3.4) can

be regarded as the special cases of the proposed BCPG methods with the kernel η̃r(x) =

η(x) + xTErx. Next, we present a sufficient condition on the error εr and the direction dr

for the convergence of the inexact BCPG methods.

Lemma 4.6.1. Let ηr ∈ Ψ(X;µ, L), δµ ∈ (0, µ), and δL ∈ (0,∞). Suppose that (dr, εr) ∈
Rn ×Rn satisfies (4.3.4) and

|εri | ≤ min{δµ, δL}|dri |. (4.6.3)

Then, for all r, the kernel η̃r(x) belongs to the set Ψ(X; µ̂, L̂), where η̃r(x) is defined by

(4.3.7), µ̂ = µ− δµ > 0, and L̂ = L+ δL.

Proof. First, we show that η̃r(x) = ηr(x)+xTErx ∈ Φ(X; µ̂). It is equivalent to show

that ⟨∇η̃r(y)−∇η̃r(x), y − x⟩ − µ̂∥y − x∥2 ≥ 0 for any x, y ∈ intX.

In fact, we have

⟨∇η̃r(y)−∇η̃r(x), y − x⟩ − µ̂∥y − x∥2

= ⟨∇ηr(y)−∇ηr(x), y − x⟩+ (y − x)T (Er − µ̂I)(y − x)

≥ (y − x)T (µI + Er − µ̂I)(y − x)

≥ 0,

where I ∈ Rn×n is an identity matrix, and the first inequality follows from strong convexity

of function ηr, and the last inequality holds from (4.3.5) and (4.6.3). Hence, the first part is

proved.

In the next part, we prove that ∇η̃r(x) is L̂-Lipschitz continuous. It is equivalent to show

that ∥∇η̃r(y)−∇η̃r(x)∥ ≤ L̂∥y − x∥ for any x, y ∈ intX. In fact, we have

∥∇η̃r(y)−∇η̃r(x)∥ ≤ ∥∇ηr(y)−∇ηr(x)∥+ ∥Er(y − x)∥
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≤ (L+max |Er
ii|)∥y − x∥

≤ L̂∥y − x∥,

where the second inequality holds since ∇ηr is L-Lipschitz continuous and the matrix Er is

diagonal, and the last inequality follows from (4.3.5) and (4.6.3).

Remark 4.6.2. The error εr may be explicitly given by a subgradient of function F . If

ψ(x) = 0, i.e., problem (4.1.1) is a smooth optimization problem, then we may set εrj =

−∇jf(x
r) − ∇jη(x

r + dr) +∇jη(x
r), j ∈ Jr. If ψ(x) is nondifferentiable, then we have to

consider the subdifferential ∂Jrψ(x
r+dr). In some applications, ∂Jrψ is explicitly given (For

example, when ψ(x) =
∑n

i=1|xi| and xrj + drj = 0, ∂jψ(x
r + dr) = [−1, 1]). Then we may set

εrj = argmin
ξ∈∂jψ(xr+dr)

{−τξ −∇jf(x
r)−∇jη(x

r + dr) +∇jη(x
r)} , j ∈ Jr.

Lemma 4.6.1 shows that the inexact BCPG methods are reduced to the exact BCPG

methods with η̃r ∈ Ψ(X; µ̂, L̂) in Step 2. Combining Lemma 4.6.1 and Theorem 4.5.2, we

obtain the following theorem immediately, which states the linear convergence rate of the

inexact BCPG methods.

Theorem 4.6.3. Let ηr ∈ Ψ(X;µ, L). Suppose that Assumptions 4.5.1-4.5.3 hold and

that (dr, εr) satisfies (4.3.4) and (4.6.3) for any r > 0. Then, {xr}Γ generated by the

inexact BCPG methods with the restricted Gauss-Seidel rule converges to a stationary point

of problem (4.1.1) at least R-linearly if {F (xr)} > −∞.

4.6.3 An inexact block coordinate descent (BCD) method

Letting the kernels of the inexact BCPG methods be the functions defined by (4.3.2), the

inexact BCPG methods reduce to an inexact BCD method. In this subsection, we establish

a practical criterion for the inexactness, and propose a specific inexact BCD algorithm with

unit step size for solving problem (4.1.1). We show that the proposed algorithm has R-linear

convergence rate as well.

By the definition of the approximate solution in (4.3.4), we say that drJr is an approximate

solution of subproblem (4.3.3) with error εrJr if the pair (drJr , ε
r
Jr) satisfies

∇Jrf(x
r
Jr + drJr , x

r
J̄r) + εrJr ∈ −τ∂ψJr(xrJr + drJr). (4.6.4)

Then the condition (4.6.3) holds if the direction drJrsatisfies the following inequality.

min
ξ∈∂ψJr (xrJr+d

r
Jr )

∥∇Jrf(x
r
Jr + drJr , x

r
J̄r) + τξ∥ ≤ min{δµ, δL}∥drJr∥, (4.6.5)
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where δµ ∈ (0, µ), and δL ∈ (0,∞). In the following part, we adopt inequality (4.6.5) as a

criterion for the inexact BCD method.

The following theorem shows that the unit step size (αr = 1) is also acceptable for the

inexact BCD method with (4.6.5).

Theorem 4.6.4. Suppose that Assumption 4.6.1 holds, and that the direction dr satisfies

(4.6.5) for any r. Then, the unit step size α = 1 is acceptable for the inexact BCD method

with (4.6.5).

Proof. To show this theorem, it is sufficient to show that step size αr = 1 satisfies

inequality (4.3.12) in Armijo rule with the kernel (4.3.2). Let εrJr denote the error corre-

sponding to the direction drJr . From (4.6.4), we obtain

τψJr(x
r
Jr + drJr)− τψJr(x

r
Jr) ≤ −⟨∇Jrf(x

r
Jr + drJr , x

r
J̄r) + εrJr , d

r
Jr⟩.

By a similar deduction to the proof of Theorem 4.6.1, we get

F (xrJr + drJr , x
r
J̄r)− F (xr)− σ∆(xrJr + drJr , x

r
J̄r)

≤ f(xrJr + drJr , x
r
J̄r)− f(xr)− ⟨∇Jrf(x

r
Jr + drJr , x

r
J̄r), d

r
Jr⟩

− σ(1− γ)⟨∇Jrf(x
r)−∇Jrf(x

r
Jr + drJr , x

r
J̄r), d

r
Jr⟩ − (1− σ)⟨εrJr , drJr⟩

≤
(
−µmin

2
+ σ(1− γ)Lmax + (1− σ)min{δµ, δL}

)
∥drJr∥2,

where the last inequality follows from Assumption 4.6.1 and (4.6.3). Note that there exist

parameters σ ∈ (0, 1) and γ ∈ [0, 1) such that −µmin
2

+σ(1−γ)Lmax+(1−σ)min{δµ, δL} < 0.

Hence, αr = 1 is acceptable.

Now we describe the inexact BCD algorithm as follows.

An inexact block coordinate descent algorithm:

Step 0: Select an initial point x0 ∈ intX, and let r = 0.

Step 1: If a termination condition holds, then stop.

Step 2: Select a block Jr by the restricted Gauss-Seidel rule.

Step 3: Solve subproblem (4.3.3) by a proper method to get a search direction dr satisfying

(4.6.5).

Step 4: Set xr+1
Jr = xrJr + drJr , x

r+1
J̄r

= xr
J̄r
, and r = r + 1. Go to Step 1.

We would like to emphasize that the inexact BCD algorithm does not use the line search.

Hence, it is suitable for large scale problems, whose objective function values are expensive

to evaluate.

The following theorem shows the linear convergence rate of the inexact BCD algorithm,

which follows from Theorems 4.6.3 and 4.6.4 immediately.
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Theorem 4.6.5. Suppose that function f in problem (4.1.1) is strongly convex and that

Assumption 4.5.1 holds. Then, {xr}Γ generated by the inexact BCD algorithm converges to

an optimal point of problem (4.1.1) at least R-linearly.

As noted in Subsection 4.6.1, Theorem 4.6.5 also holds under Assumption 4.6.1.

4.7 Numerical experiments

In this section, we propose a new algorithm for a convex optimization problem with separable

simplex constraints, which is an inexact BCPG method with variable kernels. We also report

numerical results for the proposed algorithm and compare it with the exponentiated gradient

algorithm, which is one of the standard solvers in the machine learning community.

4.7.1 The Log-linear dual problem

Let {(yi, zi), i = 1, 2, . . . , l} be given data, where yi ∈ X and zi ∈ Y := {1, 2, . . . ,m}
represent features and a label (class) of data, respectively. Some of the structured prediction

problems in supervised machine learning [19] can be written as follows.

minimize
w

−
l∑
i

lnp(zi|yi;w) +
C

2
∥w∥2, (4.7.1)

where C > 0 is a regularization constant, w ∈ Rd is a decision parameter, and function

p(zi|yi;w) is the conditional distribution defined by

p(zi|yi;w) =
1

m∑
j=1

exp⟨w,ϕ(yi,j)⟩
exp⟨w,ϕ(yi,zi)⟩,

where function ϕ(u, v) : X × Y → Rd maps data (u, v) to feature vectors.

Collins et al. [19] show that problem (4.7.1) can be transformed into the following convex

dual problem, which is called “ the Log-linear dual” in [19].

minimize F̃ (x) :=
1

2
xTAx+

n∑
i

xilnxi

subject to x ∈ ∆l,

(4.7.2)

where x ∈ Rn, n = lm, and ∆l is the Cartesian product of ∆, i.e., ∆l = ∆ × · · · × ∆, ∆

denotes the simplex of distributions over a classification, i.e.,

∆ = {x ∈ Rm | xi ≥ 0,
m∑
i=1

xi = 1}.
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Moreover, A is an Rn×n matrix given by

Atm+i,hm+j :=
1

C
⟨φt+1,i, φh+1,j⟩ ,

where φt+1,i = ϕ(yt+1, zt+1)− ϕ(yt+1, zi), t, h ∈ {0, 1, . . . , l − 1} and i, j ∈ {1, . . . ,m}.
Note that matrix A in (4.7.2) is symmetric and positive semidefinite. For convenience,

we use the following notations in this section. The k-th m×m diagonal block of matrix A

is denoted by A[kk] ∈ Rm×m. The vector e[n] ∈ Rn denotes the vector, whose components

are all ones. Moreover, we choose blocks {Jr} in this section as follows.

Jr = {k(r)m+ 1, k(r)m+ 2, . . . , k(r)m+m}, (4.7.3)

where k(r) = r mod l, that is, we choose blocks by the cyclic rule, defined in Section 2.4,

with N = l, J i = {i, i+ 1, . . . , i+m− 1}, and i = 1, . . . , l.

4.7.2 Block type exponentiated gradient (B-EG) algorithm

The exponentiated gradient (EG) algorithm [6, 19] is a very useful method for solving (4.7.2),

a problem over unit simplices, since it has an exact closed-form solution on each iteration.

Moreover, as described in Table 4.1, the EG algorithm is a special BCPG method with

ηr(v) = 1
tr

∑
i

vilnvi. By easy computing, the solution of subproblem (4.3.1) can be written

as follows.

drj =
xrj exp

(−tr∇j F̃ (xr))∑
j∈Jr

xrj exp
(−tr∇j F̃ (xr))

− xrj , ∀j ∈ Jr. (4.7.4)

It is shown in [19, Theorem 1] that the “batch” EG algorithm (see [19, Figure 1] for details)

with a fixed step size t ∈ (0, 1
l∥A∥∞ ] converges linearly for problem (4.7.2). This result can be

similarly extended to the following “block” type EG algorithm.

Block type exponentiated gradient (B-EG) algorithm:

Step 0: Select an initial point x0 ∈ ∆l such that x0i > 0 for all i, and let r = 0.

Step 1: Let tr =
1

∥A∥∞ and determine the block Jr by (4.7.3). Compute drJr by (4.7.4).

Step 2: Set xr+1
Jr = xrJr + drJr , x

r+1
J̄r

= xr
J̄r

and r = r + 1. Go to Step 1.

Remark 4.7.1. Note that the B-EG algorithm is a special BCPG method with the fixed

kernel ηr(v) = ∥A∥∞
∑
i

vilnvi ∈ Φ(∆n, ∥A∥∞). Using [19, Lemma 2], we can verify that

inequality (4.3.12) holds with the unit step size αr = 1. Hence, it follows from Theorem 4.4.1

that the B-EG algorithm is a globally convergent algorithm for problem (4.7.2).
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4.7.3 An inexact BCPG algorithm with variable kernels

Although the EG algorithm is very useful for problem (4.7.2), its convergence speed is still

slow. This fact motivates us to try other kernels. We propose a hybrid method of the EG

method and the inexact BCD method.

The EG method is studied in Subsection 4.7.2. Next we analyze the case of the inexact

BCD method, that is, we need to get an approximate solution to the following problem.

minimize
dJr

F̃ (xrJr + dJr , x
r
J̄r)

subject to xrJr + dJr ∈ ∆.
(4.7.5)

We consider the Newton method. However, the inequality constraints xri + di ≥ 0 in the

simplex cause the difficulty to solve the Newton subproblem. Hence, we ignore the constraint

xri + di ≥ 0 and solve the following problem with one equality constraint.

minimize ⟨∇Jr F̃ (x
r), dJr⟩+

1

2
dTJr∇2

[rr]F̃ (x
r)dJr

subject to
m∑
i=1

di = 0,
(4.7.6)

where ∇2
[rr]F̃ (x

r) ∈ Rm×m denotes the corresponding diagonal block of ∇2F̃ (xr) to the block

Jr. By the KKT condition for (4.7.6), we have(
drJr

λ

)
=

(
∇2

[rr]F̃ (x
r) e[m]

eT[m] 0

)−1(
∇Jr F̃ (x

r)

0

)
, (4.7.7)

where λ ∈ R denotes a Lagrange multiplier. Note that if xrJr+d
r
Jr > 0, then the solution drJr

is also a solution of the Newton subproblem for (4.7.5). Let Ξ := {d ∈ Rm |
∑m

i=1 di = 0}.
Then it can be verified that ∂δΞ(d) = {γe[m] | γ ∈ R}, and

min
ξ∈∂δΞ(d)

∥∇Jr F̃ (x
r
Jr + drJr , x

r
J̄r) + τξ∥ =

∥∥∥∥∥−∇Jr F̃ (x
r + dr) +

1

m

∑
i∈Jr

∇iF̃ (x
r
Jr + drJr , x

r
J̄r)e[m]

∥∥∥∥∥ .
With (4.6.5), we adopt the following conditions as the criterion for the approximate solution

of subproblem (4.3.3).
∥∥∥∥∥−∇Jr F̃ (x

r + dr) + 1
m

∑
i∈Jr

∇Jr F̃ (x
r
Jr + drJr , x

r
J̄r)e[m]

∥∥∥∥∥ ≤ (∥A∥+ 1)∥drJr∥

xrJr + drJr > 0.

(4.7.8)

Note that criterion (4.7.8) holds for sufficiently large r, since F̃ is strongly convex on ∆l and

the solution x∗ of problem (4.7.2) satisfies x∗i > 0.
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Now we formally present the proposed algorithm as follows.

Algorithm 4-1: A hybrid method of B-EG method and inexact BCD method

Step 0: Select an initial point x0 ∈ ∆l such that x0i > 0 for all i and let r = 0.

Step 1: Determine the block Jr by (4.7.3).

Step 2: Get a direction drJr by (4.7.7). If criterion (4.7.8) holds, then set xr+1
Jr = xrJr + drJr ,

xr+1
J̄r

= xr
J̄r
, and r = r + 1. Go to Step 1. Otherwise go to Step 3.

Step 3: Compute drJr by (4.7.4) with tr = 1
∥A∥∞ . Set xr+1

Jr = xrJr + drJr , x
r+1
J̄r

= xr
J̄r

and

r = r + 1. Go to Step 1.

Note that, on each iteration of Algorithm 4-1, we must calculate the Newton direction

(4.7.7). Although criterion (4.7.8) holds for sufficiently large r, it may fail in the early steps

of Algorithm 4-1. Hence, the calculation of (4.7.7) is redundant for some steps. To reduce the

wasted calculations, we may exploit the local error bound or some identification techniques

as a switch. Here, we omit such techniques for simplicity.

Moreover, for given∇Jr F̃ (x
r), the iteration complexity of (4.7.7) is O(m3). If we calculate

the eigenvalue decomposition of A[kk] in advance, it can be reduced to O(m2). On the other

hand, the calculation of ∇Jr F̃ (x
r) for (4.7.4) at each iteration is O(mn). Therefore, if

m ≪ n, then the burden of Algorithm 4-1 is the calculation of ∇Jr F̃ (x
r), and hence the

CPU time of one iteration on Algorithm 4-1 is almost same as that of the B-EG algorithm.

Remark 4.7.2. It follows from Theorems 4.4.1, 4.6.4 and Remark 4.7.1 that Algorithm 4-1

is a globally convergent algorithm for problem (4.7.2).

4.7.4 Results

In this subsection, we report numerical results of Algorithm 4-1 and compare it with the

B-EG algorithm. The algorithms are implemented in MATLAB (version 8.3.0.532 (R2014a))

and running on an Intel(R) Core(TM) i5-3470 CPU @3.20GHz. In our implementation, we

let matrix A = ÃT Ã, where Ã is an a× n matrix, whose elements are generated randomly

with uniform distribution in the interval (−1
2
, 1
2
). Note that matrix A is singular, when

a < n. Besides, we choose

x0 =
1

m
(1, 1, . . . , 1)T ∈ ∆.

We present numerical results on Algorithm 4-1 and the B-EG algorithm for different size

problems: n = 1000, 2000, 5000 and m = 10, 50 in Figures 1-6, which show plots of the objec-

tive function values versus the iteration number of r
l
, that is, the number of the iterations for

the whole variable. From Figures 1-6, we can see that Algorithm 4-1 converges significantly

faster than the B-EG algorithm.
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Figure 4.1: n = 1000, a = 200,m = 10
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Figure 4.2: n = 1000, a = 200,m = 50

0 5 10 15 20
-450

-400

-350

-300

-250

-200

-150

-100

-50

0

the number of r/l

t
h
e
 
o
b
j
e
c
t
i
v
e
 
f
u
n
c
t
i
o
n
 
v
a
l
u
e

 

 

B-EG algorithm

Algorithm 4-1

Figure 4.3: n = 2000, a = 500,m = 10

0 5 10 15 20
-152

-150

-148

-146

-144

-142

-140

the number of r/l

t
h
e
 
o
b
j
e
c
t
i
v
e
 
f
u
n
c
t
i
o
n
 
v
a
l
u
e

 

 

B-EG algorithm

Algorithm 4-1

Figure 4.4: n = 2000, a = 500,m = 50
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Figure 4.5: n = 5000, a = 1000,m = 10
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Figure 4.6: n = 5000, a = 1000,m = 50

4.8 Conclusion

In this chapter, we have presented a class of block coordinate proximal gradient (BCPG)

methods for solving the structured nonconvex optimization problem (4.1.1). For the proposed

methods, we have established their global convergence and R-linear convergence rate under

some appropriate assumptions. The idea of using the variable kernels is the innovation of

this chapter, which enables us to obtain many well-known algorithms from the proposed

BCPG methods, including the (inexact) BCD method. Moreover, some special kernels allow

the proposed BCPG methods to adopt the fixed step size. Finally, they help us to construct

accelerated algorithms.

There are many issues for the future research.
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(1) To extend the linear convergence rate of the proposed BCPG method with the general-

ized Gauss-Seidel (G-G-S) rule. The essential difference between the G-G-S rule and

the restricted Gauss-Seidel rule lies in whether the blocks can be overlapping or not.

In Chapter 3, we have shown the linear convergence of the CD method with the G-G-S

rule. Thus we think that it may be possible to show the linear convergence of the

BCPG method with the G-G-S rule.

(2) To give a convergence speed analysis of the proposed Algorithm 4-1. On step 3 of Al-

gorithm 4-1, we adopt the entropy kernel ηr = 1
tr

∑l
i=1 vi ln vi, which is not gradient

Lipschitz continuous as vi approaches to the bound of the simplex ∆. Then entropy

kernel function does not belong to the function set Ψ(∆l;µ, L). Thus we can not yield

the R-linear convergence rate of the Algorithm 4-1 from Theorem 4.5.2. However,

in [19], it is shown that the B-EG method with the random rule has an exponential

convergence rate. Note that the cyclic rule can be looked on as a special case of the

random rule. The numerical results in this chapter show that the proposed algorith-

m converge faster than the B-EG method. Hence, it may be possible to show that

Algorithm 4-1 converges at leat exponentially.

(3) To study the error bound further. In this chapter, the local error bound, Assumption

4.5.3, is the key for establishing the convergence rate of the BCPG methods. In [74],

Kurdyka-Lojasiewiez (KL) inequality is shown to be the central for the BCD method.

It is interesting to study the relation between the KL inequality and the local error

bound in the future.

(4) To extend the BCPG methods to the more general constrained problems, such as the

SVM problem. It is a challenging topic.



Chapter 5

Iteration complexity of a block

coordinate gradient descent method

for convex optimization problem

5.1 Introduction

In this chapter, we consider the following nonsmooth convex optimization problem.

minimize
x

F (x) := f(x) + τψ(x), (5.1.1)

where f is smooth and convex on an open subset ofRn containing domψ := {x ∈ Rn | ψ(x) <
∞}, τ is a positive constant, and ψ : Rn → (−∞,∞] is a proper, convex and l.s.c. function

with a block separable structure.

Note that problem (5.1.1) considered in this chapter is a convex problem, since both

functions f and ψ are assumed to be convex here.

It is known that (block) coordinate descent-type methods are very efficient for large

scale problems [7, 58, 59, 69, 78]. Recently, the topic of the iteration complexity of these

methods has been extensively discussed [7, 32, 62]. In most of the existing results, the

block coordinate descent (BCD)-type methods with the cyclic rule have O(
NLf
ε

) iteration

complexity, where Lf is the Lipschitz constant for ∇f , N is the number of blocks, and ε > 0

is the approximation accuracy. For details, see [7, 32] and references therein. However, when

problem (5.1.1) is an l1-regularized problem, it is shown in [62] that the iteration complexity

of the coordinate descent (CD) method can be improved to O(
Lf
ε
) under an isotonicity

assumption. It is worth noting that this upper bound does not depend on the dimension n.

This result implies that the existing results O(
NLf
ε

) on the block type method may be too

loose, since the CD method is a special case of the block coordinate descent method.

In this chapter, we further improve the iteration complexity of a block coordinate gradient

descent (BCGD) method with a cyclic rule for problem (5.1.1), and show that the complexity
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bound is potentially independent of the number N of blocks. In particular, we make our

research on the following two aspects.

• Based on the Lipschitz continuity-like assumption (Definition 2.2.4 in Subsection 2.2.2),

we prove that the iteration complexity of the proposed BCGDmethod may be improved

to O(
max{M, Lf}

ε
) (Corollary 5.3.1 in Section 5.3), where M is the constant given in the

proposed assumption.

• We analyze the relation between the constant M and the Lipschitz constant Lf . We

show that M ≤
√
NLf holds for general functions (Theorem 5.4.1 in Section 5.4), and

list some special functions (Theorems 5.4.2–5.4.4 in Section 5.4) such that M ≤ 2Lf .

These relations yield a sharper iteration complexity bound than those in [7] and [32].

See Table 5.1 in Section 5.5 for details.

This chapter is organized as follows. In Section 5.2, we introduce some basic assump-

tions and relevant properties. Section 5.3 presents the proposed algorithm, states our new

assumption, and derives the resulting iteration complexity. The relations between M and

Lf are discussed in Section 5.4. Finally, we conclude this chapter in Section 5.5.

5.2 Preliminaries

In this section, we introduce some basic assumptions and relevant properties.

Throughout this chapter, we assume that the optimal solution set, denoted by X∗, is

nonempty. Since problem (5.1.1) is convex, every local minimum is also a global minimum,

denoted by F ∗. Let {J 1,J 2, . . . ,J N} be a partition of the set {1, 2, . . . , n}. Hence, xT =

(xTJ 1 , . . . , xTJN ). Moreover, the function ψ in problem (5.1.1) is block separable with respect

to each block J i, that is, there exist N functions ψi : R|J i| → R, i = 1, . . . , N , such that

ψ(x) =
∑N

i=1 ψi(xJ i).

For the smooth function f in problem (5.1.1), we assume that

Assumption 5.2.1. The gradient ∇f is block-wise Lipschitz continuous with positive con-

stants {L1, . . . , LN}, which is precisely defined by Definition 2.2.3 in Subsection 2.2.2.

Under Assumption 5.2.1, we have the following lemma, which is given in [7, Lemma 3.2]

and [50, Lemma 2]. For simplicity, we omit its proof here.

Lemma 5.2.1. Suppose that Assumption 5.2.1 holds. Then, the following statements hold.

(i) For any y, x ∈ dom f with xJ̄ i = yJ̄ i, f(y) ≤ f(x)+⟨∇J if(x), yJ i−xJ i⟩+Li
2
∥yJ i−xJ i∥2.

(ii) There exists a positive constant Lf such that Lf ≤
N∑
i=1

Li and ∥∇f(y) − ∇f(x)∥ ≤

Lf∥y − x∥ for any y, x ∈ dom f .
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Additionally, we assume that the level set satisfies the following assumption.

Assumption 5.2.2. For any initial point x0, the measure of the level set

R∗ := max
y

max
x∗∈X∗

{
∥y − x∗∥ | F (y) ≤ F (x0)

}
is bounded.

5.3 Iteration complexity analysis of the BCGD method

In this section, we mainly focus on establishing the iteration complexity of a BCGD method

with a cyclic rule for solving (5.1.1). First, we introduce the specified algorithm in Subsection

5.3.1. We then propose a new assumption and present several technical lemmas in Subsection

5.3.2. Finally, in Subsection 5.3.3, we give our main results on the iteration complexity for

the cases in which the smooth function f is convex and the cost function F is strongly

convex.

5.3.1 The BCGD method

The proposed algorithm proceeds as follows.

Algorithm 5-1. BCGD method with the cyclic rule:

Step 0: Choose an initial point x0 ∈ domF , and let r = 0.

Step 1: If some termination condition holds, then stop.

Step 2-0: Let xr,0 = xr and i = 1.

Step 2-1: Solve the following subproblem with L̂k ∈ [Lk,+∞), and find a search direction

dr,i.

dr,i = argmin
d∈Rn

{
⟨∇f(xr,i−1), d⟩+ 1

2

N∑
k=1

L̂k∥dJ k∥2 + τψ(xr,i−1 + d)
∣∣∣ dJ̄ i = 0

}
.

Step 2-2: Set xr,iJ i = xr,i−1
J i + dr,iJ i , x

r,i

J̄ i = xr,i−1

J̄ i , and i = i+ 1. If i = N + 1, then go to Step

3. Otherwise, go to Step 2-1.

Step 3: Let xr+1 = xr,N , and r = r + 1. Go to Step 1.

The sequence {xr} generated by Algorithm 5-1 has the following properties.

Lemma 5.3.1. For any i ∈ {1, 2, . . . , N} and r ≥ 0, we have

xrJ i = xr,0J i = xr,jJ i , ∀ i > j ≥ 1. (5.3.1)

xr+1
J i = xr,NJ i = xr,jJ i , ∀ i ≤ j ≤ N. (5.3.2)

xr+1
J i − xrJ i = xr,NJ i − xr,0J i = dr,iJ i . (5.3.3)
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5.3.2 Technical results

In this subsection, we give a necessary Lipschitz continuity-like assumption and present

several useful lemmas. Among these, Lemma 5.3.6 plays a key role in the final results.

Assumption 5.3.1. Let {J i, i = 1, . . . , N} be a partition of the set N = {1, . . . , n}. The

gradient ∇f is block lower triangular Lipschitz continuous with respect to blocks {J i, i =

1, 2, . . . , N}, which is formally defined by Definition 2.2.4 in Section 2.2.2.

The relations between constants M and Lf are discussed in Section 5.4.

Throughout this chapter, we denote

Lmin := min
i=1,...,N

L̂i, (5.3.4)

Lmax := max
i=1,...,N

L̂i, (5.3.5)

where {Li, i = 1, . . . , N} are block Lipschitz constants, given in Algorithm 5-1.

Moreover, we let gr ∈ Rn with

grJ i := ∇J if(xr,i−1), i = 1, . . . , N, (5.3.6)

and define

vr := argmin
d∈Rn

{
⟨gr, d⟩+ 1

2

N∑
k=1

L̂k∥dJ k∥2 + τψ(xr + d)

}
, (5.3.7)

ur := argmin
d∈Rn

{
⟨∇f(xr), d⟩+ 1

2

N∑
k=1

L̂k∥dJ k∥2 + τψ(xr + d)

}
. (5.3.8)

It then follows from Algorithm 5-1 and (5.3.3) that

vr = xr+1 − xr. (5.3.9)

Since gr = g(xr, xr+1) from (2.2.3) and (5.3.6), under Assumption 5.3.1, we have that

∥gr −∇f(xr)∥ ≤M∥xr+1 − xr∥ =M∥vr∥. (5.3.10)

Next, we define an approximation of F at point xr with direction ur by

QF (x
r, ur) := f(xr) + ⟨∇f(xr), ur⟩+ 1

2

N∑
k=1

L̂k∥urJ k∥2 + τψ(xr + ur). (5.3.11)

The following lemma shows a relation between F (xr+1) and its approximation QF (x
r, ur).

Lemma 5.3.2. Suppose that Assumption 5.2.1 holds. Then, we have

F (xr+1) ≤ QF (x
r, ur) + ⟨gr −∇f(xr), ur⟩, ∀r ≥ 0. (5.3.12)
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Proof. For any r ≥ 0 and i ∈ {1, . . . , N}, we obtain

F (xr,i)− F (xr,i−1) = f(xr,i)− f(xr,i−1) + τψ(xr,i)− τψ(xr,i−1)

≤ ⟨∇J if(xr,i−1), dr,iJ i⟩+
L̂i
2
∥dr,iJ i∥2 + τψJ i(xr,i−1

J i + dr,iJ i)− τψJ i(xr,i−1
J i )

≤ ⟨∇J if(xr,i−1), urJ i⟩+
L̂i
2
∥urJ i∥2 + τψJ i(xr,0J i + urJ i)− τψJ i(xr,0J i),

where the first inequality follows from Lemma 2.2.2 (i), and the second inequality holds since

dr,i is a solution of its subproblem.

Summing over i = 1, . . . , N , we get

F (xr,N)− F (xr,0) ≤ ⟨gr, ur⟩+ 1

2

N∑
k=1

L̂k∥urJ k∥2 + τψ(xr,0 + ur)− τψ(xr,0).

It then follows from (5.3.1) and (5.3.2) that

F (xr+1) ≤ f(xr) + ⟨gr, ur⟩+ 1

2

N∑
k=1

L̂k∥urJ k∥2 + τψ(xr + ur),

which, together with the definition of QF (x
r, ur) in (5.3.11), leads to (5.3.12).

The next lemma helps us to investigate the relation between the direction vr given by

the BCGD method and the direction ur in the proximal gradient method [66].

Lemma 5.3.3. For any r ≥ 0 and a ∈ Rn, let

dra = argmin
d

{
⟨a, d⟩+ 1

2

N∑
k=1

L̂k∥dJ k∥2 + τψ(xr + d)

}
.

Then, for any a, b ∈ Rn, we have

∥dra − drb∥ ≤ 1

Lmin

∥a− b∥.

Proof. This result follows immediately from [69, lemma 4] with h(u) = 1
2

N∑
k=1

L̂k∥uJ k∥2,

p = q = 2, and ρ = Lmin.

Letting a = gr and b = ∇f(xr) in Lemma 5.3.3, we have that

∥vr − ur∥ ≤ 1

Lmin

∥gr −∇f(xr)∥. (5.3.13)

Then, an upper bound for ⟨gr −∇f(xr), ur⟩, which appears in (5.3.12), can be established.
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Lemma 5.3.4. Suppose that Assumptions 5.2.1 and 5.3.1 hold. Then, for any r ≥ 0, we

have

⟨gr −∇f(xr), ur⟩ ≤M

(
M

Lmin

+ 1

)
∥vr∥2,

where M is the constant given in Assumption 5.3.1.

Proof. For any r ≥ 0, we have

⟨gr −∇f(xr), ur⟩ ≤ ∥gr −∇f(xr)∥∥ur∥ ≤ ∥gr −∇f(xr)∥(∥ur − vr∥+ ∥vr∥).

Combining this with (5.3.10) and (5.3.13), we obtain the desired inequality.

Lemma 5.3.5. Suppose that Assumption 5.2.1 holds. Then, for any r ≥ 0, we have

F (xr)− F (xr+1) ≥ 1

2
Lmin∥vr∥2. (5.3.14)

Proof. Using Lemma 2.3.1 with φ(x) = ⟨∇f(xr,i−1), x − xr,i−1⟩ + τψ(x), Bη(x, z) =
1
2

∑N
k=1L̂k∥xJ k − zJ k∥2, z+ = xr,i, and z = xr,i−1, we have that, for any x ∈ domF and

i ∈ {1, . . . , N},

⟨∇f(xr,i−1), x− xr,i−1⟩+ τψ(x) +
1

2

N∑
k=1

L̂k∥xJ k − xr,i−1
J k ∥2

≥ ⟨∇f(xr,i−1), xr,i − xr,i−1⟩+ τψ(xr,i) +
1

2

N∑
k=1

L̂k∥|xr,iJ k − xr,i−1
J k ∥2 + 1

2

N∑
k=1

L̂k∥|xJ k − xr,iJ k∥2.

Setting x = xr,i−1, we obtain

τψ(xr,i−1) ≥ ⟨∇J if(xr,i−1), dr,iJ i⟩+ τψ(xr,i) + L̂i∥dr,iJ i∥2, (5.3.15)

which, together with Lemma 2.2.2 (i), implies that

F (xr,i) ≤ f(xr,i−1) + ⟨∇J if(xr,i−1), dr,iJ i⟩+
L̂i
2
∥dr,iJ i∥2 + τψ(xr,i)

≤ F (xr,i−1)− L̂i
2
∥dr,iJ i∥2.

Summing over i = 1, . . . , N , we obtain

F (xr+1) ≤ F (xr)− 1

2

N∑
k=1

L̂k∥xr+1
J k − xrJ k∥2.

Using (5.3.9), we have the desired result.

It is shown in [69, Lemma 2] that x is a stationary point of problem (5.1.1) if and only if

the direction ur = 0 in (5.3.8) with xr = x. The following remark describes the convergence

rate of {∥ur∥} to zero, where function f is not necessarily convex.
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Remark 5.3.1. Suppose that Assumptions 5.2.1 and 5.3.1 hold. Then, for any r ≥ 0, we

have

min
k=0,...,r

∥uk∥ ≤ 1√
r + 1

√
2(F (x0)− F ∗)

Lmin

(
M

Lmin

+ 1

)
, (5.3.16)

where F ∗ is the optimal value of problem (5.1.1).

Proof. From (5.3.10) and (5.3.13), we have

∥ur∥ ≤ ∥ur − vr∥+ ∥vr∥ ≤ 1

Lmin

∥gr −∇f(xr)∥+ ∥vr∥ ≤
(
M

Lmin

+ 1

)
∥vr∥. (5.3.17)

Moreover, from Lemma 5.3.5, we get

F (x0)− F ∗ ≥ F (x0)− F (xr+1) ≥ 1

2
(r + 1)Lmin min

k=0,...,r
∥vk∥2,

which, together with (5.3.17), gives the desired inequality.

Next, we show the key results of this chapter.

Lemma 5.3.6. Suppose that Assumptions 5.2.1 and 5.3.1 hold. Then, for any r ≥ 0, we

have

F (xr+1) ≤ QF (x
r, ur) + ω1(F (x

r)− F (xr+1)), (5.3.18)

where ω1 =
2M
Lmin

( M
Lmin

+ 1).

Proof. From Lemmas 5.3.4 and 5.3.5, we have

⟨gr −∇f(xr), ur⟩ ≤ ω1(F (x
r)− F (xr+1)),

which, together with Lemma 5.3.2, gives the desired inequality.

Since {F (xr)} is nonincreasing according to Lemma 5.3.5, it follows from Assumption

5.2.2 that the distance Rr := ∥xr − x∗∥ is bounded for any x∗ ∈ X∗ and any r > 0. Let

∆r := F (xr)− F ∗,

where F ∗ is the global minimum. The following lemma presents an estimate for QF (x
r, ur)−

F ∗, which is also shown in [59, Lemma 4, Lemma 6]. For simplicity, we omit its proof here.

Lemma 5.3.7. Suppose that Assumption 5.2.2 holds. Then, the following statements hold.
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(i) If function f is convex, then for any r ≥ 0, we have

QF (x
r, ur)− F ∗ ≤


(
1− ∆r

2LmaxR2
r

)
∆r, if ∆r ≤ LmaxR

2
r ,

1
2
LmaxR

2
r <

1
2
∆r, otherwise.

(ii) If µf + τµψ > 0, where µf and µψ are strongly convex parameters of functions f and ψ,

respectively, then for any r ≥ 0, we have

QF (x
r, ur)− F ∗ ≤ Lmax − µf

Lmax + τµψ
∆r.

5.3.3 Iteration complexity analysis

Theorem 5.3.1. Suppose that Assumptions 5.2.1, 5.2.2, and 5.3.1 hold. Then, we have

F (xr)− F ∗ ≤ ε whenever r ≥ ζ(1 + ω1)

ε
,

where ζ = 2max{LmaxR
2
∗,∆

0}, ω1 =
2M
Lmin

( M
Lmin

+ 1).

Proof. From Lemma 5.3.7 (i), we have

QF (x
r, ur)− F ∗ ≤ max

{
1

2
, 1− ∆r

2LmaxR2
r

}
∆r. (5.3.19)

From Lemma 5.3.5, ∆0 ≥ ∆1 ≥ · · · ≥ ∆r > 0. It can then be verified that

max

{
1

2
, 1− ∆r

2LmaxR2
r

}
≤ 1− ∆r

ζ
. (5.3.20)

Combining (5.3.19), (5.3.20), and Lemma 5.3.6 yields

∆r+1 ≤ (1− ∆r

ζ
)∆r + ω1(∆

r −∆r+1).

Simplifying this, we have

∆r+1 ≤ ∆r − (∆r)2

ζ(1 + ω1)
.

Dividing both sides by ∆r∆r+1, we get

1

∆r
≤ 1

∆r+1
− 1

ζ(1 + ω1)

∆r

∆r+1
. (5.3.21)

Using the fact that ∆r ≥ ∆r+1 > 0, we obtain ∆r

∆r+1 ≥ 1, which, together with (5.3.21),

implies

1

∆r+1
− 1

∆r
≥ 1

ζ(1 + ω1)
.



5.4 Relations between M and Lf 99

Summing over r, we get

1

∆r
− 1

∆0
≥ r

ζ(1 + ω1)
.

Since ∆0 > 0, we have F (xr)− F ∗ = ∆r ≤ ζ(1+ω1)
r

. Hence, the result follows.

We can deduce an immediate consequence of Theorem 5.3.1 using special settings for L̂k.

Corollary 5.3.1. Suppose that Assumptions 5.2.1, 5.2.2, and 5.3.1 hold. If we set L̂k =

max{M,Lf} for k = 1, . . . , N , then F (xr)− F ∗ ≤ ε whenever r ≥ 10max{MR2
∗,LfR

2
∗,∆

0}
ε

.

Proof. The proof follows directly from Lmin = Lmax = max{M,Lf} and Theorem

5.3.1.

Ignoring the constant ∆0 in Corollary 5.3.1, we can see that Algorithm 5-1 has the

O(
max{M,Lf}

ε
) iteration complexity. The next theorem shows that Algorithm 5-1 converges

linearly when the cost function F is strongly convex.

Theorem 5.3.2. Suppose that Assumptions 5.2.1, 5.2.2, and 5.3.1 hold, and that µf+τµψ >

0. Then,

F (xr)− F ∗ ≤
(
ω1 + ω2

1 + ω1

)r
(F (x0)− F ∗), (5.3.22)

where ω1 =
2M
Lmin

( M
Lmin

+ 1) and ω2 =
Lmax−µf
Lmax+τµψ

< 1.

Proof. From Lemmas 5.3.6 and 5.3.7 (ii), we obtain

∆r+1 ≤ ω2∆
r + ω1(∆

r −∆r+1).

Hence, we have

∆r ≤ ω2 + ω1

1 + ω1

∆r−1 ≤
(
ω2 + ω1

1 + ω1

)r
∆0,

which proves the desired inequality.

A direct result of Theorems 5.3.1 and 5.3.2 is that {F (xr)} has a linear convergence rate

if either f or ψ is strongly convex.

5.4 Relations between M and Lf

In this section, we study the relation between constants M and Lf , which, together with

Corollary 5.3.1, yields that the iteration complexity deduced in this chapter is sharper than

those in [7, 62, 32]. Particularly, we first prove thatM ≤
√
NLf for general functions. Then,

we list some special functions for which M ≤ 2Lf .
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Theorem 5.4.1. Suppose that Assumption 5.2.1 holds. Then, we have M ≤
√
NLf , where

M is the constant in Assumption 5.3.1, and Lf is the Lipschitz constant of ∇f .

Proof. From Assumption 5.3.1, we have

∥g(x, y)−∇f(x)∥ =

√√√√ N∑
i=1

∥gJ i(x, y)−∇J if(x)∥2 ≤

√√√√ N∑
i=1

∥∇f(zi)−∇f(x)∥2,

where zi ∈ Rn with zi = (yTJ 1 , . . . , yTJ i−1 , xTJ i , . . . , xTJN )
T .

Using Lemma 2.2.2 (ii), we obtain

∥∇f(zi)−∇f(x)∥ ≤ Lf∥zi − x∥ ≤ Lf∥y − x∥.

Then, we have that

∥g(x, y)−∇f(x)∥ ≤
√
NLf∥y − x∥.

Hence, we have M ≤
√
NLf .

Remark 5.4.1. From Corollary 5.3.1 and Theorem 5.4.1, we have that the iteration complex-

ity of Algorithm 5-1 actually is O(
√
NLf
ε

) for the nonsmooth minimization problem (5.1.1).

This bound is sharper than the results in [7, 32].

Next, we will give several functions such that M ≤ 2Lf . We let Lf = max
x∈Rn

∥∇2f(x)∥ and

show the proofs for Theorems 5.4.2-5.4.3 only for the case N = n. The proof for the block

case, i.e., N < n, can be deduced in a similar way.

Assume that ∇2f(x) is decomposed into a strictly lower triangular matrix P (x), diagonal

matrix Λ(x), and upper triangular matrices (P (x))T , i.e.,

∇2f(x) = P (x) + Λ(x) + (P (x))T .

Moreover, let y ∈ Rn and let zi ∈ Rn with zi = (y1, . . . , yi−1, xi, . . . , xn)
T . Then, for any

r ≥ 0 and i ∈ {1, . . . , n}, we have

gi(x, y)−∇if(x) =∇if(z
i)−∇if(x)

=

∫ 1

0

n∑
j=1

∇2
i,jf(x+ τ(zi − x))(zij − xj)dτ

=

∫ 1

0

n∑
j=1

Pi,j(x+ τ(zi − x))(yj − xj)dτ,

where the last equality follows from the fact that xk = zik for any k ≥ i.
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Letting P̂ (τ, x, z) ∈ Rn×n with

P̂i,j(τ, x, z) = Pi,j(x+ τ(zi − x)), ∀i, j ∈ {1, 2, . . . , n}, (5.4.1)

we obtain

g(x, y)−∇f(x) =
∫ 1

0

P̂ (τ, x, z)(y − x)dτ,

which implies that

∥g(x, y)−∇f(x)∥ ≤
∫ 1

0

∥P̂ (τ, x, z)∥∥y − x∥dτ ≤ max
τ∈[0,1]

∥P̂ (τ, x, z)∥∥y − x∥. (5.4.2)

Hence, we obtain

M ≤ max
τ∈[0,1]

∥P̂ (τ, x, z)∥. (5.4.3)

Theorem 5.4.2. Suppose that f is twice differentiable, and that ∇2f(x) is a tridiagonal

matrix. Then, we have M ≤ Lf .

Proof. Since ∇2f(x) is assumed to be tridiagonal, we have

∥P̂ (τ, x, z)∥ = max
i=1,...,n−1

|Pi+1,i(τ, x, z)| ≤ max
i=1,...,n−1
x∈Rn

|Pi+1,i(x)|. (5.4.4)

Using the property that ∥A∥ ≥ max
i,j

|Ai,j| for anyA ∈ Rn×n, we have Lf = max
x∈Rn

∥∇2f(x)∥ ≥
max

i=1,...,n−1
x∈Rn

|Pi+1,i(x)|. Combined with (5.4.3) and (5.4.4), this proves the desired inequality.

Theorem 5.4.3. Suppose that, for any i = 1, . . . , n and x ∈ Rn, there exists a submatrix

Ei
sub(x) of ∇2f(x) such that ∥Ei

sub(x)∥ ≥
i−1∑
j=1

|Pi,j(x)| holds. Then, we have M ≤
√
2Lf .

Proof. For any i = 1, . . . , n, we have

∥Ei
sub(x)∥2 ≥

(
i−1∑
j=1

|Pi,j(x)|

)2

≥
i−1∑
j=1

|Pi,j(x)|2. (5.4.5)

Moreover, for the strictly lower triangular matrix P̂ (τ, x, z) defined by (5.4.1), we get for

any y ∈ Rn that

∥P̂ (τ, x, z)y∥2 =
n∑
i=2

∣∣∣∣∣
i−1∑
j=1

P̂i,j(τ, x, z)yi

∣∣∣∣∣
2

≤ 2
n∑
i=2

i−1∑
j=1

|P̂i,j(τ, x, z)|2|yi|2.
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Using the fact that the variables in the i-th row of matrix P̂ (τ, x, z) are the same, we have

from (5.4.5) that

∥P̂ (τ, x, z)y∥2 ≤ 2
n∑
i=2

∥∥Ei
sub(x+ τ(zi − x))

∥∥2 |yi|2 ≤ 2 max
i=1,...,n−1
x∈Rn

∥Ei
sub(x)∥2∥y∥2.

Recalling the property that ∥A∥ ≥ max
i=1,...,n

{∥Aisub∥} for any matrix A ∈ Rn×n, we have from

(5.4.3) that

M ≤ ∥P̂ (τ, x, z)∥ = max
x ̸=0

∥P̂ (τ, x, z)y∥
∥x∥

≤
√
2 max
i=1,...,n−1
x∈Rn

∥Ei
sub(x)∥ ≤

√
2max
x∈Rn

∥∇2f(x)∥,

which proves the desired inequality.

The following corollary follows immediately from Theorem 5.4.3.

Corollary 5.4.1. Suppose that the Hessian matrix ∇2f(x) is row diagonally dominant, i.e.,

|∇2
iif(x)| ≥

∑
j ̸=i

|∇2
ijf(x)| for any i = 1, . . . , n. Then, we have M ≤

√
2Lf .

Next, we give a sufficient condition when f is quadratic. The similar condition is assumed

in [62] to show the iteration complexity O(
Lf
ε
).

Theorem 5.4.4. Suppose that f is a quadratic function with f(x) = 1
2
xTEx, E ∈ Rn×n is

symmetric and positive semidefinite, and all nonzero elements in {Eij, i, j = 1, . . . , n, i ̸= j}
have the same signs. Then, we have M ≤ 2Lf .

Proof. Throughout the proof, we let Lf = ∥E∥ and let E be decomposed into a block

diagonal matrix ΛB and strictly lower and upper triangular matrices PB and (PB)T , i.e.,

E = PB + ΛB + (PB)T ,

where ΛB := Diag{ΛB1 , . . . ,ΛBN}, ΛBi ∈ R|J i|×|J i|.

A simple computation gives that

g(x, y)−∇f(x) = PB(y − x),

which implies that

M ≤ ∥PB∥. (5.4.6)

From the assumption on matrix E, it can be easily verified that

∥PB∥ = max
x ̸=0

∥PBx∥
∥x∥

= max
x≥0,x ̸=0

∥PBx∥
∥x∥

≤ max
x≥0,x ̸=0

∥(PB + (PB)T )x∥
∥x∥

= ∥PB + (PB)T∥,
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which yields that

M ≤ ∥PB∥ ≤ ∥PB + (PB)T∥ = ∥E − ΛB∥ ≤ ∥E∥+ ∥ΛB∥. (5.4.7)

Thus, we need only show that

∥ΛB∥ = max
i=1,...,N

{∥ΛBJ i∥} ≤ ∥E∥. (5.4.8)

Then, by (5.4.7), we can conclude that the theorem holds. In fact, we have

∥ΛBx∥2 =
N∑
i=1

∥ΛBJ ixJ i∥2 ≤
N∑
i=1

∥ΛBJ i∥2∥xJ i∥2 ≤ max
i=1,...,N

{∥ΛBJ i∥2}∥x∥2.

Then, we get

∥ΛB∥ = max
x ̸=0

∥ΛBx∥
∥x∥

≤ max
i=1,...,N

{∥ΛBJ i∥}.

On the other hand, using the property that ∥ΛB∥ ≥ ∥ΛBJ i∥ for any i = 1, . . . , N , we have

∥ΛB∥ ≥ max
i=1,...,N

{∥ΛBJ i∥}.

Hence, we obtain ∥ΛB∥ = max
i=1,...,N

{∥ΛBJ i∥}. Moreover, max
i=1,...,N

∥ΛBi ∥ ≤ ∥E∥ holds because

∥ΛBJ i∥ ≤ ∥E∥ for any i ∈ {1, 2, . . . , N}.

Remark 5.4.2. Functions in Theorems 5.4.2–5.4.4 satisfies Assumption 5.3.1 with M ≤
2Lf . Combined with Corollary 5.3.1, this yields that the iteration complexity of Algorithm

5-1 can be improved to O(
Lf
ε
). This bound is independent of the number of blocks.

Remark 5.4.3. As a comparison to [62], matrix E with Eij ≤ 0 for any j ̸= i in Theorem

5.4.4 meets the isotonicity assumption in [62]. However, the results in this chapter applies

not only to l1-regularized loss minimization problems, but also to much more optimization

problems. Another favorable point is that Theorem 5.4.4 does not require a special initial

point as in [62].

5.5 Conclusion

In this chapter, we have studied the iteration complexity of the BCGD method with a cyclic

rule for solving nonsmooth convex optimization problem (5.1.1). We have proposed a new

Lipschitz continuity-like assumption, and improved the iteration complexity toO(
max{M, Lf}

ε
),

where M is the constant given in the proposed assumption. Furthermore, we have studied
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the relation between M and Lf . Theorems 5.4.1–5.4.4 show that M ≤
√
NLf or M ≤ 2Lf ,

and this implies that the iteration complexity bound derived in this chapter is sharper than

existing results (see Table 5.1 for details).

Table 5.1: Comparison of BCD methods with the cyclic rule for convex problem (5.1.1)

Algorithm ψ(x) L̂k Complexity bound Complexity

Algorithm 5-1

(in this chapter)
Separable max{M,Lf} 10max{MR2

∗,LfR
2
∗,∆

0}
ε

O(
√
NLf
ε

)

O(
Lf
ε
) for problems

in Th. 5.4.2–5.4.4

Beck et al. [7] 0 Lf
4Lf (1+N)R2

∗
ε

− 8
N

O(
NLf
ε

)

Hong et al. [32] Separable Lf
8tNLfR

2
∗

ε
O(

NLf
ε

)

In future work, it would be interesting to find more functions for which the corresponding

constantM is independent of the numberN of blocks. Currently, we have not found a counter

example where NσL ≤M for a positive constant σ.

Additionally, Assumption 5.2.2 in this chapter seems a little strict. Recently, for the

BCGDmethod with the random rule, some iteration complexity results have been established

without Assumption 5.2.2 [39, 40]. In the future, it would be challenging to study the

iteration complexity of the BCGD method with the cyclic rule without Assumption 5.2.2.



Chapter 6

Regret analysis of a block coordinate

gradient method for online convex

optimization problem

6.1 Introduction

In this chapter, we consider an online convex optimization problem with a separable struc-

ture, whose loss function F t : Ω → R at time step t is given as follows.

F t(x) := f t(x) + τψ(x), t = 1, 2, . . . , (6.1.1)

where f t : Ω → R is smooth and convex, Ω ⊆
∩∞
t=1 domF t is a nonempty convex set, τ is

a positive constant, and ψ : Ω → (−∞,∞] is a proper, convex and l.s.c. function with the

block separable structure.

As described in Subsection 1.2.2, it is impossible to select a point xt that exactly minimize

the loss function F t(x) at the t-th time step for the online optimization problems, and the

goal of the online convex optimization problem is to propose an algorithm, with which the

generating decisions make us to achieve a regret as low as possible. The definition of the

“regret” is formally given by Definition 2.2.8 in Subsection 2.2.4.

Moreover, as mentioned in Subsection 1.2.3, the applications of the online optimization

problems [3, 14, 27] are mostly built on large scales. Some researchers have studied the

performances of the gradient methods for the online convex optimization problems [73, 81].

When ψ(x) in (6.1.1) is an indicator function, Zinkevich [81] proved that the projected

gradient method for the online convex optimization problem has a regret O(
√
T ). When

ψ(x) in (6.1.1) is a general regularization function, Xiao [73] proposed a dual averaging

method, which is first proposed by Nesterov for classical convex optimization problem. He

showed that the proposed method achieves the same regret O(
√
T ) as [81]. However, both of
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these two methods are full gradient methods, i.e., they update all components of the variable

x at each iteration. When the scale of the problem becomes very large, the evaluations for

updating the gradients of each iteration would take much time.

Recently, the “block” type methods are becoming very popular, especially for the large

scale problems [59, 66, 67]. Compared to the full gradient methods, the block type methods

can reduce the calculation time at each iteration. Quite recently, Xu and Yin [75] proposed a

block coordinate stochastic gradient method with the cyclic rule for a regularized stochastic

optimization problem, which is related to the online optimization problem (6.1.1). Under

the Lipschitz continuity-like assumption, they showed that the proposed method converges

with O(1+log T√
1+T

N), where N is the number of blocks. Furthermore, as the number N of the

blocks reduces to 1, i.e., N = 1, this iteration compklexity bound reduces to O(1+log T√
1+T

),

which is bigger than the average regret R(T )
T

= O( 1√
T
) of the greedy projection method [81].

In this chapter, we propose a block coordinate gradient method with the cyclic rule (C-

BCG) for the online convex optimization problem with the loss function (6.1.1). For the

proposed methods, we make our research on the following two aspects.

• We establish its regret bound. In particular, we show that the C-BCG method has a

regret O(
√
T ). See Theorem 6.4.1 for details.

• We extend the C-BCG method to the convex stochastic optimization problem. See

Theorem 6.5.1 for details.

Note that the regret bound of the C-BCG method in this chapter is independent of the

number N of blocks under proper assumptions, although we solve N subproblems at each

step. When the total number of blocks reduces to one, and the function ψ is set to be

an indicator function, the regret of the proposed method reduce to the same result in [81].

Hence, it is a natural extension of greedy projection method [81].

Additionally, although the C-BCG method proposed in this chapter is essentially same

as the block coordinate stochastic gradient method with the cyclic rule [75], by different

analysis, we show that the ergodic convergence upper bound of the C-BCG method is tighter

than that in [75].

This chapter is organized as follows. In Section 6.2, we introduce the algorithms of

the block coordinate gradient methods with the cyclic rule. Then we introduce some basic

assumptions and present revelent properties in Section 6.3. In Section 6.4, we investigate

the regret analysis for the proposed method. Finally, we conclude this chapter in Section

6.5.
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6.2 The BCG method

In this chapter, we propose a block coordinate gradient method with the cyclic rule for the

online convex optimization problem (6.1.1). For convenience, we start with recalling several

important results in [81].

The greedy projection method proposed in [81], can be described as follows.

Greedy projection method:

Step 0: Choose an initial point x1 ∈ Ω and set a sequence of constants λ1, λ2, ... > 0.

Step 1: Update the vector xt according to

xt+1 = xt + dt ,

dt = PΩ(x
t − λt∇f t(xt))− xt,

where PΩ(·) denotes a projection onto the set Ω. Constants {λt, t = 1, 2, . . . } are called the

“learning rates”.

Before proposing the block coordinate gradient algorithms, we present several basic as-

sumptions. Throughout this chapter, the variable x is assumed to be partitioned into N

blocks, denoted by xT = (xTJ 1 , . . . , xTJN ).

We also assume that ψ is block separable with respect to each block J i, i = {1, 2, . . . , n}.
For the set Ω in (6.1.1), we suppose that Ω = Ω1 × Ω2 × · · · × ΩN , where operator “×”

denotes the Cartesian product. For given ∇f t at time step t, we consider the direction,

which is defined by

d(x; J, t, λ) = argmin
d∈Rn

{
⟨∇f t(x), d⟩+ 1

2λ
∥d∥2 + τψ(x+ d)

∣∣∣ dJ̄ = 0, x+ d ∈ Ω

}
. (6.2.1)

As defined in the greedy projection method [81], constant λ in (6.2.1) is called the learning

rate. When J = {1, 2, . . . , n} and ψ = 0, d(x; J, t, λ) reduces to the direction dt in Step

1 of the greedy projection method. Note that direction d(x; J, t, λ) given by (6.2.1) is well

defined, since the minimizer of the corresponding optimization problem always exists and is

unique [60, Theorem 31.5]. Moreover, the direction d(x; J, t, λ) is a descent direction for the

loss function F t.

The rule to choose blocks is also important for convergence. In this chapter, we choose

blocks in the order of J 1,J 2, . . . ,J N cyclically, i.e., we adopt the cyclic rule, which is

precisely defined in Section 2.4.

Next, we describe the frameworks of the BCG methods with the cyclic rule.
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Algorithm 6-1. A BCG method with the cyclic rule (C-BCG):

Step 0: Choose an initial point x1 ∈ int Ω. Let t = 1.

Step 1: If some termination condition holds, then stop.

Step 2-0: Let xt,0 = xt and i = 1.

Step 2-1: Set the learning rate λt,i ∈ (0,+∞). Solve the subproblem (6.2.1) with x = xt,i−1,

J = J i, λ = λt,i and get a direction dt,i = d(xt,i−1;J i, t, λt,i).

Step 2-2: Set xt,i = xt,i−1 + dt,i and i = i+ 1. If i = N + 1, then go to Step 3. Otherwise,

go to Step 2-1.

Step 3: Set xt+1 = xt,N . Let t = t+ 1 and go to Step 1.

At each time step, the C-BCG method solves subproblem (6.2.1) N times. When N = 1

and function ψ is an indicator function, this method reduces to the greedy projection method

[81].

6.3 Basic assumptions

In this section, we introduce basic assumptions and present relevant properties, which will

be used in the subsequent sections.

Given a constant T > 0, we denote the set of all optimal solutions of the problem

min
x∈Ω

T∑
t=1

F t(x) by X∗, [T ] in the rest of this chapter.

For the loss functions f t and ψ, we make the following assumptions, where Assumptions

6.3.1 and 6.3.2 are also used in [81].

Assumption 6.3.1. The feasible set Ω for loss functions {F t, t = 1, 2, . . . } in (6.1.1) is

nonempty and compact.

For convenience, we define

D := max
x,y∈Ω

∥x− y∥. (6.3.1)

It follows from Assumption 6.3.1 that D <∞.

Assumption 6.3.2. There exists a positive constant G such that ∥∇f t(x)∥ ≤ G and

∥∂ψ(x)∥ ≤ G hold for all t > 0 and x ∈ Ω.

Note that when f t is a linear function, that is, f t(x) = ⟨at, x⟩ + bt with some at ∈ Rn,

bt ∈ R, we have ∇f t(x) = at. Then, ∥∇f t(x)∥ ≤ G means that ∥at∥ ≤ G holds for any

t > 0. When f t is a quadratic function with f t(x) = xTAtx, we get ∇f t(x) = Atx. From

Assumption 6.3.1, ∥∇f t(x)∥ ≤ G is equivalent to that ∥At∥ ≤ G
D
. For the function ψ(x),

when ψ(x) = ∥x∥, we have ∥∂ψ(x)∥ ≤ 1.
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It is worth mentioning that Assumptions 6.3.1 and 6.3.2 are a little restrictive in this

chapter. In fact, we only need to assume that there exists a compact set Ω̃ ⊆ Rn such that

the iterations {xt} ⊆ Ω̃, X∗, [T ] ⊆ Ω̃, and that ∥∇f t(xt)∥, ∥∂ψ(xt)∥ ≤ G for all xt ∈ Ω̃. For

simplicity, we adopt Assumptions 6.3.1 and 6.3.2 in this chapter, which are in accord with

the assumptions in [81].

The following assumption is a Lipschitz continuity-like assumption, which is defined in

Subsection 2.2.2.

Assumption 6.3.3. Let {J i, i = 1, . . . , N} be a partition of the set N = {1, . . . , n}. The

gradient ∇f is block lower triangular Lipschitz continuous with respect to blocks {J i, i =

1, 2, . . . , N}, which is formally defined by Definition 2.2.4 in Subsection 2.2.2.

For the vector g(x, y), defined by (2.2.3), in the following chapter, we use the notation

gt instead of gt(xt, xt+1) when it is clear from the context. The next remark states several

particular cases of constant M in Assumption 6.3.3.

Remark 6.3.1. When N = 1 or function f t is separable with respect to the blocks {J i,

i = 1, . . . , N}, we have that gt(x, y) = ∇f t(x), which yields that M = 0 in (2.2.2). When

N > 1, it is shown in Section 5.4 that M ≤ 2max{Lf1 , . . . , LfN} holds for many classes

of functions f t. For example, when functions f t have the same forms with f(x), and the

Hessian matrix ∇2f(x) is tridiagonal or row diagonal dominant, we have that M ≤ 2Lf .

Under Assumptions 6.3.1-6.3.3, we can show that the vector gt is bounded for all t.

Lemma 6.3.1. Suppose that Assumptions 6.3.1-6.3.3 hold. Then we have

∥gt∥2 =
N∑
i=1

∥∇J if t(xt,i−1)∥2 ≤ Ḡ2, (6.3.2)

where Ḡ = MD +G. Moreover, when N = 1 or function f t is separable with respect to the

blocks {J i, i = 1, . . . , N}, we have ∥gt∥ ≤ G.

Proof. Since we denote gt = gt(xt, xt+1), from the definition of gt(x, y) in (2.2.3), we

have that

∥gt∥2 =
N∑
i=1

∥∇J if t(xt,i−1)∥2.

Moreover, from Assumptions 6.3.1-6.3.3, we have that

∥gt∥ ≤ ∥gt −∇f t(xt)∥+ ∥∇f t(xt)∥ ≤M∥xt+1 − xt∥+G ≤MD +G.

Hence, the relation (6.3.2) holds.
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When N = 1 or function f t is separable with respect to the blocks {J i, i = 1, . . . , N},
we have ∥gt∥ = ∥∇f t(xt)∥ from Remark 6.3.1, which together with Assumption 6.3.2 yields

that ∥gt∥ ≤ G.

For the learning rate λ in the proposed methods, we make the following assumption.

Assumption 6.3.4. The learning rate λt,i in the C-BCG method is given by λt,i = cβi√
t
,

t = 1, 2, . . . , i = 1, 2, . . . , N , where c > 0, and βi ∈ [β, β̄], β̄ ≥ β > 0.

The constants {βi, i = 1, 2, . . . , N} in Assumption 6.3.4 act as scaling factors of the

learning rates on different blocks. When βi = 1, i = 1, 2, . . . , N , and c = 1, we have

λt,i =
1√
t
, which reduces to the case in [81].

Next, we recall the regret of the greedy projection method, which is given in [81].

Theorem 6.3.1. Suppose that Assumptions 6.3.1-6.3.2 hold. Let λt = 1√
t
and x∗, [T ] ∈

X∗, [T ]. Then, the regret R(T ) of the greedy projection method satisfies

R(T ) ≤
√
T

2
D2 +

(2
√
T − 1)

2
G2, (6.3.3)

where constant D is defined by (6.3.1), and constant G is given in Assumption 6.3.2.

6.4 Regret of the BCG method

In this section, we give the regret analysis of the C-BCG method for the online convex

optimization problem (6.1.1). Throughout this subsection, the sequence {xt} denotes the

sequence generated by the C-BCG method.

We first introduce several technical lemmas. The following lemma presents main char-

acteristics of the sequence {xt}, which can be verified easily, and hence, we omit the proof

here.

Lemma 6.4.1. For the sequence {xt}, we have

xtJ i = xt,0J i = xt,jJ i , ∀ i = 1, 2, . . . , N, 1 ≤ j < i.

xt+1
J i = xt,NJ i = xt,jJ i , ∀ i = 1, 2, . . . , N, i ≤ j ≤ N.

xt+1
J i − xtJ i = xt,NJ i − xt,0J i = dt,iJ i , ∀ i = 1, 2, . . . , N.

The following lemma states that each movement is closely related to the learning rate

defined in Assumption 6.3.4.
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Lemma 6.4.2. Suppose that Assumptions 6.3.1-6.3.4 hold. Then, for any t > 0, we have

∥xt+1 − xt∥ ≤ cG̃√
t
,

where G̃ = β̄
√
2Ḡ2 + 2τ 2G2, and Ḡ =MD +G.

Proof. Since function ψ(x) in problem (6.1.1) is block separable, from (6.2.1) the

subvector dt,iJ i can be rewritten as

dt,iJ i = argmin
xt,i−1

J i
+dJ i∈Ωi

{
1

2λt,i
∥dJ i + λt,i∇J if t(xt,i−1)∥2 + τψi(x

t,i−1
J i + dJ i)

}
. (6.4.1)

From the first order optimality condition, we have

⟨ 1

λt,i
dt,iJ i +∇J if t(xt,i−1) + τηt,iJ i , dJ i − dt,iJ i⟩ ≥ 0, ∀dJ i such that xt,i−1

J i + dJ i ∈ Ωi, (6.4.2)

where ηt,iJ i ∈ ∂ψi(x
t,i
J i). Since x

t,i−1
J i ∈ Ωi, we let dJ i = 0 in (6.4.2) and get

⟨ 1

λt,i
dt,iJ i +∇J if t(xt,i−1) + τηt,iJ i ,−dt,iJ i⟩ ≥ 0, (6.4.3)

which implies that

∥dt,iJ i∥2 ≤ λt,i⟨∇J if t(xt,i−1) + τηt,iJ i ,−dt,iJ i⟩ ≤ λt,i∥∇J if t(xt,i−1) + τηt,iJ i∥∥dt,iJ i∥.

Dividing by ∥dt,iJ i∥ on both sides and squaring it, we get

∥dt,iJ i∥2 ≤ λ2t,i
(
∥∇J if t(xt,i−1)∥+ τ∥ηt,iJ i∥

)2
≤ 2

c2β2
i

t

(
∥∇J if t(xt,i−1)∥2 + τ 2∥ηt,iJ i∥2

)
.

Summing this inequality over i from 1 to N , we obtain

∥xt+1 − xt∥2 =
N∑
i=1

∥dt,iJ i∥2 ≤ 2
c2β̄2

t

(
N∑
i=1

∥∇J if t(xt,i−1)∥2 + τ 2
N∑
i=1

∥ηt,iJ i∥2
)
. (6.4.4)

Since (ηt,1J 1 , . . . , η
t,N
JN ) ∈ ∂ψ(xt+1), it follows from Assumption 6.3.2 that

∑N
i=1∥η

t,i
J i∥2 ≤ G2,

which together with Lemma 6.3.1 and (6.4.4) proves the desired result.

The next result presents an estimator between F t(xt) and F t(x), which plays a key role

for the final regret analysis.
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Lemma 6.4.3. For any t > 0, we have

F t(xt)− F t(x) ≤ S1,t + S2,t(x) + S3,t(x),

where S1,t, S2,t(x) and S3,t(x) are defined as follows.

S1,t :=
N∑
i=1

[
− 1

2λt,i
∥xt,iJ i − xt,i−1

J i ∥2 − ⟨∇J if t(xt,i−1), xt,iJ i − xt,i−1
J i ⟩

]
; (6.4.5)

S2,t(x) :=
N∑
i=1

1

2λt,i

[
∥xJ i − xt,i−1

J i ∥2 − ∥xJ i − xt,iJ i∥2
]
; (6.4.6)

S3,t(x) :=
N∑
i=1

⟨∇J if t(xt,i−1)−∇J if t(xt), xJ i − xt,i−1
J i ⟩+ τ [ψ(xt)− ψ(xt+1)]. (6.4.7)

Proof. Using Lemma 2.3.1 with φ(x) = ⟨∇J if t(xt,i−1), xJ i − xt,i−1
J i ⟩ + τψi(xJ i), λ =

λt,i, z+ = xt,iJ i , z = xt,i−1
J i , i ∈ {1, . . . , N}, we have

τψi(x
t,i
J i)− τψi(xJ i) ≤ 1

2λt,i
∥xJ i − xt,i−1

J i ∥2 − 1

2λt,i
∥xt,iJ i − xt,i−1

J i ∥2 − 1

2λt,i
∥xJ i − xt,iJ i∥2

+ ⟨∇J if t(xt,i−1), xJ i − xt,i−1
J i ⟩ − ⟨∇J if t(xt,i−1), xt,iJ i − xt,i−1

J i ⟩.
(6.4.8)

Moreover, from the convexity of function f t, we obtain

f t(xt)− f t(x) ≤ −⟨x− xt,∇f t(xt)⟩. (6.4.9)

Then we have

F t(xt)− F t(x)

= f t(xt)− f t(x) + τ [ψ(xt)− ψ(x)]

≤ −⟨x− xt,∇f t(xt)⟩+ τ [ψ(xt+1)− ψ(x)] + τ [ψ(xt)− ψ(xt+1)]

=
N∑
i=1

{
−⟨xJ i − xt,i−1

J i ,∇J if t(xt)⟩+ τ [ψi(x
t,i
J i)− ψi(xJ i)]

}
+ τ [ψ(xt)− ψ(xt+1)],

where the inequality follows from (6.4.9), and the last equality follows from Lemma 6.4.1.

Combining with inequality (6.4.8), we obtain the desired inequality.

Next, we establish upper bounds for S1,t, S2,t(x) and S3,t(x), respectively.

Lemma 6.4.4. Suppose that Assumptions 6.3.1-6.3.4 hold. Then, for any t > 0, we get

S1,t ≤ cβ̄

2
√
t
Ḡ2.
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Proof. For any t > 0 and i ∈ {1, . . . , N}, we have

− 1

2λt,i
∥xt,iJ i − xt,i−1

J i ∥2 − ⟨∇J if t(xt,i−1), xt,iJ i − xt,i−1
J i ⟩

= − 1

2λt,i

∥∥xt,iJ i − xt,i−1
J i + λt,i∇J if t(xt,i−1)

∥∥2 + λt,i
2
∥∇J if t(xt,i−1)∥2

≤ λt,i
2
∥∇J if t(xt,i−1)∥2.

Summing this inequality over i from 1 to N , we get

S1,t ≤
N∑
i=1

λt,i
2
∥∇J if t(xt,i−1)∥2 ≤ cβ̄

2
√
t
∥gt∥2 ≤ cβ̄

2
√
t
Ḡ2,

where the last two inequalities follow from Lemma 6.3.1.

For convenience, we define a diagonal matrix B ∈ Rn×n with

Bjj = βi, ∀j ∈ J i, i = 1, 2, . . . , N, (6.4.10)

where {βi, i = 1, 2, . . . , N} are constants given in Assumption 6.3.4. Since we assume

βi ≥ β > 0 for any i = 1, . . . , N , matrix B is invertible.

For S2,t(x), it follows from (6.4.6), Assumption 6.3.4, and the definition of the norm

∥ · ∥B−1 that

S2,t(x) =

√
t

2c

[
∥x− xt∥2B−1 − ∥x− xt+1∥2B−1

]
. (6.4.11)

A bound for S3,t(x) is given by the following lemma.

Lemma 6.4.5. Suppose that Assumptions 6.3.1-6.3.4 hold. Then, for any t > 0, we have

S3,t(x) ≤ c√
t
MG̃∥x− xt+1∥+ τ [ψ(xt)− ψ(xt+1)],

where G̃ = β̄
√
2Ḡ2 + 2τ 2G2, and Ḡ =MD +G.

Proof. In contrast to (6.4.7), we only need to show that
N∑
i=1

⟨∇J if t(xt,i−1)−∇J if t(xt), xJ i−

xt,i−1
J i ⟩ ≤ c√

t
MG̃∥x− xt∥ holds for any t > 0. In fact, we have

N∑
i=1

⟨∇J if t(xt,i−1)−∇J if t(xt), xJ i − xt,i−1
J i ⟩

= ⟨gt −∇f t(xt), x− xt⟩
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≤ ∥gt −∇f t(xt)∥∥x− xt∥
≤M∥xt+1 − xt∥∥x− xt∥

≤M
c√
t
G̃∥x− xt∥,

where the second inequality follows from Assumption 6.3.3, and the last inequality follows

from Lemma 6.4.2. Thus, this completes the proof.

Now we show the regret of the BCG method with the cyclic rule.

Theorem 6.4.1. Suppose that Assumptions 6.3.1-6.3.4 hold. Let {xr} be generated by the

C-BCG method for the online optimization problem (6.1.1). Then, for any x∗, [T ] ∈ X∗, [T ],

we have

R(T ) ≤
(
cβ̄Ḡ2

2
+
D2

2cβ
+MG̃Dc

)
(2
√
T − 1) + τDG,

where G̃ = β̄
√
2Ḡ2 + 2τ 2G2, and Ḡ =MD +G.

Proof. It follows from Lemma 6.4.3 that

R(T ) =
T∑
t=1

{F t(x)− F t(x∗, [T ])} =
T∑
t=1

S1,t +
T∑
t=1

S2,t(x∗, [T ]) +
T∑
t=1

S3,t(x∗, [T ]).

Moreover, we have

T∑
t=1

c√
t
≤ c+ c

∫ T

t=1

dt√
t
≤ c+ 2c

√
T − 2c = c(2

√
T − 1), (6.4.12)

which, together with Lemma 6.4.4, yields that

T∑
t=1

S1,t ≤
T∑
t=1

cβ̄

2
√
t
Ḡ2 =

cβ̄Ḡ2

2
(2
√
T − 1).

For S2,t(x∗, [T ]), it follows from (6.4.11) that

T∑
t=1

S2,t(x∗, [T ]) =
1

2c
∥x∗, [T ] − x1∥2B−1 −

√
T

2c
∥x∗, [T ] − xT+1∥2B−1 +

T∑
t=2

(

√
t

2c
−

√
t− 1

2c
)∥x∗, [T ] − xt∥2B−1

≤ 1

2cβ
D2 +

T∑
t=2

(

√
t

2c
−

√
t− 1

2c
)
1

β
D2

=
D2

2cβ

√
T .
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Let η ∈ ∂ψ(x1). Then it follows from Assumption 6.3.2 that ∥η∥ ≤ G. For S3,t(x∗, [T ]),

from Lemma 6.4.5, we have

T∑
t=1

S3,t(x∗, [T ]) =
T∑
t=1

{
c√
t
MG̃∥x∗, [T ] − xt+1∥+ τ [ψ(xt)− ψ(xt+1)]

}

=
T∑
t=1

c√
t
MG̃∥x∗, [T ] − xt+1∥+ τ [ψ(x1)− ψ(xT+1)]

≤MG̃D

T∑
t=1

c√
t
++τ⟨η, x1 − xT+1⟩

≤MG̃Dc(2
√
T − 1) + τDG, (6.4.13)

where the first inequality follows from Assumption 6.3.1 and the convexity of function ψ,

and the last inequality follows from (6.4.12) and Assumptions 6.3.1-6.3.2.

Hence, we get

R(T ) ≤ cβ̄Ḡ2

2
(2
√
T − 1) +

D2

2cβ

√
T +MG̃Dc(2

√
T − 1) + τDG

≤
(
cβ̄Ḡ2

2
+
D2

2cβ
+MG̃Dc

)
(2
√
T − 1) + τDG,

where the second inequality follows from the fact
√
T ≤ 2

√
T − 1, T ≥ 1.

Note that the regret bound of the C-BCG method in Theorem 6.4.1 is independent

of the number N of blocks and the dimension n. Moreover, Theorem 6.4.1 implies that
R(T )
T

≤ O( 1√
T
), and the C-BCG method is a no internal regret algorithm. The next remark

states that the regret bound of the C-BCG method in Theorem 6.4.1 is an extension of

bound of the greedy projection method [81].

Remark 6.4.1. When ψ = 0, we have ψ(x1) = ψ(xt+1) = 0. Then the evaluation for∑T
t=1S

3,t(x∗, [T ]) in (6.4.13) reduces to
∑T

t=1S
3,t(x∗, [T ]) ≤ MG̃Dc(2

√
T − 1). Moreover,

if we let N = 1, βi = 1, i = 1, 2, . . . , N , and c = 1, from Lemma 6.3.1 and Remark

6.3.1, we have Ḡ = G and M = 0. Hence, the regret of the C-BCG method reduces to

R(T ) ≤ G2

2
(2
√
T − 1) + D2

2

√
T , which is the same as Theorem 6.3.1. Therefore, the C-BCG

method is an extension of the greedy projection method.

6.5 Extension to the stochastic optimization problem

In this section, we develop the ergodic convergence of the proposed C-BCG method for the

stochastic optimization problem.
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We consider the following regularized convex stochastic optimization problem.

minimize
x

F̃ (x) := Ez[f(x, z)] + τψ(x), (6.5.1)

where z = (u, v) ∈ Rn+n is an input-output pair of the data drawn from an unknown

underlying distribution, f(x, z) is the loss function of using u with parameter x to predict

v, Ez[f(x, z)] denotes the expected value of the loss function f(x, z) with respect to the

selection pair z.

A common way to solve stochastic optimization problem (6.5.1) is to approximate the

expectation of the whole loss Ez[f(x, z)] by using a finite set of independent observations

z1, . . . , zt, and solve the following problem instead.

minimize
x

1

T

T∑
t=1

f(x, zt) + τψ(x). (6.5.2)

This problem can be regarded as the batch optimization problem for the online optimization

problem with F t = f(x, zt) + τψ(x). Let x∗ ∈ argmin
x

F̃ (x). The corresponding regret can

be written as follows.

R(T ) =
T∑
t=1

{
f(xt, zt) + τψ(xt)

}
−

T∑
t=1

{
f(x∗, zt) + τψ(x∗)

}
. (6.5.3)

Theorem 6.5.1. Suppose that Assumptions 6.3.1-6.3.4 hold. Let {xt} be generated by the

C-BCG method for the convex stochastic optimization problem (6.5.1), and x̄T =
1

T

T∑
r=1

xr,

T ≥ 1. Then, for any x∗ ∈ argmin
x

F̃ (x), we have

Ez[T ]
[F̃ (x̄T )]− F̃ (x∗) ≤

(
cβ̄Ḡ2

2
+
D2

2cβ
+MG̃Dc

)
2
√
T − 1

T
+

1

T
τDG.

Proof. Let z[T ] := {z1, . . . , zT}, where {zi, 1 ≤ i ≤ T} follow the independent and

isotonical distribution. Note that the variable xt, 1 ≤ t ≤ T , is dependent on the random

variables {z1, . . . , zt−1}, but independent on the random variables {zt, . . . , zT}.
Hence, we have

Ez[T ]
[f(xt, zt)] + τψ(xt) = Ez[t−1]

[
Ez[t] [f(x

t, zt)] + τψ(xt)
]
= Ez[t−1]

[F̃ (xt)],

Ez[T ]
[f(x∗, zt)] + τψ(x) = Ez[t]f(x

∗, zt) + τψ(x∗) = F̃ (x∗).

Combing with (6.5.3), we get

0 ≤ Ez[T ]
[R(T )] =

T∑
t=1

(
Ez[T ]

[F̃ (xt)]− F̃ (x∗)
)
. (6.5.4)
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On the other hand, by the convexity of the function F̃ (x), we have

F̃ (x̄T ) = F̃ (
1

T

T∑
t=1

xt) ≤ 1

T

T∑
t=1

F̃ (xt). (6.5.5)

Subtracting the optimal value F̃ (x∗) on both sides and taking the expectation with

respect to the random variables z[T ], we get

Ez[T ]
[F̃ (x̄T )]− F̃ (x∗) ≤ 1

T

T∑
t=1

(
Ez[T ]

[F̃ (xt)]− F̃ (x∗)
)
=

1

T
Ez[T ]

R(T ).

From Theorem 6.4.1, we prove the desired result.

Note that Corollary 6.5.1 implies that Ez[T ]
[F̃ (x̄T )] − F̃ (x∗) ≤ O( 1√

T
), where the upper

bound O( 1√
T
) is sharper than O(1+log T√

1+T
N) given in [75].

6.6 Conclusion

In this chapter, we have proposed a block coordinate gradient (BCG) method for the online

convex optimization problem (6.1.1). We have shown that the proposed method has a regret

O(
√
T ), which is the same as [81]. Moreover, we have extended our results to the regularized

stochastic optimization problem, and have shown that the results in this chapter are tighter

than that in [75].

In Chapter 4, an extension of the BCG method, called the “block coordinate proximal

gradient (BCPG) methods with variable Bregman functions”, has been studied, where the

quadratic term 1
2
∥d∥2 in (6.2.1) is replaced by the Bregman distance Bη(x, x+d). It is shown

that the proposed BCPG methods have the same convergence rate with the block coordinate

gradient descent (BCGD) method for the classical separable optimization problems. Hence,

it may be possible to obtain a similar convergence of the BCPG methods with variable

Bregman functions for the online and stochastic optimization problems as the results in this

chapter.





Chapter 7

Conclusion

In this thesis, we have proposed two classes of block coordinate gradient methods for solving

the classical separable optimization problem, and introduced a new concept, called the “block

lower triangular Lipschitz continuous”, with which the theoretical analysis of the block co-

ordinate gradient method is supplemented and improved for various optimization problems,

including the online and the stochastic optimization problems. The results obtained in this

thesis are summarized as follows.

(a) In Chapter 3, we have proposed an inexact coordinate descent (ICD) method for a

class of weighted l1-regularized convex optimization problem with a box constraint,

where we have given a new criterion for the “inexact solution” of the subproblem and

only required an approximate solution at each iteration. For the proposed method,

we have established its R-linear convergence rate with the almost cycle rule, and have

examined its efficiency by numerical experiments on the comparison of the proposed

method and the coordinate gradient descent method.

(b) In Chapter 4, we have proposed a class of block coordinate proximal gradient (BCPG)

methods with variable Bregman functions for solving the general nonsmooth nonconvex

problem. We have established the global convergence and R-linear convergence rate

for the proposed methods with the Gauss-Seidel rule. The idea of using the variable

kernels is the innovation of these methods, which enabled us to obtain many well-known

algorithms from the proposed BCPG methods, including the (inexact) BCD method.

Some special kernels even allowed the proposed BCPG methods to adopt the fixed step

size, and helped us to construct accelerated algorithms. Finally, the numerical results

on the proposed algorithm and the algorithm with a fixed kernel proved the efficiency.

(c) In Chapter 5, we have improved the iteration complexity of the block coordinate gradi-

ent descent (BCGD) method with the cyclic rule for the convex separable optimization.

The improvement lies in the new Lipschitz continuity-like assumption. In particular, we
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have proven that the BCGD method with the cyclic rule converges with O(
max{M, Lf}

ε
),

where M is the constant given in the proposed assumption, and Lf is the Lipschitz

constant. Furthermore, we have studied the relation between M and Lf , and showed

that M ≤
√
NLf or M ≤ 2Lf , which implies that the iteration complexity bound

derived in this thesis is sharper than existing results.

(d) In Chapter 6, we have investigated the performance of a block coordinate gradient

(BCG) method with the cyclic rule for the online optimization problem and the s-

tochastic optimization problem. We firstly have shown that the proposed method has

the same regret as the greedy projection (GP) method, where the GP method is a full

gradient projection method. Moreover, we have extended the BCG method for the

stochastic optimization problem, and have shown that the the result in this thesis is

tighter than the existing results.

As we summarized above, we have made several contributions on the block coordinate

gradient methods for the separable optimization problems. However, there are many prob-

lems that still remain unknown. In what follows, we mention some main issues based on our

current achievements.

(a) In Chapter 4, we have presented a class of block coordinate proximal gradient (BCPG)

methods for the separable nonsmooth nonconvex optimization problem. For showing

the convergence rate of the proposed methods, we assumed that the Lipachitz local

error bound assumption holds for the original probelm. In [74], another assumption,

called the “Kurdyka-Lojasiewiez (KL) inequality”, is established for the BCD method.

It is interesting to study the relation between the KL inequality and the local error

bound in the future. Moreover, extending the BCPG methods to the more general

constrained problems, such as the support vector machine (SVM) problem, is also a

challenging topic.

(b) In this thesis, we have proposed a new Lipschitz continuity-like definition, and have

studied the relation between two constants M and Lf in Chapter 5, where M is the

constant given in the proposed definition, and Lf is the common Lipschitz constant.

Although we have shown that M ≤
√
NLf holds for any function, and have found

several classes of functions such that the relation M ≤ 2Lf holds. In the future, it

would be interesting to find more functions for which the corresponding constant M is

independent of the numberN of blocks. Currently, we have not found a counterexample

where NσLf ≤M for a positive constant σ.
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