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Preface

To accurately answer all human needs with optimization problems, we cannot avoid
considering multi-objective optimization. Humankind is a greedy creature that can-
not tolerate only a single desire and always has multiple preferences. Unfortunately,
many of them conflict, and the best choice to answer all of them seldom exists.
This trade-off is what makes multi-objective optimization a tough challenge. Even
for problems indeed with multi-objectives, the single-objective models tend to be
adopted. However, thanks to the long-standing wisdom of scientists, the develop-
ment of theories and algorithms for multi-objective optimization has been gradually
gaining speed in recent years. As one of the “dwarfs who ride above the giants,” I
would like to contribute to its development, even if only slightly.

By adding some explanations and novel discoveries to the author’s papers [104,
102, 101, 103, 100], this thesis provides theories and algorithms for problems in
multi-objective optimization where the objective functions are non-smooth. These
types of problems are very complex. Thus, it is not practical to consider general non-
smooth models for large-scale problems, which have been recently in high demand.
Therefore, this thesis mainly focuses on multi-objective optimization problems with
a specific structure, called composite models. In detail, this model’s every objective
function is the sum of differentiable and convex functions. Such models work well,
for example, with the loss and regularization models in machine learning.

There are three main contributions of this thesis. One is new merit functions
for multi-objective optimization and the elucidation of their properties. A merit
function is a function that returns zero in the solution of the problem and a pos-
itive number otherwise. We can use it to reformulate the original problem and
estimate the rate of convergence of the algorithm. Another contribution is the prox-
imal gradient method for multi-objective optimization problems. It is a first-order
method using information from first-order derivatives for composite multi-objective
optimization problems. It is more efficient than existing first-order methods for



non-smooth multi-objective problems; it has an O(1/k) convergence rate. It can
also generate stationary points for non-convex problems. Another contribution is
the accelerated proximal gradient method for multi-objective optimization. It does
not work for non-convex problems but is faster than the proximal gradient method
and solves problems with O(1/k2). The proposed algorithm is also novel for single-
objective problems depending on the choice of the parameters. Its numerical results
are better than existing algorithms for single objectives.

Hiroki Tanabe
September 2022
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Chapter 1

Introduction

Optimization, a branch of applied mathematics, minimizes (or maximizes) an objec-
tive function under given constraints. It is a fundamental technique for operations
research and machine learning.

This chapter first describes multi-objective optimization, the subject of this the-
sis, and composite optimization, a crucial class of non-smooth optimization. It also
explains the merit function, an analytical tool for optimization. Finally, it identifies
the research challenges on multi-objective optimization problems and explains this
thesis’s motivations, contributions, and outlines.

1.1 Multi-objective optimization
Optimization problems usually deal with only one objective function. However,
many real-world problems have multiple objectives. One solution to this is multi-
objective optimization, which minimizes several objective functions as follows:

min
x∈C

F (x), (1.1)

where C ⊆ Rn is a constraint set, and F : Rn → (−∞,+∞]m is a vector-valued
function with F := (F1, . . . , Fm)

�. When m = 1, (1.1) reduces to a single-objective
optimization. This model has many applications in engineering [38], statistics [22],
and machine learning (particularly multi-task learning [93, 72] and neural architec-
ture search [66, 32, 37]).

In most cases of m ≥ 2, no single point minimizes all objective functions simul-
taneously, so we use the concept of Pareto optimality, a generalization of the usual
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optimality for single-objective problems. We say that y ∈ C Pareto dominates x ∈ C

if Fi(y) ≤ Fi(x) for all i = 1, . . . ,m and Fj(y) < Fj(x) for at least one j = 1, . . . ,m,
and we call a point Pareto optimal if it is not Pareto dominated by any other point.
Generally, the Pareto optimal solution is not unique and constitutes a set. We call
such a set the Pareto frontier. The solutions in the Pareto frontier are in trade-off
relationships, and the decision-makers must select a solution from it further.

1.1.1 Scalarization approach

The scalarization approach [51, 52, 111] is one of the most popular strategies for
multi-objective problems. It converts the original multi-objective problem into a
parameterized scalar-valued problem.

Let us now introduce the weighted sum method [111], one of the most well-
known scalarization techniques. It scalarizes (1.1) with the weight vector w :=

(w1, . . . , wm)
� ∈ Rm as follows:

min
x∈Rn

�w, F (x)�, (1.2)

where
w ≥ 0 and

m�

i=1

wi = 1.

When F is convex, for every Pareto optimal solution x∗ of (1.1), there exists w such
that x∗ is the solution of (1.2) [79]. However, it may be challenging to choose a
good weight in advance. Moreover, if F is non-convex, there may be Pareto optimal
solutions that are not the solutions of (1.2) for any w, and some w may make (1.2)
unbounded.

1.1.2 Heuristics

Heuristics are approaches that do not necessarily lead to the optimal solution but
can yield a solution close to the optima at some level. Regarding the multi-objective
context, in many cases, heuristics employ evolutionary algorithms, particularly ge-
netic algorithms (GA) such as NSGA-II [31] and NSGA-III [30], being practical
for the Pareto frontier enumeration because they are multi-point search algorithms.
These approaches have had some success for real-world problems, but they have the
disadvantage that there is no theoretical convergence guarantee to obtain a Pareto
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solution.

1.1.3 Descent methods

Descent methods [45] are iterative algorithms that decrease the objective function
values at each iteration. They do not require a priori parameters selection like
scalarization, and unlike heuristics, we can analyze their global convergence property
under reasonable assumptions. All algorithms proposed in this thesis are part of the
descent methods. Below we provide typical descent methods for (1.1).

Example 1.1
The steepest descent method [40, 56]

Consider a smooth unconstrained multi-objective optimization, i.e., C = Rn

and each Fi is differentiable in (1.1). Then, the steepest descent method up-
dates

�
xk
�
by the following operations:

dk := argmin
d∈Rn

�
max

i=1,...,m

�
∇Fi

�
xk
�
, d
�
+

1

2αk

�d�22
�
, (1.3)

xk+1 := xk + skd
k

with αk > 0 and sk > 0. When m = 1, we have dk = −αk∇F1(x), which is
the steepest descent direction for the scalar optimization [23].

The projected gradient method [57]
For a convex-constrained smooth multi-objective optimization, i.e., C ⊆ Rn is
non-empty, closed, and convex, and every Fi is differentiable in (1.1), we can
use the projected gradient method described by

zk := argmin
z∈C

�
max

i=1,...,m

�
∇Fi

�
xk
�
, z − xk

�
+

1

2αk

��z − xk
��2
2

�
,

xk+1 := xk + sk
�
zk − xk

� (1.4)

with αk > 0 and sk > 0. When m = 1, (1.4) reduces to the projected gradient
method for scalar optimization [86, 54, 53, 78], i.e.,

zk := projC(x
k − αk∇F1

�
xk
�
),

xk+1 := xk + sk
�
zk − xk

�
,
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where projC denotes the projection onto C given by

projC(x) := argmin
z∈C

�z − x�2. (1.5)

Moreover, when C = Rn, (1.4) amounts to the steepest descent method (1.3).

The projected subgradient method [12]
Focus on a convex-constrained, non-smooth, and convex multi-objective opti-
mization, i.e., C is a non-empty, closed, and convex subset of Rn, and each Fi

is convex and non-differentiable in (1.1). The subgradient method requires an
exogenous sequence {βk} satisfying

βk > 0,
∞�

k=0

βk = ∞, and
∞�

k=0

β2
k < ∞

and generates
�
xk
�
by

xk+1 := argmin
z∈C

�
1

2
�z − xk�22 +

βk

ηk
max

i=1,...,m
�ξki , z − xk�

�
,

where ξki ∈ ∂Fi

�
xk
�
and

ηk := max
i=1,...,m

�ξi�2.

When m = 1, this step represents the projected subgradient method [85, 87,
94, 1, 2] for scalar optimization:

xk+1 := projC

�
xk − βk

ηk
ξk1

�
.

There are various other extensions of single-objective methods, e.g., the proximal
point [17], Newton’s [39, 55, 106], quasi-Newton [89, 88, 81], trust-region [90, 21], in-
exact projected gradient [46], reduced gradient [75, 35], augumented Lagrangian [29],
external penalty [108, 44], barrier [43], and conjugate gradient methods [74].
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1.2 Composite optimization

Composite optimization has the following structure:

min
x∈Rn

F (x) := f(x) + g(x), (1.6)

where f : Rn → R is Lf -smooth with some Lf > 0, and g : Rn → (−∞,+∞] is
closed, proper, and convex. When f is convex, we call (1.6) convex composite. This
model has many applications, particularly in machine learning. In detail, f and g

often represent the loss function and the regularization term, respectively. We list
below some typical examples with the structure (1.6).

Example 1.2
Smooth unconstrained minimization

If g = 0, (1.6) reduces to the unconstrained smooth minimization

min
x∈Rn

f(x),

where f : Rn → R is Lf -smooth.

Convex-constrained smooth minimization
If g is an indicator function of a non-empty, closed, and convex set C, i.e.,

g(x) = δC(x) :=





0 x ∈ C,

∞ otherwise,
(1.7)

then (1.6) amounts to the convex-constrained smooth minimization

min
x∈C

f(x)

with an Lf -smooth function f .

�1-regularization
If g(x) := τ�x�1 for some τ > 0, (1.6) reduces to the �1-regularizaiton

min
x∈C

f(x) + τ�x�1

with f being Lf -smooth.
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1.2.1 The proximal gradient method
The proximal gradient method [50] is one of the most common algorithms for solv-
ing (1.6). For a given x0 ∈ int(dom(F )), it recursively update

�
xk
�

by

xk+1 = proxαkg

�
xk − αk∇f

�
xk
��
,

where prox is the proximal operator, which we will define in (2.10). If we can
estimate the Lipschitz constant Lf , we can use a constant stepsize αk ∈ (0, 1/Lf ].
Otherwise, we can determine αk in each iteration by backtracking.

The description of the algorithm now follows.

Algorithm 1.1 The proximal gradient method
Input: x0 ∈ int(dom(F )), ε > 0

1: k ← 0
2: repeat
3: pick αk > 0
4: xk+1 ← proxαkg

(xk − αk∇f
�
xk
�
)

5: k ← k + 1
6: until �xk − xk−1�∞ < ε
7: return xk

With this algorithm,
�
�xk+1 − xk�2

�
converges to zero with a rate of O

��
1/k

�

and every accumulation point of
�
xk
�
, if it exists, is a stationary point [9]. When f is

convex,
�
xk
�

converges to the global minima x∗, and
�
F
�
xk
�
− F (x∗)

�
converges to

zero with a rate of O(1/k) [9]. Moreover, when f is strongly convex,
�
xk
�

converges
linearly to x∗ [9]. Furthermore, if we assume the so-called proximal-PL condition,
which we will define by (2.14),

�
F
�
xk
��

converges linearly to F (x∗) [65].

1.2.2 The accelerated proximal gradient method
When f is convex, the accelerated proximal gradient method, also known as the
Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [11], can solve (1.6) with
an O(1/k2) rate of convergence, while the proximal gradient method achieves a rate
of O(1/k).

We describe below the algorithm. Like the proximal gradient method, the step-
size αk may be fixed at a constant or updated by the backtracking procedure.

With Algorithm 1.2, {F
�
xk
�
− F (x∗)} for the global minima x∗ converges to

zero with a rate of O(1/k2) [11], but the convergence of iterates remains unknown.
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Algorithm 1.2 The accelerated proximal gradient method
Input: x0 ∈ int(dom(F )), ε > 0

1: k ← 1
2: y1 ← x0

3: t1 ← 1
4: repeat
5: pick αk > 0
6: xk ← proxαkg

(yk − αk∇f
�
yk
�
)

7: tk+1 ←
�

t2k + 1/4 + 1/2
8: γk ← (tk − 1)/tk+1

9: yk+1 ← xk + γk(x
k − xk−1)

10: k ← k + 1
11: until �xk − yk�∞ < ε
12: return xk

With a slite modification, that is, changing the update rule of the momentum factor
with tk = (k + a − 1)/a for some a > 2, we can prove that

�
xk
�

converges to the
minima while keeping the convergence rate of O(1/k2) [24].

1.3 Merit functions
Merit functions [49] are maps that return zeros at the problems’ solutions and
strictly positive values otherwise. In other words, they are the objective functions of
optimization problems with the same solutions as the original problems. Therefore,
the merit functions should have the following properties:

• Quick computability;

• Continuity;

• Differentiability;

• Optimality of the stationary points;

• Level-boundedness;

• Error-boundedness.

Moreover, as we can consider the merit functions to represent how far feasible points
are from the optimal solutions, they help analyze convergence rates of optimization
algorithms.
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1.3.1 Merit functions for variational inequalities
Merit functions have evolved in the context of reformulating variational inequalities
(VIs) and complementarity problems (CPs) as optimization problems [49]. The
variational inequality (VI) consists in finding x ∈ C such that

�T (x), y − x� ≥ 0 for all y ∈ C, (1.8)

where C ⊆ Rn is nonempty, closed, and convex, and T : Rn → Rn is continuous.
We can also rewrite (1.8) as the following complementarity problem (CP):

T (x) ≥ 0, x ≥ 0, and �T (x), x� ≥ 0. (1.9)

In particular, if T is affine, we call (1.9) the linear complementarity problem (LCP).
There are many merit functions for VIs and CPs, but here we illustrate the most
basic two merit functions for VIs.
Example 1.3 (Merit functions for the VI (1.8))
The classical gap function [8, 60]

We call the function G∞ : Rm → (−∞,+∞] the classical gap function:

G∞(x) := sup
y∈C

�T (x), x− y�. (1.10)

It has the following properties:

• G∞(x) ≥ 0 for all x ∈ C;

• G∞(x) = 0 and x ∈ C if and only if x satisfies (1.8);

• If C is bounded, G∞ is finite everywhere.

The top two indicate that G∞ is a merit function for the VI (1.8).

The regularized gap function [48, 6]
For a given parameter α > 0, we can consider the regularized gap func-
tion Gα : R

n → R defined by

Gα(x) := max
y∈C

�
�T (x), x− y� − 1

2α
�x− y�22

�
, (1.11)

which is a merit function for the VI (1.8), too. Since (1.11) maximizes a
strongly concave function on a nonempty, closed, and convex set, even if C
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is unbounded, a unique point attains the maximum, and Gα is finite every-
where. Moreover, denoting such a maximizer by Hα(x), if T is continuously
differentiable, Gα is also differentiable at any point x, and we have

∇Gα(x) = T (x)− [JT (x)− α−1In](Hα(x)− x).

Note that
Hα(x) = projC(x− αT (x)).

Furthermore, if the Jacobian JT (x) is positive definite on C, any stationary
point of the problem

min
x∈C

Gα(x)

solves the VI (1.8) [48]. In addition, if T is strongly monotone with modu-
lus µ > 0, i.e.,

�T (x)− T (x�), x− x�� > µ�x− x��22 for all x, x� ∈ Rn,

and if α > 1/(2µ), then Gα has the following error bound property [99]:

�x− x∗� ≤
�

Gα(x)

µ− 1/(2α)
for all x ∈ S,

where x∗ is the unique solution of the VI (1.8).

1.3.2 Merit functions for multi-objective problems

The history of research on merit functions for multi-objective problems is relatively
new, beginning in 1998 with Chen, Goh, and Yang [27] on (1.1) under the assump-
tions of polyhedrality of C and convexity of F . Afterward, various merit functions
appeared for multi-objective problems, including multi-objective optimization [73,
33], (finite-dimensional) vector variational inequalities [26, 67, 69, 110, 109, 25, 70],
and (finite-dimensional) vector equilibrium problems [62, 69, 68, 71, 77]. Below
we pick up generalizations of Example 1.3 to the weak Stamnpacchia type vector
variational inequality (SV V I)w, which consists in finding x ∈ C such that

(�T1(x), y − x�, . . . , �Tm(x), y − x�) /∈ − int(Rm
+ ) for all y ∈ C, (1.12)
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where C ⊆ Rn is a nonempty, closed, convex, and Ti : R
n → Rn, i = 1, . . . ,m. Note

that x satisfies (1.12) if and only if x is weakly Pareto optimal for (1.1) when Fi is
differentiable and Ti = ∇Fi for each i = 1, . . . ,m.

Example 1.4
The gap function for (SV V I)w [25, 70]

We can write the gap function G∞ : Rn → (−∞,+∞] for (1.12) as

G∞(x) := min
λ∈Δm

sup
y∈C

�
m�

i=1

λiTi(x), x− y

�
,

where Δm is the unit m-simplex, which we will define by (2.1). When m = 1,
it corresponds to (1.10). Like (1.10), G∞ is a merit function for (1.12), i.e.,

• G∞(x) ≥ 0 for all x ∈ C;

• G∞(x) = 0, x ∈ C if and only if x solves (1.12),

and it is finite-valued if C is bounded.

The regularized gap function for (SV V I)w [25]
We can define the regularized gap function Gα : R

n → R with α > 0 for (1.12)
by

Gα(x) := min
λ∈Δm

max
y∈C

��
m�

i=1

λiTi(x), x− y

�
− 1

2α
�x− y�22

�
, (1.13)

matching (1.11) when m = 1. It also satisfies the two propeties as a merit
function for (1.12). Moreover, if each Ti, i = 1, . . . ,m is continuously dif-
ferentiable, then Gα is directionally differentiable in any direction d ∈ Rn,
and

G�
α(x; d) = min

λ∈Λ(x)

��
m�

i=1

λiTi(x)−
m�

i=1

λiJTi
(x)(Hα(x,λ)− x), d

�

+ α�Hα(x,λ)− x, d�
�
,
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where

Hα(x,λ) := projC

�
x− α−1

m�

i=1

λiTi(x)

�
,

Tα(x,λ) := −
�

m�

i=1

λiTi(x), Hα(x,λ)− x

�
− 1

2α
�Hα(x,λ)− x�22,

Λ(x) := {λ ∈ Δm | Gα(x) = Tα(x,λ)}.

Particularly, if Λ(x) is a singleton, i.e., Λ(x) = {λ(x)}, Gα is Gateaux differ-
entiable at x and

∇Gα(x)

=
m�

i=1

λi(x)Ti(x)−
m�

i=1

λi(x)JTi
(x)[Hα(x,λ(x))− x] +α−1[Hα(x,λ(x))− x].

Furthermore, if each Ti, i = 1, . . . ,m is strongly monotone with modulus µi > 0,
and if α > 1/(2µ) with µ := mini=1,...,m µi, then Gα provides the error bound:

dist(x, sol(SV V I)w) ≤
�

Gα(x)

µ− 1/(2α)
for all x ∈ C,

where sol(SV V I)w denotes the solution set of (1.12).

1.4 Motivations and contributions
As discussed in Section 1.1, multi-objective optimization (1.1) is an indispensable
model in dealing with real-world problems, and the studies on its theories and al-
gorithms have great significance. On the other hand, many previous studies on
multi-objective optimization, particularly on the descent methods described in Sec-
tion 1.1.3 and the merit functions described in Section 1.3.2, have dealt with smooth
problems, and there is still room for exploration of non-smooth problems. The
projected subgradient method introduced in Example 1.1 can handle non-smooth
multi-objective optimization, but it may not work well for large-scale problems due
to the stepsize decay.

This thesis focuses on non-smooth multi-objective optimization problems with
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specific structures, mainly the generalization of the composite model introduced in
Section 1.2, i.e.,

min
x∈C

F (x) = f(x) + g(x), (1.14)

where C ⊆ Rn is a non-empty, closed, and convex set, and F : Rn →
(−∞,+∞]m, f : Rn → Rm, g : Rn → (−∞,+∞]m are vector-valued functions
with F := (F1, . . . , Fm)

�, f := (f1, . . . , fm)
�, g := (g1, . . . , gm)

� such that fi : R
n →

R is continuously differentiable and gi : R
n → (−∞,+∞] is closed, proper, and

convex. Then, we present their theory and algorithms.

1.5 Outline of the thesis
After introducing in Chapter 2 some symbols, basic definitions, and their properties
necessary for the discussion, Chapter 3 proposes and characterizes three new types
of merit functions for non-smooth multi-objective optimization problems: the gap
function for continuous problems, the regularized gap function for convex problems,
and the regularized and partially linearized gap functions for composite problems.
Chapter 4 develops the proximal gradient method for composite multi-objective op-
timization problems, describes its convergence, convergence rate, applications to ro-
bust multi-objective optimization, and performs numerical experiments. Chapter 5
presents its acceleration applicable with convex composite objectives: the acceler-
ated proximal gradient method or Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) and provides similar discussions. We note here that our multi-objective
FISTA represents a new algorithm even for single objectives, depending on the
choice of acceleration factors, and performs better in numerical experiments.
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Chapter 2

Preliminaries

This chapter presents some notations, basic definitions, and their properties used in
this thesis.

2.1 Vectors and matrices

Let Rp denote the space of p-dimensional real column vectors. Meanwhile, we write
the set of real numbers as simply R or (−∞,+∞) instead of R1. Moreover, Rq×p

stands for the space formed by q × p real matrices. In addition, define the non-
negative orthant in Rp by

Rp
+ :=

�
v := (v1, . . . , vm)

� ∈ Rp
�� vi ≥ 0, i = 1, . . . , p

�
,

where � denotes transpose, and define the unit simplex Δp ⊆ Rp
+ by

Δp :=

�
v ∈ Rp

+

�����

p�

i=1

vi = 1

�
. (2.1)

The orthant Rp
+ induces the partial orders for any v1, v2 ∈ Rp: v1 ≤ v2 (al-

ternatively, v2 ≥ v1 if v2 − v1 ∈ Rp
+, and v1 < v2 (alternatively, v2 > v1)

if v2 − v1 ∈ int(Rp
+). In other words, we say that v1 ≤ (<) v2 if v1i ≤ (<) v2i

for all i = 1, . . . , p. Furthermore, let �·, ·� stand for the Euclidean inner product,
i.e., �v1, v2� :=

�p
i=1 v

1
i v

2
i . We also define �2-norm �·�2, �1-norm �·�1, and �∞-
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norm �·�∞ by

�v�2 :=
�

�v, v� =
p�

i=1

v2i , �v�1 :=
p�

i=1

|vi|, and �v�∞ := max
i=1,...,p

|vi|

for any v ∈ Rp. Finally, we note some apparent inequalities that hold for arbitrary
vectors v1, v2, v3 ∈ Rp and a sequence {vs,p} ⊆ Rp.

min
i=1,...,p

v1i − min
i=1,...,p

v2i ≥ min
i=1,...,p

�
v1i − v2i

�
, (2.2)

��v2 − v1
��2
2
+ 2

�
v2 − v1, v1 − v3

�
=
��v2 − v3

��2
2
−
��v1 − v3

��2
2
, (2.3)

r�

s=1

s�

p=1

vs,p =
r�

p=1

r�

s=p

vs,p. (2.4)

2.2 Convexity and semi-continuity

We first define the convexity of sets and functions. A set C ⊆ Rp is convex if

(1− α)v1 + αv2 ∈ C for all v1, v2 ∈ C,α ∈ [0, 1].

Likewise, a function h : Rp → (−∞,+∞] is convex if

h((1− α)x+ αy) ≤ (1− α)h(x) + αh(y) for all x, y ∈ dom(h),α ∈ [0, 1],

strictly convex if

h((1− α)x+ αy) < (1− α)h(x) + αh(y) for all x, y ∈ dom(h),α ∈ (0, 1),

and µf -convex with µf ∈ R if

h((1− α)x+ αy) ≤ (1− α)h(x) + αh(y) for all x, y ∈ dom(h),α ∈ [0, 1],

where dom(h) stands for the effective domain of h given by

dom(h) := {x ∈ Rp | h(x) < +∞}.

In particular, the strong convexity (with modulus µf ) denotes the µf -convexity
with µf > 0. We also note that the 0-convexity is equivalent to the usual con-
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vexity. Moreover, if dom(h) �= ∅ for some convex function h : Rp(−∞,+∞], we say
that h is proper and convex. On the other hand, we call h to be concave if −h

is convex. Every definition and argument relating to convex functions also holds
for concave functions by appropriately interchanging ≤ and ≥, +∞ and −∞, sup
and inf, etc.

Let us now introduce the semi-continuity of functions. For all
�
xk
�
⊆ Rp con-

verging to x ∈ Rp, a function h : Rp → (−∞,+∞] is upper semi-continuous at x

if
h(x) ≥ limsup

k→∞
h
�
xk
�

and lower semi-continuous if

h(x) ≤ liminf
k→∞

h
�
xk
�
.

A necessary and sufficient condition for h to be lower semi-continuous is that the
level set levc(h) given by

levc(h) := {x ∈ Rp | h(x) ≤ c} (2.5)

is closed for any c ∈ R. We refer to lower-semi-continuous, proper, and convex
functions as closed, proper, and convex functions. The level sets of convex functions
are convex, and the level sets of closed, proper, and convex functions are closed and
convex. Note that if levc(h) is bounded for all c ∈ R, we say that h is level-bounded.
For example, every strongly convex function is level-bounded. Note also that (2.5) is
applicable as a definition of the level set for the vector-valued function h : Rp → Rq

and c ∈ Rq.

2.3 Differentiability

Suppose that h : Rp → (−∞,+∞] is finite-valued in an appropriate neighborhood
of x ∈ Rp. If h has the partial derivative

∂h(x)

∂xi

:= lim
α→0

h(x+ αei)− h(x)

α
for all i = 1, . . . , p
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with ei being the unit vector along the xi-axis, and if

h(x+ ε) = h(x) + �∇h(x), ε�+ o(�ε�2) for all ε ∈ Rp (2.6)

with o : [0,+∞) → R satisfying limt→0 o(t)/t = 0 and

∇h(x) :=




∂h(x)

∂x1...
∂h(x)

∂xp



,

then h is differentiable at x, and we call ∇h(x) ∈ Rp a gradient of h at x. If ∇h(x)

is continuous at x, we say that h is continuously differentiable at x. Again, if h has
second-order derivatives and

h(x+ ε) = h(x) + �∇h(x), ε�+ 1

2

�
ε,∇2h(x)ε

�
+ o

�
�h�22

�

with

∇2h(x) :=




∂2h(x)

∂x1 ∂x1

· · · ∂2h(x)

∂x1 ∂xp
... . . . ...

∂2h(x)

∂xp ∂x1

· · · ∂2h(x)

∂xp ∂xp



,

then h is twice differentiable at x ∈ Rp, and ∇2h(x) is the Hessian matrix of h

at x. When ∇2h is continuous at x, h is twice continuously differentiable at x, and
then ∇2h(x) is symmetric. On the other hand, for a vector-valued function h : Rp →
Rq with h := (h1, . . . , hm)

�, Jh(x) denotes the Jacobian matrix of h at x, that is,

Jh(x) :=




∂h1(x)

∂x1

· · · ∂h1(x)

∂xp
... . . . ...

∂hq(x)

∂x1

· · · ∂hq(x)

∂xp



= [∇h1(x), . . . ,∇hq(x)]

� ∈ Rq×p, (2.7)

where � denotes transpose.
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2.4 Hölder and Lipschitz continuity
We call h : Rp → R to be locally Hölder continuous with exponent β > 0 if for every
bounded set Ω ⊆ Rp there exists Lh > 0 such that

|h(x)− h(y)| ≤ Lh�x− y�β2 for all x, y ∈ Ω.

In particular, when Lh does not depend on Ω, we say that h is Hölder continuous
with exponent β > 0. Moreover, we refer to the (local) Hölder continuity with
exponent 1 as the (local) Lipschitz continuity. When h is Lipschitz continuous, we
call Lh the Lipschitz constant, and we also say that h is Lh-Lipschitz continuous. As
the following lemma shows, many functions with good properties are locally Lipschitz
continuous.
Lemma 2.1
Continuously differentiable functions and finite-valued convex functions are locally
Lipschitz continuous.

Proof. The former is due to the mean value theorem, and the latter is from [107].
�

Furthermore, if h is continuously differentiable and ∇h is Lh-Lipschitz contin-
uous, we say that h is Lh-smooth. We now recall the so-called descent lemma [14,
Proposition A.24] as follows:

Lemma 2.2 (Descent Lemma [14, Proposition A.24])
Let h : Rp → R is Lh-smooth on Rp with Lh > 0. Then, we have

|h(y)− h(x)− �∇h(x), y − x�| ≤ Lh

2
�x− y�22 for all x, y ∈ Rp.

2.5 Directional derivatives and subgradients
A function h : Rp → (−∞,+∞] is directionally differentiable at x ∈ Rp in a direc-
tion d ∈ Rp if

h�(x; d) := lim
β�0

h(x+ βd)− h(x)

β
(2.8)

exists, and then we call h�(x; d) the directional derivative at x in a direction d.
When h is differentiable at x, we have h�(x; d) = �∇h(x), d� for all d ∈ Rp. As
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the following lemma implies, convex functions are directionally differentiable if we
allow ±∞ as a limit.

Lemma 2.3 ([15, Section 4.1])
Let h : Rp → (−∞,+∞] be convex. Then, the function hx,d : (0,+∞) → (−∞,+∞]

defined by
hx,d(β) :=

h(x+ βd)− h(x)

β

is non-decreasing. In particular, it follows that

h�(x; d) ≤ hx,d(β) ≤ h(x+ d)− h(x) for all x, d ∈ Rp, β ∈ (0, 1].

On the other hand, for a proper and convex function h : Rp → (−∞,+∞], we
call ξ ∈ Rp a subgradient of h at x ∈ Rp if

h(y)− h(x) ≥ �ξ, y − x� for all y ∈ Rp,

and we write ∂h(x) the subdifferential of h at x, i.e., the set of all subgradients of h
at x. When h is differentiable at x, ∂h(x) amounts to a singular {∇h(x)}.

2.6 The proximal operator and Moreau envelope
We suppose that h : Rp → (−∞,+∞] is closed, proper, and convex. Then, we define
the Moreau envelope or Moreau-Yosida regularization Mh : R

p → R by

Mh(x) := min
y∈Rp

�
h(y) +

1

2
�x− y�22

�
. (2.9)

The minimization problem in (2.9) has a unique solution because of the strong
convexity of its objective function. We call this solution the proximal operator and
write it as

proxh(x) = argmin
y∈Rp

�
h(y) +

1

2
�x− y�22

�
. (2.10)

The proximal operator is non-expansive, i.e., �proxh(x) − proxh(y)�2 ≤ �x − y�2
for any x, y ∈ Rp. This also means that proxh is 1-Lipschitz continuous. Moreover,
when h is the indicator function (1.7) of a non-empty, closed, and convex set C ⊆ Rp,
we have

proxδC
(x) = projC(x), (2.11)
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where projC is the projection onto C defined by (1.5). Even if h is non-differentiable,
its Moreau envelope Mh is differentiable.

Theorem 2.1 ([9, Theorem 6.60])
Let h : Rp → (−∞,+∞] be closed, proper, and convex. Then, Mh is 1-smooth and

∇Mh(x) = x− proxh(x).

We also refer to the so-called second prox theorem and a corollary quickly derived
from it.

Theorem 2.2 (Second prox theorem [9, Theorem 6.39])
Let h : Rp → (−∞,+∞] be closed, proper, and convex. Then, it follows that

�x− proxh(x), y − proxh(x)� ≤ h(y)− h(proxh(x)) for all x, y ∈ Rp.

Corollary 2.1
Let h : Rp → (−∞,+∞] be closed, proper, and convex. Then, we have

�x− proxh(x)�22 ≤ h(x)− h(proxh(x)) for all x ∈ Rp.

2.7 Polyak-Łojasiewicz inequality and proximal-
PL inequality

We focus on the following unconstrained optimization problem:

min
x∈Rn

f(x), (2.12)

where f : Rn → R is continuously differentiable. Assume that (2.12) has an optimal
solution, and let f ∗ denote the optimal function value. Then, we say that f satisfies
the Polyak-Łojasiewicz (PL) inequality if there exists µf > 0 such that

1

2
�∇f(x)�22 ≥ µf (f(x)− f ∗) for all x ∈ Rn. (2.13)

Equation (2.13) is valid, for example, when f is strongly convex. Under (2.13), the
steepest descent method [23] solving (2.12) converges linearly [86].

On the other hand, we consider the composite optimization (1.6), supposing
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that F ∗ denotes the optimal function value. If there exists µf,g > 0 such that

1

2
Dg(x, L) ≥ µf,g(F (x)− F ∗) for all x ∈ Rn, (2.14)

where

Dg(x, β) := −2β min
y∈Rn

�
�∇f(x), y − x�+ g(y)− g(x) +

β

2
�y − x�22

�
.

Like (2.13), the strong convexity of g is the sufficient condition of (2.14). With (2.14),
the proximal gradient method described by Algorithm 1.1 for (1.6) converges lin-
early [65].

2.8 Quasi-Féjer convergence

We define the concept of quasi-Féjer convergence and introduce a related theorem
useful for the global convergence analysis.

Definition 2.1 (Quasi-Féjer convergence)
We say that

�
xk
�
⊆ Rp is quasi-Féjer convergent to a non-empty set T ⊆ Rp if for

all x ∈ T there exists {εk} ⊆ R+ such that

�xk+1 − x�22 ≤ �xk − x�22 + εk and
∞�

�=0

ε� < +∞ for all k = 0, 1, . . . .

Theorem 2.3 ([18, Theorem 1])
If
�
xk
�
is quasi-Féjer convergent to a non-empty set T ⊆ Rp, then

�
xk
�
is bounded.

Moreover, if an accumulation point x∗ of
�
xk
�
belongs to T , then limk→∞ xk = x∗.

2.9 Stability and sensitivity analysis

We consider the following parameterized optimization problem:

min
x∈X

h(x, ξ), (2.15)
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depending on the parameter vector ξ ∈ Ξ. We assume that X ⊆ Rp and Ξ ⊆ Rq

are non-empty and closed. Let us write the optimal value function of (2.15)

φ(ξ) := inf
x∈X

h(x, ξ) (2.16)

and the associated set as

Φ(ξ) := {x ∈ X | φ(ξ) = h(x, ξ)}.

The following proposition describes the directional differentiability of the optimal
value function φ.

Proposition 2.1 ([16, Proposition 4.12])
Let ξ0 ∈ Ξ. Suppose that

(i) the function h(x, ξ) is continuous on X × Ξ;

(ii) there exist α ∈ R and a compact set C ⊆ X such that for every ξ̂ near ξ0, the
level set levα h(·, ξ̂) is non-empty and contained in C;

(iii) for any x ∈ X, the function hx(·) := h(x, ·) is directionally differentiable at ξ0;

(iv) if ξ ∈ Ξ, tk � 0, and
�
xk
�
⊆ C, then

�
xk
�
has an accumulation point x̄ such

that
limsup
k→∞

h(xk, ξ0 + tk(ξ − ξ0))− h(xk, ξ0)

tk
≥ h�

x̄(ξ
0; ξ − ξ0).

Then, the optimal value function φ given by (2.16) is directionally differentiable at ξ0

and
φ�(ξ0; ξ − ξ0) = inf

x∈Φ(ξ0)
h�
x(ξ

0; ξ − ξ0).

2.10 Pareto optimality
Let us introduce the concept of optimality for the multi-objective optimization prob-
lem (1.1).

Definition 2.2 (Pareto optimality and weak Pareto optimality)
For (1.1), we say that x ∈ C is

(i) Pareto optimal if there is no y ∈ C such that F (y) ≤ F (x) and F (y) �= F (x);
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(ii) weakly Pareto optimal if there does not exist y ∈ C such that F (y) < F (x).

By definition, weak Pareto optimality contains Pareto optimality, though both def-
initions reduce to the usual optimality when m = 1. On the other hand, if the
objective functions are non-convex, it is challenging to find Pareto minima or weak
Pareto minima. In such cases, optimization algorithms aim to get Pareto stationary
points defined as follows:

Definition 2.3 (Pareto stationarity)
Assume that Fi is directionally differentiable for every i = 1, . . . ,m, and C is non-
empty, closed, and convex. Then, we call x ∈ C Pareto stationary if

max
i=1,...,m

F �
i (x; y − x) ≥ 0 for all y ∈ C.

We state below the relation among the three concepts given by Definitions 2.2
and 2.3.

Lemma 2.4
Suppose that Fi is directionally differentiable for every i = 1, . . . ,m, and C is non-
empty, closed, and convex. Then, the following three claims hold.

(i) If x ∈ C is weakly Pareto optimal for (1.1), then x is Pareto stationary
for (1.1).

(ii) Let every Fi, i = 1, . . . ,m be convex. Then, all Pareto stationary points of (1.1)
are weakly Pareto optimal for (1.1).

(iii) Suppose that Fi is strictly convex for any i = 1, . . . ,m. Then, every Pareto
stationary point of (1.1) is Pareto optimal for (1.1).

Proof. We prove each claim’s contraposition.
Claim (i): Assume that x ∈ C is not Pareto stationary. Then, Definition 2.3

shows that for some y ∈ C we have maxi=1,...,m F �
i (x; y − x) < 0. By the defi-

nition (2.8) of the directional derivative, for a sufficiently small scalar β > 0, we
obtain

max
i=1,...,m

[Fi(x+ β(y − x))− Fi(x)] < 0,

which means that x is not weakly Pareto optimal from Definition 2.2 (ii).
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Claim (ii): Suppose that x ∈ C is not weakly Pareto optimal. Then, Def-
inition 2.2 (ii) implies that there exists y ∈ C such that Fi(y) < Fi(x) for
all i = 1, . . . ,m. Therefore, the convexity of Fi and Lemma 2.3 give

F �(x; y − x) ≤ Fi(y)− Fi(x) < 0 for all i = 1, . . . ,m.

Hence, we get
max

i=1,...,m
F �(x; y − x) < 0,

which implies that x is not Pareto stationary from Definition 2.3.
Claim (iii): Suppose that x ∈ C is not Pareto optimal. From Definition 2.2 (i),

there exists y ∈ C such that F (y) ≤ F (x) and F (y) �= F (x). Since Fi is strictly
convex for every i = 1, . . . ,m, we have

F (x+ β(y − x)) < F (x) + β(F (y)− F (x)) for all β ∈ (0, 1).

Reducing F (x) and dividing by β from both sides lead to

F (x+ β(y − x))− F (x)

β
< F (y)− F (x) ≤ 0.

Applying Lemma 2.3 to each component yields

F �
i (x; y − x) < Fi(y)− Fi(x) ≤ 0,

which shows that x is not Pareto stationary. �
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Chapter 3

Merit functions for multi-objective
optimization

3.1 Introduction
This chapter considers the convex-constrained multi-objective optimization prob-
lems, i.e., (1.1) with C being non-empty, closed, and convex. It presents new merit
functions for them, and discusses their properties mentioned in Section 1.3.

In detail, it proposes the following three merit functions for (1.1):

(i) the gap function for lower semi-continuous multi-objective optimization;

(ii) the regularized gap function for convex multi-objective optimization;

(iii) the regularized and partially linearized gap function for composite multi-
objective optimization.

In Table 3.1, we summarize the properties of those merit functions, which will be
shown in the subsequent sections. There, ‘Sol.’ represents the types of Pareto solu-
tions for (1.1) corresponding to the merit functions’ minima (zero points). Moreover,
‘SP,’ ‘LB,’ and ‘EB’ indicate each Fi’s sufficient conditions so that stationary points
of the merit functions can solve (1.1), the merit functions are level-bounded, and the
merit functions provide error bounds, respectively. The gap function (i) connects its
minima and the weak Pareto solutions of (1.1) but does not have good properties in
other aspects. The regularized gap function (ii) has better properties but requires
the convexity of Fi. The regularized and partially linearized gap function (iii) relaxes
the convexity assumption and is easy to compute for particular problems.
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Table 3.1: Properties of our proposed merit functions

(a) Proposed merit functions and their properties

Obj. Sol. Cont. Diff. SP LB EB
(i) LSC

WPO
LSC × × LB

PL(ii) Conv.
Cont. DD

SC Conv., LB
(iii) Comp. PS SC, C2 Conv., LB, etc.

(b) Table of abbreviations

Obj. Objective functions
Sol. Solutions

Cont. Continuity
Diff. Differentiability
SP Stationary points
LB Level-boundedness
EB Error bounds

Cont. Continuity
Comp. Composite
WPO Weak Pareto optimality
PS Pareto stationarity
LSC Lower semicontinuity
DD Directional differentiability
C2 Twice continuously differentiable
SC Strict convexity
PL Multi-objective proximal PL inequality
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We summarize the structure of the rest of this chapter. Section 3.2 proposes dif-
ferent merit functions for multi-objective optimization with loser semi-continuous,
convex, and composite objectives, respectively, along with methods for evaluat-
ing the function values, the differentiability, and the stationary point properties.
Section 3.3 then discusses the connection between different merit functions. In ad-
dition, Section 3.4 gives sufficient conditions under which the merit functions are
levfel-bounded. Finally, Section 3.5 extends the proximal-PL condition mentioned
in Section 2.7 to multi-objective optimization and shows that the merit functions
provide error bounds under such a condition.

3.2 Merit functions and their basic properties

This section proposes different types of merit functions for the multi-objective opti-
mization (1.1), considering three cases: when the objective function F is continuous,
it is convex, and it has a composite structure.

3.2.1 A gap function for lower semi-continuous multi-
objective optimization

First, we assume only lower semi-continuity on F and propose a gap func-
tion u∞ : C → (−∞,+∞] as follows:

u∞(x) := sup
y∈C

min
i=1,...,m

[Fi(x)− Fi(y)]. (3.1)

When F is linear, this merit function has already been discussed in [73], but here we
consider the more general nonlinear cases. We now show that u∞ is a merit function
in the sense of weak Pareto optimality.

Theorem 3.1
Let u∞ be defined by (3.1). Then, we have u∞(x) ≥ 0 for all x ∈ C. Moreover, x ∈ C

is weakly Pareto optimal for (1.1) if and only if u∞(x) = 0.

Proof. Let x ∈ C. By the definition (3.1) of u∞, we get

u∞(x) = sup
y∈C

min
i=1,...,m

[Fi(x)− Fi(y)] ≥ min
i=1,...,m

[Fi(x)− Fi(x)] = 0.
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On the other hand, again, considering the definition (3.1) of u∞, we obtain

u∞(x) = 0 ⇐⇒ min
i=1,...,m

[Fi(x)− Fi(y)] ≤ 0 for all y ∈ C.

This is equivalent to the existence of i = 1, . . . ,m such that

Fi(x)− Fi(y) ≤ 0 for all y ∈ C,

i.e., there does not exist y ∈ C such that

Fi(x)− Fi(y) > 0 for all i = 1, . . . ,m,

which means that x is weakly Pareto optimal for (1.1) by Definition 2.2 (i). �

The following theorem is clear from the lower semi-continuity of Fi.

Theorem 3.2
The function u∞ defined by (3.1) is lower semi-continuous on C.

Theorems 3.1 and 3.2 imply that if u∞
�
xk
�

→ 0 holds for some bounded se-
quence

�
xk
�
, its accumulation points are weakly Pareto optimal. Thus, we can

use u∞ to measure the complexity of multi-objective optimization methods.
Moreover, Theorem 3.1 implies that we can get weakly Pareto optimal solutions

via the following single-objective optimization problem:

min
x∈C

u∞(x).

However, if Fi is not bounded from below on C, we cannot guarantee that u∞

is finite-valued. Moreover, even if u∞ is finite-valued, u∞ does not preserve the
differentiability of the original objective function F .

3.2.2 A regularized gap function for convex multi-objective
optimization

Here, we suppose that each component Fi of the objective function F of (1.1) is
convex. Then, we define a regularized gap function uα : C → R with a given con-
stant α > 0, which overcomes the shortcomings mentioned at the end of the previous
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subsection, as follows:

uα(x) := max
y∈C

min
i=1,...,m

�
Fi(x)− Fi(y)−

1

2α
�x− y�22

�
. (3.2)

Note that the strong concavity of the function inside maxy∈C implies that uα is
finite-valued, and there exists a unique solution that attains this maximum in C.
Like u∞, we can show that uα is also a merit function in the sense of weak Pareto
optimality.
Theorem 3.3
Let uα be defined by (3.2) for some α > 0. Then, we have uα(x) ≥ 0 for all x ∈ C.
Moreover, x ∈ C is weakly Pareto optimal for (1.1) if and only if uα(x) = 0.

Proof. Let x ∈ C. The definition (3.2) of uα yields

uα(x) = max
y∈C

min
i=1,...,m

�
Fi(x)− Fi(y)−

1

2α
�x− y�22

�

≥ min
i=1,...,m

�
Fi(x)− Fi(x)−

1

2α
�x− y�22

�
= 0,

which proves the first statement.
We now show the second statement. First, assume that uα(x) = 0. Then, (3.2)

again gives

min
i=1,...,m

�
Fi(x)− Fi(y)−

1

2α
�x− y�22

�
for all y ∈ C.

Let z ∈ C and β ∈ (0, 1). Since the convexity of C implies that x + β(z − x) ∈ C,
substituting y = x+ α(z − x) into the above inequality, we get

min
i=1,...,m

�
Fi(x)− Fi(x+ β(z − x))− 1

2α
�β(z − x)�22

�
≤ 0.

The convexity of Fi leads to

min
i=1,...,m

�
β(Fi(x)− Fi(z))−

1

2α
�β(z − x)�22

�
≤ 0.

Dividing both sides by β and letting β � 0, we have

min
i=1,...,m

[Fi(x)− Fi(z)] ≤ 0.
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Since z can take an arbitrary point in C, it follows from (3.1) that u∞(x) = 0.
Therefore, from Theorem 3.1, x is weakly Pareto optimal.

Now, suppose that x is weakly Pareto optimal. Then, it follows again from The-
orem 3.1 that u∞(x) = 0. It is clear that uα(x) ≤ u∞(x) from the definitions (3.1)
and (3.2) of u∞ and uα, so we get uα(x) = 0. �

Let us now write

Uα(x) := argmax
y∈C

min
i=1,...,m

�
Fi(x)− Fi(y)−

1

2α
�x− y�22

�
. (3.3)

The optimality condition of the maximization problem associated with (3.2)
and (3.3) gives

1

α
[x− Uα(x)] ∈ conv

i∈Iα(x)
∂Fi(Uα(x)) +NC(Uα(x)) for all x ∈ C,

where NC denotes the normal cone to the convex set C and

Iα(x) = argmin
i=1,...,m

[Fi(x)− Fi(Uα(x))].

Thus, for all x ∈ C there exists e(x) ∈ Δm, where Δm is the unit m-simplex given
by (2.1), such that ej(x) = 0 for all j /∈ Iα(x) and

1

α
�x− Uα(x), z − Uα(x)� ≤

m�

i=1

ei(x)[Fi(z)− Fi(Uα(x))] for all z ∈ C. (3.4)

Then, we can also show the continuity of uα and Uα without any particular
assumption.

Theorem 3.4
For all α > 0, uα and Uα defined by (3.2) and (3.3) are locally Lipschitz continuous
and locally Hölder continuous with exponent 1/2 on C, respectively.

Proof. For any bounded set Ω ⊆ C, let x1, x2 ∈ Ω. Adding the two inequalities
obtained by substituting (x, z) = (x1, Uα(x

2)) and (x, z) = (x2, Uα(x
1)) into (3.4),
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we get

1

α

�
Uα

�
x1
�
− Uα

�
x2
�
−
�
x1 − x2

�
, Uα

�
x1
�
− Uα

�
x2
��

≤
m�

i=1

�
ei
�
x2
�
− ei

�
x1
���

Fi

�
Uα

�
x1
��

− Fi

�
Uα

�
x2
���

=
m�

i=1

ei
�
x1
��
Fi

�
x1
�
− Fi

�
Uα

�
x1
���

+
m�

i=1

ei
�
x2
��
Fi

�
x2
�
− Fi

�
Uα

�
x2
���

+
m�

i=1

ei
�
x1
��
Fi

�
Uα

�
x2
��

− Fi

�
x1
��

+
m�

i=1

ei
�
x2
��
Fi

�
Uα

�
x1
��

− Fi

�
x2
��
.

Since e(x) ∈ Δm and ej(x) �= 0 for all j ∈ Iα(x), we have

1

α

�
Uα

�
x1
�
− Uα

�
x2
�
−
�
x1 − x2

�
, Uα

�
x1
�
− Uα

�
x2
��

= min
i=1,...,m

�
Fi

�
x1
�
− Fi

�
Uα

�
x1
���

+ min
i=1,...,m

�
Fi

�
x2
�
− Fi

�
Uα

�
x2
���

+
m�

i=1

ei
�
x1
��
Fi

�
Uα

�
x2
��

− Fi

�
x1
��

+
m�

i=1

ei
�
x2
��
Fi

�
Uα

�
x1
��

− Fi

�
x2
��

Again using the fact that e(x) ∈ Δm, we get

1

α

�
Uα

�
x1
�
− Uα

�
x2
�
−
�
x1 − x2

�
, Uα

�
x1
�
− Uα

�
x2
��

≤
m�

i=1

ei
�
x2
��
Fi

�
x1
�
− Fi

�
Uα

�
x1
���

+
m�

i=1

ei
�
x1
��
Fi

�
x2
�
− Fi

�
Uα

�
x2
���

+
m�

i=1

ei
�
x1
��
Fi

�
Uα

�
x2
��

− Fi

�
x1
��

+
m�

i=1

ei
�
x2
��
Fi

�
Uα

�
x1
��

− Fi

�
x2
��

=
m�

i=1

�
ei
�
x2
�
− ei

�
x1
���

Fi

�
x1
�
− Fi

�
x2
��

≤ 2 max
i=1,...,m

��Fi

�
x1
�
− Fi

�
x2
���.

Multiplying by α and adding (1/4)�x1 − x2�2 in both sides of the inequality, it
follows that
����Uα

�
x1
�
− Uα

�
x2
�
− 1

2

�
x1 − x2

�����
2

2

≤ 1

4

��x1 − x2
��2 + 2α max

i=1,...,m

��Fi

�
x1
�
− Fi

�
x2
���.
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Taking the square root of both sides, we obtain
����Uα

�
x1
�
− Uα

�
x2
�
− 1

2

�
x1 − x2

�����
2

≤
�

1

4
�x1 − x2�2 + 2α max

i=1,...,m
|Fi(x1)− Fi(x2)|.

Then, it follows from the triangle inequality that

��Uα

�
x1
�
− Uα

�
x2
���

2
≤ 1

2

��x1 − x2
��
2
+

�
1

4
�x1 − x2�22 + 2α max

i=1,...,m
|Fi(x1)− Fi(x2)|.

Since Lemma 2.1 implies that Fi locally Lipschitz continuous, there exists LFi
(Ω) > 0

such that ��Fi

�
x1
�
− Fi

�
x2
��� ≤ LFi

(Ω)�x1 − x2�2. (3.5)

Hence, the above two inequalities show Uα’s local Hölder continuity with expo-
nent 1/2.

On the other hand, the definition (3.2) of uα gives

uα

�
x1
�
= max

y∈C
min

i=1,...,m

�
Fi

�
x1
�
− Fi(y)−

1

2α

��x1 − y
��2
2

�

≥ min
i=1,...,m

�
Fi

�
x1
�
− Fi(Uα

�
x2
��

− 1

2α

��x1 − Uα

�
x2
���2

2
.

Reducing uα(x
2) from both sides yields

uα

�
x1
�
− uα

�
x2
�
≥ min

i=1,...,m

�
Fi

�
x1
�
− Fi

�
Uα

�
x2
��

− 1

2α

��x1 − Uα

�
x2
���2

2

�
− uα

�
x2
�
.

(3.2) and (3.3) lead to

uα

�
x1
�
− uα

�
x2
�
≥ min

i=1,...,m

�
Fi

�
x1
�
− Fi

�
Uα

�
x2
��

− 1

2α

��x1 − Uα

�
x2
���2

2

�

− min
i=1,...,m

�
Fi

�
x1
�
− Fi

�
Uα

�
x2
��

− 1

2α

��x2 − Uα

�
x2
���2

2

�
.

From (2.2), we obtain

uα

�
x1
�
− uα

�
x2
�
≥ min

i=1,...,m

�
Fi

�
x1
�
− Fi

�
x2
�
− 1

2α

�
x1 + x2 − 2Uα

�
x2
�
, x1 − x2

��
.
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Cauchy-Schwarz inequality and (3.5) implies

uα

�
x1
�
− uα

�
x2
�
≥ −

�
max

i=1,...,m
LFi

(Ω) +
1

2α

��x1 + x2 − 2Uα

�
x2
���

2

���x1 − x2
��
2
.

Since Uα(x) is bounded for x ∈ Ω due to the continuity, and the above inequality
holds even if we interchange x1 and x2, we can show the local Lipschitz continuity
of uα. �

On the other hand, using the unit m-simplex Δm defined by (2.1), uα given
by (3.2) can also be expressed as

uα(x) = max
y∈C

min
e∈Δm

m�

i=1

ei

�
Fi(x)− Fi(y)−

1

2α
�x− y�22

�
.

We can see that C is convex, Δm is compact and convex, and the function in-
side mine∈Δm is convex for e and concave for y. Therefore, Sion’s minimax theo-
rem [95] leads to

uα(x) = min
e∈Δm

max
y∈C

m�

i=1

ei

�
Fi(x)− Fi(y)−

1

2α
�x− y�22

�

= min
e∈Δm

�
m�

i=1

eiFi(x)− α−1 M
α

m�
i=1

eiFi+δC
(x)

�
,

(3.6)

where M and δC denote the Moreau envelope and the indicator function defined
by (1.7) and (2.9), respectively. Thus, we can evaluate uα through the following m-
dimensional, simplex-constrained, and convex optimization problem:

min
e∈Rm

m�

i=1

eiFi(x)− α−1 M
α

m�
i=1

eiFi+δC
(x)

s.t. e ≥ 0 and
m�

i=1

ei = 1.

(3.7)

As the following theorem shows, (3.7) is also differentiable.
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Theorem 3.5
The objective function of (3.7) is continuously differentiable at every e ∈ Rm and

∇e

�
m�

i=1

eiFi(x)− α−1 M
α

m�
i=1

eiFi+δC
(x)

�
= F (x)− F

�
prox

α
m�
i=1

eiFi+δC
(x)

�
,

where prox denotes the proximal operator (2.10).

Proof. Define

h(y, e) :=
m�

i=1

eiFi(y) +
1

2α
�x− y�22.

Clearly, h is continuous. Moreover, hy(·) := h(y, ·) is continuously differentiable and

∇ehy(e) = F (y).

Furthermore, proxα
�m

i=1 eiFi+δC
(x) = argminy∈C h(y, e) is also continuous at ev-

ery e ∈ Rm from [91, Excercise 7.38]. Therefore, all the assumptions of Propo-
sition 2.1 are satisfied. Since proxα

�m
i=1 eiFi+δC

(x) is unique, we obtain the desired
result. �

Therefore, when proxα
�m

i=1 eiFi+δC
(x) is easy to compute, we can solve (3.7) using

well-known convex optimization techniques such as the interior point method [14].
If n � m, this is usually faster than solving the n-dimensional problem directly to
compute (3.2).

Let us now write the optimal solution set of (3.7) by

E(x) := argmin
e∈Δm

�
m�

i=1

eiFi(x)− α−1 M
α

m�
i=1

eiFi+δC
(x)

�
. (3.8)

Then, we can show the (directional) differentiability of uα, as in the following theo-
rem.

Theorem 3.6
Let x ∈ C. For all α > 0, the regularized gap function uα defined by (3.2) is
directionally differentiable at x and

u�
α(x; z − x) = inf

e∈E(x)

�
m�

i=1

eiF
�
i (x; z − x)− α−1

�
x− prox

α
m�
i=1

eiFi+δC
(x), z − x

��
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for all z ∈ C, where E(x) is given by (3.8), and prox denotes the proximal op-
erator (2.10). In particular, if E(x) is a singleton, i.e., E(x) = {e(x)}, and Fi is
continuously differentiable at x, then uα is continuously differentiable at x, and we
have

∇uα(x) =
m�

i=1

ei(x)∇Fi(x)− α−1

�
x− prox

α
m�
i=1

ei(x)Fi+δC

�
.

Proof. Let

h(x, e) :=
m�

i=1

eiFi(x)− α−1 M
α

m�
i=1

eiFi+δC
(x).

Since Mα
�m

i=1 eiFi+δC (x) is continuous at every (x, e) ∈ C × Δm from [91, Theo-
rem 7.37], h is also continuous on C ×Δm. Moreover, Theorem 2.1 implies that for
all x, z ∈ C the function he(·) := h(·, e) has a directional derivative:

h�
e(x; z − x) =

m�

i=1

eiF
�
i (x; z − x)− α−1

�
prox

α
m�
i=1

eiFi+δC
(x), z − x

�
.

Because proxα
�m

i=1 eiFi+δC
(x) is continuous at every (x, e) ∈ C × Δm (cf. [91, Ex-

ercise 7.38]), h�
e(x; z − x) is also continuous at every (x, z, e) ∈ C × C × Δm. The

discussion above and the compactness of Δm show that all assumptions of Proposi-
tion 2.1 are satisfied, so we get the desired result. �

From Theorems 3.3 and 3.6, the weakly Pareto optimal solutions for (1.1) are
the globally optimal solutions of the following (directionally) differentiable single-
objective optimization problem:

min
x∈C

uα(x). (3.9)

Since uα is generally non-convex, (3.9) may have local optimal solutions or station-
ary points that are not globally optimal. As the following example shows, such
stationary points are not necessarily Pareto stationary for (1.1).

Example 3.1
Let m = 1,α = 1, C = R and F1(x) = |x|. Then, we have

MF1(x) =

�
x2/2, if |x| < 1,

|x|− 1/2, otherwise.
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Hence, we can evaluate u1 as follows:

u1(x) =

�
|x|− x2/2, if |x| < 1,

1/2, otherwise.

It is stationary for (3.9) at |x| ≥ 1 and x = 0 but minimal only at x = 0. Further-
more, the stationary point of F1 is only x = 0.

However, if we assume the strict convexity of each Fi, the stationary point of (3.9)
is Pareto optimal for (1.1) and hence global optimal for (3.9). Note that this as-
sumption does not assert the convexity of uα.

Theorem 3.7
Suppose that Fi is strictly convex for all i = 1, . . . ,m. If x ∈ C is a stationary point
of (3.9), i.e.,

u�
α(x; z − x) ≥ 0 for all z ∈ C,

then x is Pareto optimal for (1.1).

Proof. Let e ∈ E(x), where E(x) is given by (3.8). Then, Theorem 3.6 gives

m�

i=1

eiF
�
i (x; z − x)− α−1

�
x− prox

α
m�
i=1

eiFi+δC
(x), z − x

�
≥ 0 for all z ∈ C.

Substituting z = prox
α

m�
i=1

eiFi+δC
(x) into the above inequality, we get

m�

i=1

eiF
�
i

�
x;prox

α
m�
i=1

eiFi+δC
(x)− x

�
+ α−1

�����x− prox
α

m�
i=1

eiFi+δC
(x)

�����

2

2

≥ 0.

On the other hand, Theorem 2.2 yields
�����x− prox

α
m�
i=1

eiFi+δC
(x)

�����

2

2

≤ α

m�

i=1

ei

�
Fi(x)− Fi

�
prox

α
m�
i=1

eiFi+δC
(x)

��
.
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Combining the above two inequalities, we have

m�

i=1

eiF
�
i

�
x;prox

α
m�
i=1

eiFi+δC
(x)− x

�

≥
m�

i=1

ei

�
Fi

�
prox

α
m�
i=1

eiFi+δC
(x)

�
− Fi(x)

�
.

Since Fi is strictly convex for all i = 1, . . . ,m, the above inequality implies that x =

proxα
�m

i=1 eiFi+δC
(x), and hence uα(x) = 0. This means that x is Pareto optimal

for (1.1) from the strict convexity of Fi, Lemmas 2.4 (i) and 2.4 (iii) and Theorem 3.3.
�

3.2.3 A regularized and partially linearized gap function for
composite multi-objective optimization

Now, let us consider the composite case (1.14). Since they are generally non-convex,
we can regard them as a relaxation of the assumptions of the previous subsection.
For (1.14), we propose a regularized and partially linearized gap function wα : R

n →
R with a given α > 0 as follows:

wα(x) := max
y∈C

min
i=1,...,m

�
�∇fi(x), x− y�+ gi(x)− gi(y)−

1

2α
�x− y�22

�
. (3.10)

Like uα, the convexity of gi leads to the finiteness of wα and the existence of a unique
solution that attains maxy∈C . As the following remark shows, wα generalizes other
kinds of merit functions.
Remark 3.1
(i) When gi = 0, wα corresponds to the regularized gap function (1.13) for vector

variational inequality.

(ii) When fi = 0, wα matches uα defined by (3.2).

As shown in the following theorem, wα is a merit function in the sense of Pareto
stationarity.

Theorem 3.8
Let wα be given by (3.10) for some α > 0. Then, we have wα(x) ≥ 0 for all x ∈ C.
Furthermore, x ∈ C is Pareto stationary for (1.14) if and only if wα(x) = 0.
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Proof. We first show the nonnegativity of wα for all α > 0. Let x ∈ C. The
definition of wα gives

wα(x) = sup
y∈C

min
i=1,...,m

�
�∇fi(x), x− y�+ gi(x)− gi(y)−

1

2α
�x− y�22

�

≥ min
i=1,...,m

�
�∇fi(x), x− x�+ gi(x)− gi(x)−

1

2α
�x− x�22

�
= 0.

Let us prove the second statement. Assume that wα(x) = 0. Then, again using
the definition of wα, we get

min
i=1,...,m

�
�∇fi(x), x− y�+ gi(x)− gi(y)−

1

2α
�x− y�22

�
≤ 0 for all y ∈ C.

Let z ∈ C and β ∈ (0, 1). Since C ⊆ Rn is convex, x, z ∈ C implies x+β(z−x) ∈ C.
Therefore, by substituting y = x+ β(z − x) into the above inequality, we obtain

min
i=1,...,m

�
−�∇fi(x), β(z − x)�+ gi(x)− gi(x+ β(z − x))− 1

2α
�β(z − x)�2

�
≤ 0.

Dividing both sides by β yields

min
i=1,...,m

�
−�∇fi(x), z − x� − gi(x+ β(z − x))− gi(x)

β
− αβ

2
�z − x�2

�
≤ 0.

By taking β � 0 and multiplying both sides by −1, we get

max
i=1,...,m

F �
i (x; z − x) ≥ 0,

which means that x is Pareto stationary for (1.14).

Now, we prove the converse by contrapositive. Suppose that wα(x) > 0. Then,
from the definition of wα, there exists some y ∈ C such that

min
i=1,...,m

�
�∇fi(x), x− y�+ gi(x)− gi(y)−

1

2α
�x− y�22

�
> 0.

Since gi is convex, we obtain

min
i=1,...,m

�
�∇fi(x), x− y� − g�i(x; y − x)− 1

2α
�x− y�22

�
> 0.
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Thus, we have
max

i=1,...,m
F �
i (x; y − x) ≤ − 1

2α
�x− y�22 < 0,

which shows that x is not Pareto stationary for (1.14). �

While u∞ and uα given by (3.1) and (3.2) are merit functions in the sense of weak
Pareto optimality, wα defined by (3.10) is a merit function only in the sense of
Pareto stationarity. As indicated by the following example, even if wα(x) = 0, x is
not necessarily weakly Pareto optimal for (1.14).

Example 3.2
Consider the single-objective function F : R → R defined by F (x) := f(x) + g(x),
where

f(x) := −x2 and g(x) := 0,

and set C = R. Then, we have

wα(0) = max
y∈R

�
f �(0)(0− y) + g(0)− g(y)− 1

2α
(y − 0)2

�
= max

y∈R

�
− 1

2α
y2
�
= 0,

but x = 0 is not global minimal (i.e., weakly Pareto optimal) for F .

We now define the optimal solution mapping Wα : R
n → Rn associated

with (3.10) by

Wα(x) := argmax
y∈C

min
i=1,...,m

�
�∇fi(x), x− y�+ gi(x)− gi(y)−

1

2α
�x− y�22

�
. (3.11)

From the optimality condition of the maximization problem associated with (3.10)
and (3.11), we obtain

1

α
[x−Wα(x)] ∈ conv

i∈Iα(x)
[∇fi(x) + ∂gi(Wα(x))] +NC(Wα(x)) for all x ∈ C,

where NC is the normal cone to the convex set C and

Iα(x) := argmin
i=1,...,m

[�∇fi(x), x−Wα(x)�+ gi(x)− gi(Wα(x))]. (3.12)

Therefore, for any x ∈ C there exists λ(x) belonging to the unit m-simplex Δm
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defined by (2.1) such that λj(x) = 0 for all j /∈ Iα(x) and

1

α
�x−Wα(x), z−Wα(x)� ≤

m�

i=1

λi(x)[�∇fi(x), z−Wα(x)�+gi(z)−gi(Wα(x))] (3.13)

for all z ∈ C. Particularly, if we substitute z = x, we get

1

α
�x−Wα(x)�22 ≤ wα(x) +

1

2α
�x−Wα(x)�22,

which reduces to
wα(x) ≥

1

2α
�x−Wα(x)�22. (3.14)

We can also show the continuity of wα and Wα.

Theorem 3.9
For all α > 0, wα and Wα defined by (3.10) and (3.11) are continuous on C.
Moreover, if every ∇fi, i = 1, . . . ,m is locally Lipschitz continuous, wα and Wα are
locally Lipschitz continuous and locally Hölder continuous with exponent 1/2 on C,
respectively.

Proof. Let Ω be a bounded subset of C and let x1, x2 ∈ Ω. Adding the two in-
equalities gotten by substituting (x, z) = (x1,Wα(x

2)) and (x, z) = (x2,Wα(x
1))

into (3.13), we obtain

1

α

�
Wα

�
x1
�
−Wα

�
x2
�
−
�
x1 − x2

�
,Wα

�
x1
�
−Wα

�
x2
��

≤
m�

i=1

λi

�
x1
���

∇fi
�
x1
�
, x1 −Wα

�
x1
��

+ gi
�
x1
�
− gi

�
Wα

�
x1
���

+
m�

i=1

λi

�
x2
���

∇fi
�
x2
�
, x2 −Wα

�
x2
��

+ gi
�
x2
�
− gi

�
Wα

�
x2
���

+
m�

i=1

λi

�
x1
���

∇fi
�
x1
�
,Wα

�
x2
�
− x1

�
+ gi

�
Wα

�
x2
��

− gi
�
x1
��

+
m�

i=1

λi

�
x2
���

∇fi
�
x2
�
,Wα

�
x1
�
− x2

�
+ gi

�
Wα

�
x1
��

− gi
�
x2
��
.
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Since λj(x) = 0 for j ∈ Iα(x), we have

1

α

�
Wα

�
x1
�
−Wα

�
x2
�
−
�
x1 − x2

�
,Wα

�
x1
�
−Wα

�
x2
��

≤ min
i=1,...,m

��
∇fi

�
x1
�
, x1 −Wα

�
x1
��

+ gi
�
x1
�
− gi

�
Wα

�
x1
���

+ min
i=1,...,m

��
∇fi

�
x2
�
, x2 −Wα

�
x2
��

+ gi
�
x2
�
− gi

�
Wα

�
x2
���

+
m�

i=1

λi

�
x1
���

∇fi
�
x1
�
,Wα

�
x2
�
− x1

�
+ gi

�
Wα

�
x2
��

− gi
�
x1
��

+
m�

i=1

λi

�
x2
���

∇fi
�
x2
�
,Wα

�
x1
�
− x2

�
+ gi

�
Wα

�
x1
��

− gi
�
x2
��

≤
m�

i=1

λi

�
x2
���

∇fi
�
x1
�
, x1 −Wα

�
x1
��

+ gi
�
x1
�
− gi

�
Wα

�
x1
���

+
m�

i=1

λi

�
x1
���

∇fi
�
x2
�
, x2 −Wα

�
x2
��

+ gi
�
x2
�
− gi

�
Wα

�
x2
���

+
m�

i=1

λi

�
x1
���

∇fi
�
x1
�
,Wα

�
x2
�
− x1

�
+ gi

�
Wα

�
x2
��

− gi
�
x1
��

+
m�

i=1

λi

�
x2
���

∇fi
�
x2
�
,Wα

�
x1
�
− x2

�
+ gi

�
Wα

�
x1
��

− gi
�
x2
��
.

Therefore, simple calculations give

1

α

��Wα

�
x1
�
−Wα

�
x2
���2

2
≤ 1

α
�Wα

�
x1
�
−Wα

�
x2
�
, x1 − x2�

+
m�

i=1

�
λ
�
x2
�
− λ

�
x1
���

gi
�
x1
�
− gi

�
x2
�
+
�
∇fi

�
x1
�
, x1 − x2

�

−
�
∇fi

�
x1
�
−∇fi

�
x2
�
, x2

��

+
m�

i=1

λi

�
x1
��
∇fi

�
x1
�
−∇fi

�
x2
�
,Wα

�
x2
��
+

m�

i=1

λi

�
x2
��
∇fi

�
x2
�
−∇fi

�
x1
�
,Wα

�
x1
��
.

(3.15)

When x1 → x2, the right-hand side tends to zero, which means the continuity of Wα

on C. Therefore, from the definition, we can also say that wα is continuous on C

immediately.

Assume that each ∇fi, i = 1, . . . ,m is locally Lipschitz continuous. Since gi is
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also locally Lipschitz continuous from Lemma 2.1, we can prove the local Hölder
continuity of Wα from (3.15). On the other hand, the definitions (3.10) and (3.11)
of wα and Wα give

wα

�
x1
�
− wα

�
x2
�

= min
i=1,...,m

��
∇fi

�
x1
�
, x1 −Wα

�
x1
��

+ gi
�
x1
�
− gi

�
Wα

�
x1
���

− 1

2α

��x1 −Wα

�
x1
���2

2

−max
y∈C

min
i=1,...,m

��
∇fi

�
x2
�
, x2 − y

�
+ gi

�
x2
�
− gi(y)−

1

2α

��x2 − y
��2
2

�

≤ min
i=1,...,m

��
∇fi

�
x1
�
, x1 −Wα

�
x1
��

+ gi
�
x1
�
− gi

�
Wα

�
x1
���

− 1

2α

��x1 −Wα

�
x1
���2

2

− min
i=1,...,m

��
∇fi

�
x2
�
, x2 −Wα

�
x1
��

+ gi
�
x2
�
− gi

�
Wα

�
x1
���

+
1

2α

��x2 −Wα

�
x1
���2

2

≤ max
i=1,...,m

��
∇fi

�
x1
�
−∇fi

�
x2
�
, x1 −Wα

�
x1
��

+
�
∇fi

�
x2
�
, x1 − x2

�
+ gi

�
x1
�
− gi

�
x2
��

− 1

2α

�
x1 − x2, x1 + x2 − 2Wα

�
x1
��

≤
��x1 −Wα

�
x1
���

2
max

i=1,...,m

��∇fi
�
x1
�
−∇fi

�
x2
���

2

+ max
i=1,...,m

��∇fi
�
x2
���

2
�x1 − x2�2 + max

i=1,...,m
|gi
�
x1
�
− gi

�
x2
�
|

+
1

2α

��x1 + x2 − 2Wα

�
x1
���

2

��x1 − x2
��
2
,

where the first inequality comes from (2.2), and the third inequality follows from the
Cauchy-Schwarz inequality. The above inequality holds even if we interchange x1

and x2. Furthermore, Wα(x) and ∇fi(x) are bounded for any x ∈ Ω due to their
continuity. Therefore, local Lipschitz continuity of ∇fi and gi implies the local
Lipschitz continuity of wα. �

On the other hand, in the same way as the derivation of (3.6), Sion’s minimax
theorem [95] gives another representation of wα for α > 0 as follows:

wα(x) = min
λ∈Δm

max
y∈C

m�

i=1

λi

�
�∇fi(x), x− y�+ gi(x)− gi(y)−

1

2α
�x− y�22

�
,
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where Δm denotes the unit m-simplex (2.1). Moreover, simple calculations show
that

wα(x) = min
λ∈Δm





m�

i=1

λigi(x) +
1

2α

�����
m�

i=1

λi∇fi(x)

�����

2

2

−min
y∈C




m�

i=1

λigi(y) +
1

2α

�����x− α
m�

i=1

λi∇fi(x)− y

�����

2

2







= min
λ∈Δm




m�

i=1

λigi(x) +
1

2α

�����
m�

i=1

λi∇fi(x)

�����

2

2

− α−1 M
α

m�
i=1

λigi+δC

�
x− α

m�

i=1

λi∇fi(x)

��
,

where M and δC are given by (1.7) and (2.9), respectively. In other words, we
can compute wα via the following m-dimensional, simplex-constrained, and convex
optimization problem:

min
λ∈Rm

m�

i=1

λigi(x) +
1

2α

�����
m�

i=1

λi∇fi(x)

�����

2

2

− α−1 M
α

m�
i=1

λigi+δC

�
x− α

m�

i=1

λi∇fi(x)

�

s.t. λ ≥ 0 and
m�

i=1

λi = 1.

(3.16)

Moreover, the following theorem proves that (3.16) is differentiable.
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Theorem 3.10
The objective function of (3.16) is continuously differentiable at every λ ∈ Rm and

∇λ




m�

i=1

λigi(x) +
α

2

�����
m�

i=1

λi∇fi(x)

�����

2

2

− α−1 M
α

m�
i=1

gi+δC

�
x− α

m�

i=1

λi∇fi(x)

�


= g(x)− g

�
prox

α
m�
i=1

λigi+δC

�
x− α

m�

i=1

λi∇fi(x)

��

− Jf (x)

�
prox

α
m�
i=1

λigi+δC

�
x− α

m�

i=1

λi∇fi(x)

�
− x

�
,

where prox is the proximal operator (2.10), and Jf (x) is the Jacobian matrix at x
given by (2.7).

Proof. Let

θ(y,λ) :=
m�

i=1

λigi(y) +
α

2

�����x− α

m�

i=1

λi∇fi(x)− y

�����

2

2

.

Then, θ is continuous, θy(·) := θ(y, ·) is continuously differentiable, and

∇λθy(λ) = g(y) + Jf (x)

�
y − x+ α

m�

i=1

λi∇fi(x)

�
.

Moreover, proxα
�m

i=1 λigi+δC
(x) = argminy∈C θ(y,λ) is also continuous at every λ ∈

Rm (cf. [91, Excercise 7.38]). The above discussion implies that every assumption in
Proposition 2.1 is satisfied. Combined with the uniqueness of proxα

�m
i=1 λigi+δC

(x),
we get

∇λ

�
α−1 M

α
m�
i=1

λigi+δC

�
x− α

m�

i=1

λi∇fi(x)

��

= g

�
prox

α
m�
i=1

λigi+δC

�
x− α

m�

i=1

λi∇fi(x)

��

+ Jf (x)

�
prox

α
m�
i=1

λigi+δC

�
x− α

m�

i=1

λi∇fi(x)

�
− x+ α

m�

i=1

λi∇fi(x)

�
.
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On the other hand, we have

∇λ




m�

i=1

λigi(x) +
α

2

�����
m�

i=1

λi∇fi(x)

�����

2

2


 = g(x) + αJf (x)

m�

i=1

λi∇fi(x).

Adding the above two equalities, we obtain the desired result. �

Thus, like (3.7), (3.16) is solvable with convex optimization techniques such as
the interior point method [14] when we can quickly evaluate proxα

�m
i=1 λigi+δC

(·).
When n � m, this usually gives a faster way to compute wα.

Example 3.3
(i) If gi(x) = 0 for all i = 1, . . . ,m, then proxα

�m
i=1 λigi+δC

reduces to the projec-
tion onto C from (2.11).

(ii) If gi(x) = g1(x) for any i = 1, . . . ,m, or if gi(x) = g1(xIi) and the index
sets Ii ⊆ {1, . . . , n} do not overlap each other, then proxα

�m
i=1 λigi

is com-
putable with each proxgi

when C = Rn.

(iii) Even if there is an overlap, we can compute proxα
�m

i=1 λigi
for special functions.

For example, when m = 2, g1(x) = �x�1, g2(x) = �x�22, and C = Rn, λ1g1(x)+

λ2g2(x) is the elastic net [112]. It has a proximal operator in closed-form [84,
Section 6.5.3].

Now, define the optimal solution set of (3.16) by

Λ(x) = argmin
λ∈Δm




m�

i=1

λigi(x) +
α

2

�����
m�

i=1

λi∇fi(x)

�����

2

2

−α−1 M
α

m�
i=1

λigi+δC

�
x− α

m�

i=1

λi∇fi(x)

��
. (3.17)

Then, in the same manner as Theorem 3.6, we obtain the following theorem.

Theorem 3.11
Let x ∈ C. Assume that fi is twice continuously differentiable at x. Then, for
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all α > 0, the merit function wα defined by (3.10) has a directional derivative

w�
α(x; z − x) = inf

λ∈Λ(x)

�
m�

i=1

λig
�
i(x; z − x)

− α−1

��
In − α

m�

i=1

λi∇2fi(x)

��
x− prox

α
m�
i=1

λigi+δC

�
x− α

m�

i=1

λi∇fi(x)

��

−α
m�

i=1

λi∇fi(x), z − x

��

for all z ∈ C, where prox and Λ is given by (2.10) and (3.17), respectively, and In ∈
Rn×n is the n-dimensional identity matrix. In particular, if Λ(x) is a singleton,
i.e., Λ(x) = {λ(x)}, and gi is continuously differentiable at x, then wα is continuously
differentiable at x, and we have

∇wα(x) =
m�

i=1

λi(x)∇Fi(x)

−α−1

�
In − α

m�

i=1

λi(x)∇2fi(x)

��
x− proxα

�m
i=1 λi(x)gi+δC

�
x− α

m�

i=1

λi(x)∇fi(x)

��
.

If the convex part gi is the same regardless of i, we get the following corollary without
assuming the differentiability of gi.

Corollary 3.1
Let x ∈ C and α > 0. Assume that fi is twice continuously differentiable at x

and gi = g1 for all i = 1, . . . ,m, and recall that wα and prox be defined by (2.10)
and (3.10), respectively. If Λ(x) given by (3.17) is a singleton, i.e., Λ(x) = {λ(x)},
then the function wα − g1 is continuously differentiable at x, and we have

∇x(wα(x)− g1(x))

= −α−1

�
In − α

m�

i=1

λi(x)∇2fi(x)

��
x− proxαg1+δC

�
x− α

m�

i=1

λi(x)∇fi(x)

��

+
m�

i=1

λi(x)∇fi(x).

Corollary 3.1 implies that, under certain conditions, the merit function wα = (wα −
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g1) + g1 is composite, i.e., the sum of a continuously differentiable function and a
convex one.

Theorems 3.8 and 3.11 show that the Pareto stationary points for (1.14) are
global optimal for the following directionally differentiable single-objective optimiza-
tion problem:

min
x∈C

wα(x). (3.18)

Moreover, when the assumptions of Corollary 3.1 hold, we can apply first-order
methods such as the proximal gradient method [50] to (3.18). On the other hand, if
we consider Example 3.1 with fi = 0, we can see that the stationary point for (3.18)
is not necessarily Pareto stationary for (1.14). However, if fi is convex and twice
continuously differentiable, and Fi is strictly convex, then we can prove that every
stationary point of (3.18) is Pareto optimal for (1.14), i.e., global optimal for (3.9).
Note that this assumption does not assert the convexity of wα.

Theorem 3.12
Let x ∈ C and α > 0. Suppose that fi is convex and twice continuously differentiable
at x, and Fi is strictly convex for any i = 1, . . . ,m. If x is stationary for (3.18),
i.e.,

w�
α(x; z − x) ≥ 0 for all z ∈ C,

then x is Pareto optimal for (1.14).

Proof. Let z ∈ C and λ ∈ Λ(x), where Λ(x) is defined by (3.17). Then, it follows
from Theorem 3.11 that

m�

i=1

λig
�
i(x; z − x)

− α−1

��
In − α

m�

i=1

λi∇2fi(x)

��
x− prox

α
m�
i=1

λigi+δC

�
x− α

m�

i=1

λi∇fi(x)

��

−α
m�

i=1

λi∇fi(x), z − x

�
≥ 0.
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Substituting z = proxα
�m

i=1 λiFi+δC
(x), we have

m�

i=1

λiF
�
i

�
x;prox

α
m�
i=1

λigi+δC

�
x− α

m�

i=1

λi∇fi(x)

�
− x

�

+ α−1

��
In − α

m�

i=1

λi∇2fi(x)

��
x− prox

α
m�
i=1

λigi+δC

�
x− α

m�

i=1

λi∇fi(x)

��
,

x− prox
α

m�
i=1

λigi+δC

�
x− α

m�

i=1

λi∇fi(x)

��
≥ 0.

Since the convexity of fi implies that ∇2fi(x) is positive semidefinite, we get

m�

i=1

λiF
�
i

�
x;prox

α
m�
i=1

λigi+δC

�
x− α

m�

i=1

λi∇fi(x)

�
− x

�

+ α−1

�����proxα
m�
i=1

λigi+δC

�
x− α

m�

i=1

λi∇fi(x)

������

2

2

≥ 0.

Therefore, with similar arguments used in the proof of Theorem 3.7, we obtain x =

proxα
�m

i=1 λigi+δC
(x− α

�m
i=1 λi∇fi(x)), and thus wα(x) = 0. Since Fi is strictly

convex, x is Pareto optimal for (1.14) from Lemma 2.4 (iii) and Theorem 3.8. �

3.3 Relation between different merit functions
This section assumes that the problem has a composite structure (1.14) and discusses
the connection between the merit functions proposed in Section 3.2. First, we show
some inequalities between different types of merit functions.

Theorem 3.13
Let u∞, uα, and wα be defined by (3.1), (3.2) and (3.10), respectively, for all α > 0.
Then, the following statements hold.

(i) If fi is µfi-convex for some µfi ∈ R and µf = mini=1,...,m µfi, then we have



u∞(x) ≤ wµ−1

f
(x) and uα−1(x) ≤ w(µf+α)−1(x), if µf ≥ 0,

u(−µf+α)−1(x) ≤ wα−1(x), otherwise

for all α > 0 and x ∈ C.
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(ii) If ∇fi is Lfi-Lipschitz continuous for some Lfi > 0 and Lf := maxi=1,...,m Lfi,
then we get

u(Lf+α)−1(x) ≤ wα−1(x), u∞(x) ≥ wL−1
f
(x), and uα−1(x) ≥ w(Lf+α)−1(x)

for all α > 0 and x ∈ C.

Proof. Claim (i): Let i = 1, . . . ,m. The µfi-convexity of fi gives

fi(x)− fi(y) ≤ �∇fi(x), x− y� − µfi

2
�x− y�22.

By the definition of µf , we get

fi(x)− fi(y) ≤ �∇fi(x), x− y� − µf

2
�x− y�22.

Thus, recalling (1.14), we have

Fi(x)− Fi(y) ≤ �∇fi(x), x− y�+ gi(x)− gi(y)−
µf

2
�x− y�22,

Fi(x)− Fi(y)−
α

2
�x− y�22 ≤ �∇fi(x), x− y�+ gi(x)− gi(y)−

µf + α

2
�x− y�22,

Fi(x)− Fi(y)−
−µf + α

2
�x− y�22 ≤ �∇fi(x), x− y�+ gi(x)− gi(y)−

α

2
�x− y�22,

so the desired inequalities are clear from (3.1), (3.2) and (3.10).

Claim (ii): Let i = 1, . . . ,m. Suppose that ∇fi is Lfi-Lipschitz continuous.
Then, Lemma 2.2 yields

|fi(y)− fi(x)− �∇fi(x), y − x�| ≤ Lfi

2
�x− y�22.

By the definition of Lf , we have

|fi(y)− fi(x)− �∇fi(x), y − x�| ≤ Lf

2
�x− y�22.
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This gives

Fi(x)− Fi(y)−
Lf + α

2
�x− y�22 ≤ �∇fi(x), x− y�+ gi(x)− gi(y)−

α

2
�x− y�22,

Fi(x)− Fi(y) ≥ �∇fi(x), x− y�+ gi(x)− gi(y)−
Lf

2
�x− y�22,

Fi(x)− Fi(y)−
α

2
�x− y�22 ≥ �∇fi(x), x− y�+ gi(x)− gi(y)−

Lf + α

2
�x− y�22.

Therefore, we immediately get u(Lf+α)−1(x) ≤ wα−1(x), u∞(x) ≥ wL−1
f
(x),

and uα−1(x) ≥ w(Lf+α)−1(x) for all x ∈ C by (3.1), (3.2) and (3.10). �

Second, we present the relation between coefficients and the proposed merit
functions’ values.
Theorem 3.14
Recall that wα1 is defined by (3.10) for all α1 > 0. Let α2 be an arbitrary scalar such
that α1 ≥ α2. Then, we get

wα2(x) ≤ wα1(x) ≤
α1

α2

wα2(x) for all x ∈ C.

Proof. Let x ∈ C. Since α1 ≥ α2 > 0, the definition (3.10) of wα1 and wα2 clearly
gives the first inequality. Thus, we prove the second one. From the definition (3.10)
of wα1 , we have

wα1(x) = sup
y∈C

min
i=1,...,m

�
�∇fi(x), x− y�+ gi(x)− gi(y)−

1

2α1

�x− y�22
�

=
α1

α2

sup
y∈C

min
i=1,...,m

��
∇fi(x),

α2

α1

(x− y)

�
+

α2

α1

(gi(x)− gi(y))−
1

2α2

����
α2

α1

(x− y)

����
2

2

�

≤ α1

α2

sup
y∈C

min
i=1,...,m

��
∇fi(x),

α2

α1

(x− y)

�
+ gi(x)− gi

�
x− α2

α1

(x− y)

�

− 1

2α2

����
α2

α1

(x− y)

����
2

2

�

where the first inequality follows from the convexity of gi. Since C is convex, x, y ∈ C

implies x− (α2/α1)(x− y) ∈ C. Therefore, from the definition (3.10) of wα2 , we get

wα1(x) ≤
α1

α2

wα2(x).
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�

Considering Remark 3.1 (ii), we get the following corollary.
Corollary 3.2
Assume that each component Fi of the objective function F of (1.1) is convex. Recall
that uα1 is defined by (3.2) for all α1 > 0. Let α2 be an arbitrary scalar such that
α1 ≥ α2. Then, we get

uα2(x) ≤ uα1(x) ≤
α1

α2

uα2(x) for all x ∈ C.

3.4 Level-boundedness of the proposed merit
functions

As we discussed in Section 2.2, we call a function level-bounded if every level set
is bounded. This is an essential property because it ensures that the sequences
generated by descent methods have accumulation points. We state below sufficient
conditions for the level-boundedness of the merit functions proposed in Section 3.2.

Theorem 3.15
Let u∞, uα, and wα be defined by (3.1), (3.2) and (3.10), respectively, for all α > 0.
Then, the following claims hold.

(i) If Fi is level-bounded for all i = 1, . . . ,m, then u∞ is level-bounded.

(ii) If Fi is convex and level-bounded for all i = 1, . . . ,m, then uα is level-bounded
for all α > 0.

(iii) Suppose that F has the composite structure (1.14). If fi is µfi-convex for
some µfi ∈ R or ∇fi is Lfi-Lipschitz continuous for some Lfi > 0, and Fi

is convex and level-bounded for all i = 1, . . . ,m, then wα is level-bounded for
all α > 0.

Proof. Claim (i): Suppose, contrary to our claim, that u∞ is not level-bounded.
Then, there exists c ∈ R such that {x ∈ C | u∞(x) ≤ c} is unbounded. By the
definition (3.2) of u∞, the inequality u∞(x) ≤ c can be written as

sup
y∈C

min
i=1,...,m

[Fi(x)− Fi(y)] ≤ c.
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This implies that for some fixed z ∈ C, there exists j = 1, . . . ,m such that

Fj(x) ≤ Fj(z) + c.

Therefore, it follows that

{x ∈ C | u∞(x) ≤ c} ⊆
m�

j=1

{x ∈ C | Fj(x) ≤ Fj(z) + c}.

Since Fi is level-bounded for all i = 1, . . . ,m, the right-hand side must be bounded,
which contradicts the unboundedness of the left-hand side.

Claim (ii): Recall the definitions (2.1), (2.9) and (2.10) of Δm,M, and prox.
Equation (3.6) gives

uα(x) = min
λ∈Δm

�
m�

i=1

λiFi(x)− α−1 M
α

m�
i=1

λiFi+δC
(x)

�

= min
λ∈Δm

m�

i=1

λi

�
Fi(x)− Fi

�
prox

α
m�
i=1

λiFi+δC
(x)

�

− 1

2α

�����x− prox
α

m�
i=1

λiFi+δC
(x)

�����

2

2




≥ 1

2
min
λ∈Δm

m�

i=1

λi

�
Fi(x)− Fi

�
prox

α
m�
i=1

λiFi+δC
(x)

��

=
1

2
min

i=1,...,m

�
Fi(x)− Fi

�
prox

α
m�
i=1

λiFi+δC
(x)

��
,

where the inequality follows from Corollary 2.1. Therefore, with similar arguments
given in the proof of claim (i), we can show the level-boundedness of uα by contra-
diction.

Claim (iii): From Theorems 3.13 and 3.14, there exist some τ > 0 and β > 0

such that uβ(x) ≤ τwα(x) for all x ∈ C. Since claim (ii) implies that uβ is level-
bounded, wα is also level-bounded. �

The following example indicates that our proposed merit functions are not neces-
sarily level-bounded, even if F is level-bounded.
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Example 3.4
Consider the bi-objective function F : R → R2 with each component given by

F1(x) := x2, F2(x) := 0.

Then, the gap function u∞ defined by (3.2) is written as

u∞(x) = sup
y∈R

min[F1(x)− F1(y), F2(x)− F2(y)]

= sup
y∈R

min[(x2 − y2), 0] = 0.

On the other hand, F is level-bounded because lim�x�2→∞ F1(x) = ∞.

3.5 The multi-objective proximal PL inequality
and error bounds

For the multi-objective composite problem (1.14), this section extends the proximal-
PL inequality introduced in Section 2.7 and shows that it induces the proposed merit
function’s error bound. We first define the multi-objective proximal-PL inequality.

Definition 3.1 (Multi-objective proximal-PL inequality)
Assume that fi, i = 1, . . . ,m is Lfi-smooth with Lfi > 0 and let Lf := maxi=1,...,m Lfi.
We say that (1.14) satisfies the multi-objective proximal-PL inequality if there ex-
ists τ > 0 such that

wL−1
f
(x) ≥ τu∞(x) for all x ∈ Rn (3.19)

with u∞ and wL−1
f

given by (3.1) and (3.10).

If m = 1, (3.19) reduces to the proximal-PL inequality for scalar optimization (2.14).
We state below some sufficient conditions for (3.19).
Proposition 3.1
(i) When fi is µfi-convex with µfi > 0, (3.19) holds with τ := min(µf/Lf , 1),

where µf := mini=1,...,m µfi.

(ii) Assume that fi(x) := h(Aix) with some strongly convex function hi and linear
transformation Ai, and gi := δXi

with Xi being a polyhedral set and δXi
given
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by (1.7). If each minx∈Rn Fi(x) has a nonempty set X∗
i for i = 1, . . . ,m,

then (3.19) holds with some constant τ .

Proof. Claim (i): Since fi is strongly convex, Theorem 3.13 (i) gives

u∞(x) ≤ wµ(x) for all x ∈ Rn.

Applying Theorem 3.14 to the above inequality implies

u∞(x) ≤ max

�
Lf

µf

, 1

�
wL−1

f
(x) for all x ∈ Rn,

which means
wL−1

f
(x) ≥ min

�
µf

Lf

, 1

�
u∞(x) for all x ∈ Rn.

Claim (ii): Since Xi is polyhedral, we can write it as {x ∈ Rn | Bix ≤ ci} for
some matrix Bi and vector ci for i = 1, . . . ,m. We now show that for all i = 1, . . . ,m

there exists some zi such that

X∗
i = {x ∈ Rn | Bix ≤ ci and Aix = zi}.

To obtain a contradiction, suppose that there exists x1 ∈ X∗
i and x2 ∈ X∗

i such
that Aix

1 �= Aix
2. Clearly, we have fi(x

1) = fi(x
2). Since hi is strongly convex, we

get

fi(x
1) =

1

2
fi(x

1) +
1

2
fi(x

2) =
1

2
hi(Aix

1) +
1

2
hi(Aix

2)

> hi

�
Ai

�
1

2
x1 +

1

2
x2

��
= fi

�
1

2
x1 +

1

2
x2

�
,

which contradicts the fact that x1 ∈ X∗
i . Therefore, we can use Hoffman’s error

bound [61], and so there exists some ρi > 0 such that for any x ∈ Rn, there
exists x∗

i ∈ X∗
i with

�x− x∗
i �2 ≤ ρi

�������
max







Bi

Ai

−Ai


x−




ci

zi

−zi


, 0




�������
2

.
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Note that we take the max operator componentwise on the right-hand side.
Since Bix− ci ≤ 0 for all x ∈ dom(F ), we have

�x− x∗
i �2 ≤ ρi

�����max

��
Ai

−Ai

�
x−

�
zi

−zi

�
, 0

������
2

for all x ∈ dom(F ),

which yields
�x− x∗

i �22 ≤ ρ2i �Aix− zi�22 for all x ∈ dom(F ).

Since projX∗
i
(x) ∈ X∗

i , it follows that

���x− projX∗
i
(x)
���
2

2
≤ �x− x∗

i �22 ≤ ρ2i

���Ai

�
x− projX∗

i
(x)
����

2

2
for all x ∈ dom(F ).

(3.20)
Now, suppose that x ∈ dom(F ). From the definition (3.1) of u∞, we get

u∞(x) = sup
z∈Rn

min
i=1,...,m

[Fi(x)− Fi(z)]

≤ min
i=1,...,m

sup
z∈Rn

[Fi(x)− Fi(z)] = min
i=1,...,m

�
Fi(x)− Fi

�
projX∗

i
(x)
��

,

where the second equality holds because projX∗
i
(x) = argminx∈Rn Fi(x). Assuming

that hi is σhi
-convex with σhi

> 0, it follows that

u∞(x) = min
i=1,...,m

��
∇hi(Aix), Ai

�
x− projX∗

i
(x)
��

+ gi(x)− gi

�
projX∗

i
(x)
�
− σhi

2

���Ai

�
x− projX∗

i
(x)
����

2

2

�

= min
i=1,...,m

��
∇fi(x), x− projX∗

i
(x)
�
+ gi(x)− gi

�
projX∗

i
(x)
�

− σhi

2

���Ai

�
x− projX∗

i
(x)
����

2

2

�
.
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Applying (3.20) to the above inequality leads to

u∞(x) ≤ min
i=1,...,m

��
∇fi(x), x− projX∗

i
(x)
�
+ gi(x)− gi

�
projX∗

i
(x)
�

− σhi

2ρ2i

���x− projX∗
i
(x)
���
2

2

�
.

Let e ∈ Δm with Δm given by (2.1). Since mini=1,...,m vi = mine∈Δm

�m
i=1 eivi for

any v ∈ Rm, we get

u∞(x) ≤ min
e∈Δm

m�

i=1

ei

��
∇fi(x), x− projX∗

i
(x)
�
+ gi(x)− gi

�
projX∗

i
(x)
�

− σhi

2ρ2i

���x− projX∗
i
(x)
���
2

2

�

≤ min
e∈Δm

sup
z∈Rn

m�

i=1

ei

�
�∇fi(x), x− z�+ gi(x)− gi(z)−

σhi

2ρ2i
�x− z�22

�

= sup
z∈Rn

min
e∈Δm

m�

i=1

ei

�
�∇fi(x), x− z�+ gi(x)− gi(z)−

σhi

2ρ2i
�x− z�22

�

= sup
z∈Rn

min
i=1,...,m

�
�∇fi(x), x− z�+ gi(x)− gi(z)−

σhi

2ρ2i
�x− z�22

�

≤ wρ2i / min
i=1,...,m

σhi
(x),

where the first equality follows from the Sion’s minimax theorem [95], and the third
equality comes from the definition (3.10) of wρ2i / min

i=1,...,m
σhi

. Thus, Theorem 3.14 gives

u∞(x) ≤ max


 Lfρ

2
i

min
i=1,...,m

σhi

, 1


wL−1

f
(x),

which completes the proof. �

We now show that the multi-objective proximal-PL inequality (3.19) leads to the
error-bound property.

Theorem 3.16
Let x ∈ Rn. Suppose that fi is Lfi-smooth with Lfi > 0 for each i = 1, . . . ,m, Lf :=

maxi=1,...,m Lfi, and the multi-objective proximal-PL inequality (3.19) holds with τ >
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0. Then, the trajectory
�
W k

L−1
f

(x) :=

m� �� �
WL−1

f
◦ · · · ◦WL−1

f
(x)

�
converges linearly to a

weakly Pareto optimal point x∗ and

u∞(x) ≥ τLf

8
�x− x∗�22,

where u∞ and WL−1
f

are given by (3.1) and (3.11), respectively.

Proof. Recall that u∞ is non-negative due to Theorem 3.1. We have

�
u∞(x)−

�
u∞
�
WL−1

f
(x)
�
=

u∞(x)− u∞
�
WL−1

f
(x)
�

�
u∞(x) +

�
u∞
�
WL−1

f
(x)
� .

The definition (3.1) of u∞ gives

u∞(x)− u∞
�
WL−1

f
(x)
�
≥ min

i=1,...,m

�
Fi(x)− Fi

�
WL−1

f
(x)
��

≥ wL−1
f
(x),

where the second inequality follows from Lemma 2.2 and (3.10) and (3.11). Note

that this inequality, together with (3.19), proves that
�
W k

L−1
f

(x)

�
converges linearly

to zero. On the other hand, since u∞(x) ≥ u∞
�
WL−1

f
(x)
�

because of Theorem 3.8
and the above inequality, we get

�
u∞(x) +

�
u∞
�
WL−1

f
(x)
�
≤ 2

�
u∞(x) ≤ 2

�
wL−1

f
(x)/τ ,

where the second inequality comes from (3.19). Then, the above three inequalities
show

�
u∞(x)−

�
u∞
�
WL−1

f
(x)
�
≥

wL−1
f
(x)

2
�

wL−1
f
(x)/τ

=
1

2

�
τwL−1

f
(x).

Therefore, it follows from (3.14) that

�
u∞(x)−

�
u∞
�
WL−1

f
(x)
�
≥
�
τLf

2
√
2

���x−WL−1
f
(x)
���
2
.
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More generally, we arrive at
�

u∞

�
W k

L−1
f

(x)

�
−
�

u∞

�
W k+1

L−1
f

(x)

�
≥
�

τLf

2
√
2

����W k
L−1
f
(x)−W k+1

L−1
f

(x)

����
2

for all k = 0, 1, . . . . Adding up the above inequality from k = k1 to k = k2−1 yields
�
u∞

�
W k1

L−1
f

(x)

�
−
�
u∞

�
W k2

L−1
f

(x)

�
≥
�

τLf

2
√
2

k2−1�

k=k1

����W k
L−1
f
(x)−W k+1

L−1
f

(x)

����
2

.

Thus, the triangle inequality implies
�
u∞

�
W k1

L−1
f

(x)

�
−
�

u∞

�
W k2

L−1
f

(x)

�
≥
�

τLf

2
√
2

����W
k1
L−1
f

(x)−W k2
L−1
f

(x)

����
2

. (3.21)

As k1, k2 → ∞, the left-hand side tends to zero. Therefore, the right-hand side also
tends to zero because of the non-negativity of the norm. This means that {W k

L−1
f

(x)}
is the Cauchy sequence, which is convergent to some weakly Pareto optimal point x∗.
Substituting k1 = 0 and k2 = ∞ into (3.21) leads to

�
u∞(x) ≥

�
τLf

2
√
2

�x− x∗�2.

�

This theorem also presents the error-bound property of wα and uα for any α > 0

because of (3.19) and Theorems 3.13 (ii) and 3.14.

3.6 Conclusions
In this chapter, we first proposed a gap function for (1.1) in the sense of weak
Pareto optimality and showed its lower semicontinuity. We also defined a regularized
gap function when F is convex and discussed its continuity, the way of evaluating
it, its differentiability, and the properties of its stationary points. Furthermore,
when each Fi is composite, we introduced a regularized and partially linearized
gap function in the sense of Pareto stationarity and showed similar properties. In
addition, we gave sufficient conditions for the proposed merit functions to be level-
bounded and to provide error bounds, introducing the multi-objective proximal-PL
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inequality.
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Chapter 4

A proximal gradient method for
multi-objective optimization

4.1 Introduction

This chapter proposes the proximal gradient method for the unconstrained compos-
ite multi-objective optimization, i.e., (1.14) with C = Rn. The proposed method
generalizes Algorithm 1.1. Moreover, we analyze the proposed method’s convergence
rate using the merit functions (3.1) and (3.10) to measure the complexity.

We also observe that the problem and the proposed method have many appli-
cations. For example, when gi is an indicator function of a non-empty, closed, and
convex set S, (1.14) is equivalent to the optimization problems with constraints
x ∈ S. Also, as seen in Section 4.5, we can deal with robust optimization prob-
lems. These problems include uncertain parameters and consist in optimizing under
the worst scenario. Although the literature about robust optimization is vast, the
studies about robust multi-objective optimization are relatively new [34, 42, 80].

The outline of this chapter is as follows. Section 4.2 proposes the proximal gradi-
ent methods for unconstrained multi-objective optimization. We estimate the global
convergence rates of the proposed method in Section 4.4. In Section 4.5, we apply
the proposed method to robust optimization. Finally, we report some numerical ex-
periments by solving robust multi-objective optimization problems in Section 4.6.
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4.2 The algorithm
For given x ∈ domF and α > 0, we consider the following minimization problem:

min
z∈Rn

ϕα(z; x) (4.1)

with
ϕα(z; x) := max

i=1,...,m
[�∇fi(x), z − x�+ gi(z)− gi(x)] +

1

2α
�z − x�22.

The convexity of gi implies that ϕα(·; x) is strongly convex, so (4.1) always has a
unique solution, which is also in dom(F ). Let us write such a solution as pα(x) and
let θα(x) be its optimal function value, i.e.,

pα(x) := argmin
z∈Rn

ϕα(z; x) and θα(x) := min
z∈Rn

ϕα(z; x). (4.2)

Note that
pα = Wα and θα = −wα (4.3)

for wα and Wα defined by (3.10) and (3.11). The following proposition shows
that pα(x) and θα(x) help to characterize the Pareto stationarity of (1.14).

Lemma 4.1
Let pα and θα be defined in (4.2). Then, the following claims hold.

(i) The following three conditions are equivalent: (a) x ∈ Rn is Pareto stationary
for (1.14); (b) pα(x) = x; (c) θα(x) = 0.

(ii) The mappings pα and θα are continuous. Moreover, if each ∇fi, i = 1, . . . ,m

is locally Lipschitz continuous, pα and θα are locally Hölder continuous with
exponent 1/2 and locally Lipschitz continuous, respectively.

Proof. We can prove the claims immediately from Theorems 3.8 and 3.9. �

From Lemma 4.1, we can treat �pα(x)− x�∞ < ε for some ε > 0 as a stopping
criterion. Let us present our proposed algorithm in Algorithm 4.1. We can consider
the following three stepsize selection procedures. Note that every rule guarantees
the objective functions’ non-incrementality, i.e.,

Fi

�
xk+1

�
≤ Fi

�
xk
�

for all i = 1, . . . ,m, k ≥ 0. (4.4)
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Algorithm 4.1 The proximal gradient method for multi-objective optimization
Input: x0 ∈ int(dom(F )), ε > 0

1: k ← 0
2: loop
3: zk ← pαk

�
xk
�

with some stepsize αk > 0
4: if

��zk − xk
��
∞ < ε then

5: return xk

6: end if
7: xk+1 ← xk + sk

�
zk − xk

�
with some stepsize sk ∈ (0, 1]

8: k ← k + 1
9: end loop

4.2.1 Armijo rule along the feasible direction

We fix αk := α with some constant α > 0 for every k = 0, 1, . . . and compute sk by

sk := ξjk , (4.5)

where jk is the smallest non-negative integer satisfying

Fi(x
k + ξjk

�
zk − xk

�
) ≤ Fi

�
xk
�
+ ρξjk

�
θα
�
xk
�
− 1

2α

��zk − xk
��2
2

�
(4.6)

with predefined constants ρ, ξ ∈ (0, 1) for each i = 1, . . . ,m. The following lemma
demonstrates the existence of the stepsize sk satisfying this rule.

Lemma 4.2
If x ∈ Rn is not Pareto stationary for (1.14), for all α > 0 and ρ ∈ (0, 1) there
exists some s̄ > 0 such that

Fi(x+ s(z − x)) < Fi(x) + ρs

�
θα(x)−

1

2α
�z − x�22

�

for all i = 1, . . . ,m and s ∈ (0, s̄].

Proof. Let s ∈ (0, 1] and i = 1, . . . ,m. Since gi is convex, we have

gi(x+ s(pα(x)− x)) ≤ gi(x) + s[gi(pα(x))− gi(x)].
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Combined with (2.6), we get

Fi(x+ s(pα(x)− x))

≤ Fi(x) + s�∇fi(x), pα(x)− x�+ s[gi(pα(x))− gi(x)] + o(s�pα(x)− x�2)

with o : [0,+∞) → R satisfying limt→∞ o(t)/t = 0. Then, (4.2) gives

Fi(x+ s(pα(x)− x)) ≤ Fi(x) + s

�
θα(x)−

1

2α
�pα(x)− x�22

�
+ o(s�pα(x)− x�2).

Since x is not Pareto stationary, Lemma 4.1 (i) gives θα(x) < 0. Thus, the fact
that ρ ∈ (0, 1) completes the proof. �

4.2.2 Sufficient decrease rule along the proximal arc

Suppose that ∇fi is locally Lipschitz continuous for i = 1, . . . ,m. Let sk = 1 for
all k = 0, 1, . . . and α−1 > 0. For each iteration, we find the smallest non-negative
integer jk such that

Fi(pξjkαk−1

�
xk
�
) ≤ Fi

�
xk
�
+ θξjkαk−1

�
xk
�

for all i = 1, . . . ,m (4.7)

with some constant ξ ∈ (0, 1) for any i = 1, . . . ,m and set

αk = ξjkαk−1. (4.8)

4.2.3 Constant stepsize

When ∇fi, i = 1, . . . ,m is Lfi-Lipschitz continuous and Lf := maxi=1,...,m Lfi , we
set sk = 1 and αk = α with α ∈ (0, 1/Lf ] for each i = 1, . . . ,m. Then, Lemma 2.2
ensures that

Fi(pα
�
xk
�
) ≤ Fi

�
xk
�
+ θα

�
xk
�

for all i = 1, . . . ,m and k = 0, 1, . . . . (4.9)

4.3 Convergence of the method
We first show the (classical) global convergence of the proposed algorithm.
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Theorem 4.1
Every accumulation point of

�
xk
�
generated by Algorithm 4.1 with any stepsize

selection procedure given in Sections 4.2.1 to 4.2.3, if it exists, is Pareto stationary
for (1.14).

Proof. Assume that {xkj} converges to x̄. According to Lemma 4.1 (i), it suffices
to check that θα(x̄) = 0 for some α > 0. Considering (4.4) and the existence of a
subsequence of {Fi

�
xk
�
} converging to Fi(x̄), we have

lim
k→∞

Fi

�
xk
�
= Fi(x̄). (4.10)

Let us now prove the claim for each stepsize rule.
Armijo rule along the feasible direction: Equations (3.14), (4.3), (4.5) and (4.6)

give

Fi

�
xk+1

�
− Fi

�
xk
�
≤ ρsk

�
θα
�
xk
�
− 1

2α

��zk − xk
��2
2

�
≤ ρskθα

�
xk
�
≤ 0.

for any i = 1, . . . ,m. Combined with (4.10), we get

lim
k→∞

skθα
�
xk
�
= 0. (4.11)

If limsupk→∞ sk > 0, it is clear that θα(x̄) = 0. We now suppose that limk→∞ sk = 0.
If we fix some positive integer q, we have sk < ξq for sufficiently large k. This means
that the Armijo condition (4.6) does not hold for the stepsize ξq, i.e.,

Fik

�
xk + ξq

�
zk − xk

��
> Fik

�
xk
�
+ ρξq

�
θα
�
xk
�
− 1

2α

��zk − xk
��2
2

�
(4.12)

for some ik = 1, . . . ,m. Since the number of values that ik can take is finite, some
subsequence of {ik} converges to some ī = 1, . . . ,m. Therefore, if we choose a proper
subsequence and take the limit in (4.12), we obtain

Fī(x̄+ ξq(pα(x̄)− x̄)) ≥ Fī(x̄) + ρξq
�
θα(x̄)−

1

2α
�pα(x̄)− x̄�22

�
.

Since q can take arbitrary positive integer values, Lemma 4.2 shows that x̄ is Pareto
stationary.

Sufficient decrease rule along the proximal arc: Similarly to the derivation
of (4.11), the condition (4.7) leads to θαk

�
xk
�
→ 0 as k → ∞. If α := limk→∞ αk > 0,
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it is easy to see that θα(x̄) = 0. Assume that limk→∞ αk = 0. Similar to the last
paragraph, fixing some positive integer q and considering that (4.7) does not hold,
we get

Fī(pξq(x̄)) ≥ Fī(x̄) + θξq(x̄).

Since q can take any positive integer, the locally Lipschitz continuity of ∇fi shows
that x̄ is Pareto stationary.

Constant stepsize is clear from (4.9) and the previous paragraph. �

We now introduce the following assumption, standard in the analysis of descent
methods for vector optimization [40, 57, 47].

Assumption 4.1
For all sequence

�
yk
�
⊆ F (Rn) such that yk+1 ≤ yk, k = 0, 1, . . . , there exists x ∈ Rn

satisfying F (x) ≤ yk, k = 0, 1, . . . .

Under convexity and reasonable assumptions, we can also prove the true convergence
of iterates as follows:

Theorem 4.2
Suppose that fi is convex for i = 1, . . . ,m and let

�
xk
�
generated by Algorithm 4.1

with the stepsize selection procedure given in Sections 4.2.1 to 4.2.3. Under Assump-
tion 4.1,

�
xk
�
converges to some x∗ ∈ T := {x ∈ Rn | F (x) ≤ F

�
xk
�
, k = 0, 1, . . .}

and x∗ is weakly Pareto optimal for (1.14).

Proof. Let x ∈ T . We have
��xk+1 − x

��2
2
=
��xk − x

��2
2
+
��xk+1 − xk

��2
2
+ 2

�
xk − xk+1, x− xk

�

=
��xk − x

��2
2
+ s2k

��zk − xk
��2
2
− 2sk

�
zk − xk, x− xk

�

≤
��xk − x

��2
2
+ sk

��zk − xk
��2
2
− 2sk

�
zk − xk, x− xk

�
, (4.13)

where the second equality follows from line 7 of Algorithm 4.1, and the inequality
comes from the fact that sk ∈ (0, 1]. Recall that Δm and Iαk

are defined by (2.1)
and (3.12), respectively. Then, (3.13) implies that there exists λ

�
xk
�
∈ Δm such
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that λj

�
xk
�
= 0 for any j ∈ Iαk

�
xk
�

and

1

αk

�
xk − zk, x− zk

�
≤

m�

i=1

λi

�
xk
���

∇fi
�
xk
�
, x− zk

�
+ gi(x)− gi

�
zk
��

=
m�

i=1

λi

�
xk
���

∇fi
�
xk
�
, x− xk

�
+ gi(x)− gi

�
xk
��

+
m�

i=1

λi

�
xk
���

∇fi
�
xk
�
, xk − zk

�
+ gi

�
xk
�
− gi

�
zk
��
.

Since fi is convex and x ∈ T , the first term in the right-hand side is non-negative.
Therefore, (3.12) and (4.2) and line 3 of Algorithm 4.1 give

1

αk

�
xk − zk, x− zk

�
≤ −θαk

�
xk
�
+

1

2αk

��zk − xk
��2
2
.

Combining the above inequality with (4.13) gives

��xk+1 − x
��2
2
≤
��xk − x

��2
2
− 2αkskθαk

�
xk
�
=
��xk − x

��2
2
+ 2αksk

��θαk

�
xk
���.

Since T �= ∅, it is easy to see that
�∞

k=0 αksk
��θαk

�
xk
��� < +∞ holds for each stepsize

selection rule. Hence, Definition 2.1 implies that
�
xk
�

is quasi-Féjer convergent
to T , and thus

�
xk
�

is bounded due to Theorem 2.3. Let x∗ be an accumulation
point of

�
xk
�

and assume that xkj → x∗. If we fix some non-negative integer k̄, for
sufficiently large j, we have

F
�
xkj
�
≤ F

�
xk̄
�
.

Taking j → ∞ yields that
F (x∗) ≤ F

�
xk̄
�
.

Since k̄ can take any non-negative integer, x∗ belongs to T . Use Theorem 2.3, and
we can complete the proof. �

4.4 Convergence rate of the method

For the convergence rate analysis, we assume the Lipschitz gradient condition.
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Assumption 4.2
Each fi is Lfi-smooth with Lfi > 0 for i = 1, . . . ,m. We write

Lf := max
i=1,...,m

Lfi . (4.14)

4.4.1 The non-convex case

We present below the main theorem of this subsection.

Theorem 4.3
Assume that at least one of the functions F1, . . . , Fm is bounded from below. Then,
under Assumption 4.2, Algorithm 4.1 with the stepsize selection rule given by any of
Sections 4.2.1 to 4.2.3 generates a sequence

�
xk
�
such that

�
w1

�
xk
��

is summable,
where w1 is given by (3.10). In particular,

liminf
k→∞

(k log k)w1

�
xk
�
= 0

and
min

0≤j≤k−1
w1

�
xj
�
= O(1/k)

with O : [0,+∞) → R such that limsupt→∞ O(t)/t < ∞.

Before proving Theorem 4.3, we first show the existence of a uniform lower bound
on the stepsize sk when we adopt the Armijo rule along the feasible direction.

Lemma 4.3
In Algorithm 4.1 with the Armijo rule along the feasible direction under Assump-
tion 4.2, the stepsize sk satisfies

sk ≥ smin := min

�
2ξ(1− ρ)

αLf

, 1

�
for all k ≥ 0.

Proof. Recall that sk = ξjk for some non-negative integer jk in (4.5). If jk = 0, sk = 1

clearly satisfies sk ≥ smin. Thus, suppose that jk ≥ 1. Since jk is the smallest non-
negative integer satisfying (4.6), there exists ik = 1, . . . ,m such that

Fik(x
k + ξjk−1

�
zk − xk

�
) > Fik

�
xk
�
+ ρξjk−1

�
θα
�
xk
�
− 1

2α

��zk − xk
��2
2

�
.
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On the other hand, Lfik
-Lipschitz continuity of ∇fik and Lemma 2.2 give

Fik(x
k + ξjk−1

�
zk − xk

�
) ≤ Fik

�
xk
�
+
�
∇fik

�
xk
�
, ξjk−1

�
zk − xk

��

+ gik(x
k + ξjk−1

�
zk − xk

�
)− gik

�
xk
�
+

Lfik

2

��ξjk−1
�
zk − xk

���2
2

≤ Fik

�
xk
�
+ ξjk−1

��
∇fik

�
xk
�
, zk − xk

�
+ gik

�
zk
�
− gik

�
xk
��

+
Lf

2

��ξjk−1
�
zk − xk

���2
2

≤ Fik

�
xk
�
+ ξjk−1

�
θα
�
xk
�
− 1

2α

��zk − xk
��2
2

�
+

Lfξ
2(jk−1)

2

��zk − xk
��2
2
,

where the second inequality comes from the convexity of gik and (4.14), and the
third one follows from (4.2) and line 7 of Algorithm 4.1. Combining the above two
inequalities lead to

(1− ρ)ξjk−1

�
θα
�
xk
�
− 1

2α

��zk − xk
��2
2

�
+

Lfξ
2(jk−1)

2

��zk − xk
��2
2
> 0.

Thus, (3.14) yields

−(1− ρ)ξjk−1

α

��zk − xk
��2
2
+

Lfξ
2(jk−1)

2

��zk − xk
��2
2
> 0.

Therefore, we have
sk = ξjk >

2ξ(1− ρ)

αLf

≥ smin.

�

Similarly, when we employ the Sufficient decrease rule along the proximal arc, αk

has a uniform lower bound.
Lemma 4.4
In Algorithm 4.1 with the Sufficient decrease rule along the proximal arc under
Assumption 4.2, the stepsize αk satisfies

αk ≥ αmin := min

�
ξ

Lf

, 1

�
for all k ≥ 0

Proof. It is clear from Lemma 2.2. �

We now show the main theorem as follows:
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Proof of Theorem 4.3. Armijo rule along the feasible direction: Let k ≥ 0 and take i
such that Fi is bounded from below. Equations (4.5) and (4.6) give

Fi

�
xk+1

�
− Fi

�
xk
�
≤ ρsk

�
θα
�
xk
�
− 1

2α

��zk − xk
��2
2

�

≤ −ρsminwα

�
xk
�

≤ −ρsmin max(1,α−1)w1

�
xk
�
,

where the second inequality follows from (4.3) and Lemma 4.3, and the third one
comes from Theorem 3.14. Since Fi is bounded from below, adding up the inequality
from k = 0 to k = ∞ lead to the summability of

�
w1

�
xk
��

.
Sufficient decrease rule along the proximal arc: Let k ≥ 0 and let i = 1, . . . ,m

be an index such that Fi is bounded from below. Lemma 4.4 imply that

Fi

�
xk+1

�
− Fi

�
xk
�
≤ −wαmin

�
xk
�
.

The proof from here is the same as in the previous paragraph.
Constant stepsize: This case is likewise apparent from (4.9). �

Remark 4.1
When gi = 0 for all i, references [20, 41, 58] present the convergence rate of various
multi-objective optimization methods. However, they all evaluate the convergence
rate with measures that depend on the subproblems or variables used in their algo-
rithms. This means that the comparison in terms of complexity between different
methods is not easy using those measures. However, Theorem 4.3 analyzes the con-
vergence rate using the merit function w1, which can be defined uniformly by (3.10)
for multi-objective optimization problems with a structure like (1.14). In the subse-
quent discussions, our convergence rate analyses have similar advantages.

4.4.2 The convex case
This subsection assumes the convexity of the objective functions of (1.14). More
precisely, let us suppose the following.

Assumption 4.3
Let fi and gi be µfi-convex and µgi-convex, respectively, with µfi ∈ R and µgi ≥ 0

for i = 1, . . . ,m. Write µf := mini=1,...,m µfi and µg := mini=1,...,m µgi. Then, we
suppose that µf + µg ≥ 0.
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Then, we can show the following recursive relation, which is helpful for the
subsequent discussion.

Lemma 4.5
Under Assumption 4.3, the following three statements hold:

(i) Algorithm 4.1 with the Armijo rule along the feasible direction generates
�
xk
�

such that

min
i=1,...,m

�
Fi

�
xk+1

�
− Fi(x)

�
+

ρ(1 + αµg)

2α

��xk+1 − x
��2
2

≤ (1− ρsk) min
i=1,...,m

�
Fi

�
xk
�
− Fi(x)

�
+

ρ[1 + αµg − αsk(µf + µg)]

2α

��xk − x
��2
2

for all x ∈ Rn and k ≥ 0.

(ii) With the Sufficient decrease rule along the proximal arc, the sequence
�
xk
�

generated by Algorithm 4.1 satisfies

min
i=1,...,m

�
Fi

�
xk+1

�
− Fi(x)

�
+

1 + αkµg

2αk

��xk+1 − x
��2
2
≤ 1− αkµf

2αk

��xk − x
��2
2

for all x ∈ Rn and k ≥ 0.

(iii) Let
�
xk
�
be generated by Algorithm 4.1 with the Constant stepsize. Then, we

have

min
i=1,...,m

�
Fi

�
xk+1

�
− Fi(x)

�
+

1 + αµg

2α

��xk+1 − x
��2
2
≤ 1− αµf

2α

��xk − x
��2
2

for all x ∈ Rn and k ≥ 0.

Proof. Claim (i): Let x ∈ Rn. Equations (4.5) and (4.6) give

min
i=1,...,m

�
Fi

�
xk+1

�
− Fi(x)

�
≤ min

i=1,...,m

�
Fi

�
xk
�
− Fi(x)

�
+ρsk

�
θα
�
xk
�
− 1

2α

��zk − xk
��2
2

�
.

Let λ
�
xk
�
∈ Δm such that λj

�
xk
�
= 0 for any j ∈ Iα

�
xk
�
, where Δm and Iα are

defined by (2.1) and (3.12), respectively. Then, (4.2) and line 7 of Algorithm 4.1
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yield

min
i=1,...,m

�
Fi

�
xk+1

�
− Fi(x)

�
− min

i=1,...,m

�
Fi

�
xk
�
− Fi(x)

�

≤ ρsk

m�

i=1

λi

�
xk
���

∇fi
�
xk
�
, zk − xk

�
+ gi

�
zk
�
− gi

�
xk
��
.

Since λ
�
xk
�
∈ Δm, we have

min
i=1,...,m

�
Fi

�
xk+1

�
− Fi(x)

�
− (1− ρsk) min

i=1,...,m

�
Fi

�
xk
�
− Fi(x)

�

≤ ρsk

m�

i=1

λi

�
xk
���

∇fi
�
xk
�
, zk − xk

�
+ fi

�
xk
�
− fi(x) + gi

�
zk
�
− gi(x)

�
.

It follows from the µfi-convexity of fi that

min
i=1,...,m

�
Fi

�
xk+1

�
− Fi(x)

�
− (1− ρsk) min

i=1,...,m

�
Fi

�
xk
�
− Fi(x)

�

≤ ρsk

m�

i=1

λi

�
xk
���

∇fi
�
xk
�
, zk − x

�
+ gi

�
zk
�
− gi(x)−

µfi

2

��xk − x
��2
2

�

≤ ρsk

m�

i=1

λi

�
xk
���

∇fi
�
xk
�
, zk − x

�
+ gi

�
zk
�
− gi(x)

�
− ρskµf

2

��xk − x
��2
2
,

where the second inequality comes from the fact that λ
�
xk
�

∈ Δm and µf =

mini=1,...,m µfi . Without loss of generality, (3.13), gi’s µgi-convexity, and the fact
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that µg = mini=1,...,m µgi lead to

min
i=1,...,m

�
Fi

�
xk+1

�
− Fi(x)

�
− (1− ρsk) min

i=1,...,m

�
Fi

�
xk
�
− Fi(x)

�

≤ − ρsk
α

�
zk − xk, zk − x

�
− ρskµf

2

��xk − x
��2
2
− ρskµg

2

��zk − x
��2
2

= − ρ

α

�
xk+1 − xk, xk − x

�
− ρ

αsk

��xk+1 − xk
��2
2

− ρskµf

2
�xk − x�22 −

ρskµg

2

����
1

sk
(xk+1 − xk) + xk − x

����
2

2

= − ρ(1 + αµg)

α

�
xk+1 − xk, xk − x

�
− ρ(2sk + αµg)

2αsk

��xk+1 − xk
��2
2

− ρsk(µf + µg)

2

��xk − x
��2
2

= − ρ(1 + αµg)

2α

���xk+1 − x
��2
2
−
��xk − x

��2
2
−
��xk+1 − xk

��2
2

�

− ρ(2sk + αµg)

2αsk

��xk+1 − xk
��2
2
− ρsk(µf + µg)

2

��xk − x
��2
2

≤ − ρ(1 + αµg)

2α

���xk+1 − x
��2
2
−
��xk − x

��2
2

�
− ρsk(µf + µg)

2

��xk − x
��2
2
,

where the first equality follows from line 7 of Algorithm 4.1, and the second in-
equality holds since sk ∈ (0, 1]. The above inequality is equivalent to the desired
one.

Claim (ii): Let x ∈ Rn. Equations (4.7) and (4.8) yield

min
i=1,...,m

�
Fi

�
xk+1

�
− Fi(x)

�
≤ min

i=1,...,m

�
Fi

�
xk
�
− Fi(x)

�
+ θαk

�
xk
�
.

For the proof of claim (i), by replacing α with αk, ρ with 1, sk with 1, and zk

with xk+1, and adding (1/2αk)�xk+1 − xk�22 to the right-hand side, we obtain the
desired inequality.

Claim (iii): This claim is clear from claim (ii). �

Now, we show that
�
u∞
�
xk
��

converges to zero with rate O(1/k) with Algo-
rithm 4.1 under the following assumption.

Assumption 4.4
There exists a bounded set Ω ⊆ Rn such that for all x ∈ levF (x0)(F ) with levF (x0)

given by (2.5), some z ∈ Ω satisfies F (z) ≤ F (x).
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Remark 4.2
(i) In single-objective cases, if the optimization problem has at least one optimal

solution x∗, then Ω = {x∗} satisfies Assumption 4.4.

(ii) When the level set levF (x0)(F ) is bounded, Assumption 4.4 is also satisfied.
For example, this is the case when Fi is strongly convex for at least one i.

Theorem 4.4
Under Assumptions 4.1 to 4.3, Algorithm 4.1 with the stepsize selection rule given
in any of Sections 4.2.1 to 4.2.3 generates a sequence

�
xk
�
converging to x∗ such

that
�
mini=1,...,m

�
Fi

�
xk
�
− Fi(x

∗)
��

is summable, in particular

liminf
k→∞

(k log k) min
i=1,...,m

�
Fi

�
xk
�
− Fi(x

∗)
�
= 0

and
limsup
k→∞

k min
i=1,...,m

�
Fi

�
xk
�
− Fi(x

∗)
�
< +∞.

Supposing Assumption 4.4 additionally, we also have

u∞
�
xk
�
= O(1/k) for all k ≥ 1

with O : [0,+∞) → R satisfying limsupt→0 O(t)/t < +∞ and u∞ given by (3.1).

Proof. Let T :=
�
x ∈ Rn

�� F (x) ≤ F
�
xk
�
, k = 0, 1, . . .

�
. From Theorem 4.2,

�
xk
�

converges to x∗ ∈ T .

We first prove the claim for the Armijo rule along the feasible direction.
Since µg ≥ 0 and µf + µg ≥ 0, Lemmas 4.5 (i) and 4.3 yield

min
i=1,...,m

�
Fi

�
xk+1

�
− Fi(x

∗)
�
+

ρ

2α

��xk+1 − x∗��2
2

≤ (1− ρsmin) min
i=1,...,m

�
Fi

�
xk
�
− Fi(x

∗)
�
+

ρ

2α

��xk − x∗��2
2
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Adding up the above inequality from k = 0 to k = �, we obtain

ρsmin

��

k=0

min
i=1,...,m

�
Fi

�
xk
�
− Fi(x

∗)
�

≤ min
i=1,...,m

�
Fi(x

0)− Fi(x
∗)
�
+

ρ

2α

��x0 − x∗��2
2

− min
i=1,...,m

�
Fi

�
x�+1

�
− Fi(x

∗)
�
− ρ

2α

��x�+1 − x∗��2
2

≤ min
i=1,...,m

�
Fi(x

0)− Fi(x
∗)
�
+

ρ

2α

��x0 − x∗��2
2
,

which means the summability of
�
mini=1,...,m

�
Fi

�
xk
�
− Fi(x

∗)
��

. We now suppose
Assumption 4.4. Since (4.4) implies F

�
x�
�
≤ F

�
xk
�

for all k = 0, . . . , �, the above
inequality holds even if we replace x∗ by z ∈ Ω such that F (z) ≤ F

�
x�
�
. Again

using the relation F
�
x�
�
≤ F

�
xk
�
, we have

ρsmin(� + 1) min
i=1,...,m

�
Fi(x

�)− Fi(z)
�

≤ min
i=1,...,m

�
Fi(x

0)− Fi(z)
�
+

ρ

2α

��x0 − z
��2
2
.

Therefore, we get

min
i=1,...,m

�
Fi(x

�)− Fi(z)
�
≤

min
i=1,...,m

�
Fi(x

0)− Fi(z)
�
+

ρ

2α

��x0 − z
��2
2

ρsmin(�+ 1)
.

Since x� ∈ levF (x0)(F ), Assumption 4.4 implies that

u∞(x�) = sup
z∈Rn

min
i=1,...,m

�
Fi(x

�)− Fi(z)
�
= sup

z∈Ω
min

i=1,...,m

�
Fi(x

�)− Fi(z)
�

Due to the boundedness of Ω, we conclude that u∞(x�) = O(1/�).
We can likewise show the claim for the Sufficient decrease rule along the proximal

arc by Lemmas 4.5 (ii) and 4.4 and for the Constant stepsize by Lemma 4.5 (iii). �

4.4.3 The case that the multi-objective proximal-PL in-
equality holds

This subsection analyzes the convergence rate of Algorithm 4.1 under the multi-
objective proximal-PL condition defined by Definition 3.1.
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Theorem 4.5
Suppose that Assumption 4.2 and Equation (3.19) hold with a constant τ > 0.
Then,

�
xk
�
generated by Algorithm 4.1 with the stepsize selection rule given in any

of Sections 4.2.1 to 4.2.3 converges linearly to a weakly Pareto optimal solution x∗

of (1.1), i.e.,
�xk − x∗�2 = O(exp(−rk))

for some r > 0 with O : [0,+∞) → R satisfying limsupt→0 O(t)/t < +∞.

Proof. Similarly to the proof of Theorem 4.3, we have

Fi

�
xk+1

�
− Fi

�
xk
�
≤ −ĉw1

�
xk
�

with some constant ĉ > 0. Hence, Theorem 3.14 implies that

Fi

�
xk+1

�
− Fi

�
xk
�
≤ −cwL−1

f

�
xk
�

with some c > 0. Thus, the multi-objective proximal PL inequality (3.19) shows

Fi

�
xk+1

�
− Fi

�
xk
�
≤ −cτu∞

�
xk
�
.

Adding Fi

�
xk
�
− Fi(x) to both sides gives

Fi

�
xk+1

�
− Fi(x) ≤ Fi

�
xk
�
− Fi(x)− cτu∞

�
xk
�
.

Therefore, it follows that

sup
x∈Rn

min
i=1,...,m

�
Fi

�
xk+1

�
− Fi(x)

�
≤ sup

x∈Rn

min
i=1,...,m

�
Fi

�
xk
�
− Fi(x)

�
− cτu∞

�
xk
�
,

which is equivalent to
u∞
�
xk+1

�
≤ (1− cτ)u∞

�
xk
�
.

Applying this inequality recursively, we get

u∞
�
xk
�
≤ (1− cτ)ku∞(x0).

From Theorem 3.16, there exists a weakly Pareto optimal point x∗ and

τLf

8

��xk − x∗��2
2
≤ (1− cτ)ku∞(x0),
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which completes the proof. �

4.5 Application to robust multi-objective opti-
mization

Now, let us apply the proposed algorithms to robust multi-objective optimization.
Here, we suppose that the problems include uncertain parameters. Moreover, sup-
pose that we can estimate the set of these uncertain parameters. Then, we try to
optimize by considering the worst scenario. We observe that studies about robust
multi-objective optimization is relatively new [34, 42, 80].

Here, we consider the convex function gi defined as follows:

gi(x) := max
u∈Ui

ĝi(x, u). (4.15)

We call Ui ⊆ Rn an uncertainty set. From now on, we assume that Ui ⊂ Rn is convex,
and ĝi : R

n ×Rn → (−∞,+∞] is closed, proper, and convex for x. It is easy to see
that gi is also closed, proper, and convex. However, gi is not necessarily differentiable
even if ĝi is differentiable. First, let us reformulate the subproblem (4.1) by using
an extra variable γ ∈ R as

min
γ,z

γ +
1

2α
�z − x�22

s.t. �∇fi(x), z − x�+ gi(z)− gi(x) ≤ γ, i = 1, . . . ,m.

Note that gi is not easy to calculate; thus, the subproblem is challenging to solve.
When ĝi and Ui have some particular structure, the constraints can be written as
explicit formulae using the duality of (4.15). Now, assume that the dual problem of
the maximization problem (4.15) is written as follows:

min
wi

g̃i(x, w
i)

s.t. wi ∈ Ũi(x),

where g̃i : R
n ×Rm → (−∞,+∞] and Ũi : R

n → 2R
m . If the strong duality holds,
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then we see that the subproblem (4.1) is equivalent to

min
γ,z,w1,...,wm

γ +
1

2α
�z − x�22

s.t. �∇fi(x), z − x�+ g̃i(z, w
i)− gi(x) ≤ γ,

wi ∈ Ũi(z), i = 1, . . . ,m.

(4.16)

When g̃i and Ũi have some explicit form, this problem is tractable. As we mention be-
low, we can convert the above subproblem to some well-known convex optimization
problems in this case. This idea can also be seen in [13]. In the following, we will
introduce some robust multi-objective optimization problems where the subprob-
lems can be written as quadratic programming, second-order cone programming, or
semi-definite programming problems.

4.5.1 Linearly constrained quadratic programming

Suppose that ĝi(x, u) = �x, u� and Ui = {u ∈ Rn | Aiu ≤ bi}, where Ai ∈ Rd×n

and bi ∈ Rd, that is, ĝi is linear in x, and Ui is a polyhedron. Suppose also that
Ui is nonempty and bounded. Then, we can rewrite (4.15) as the following linear
programming problem:

max
u

�x, u�

s.t. Aiu ≤ bi.
(4.17)

Its dual problem is given by

min
w

�
bi, w

�

s.t. A�
i w = x,

w ≥ 0.
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Since the strong duality holds, we can convert the subproblem (4.1) (or, equivalently
(4.16)) to a linearly constrained quadratic programming problem:

min
γ,z,w1,...,wm

γ +
1

2α
�z − x�22

s.t. �∇fi(x), z − x�+
�
bi, wi

�
− gi(x) ≤ γ,

A�
i w

i = z,

wi ≥ 0, i = 1, . . . ,m.

(4.18)

4.5.2 Second-order cone programming

Suppose that ĝi(x, u) = �x, u� and Ui = {ai + Piv ∈ Rn | �v�2 ≤ 1, v ∈ Rn}, where
ai ∈ Rn and Pi ∈ Rn×n, that is, ĝi is once again linear for x and Ui is an ellipsoid.
Then, for all i = 1, . . . ,m we have

gi(x) = max
u∈Ui

ĝi(x, u)

= max
v:�v�2≤1

�
ai + Piv, x

�

=
�
ai, x

�
+ max

v:�v�2≤1

�
P�
i x, v

�
.

If P�
i x = 0, then max

v:�v�2≤1

�
P�
i x, v

�
= 0 =

��P�
i x
��
2
. If P�

i x �= 0, then v = P�
i x/�P�

i x�2
is a solution of max

v:�v�2≤1

�
P�
i x, v

�
, and hence max

v:�v�2≤1

�
P�
i x, v

�
=
��P�

i x
��
2
. Conse-

quently, we have
gi(x) =

�
ai, x

�
+
��P�

i x
��
2
.

Therefore, by introducing slack variables γ ∈ R and τ ∈ R, the subproblem (4.1)
can be written as

min
τ,γ,z

τ

s.t.
�
∇fi(x) + ai, z − x

�
+
��P�

i z
��
2
−
��P�

i x
��
2
≤ γ, i = 1, . . . ,m,

γ +
1

2α
�z − x�22 ≤ τ.

Note that convex quadratic constraints can be converted to second-order cone con-
straints. Using the expression given in [3, Section 2.1], we get the following second-
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order cone programming problem (SOCP):

min
τ,γ,z

τ

s.t.

�
−
�
∇fi(x) + ai, z − x

�
+ γ +

��P�
i x
��
2

P�
i z

�
∈ Kn+1,




1− γ + τ

1 + γ − τ�
2/α(z − x)


 ∈ Kn+2,

(4.19)

where Kq := {(y0, ȳ) ∈ R×Rq−1 | y0 ≥ �ȳ�2} is the second-order cone in Rq. The
above SOCP can be solved efficiently with an interior point method [3].

4.5.3 Semi-definite programming

Suppose that ĝi(x, u) = �x + u,Ai(x + u)� and Ui = {ai + Piv ∈ Rn | �v�2 ≤ 1},
where Ai ∈ Rn×n and Ai � O, ai ∈ Rn and Pi ∈ Rn×n. Then, there exists a matrix
Mi ∈ Rn×n such that Ai = MiM

�
i . Note that ĝi is convex quadratic and Ui is an

ellipsoid. Here, without loss of generality we can assume that A is a symmetric
matrix since �x+ u,Ai(x+ u)� =

�
x+ u, Ãi(x+ u)

�
, where Ãi :=

�
Ai + A�

i

�
/2.

Then, gi(x) can be given as

gi(x) = max
v:�v�2≤1

�
x+ ai + Piv, Ai

�
x+ ai + Piv

��
. (4.20)

Since problem (4.20) is a maximization problem of a convex function, it is not a
convex optimization problem. Fortunately, it can be seen as a subproblem of a
trust region method, so its optimal value gi(x) can be obtained efficiently. Consid-
ering (4.20), we observe that

gi(z) = max
v:�v�2≤1

�
z + ai + Piv, Ai

�
z + ai + Piv

��
. (4.21)
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From [10, Section 3], the Lagrangian dual of the maximization problem (4.21) is
given by

min
β,w

− w

s.t.

�
−P�

i AiPi −P�
i Ai

�
z + ai

�

−
�
z + ai

��
A�

i Pi −
�
z + ai, Ai

�
z + ai

��
− w

�
� β

�
−In 0

0 1

�
,

β ≥ 0,

(4.22)

where In stands for the identity matrix of dimension n. Let (β∗, w∗) be an optimal
solution of (4.22) and assume that dim(ker(Ai + β∗In)) �= 1. Since both (4.21)
and (4.22) have strictly feasible solutions and In � O, then the strong duality
holds from [10, Theorem 3.5]. Therefore, recalling (4.16), the subproblem (4.1) is
equivalent to

min
γ,z,w,β

γ +
1

2α
�z − x�22

s.t. �∇fi(x), z − x� − wi − gi(x) ≤ γ,
�
−P�

i AiPi + βiIn −P�
i Ai

�
z + ai

�

−
�
z + ai

��
A�

i Pi −
�
z + ai, Ai

�
z + ai

��
− wi − βi

�
� O,

βi ≥ 0, i = 1, . . . ,m.

Now, by using slack variables τ ∈ R and ζ i ∈ R and converting the convex quadratic
constraints to second-order cone ones, we get the following semi-definite program-
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ming problem:

min
τ,β,w,γ,z

τ

s.t. �∇fi(x), z − x� − wi − gi(x) ≤ γ,



1− γ + τ

1 + γ − τ�
2

α
(z − x)


 ∈ Kn+2,

�
−P�

i AiPi + βiIn −P�
i Ai

�
z + ai

�

−
�
z + ai

��
A�

i Pi ζ i

�
� O,




1− ζ i − wi − βi

2
1 + ζ i + wi + βi

2
M�

i

�
z + ai

�


 ∈ Kn+2,

βi ≥ 0, i = 1, . . . ,m.

(4.23)

Note that the second-order cone constraints can be converted further into semi-
definite constraints.

4.6 Numerical experiments
In this section, we present some numerical results using Algorithm 4.1 for the prob-
lems in Section 4.5. The experiments are carried out on a machine with a 1.8GHz
Intel Core i5 CPU and 8GB memory, and we implement all codes in MATLAB
R2017a. We consider the problem (1.1), where n = 5,m = 2, fi(x) = (1/2)�x,Aix�+
�ai, x�, gi(x) = maxu∈Ui

ĝi(x, u), Ai ∈ Rn×n, ai ∈ Rn, and ĝi : R
n → R, i = 1, . . . ,m.

Here, we assume that each Ai is positive semidefinite so that it can be decomposed
as Ai = MiM

�
i , where Mi ∈ Rn×n. We generate Mi and ai by choosing every compo-

nent randomly from the standard normal distribution. To implement Algorithm 4.1,
we make the following choices.

Remark 4.3
• Every component of x0 is chosen randomly from the standard normal distri-

bution.

• In Experiments 1 and 3, we set the constant � = 5. In Experiment 2, we set
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the constant � = 7.

• The stopping criterion is replaced by �dk� < ε := 10−6.

Also, we run each one of the following experiments 100 times from different
initial points and with δ = 0, 0.05, 0.1. Naturally, when δ = 0, no uncertainties are
considered.

Experiment 1

In the first experiment, we solve the problem of Section 4.5.1. We assume that
gi(x) = maxu∈Ui

�u, x�, i = 1, 2, where U1 = {u ∈ R5 | −δ ≤ ui ≤ δ, i = 1, . . . , 5}
and U2 = {u ∈ R5 | −δ ≤ (Bu)i ≤ δ, i = 1, . . . , 5}. Here, every component of B ∈
R5×5 is chosen randomly from the standard normal distribution and δ ≥ 0. We use
the MATLAB solver linprog to solve (4.17) and quadprog to solve (4.18). Figure 4.1
is the result for this experiment. For each δ, we obtained part of the Pareto frontier,
and as δ gets smaller, the objective values become smaller.

Figure 4.1: Result for Experiment 1

Experiment 2

In the second experiment, we solve the problem of Section 4.5.2. We assume that
gi(x) = maxu∈Ui

�u, x�, where Ui = {u ∈ R5 | �u�2 ≤ δ}, i = 1, 2. We use
the MATLAB solver SeDuMi [96] to solve (4.19). Figure 4.2 is the result of this
experiment. Once again, we obtained part of the Pareto frontier for the problems
with and without uncertainties.
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Figure 4.2: Result for Experiment 2

Figure 4.3: Result for Experiment 3
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Experiment 3
Now, in the last experiment, we solve the problem of Section 4.5.3. We assume that
gi(x) = maxu∈Ui

�
u+ x,BB�(u+ x)

�
, where Ui = {u ∈ R5 | �u� ≤ δ}, i = 1, 2.

Once again, every component of B ∈ R5×5 is randomly chosen from the standard
normal distribution and δ ≥ 0. We use the MATLAB solver fmincon to solve (4.20)
and SeDuMi to solve (4.23). As it can be seen in Figure 4.3, we also obtained the
Pareto frontier in this case.

4.7 Conclusions
We proposed the proximal gradient method for composite multi-objective optimiza-
tion problems. Under reasonable assumptions, we proved its global convergence
and convergence rate. Moreover, we presented some applications for robust multi-
objective optimization. We can convert the subproblems to well-known convex op-
timization problems in some robust optimization problems. Finally, we carried out
some numerical experiments for robust multi-objective optimization problems, and
we observed that the Pareto frontier changes when the uncertainty set is modified.
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Chapter 5

An accelerated proximal gradient
method for multi-objective
optimization

5.1 Introduction

This chapter develops the accelerated proximal gradient method for the uncon-
strained convex composite multi-objective optimization, i.e., (1.14) with fi being
convex and C = Rn.

There are many studies related to the acceleration of single-objective first-order
methods. After being established by Nesterov [82], researchers developed various
accelerated schemes. In particular, the Fast Iterative Shrinkage-Thresholding Al-
gorithm (FISTA) [11], an accelerated version of the proximal gradient method, has
contributed to a wide range of research fields, including image and signal processing.
However, the studies associated with accelerated algorithms are still insufficient in
the multi-objective case. In 2020, El Moudden and El Mouatasim [36] proposed an
accelerated diagonal steepest descent method for multi-objective optimization, a nat-
ural extension of Nesterov’s accelerated method for single-objective problems. They
proved the global convergence rate of the algorithm (O(1/k2)) under the assumption
that the sequence of the Lagrange multipliers of the subproblems is eventually fixed.
Nevertheless, this assumption is restrictive because it indicates that the approach
is essentially the same as Nesterov’s (single-objective) method, only applied to the
minimization of a weighted sum of the objective functions.
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Here, we propose a genuine accelerated proximal gradient method for multi-
objective optimization. As usual, we solve a convex (scalar-valued) subproblem in
each iteration. While the accelerated and non-accelerated algorithms solve the same
subproblem in the single-objective case, the subproblem of our accelerated method
has terms that are not included in the non-accelerated version. However, we can
ignore these terms in the single-objective case, and thus we can regard our proposed
method as a generalization of FISTA. Moreover, under more natural assumptions,
we prove the proposed method’s global convergence rate (O(1/k2)) by using a merit
function (3.1) to measure the complexity.

The outline of this chapter is as follows. We present the accelerated proxi-
mal gradient method for multi-objective optimization in Section 5.2 and analyze
its O(1/k2) convergence rate in Section 5.3. Moreover, Section 5.4 demonstrates
the convergence of the iterates. Finally, we report some numerical results for test
problems in Section 5.5, demonstrating that the proposed method is faster than the
one without acceleration.

5.2 The algorithm
This section proposes an accelerated version of the proximal gradient method for
multi-objective optimization. Similar to the non-accelerated version given in the
last section, a subproblem is considered in each iteration. More specifically, the
proposed method solves the following subproblem for given x ∈ dom(F ), y ∈ Rn,
and α > 0:

min
z∈Rn

ϕacc
α (z; x, y), (5.1)

where

ϕacc
α (z; x, y) := max

i=1,...,m
[�∇fi(y), z − y�+ gi(z) + fi(y)− Fi(x)] +

1

2α
�z − y�22.

Note that when y = x, (5.1) is reduced to the subproblem (4.1) of the proximal
gradient method. Note also that when m = 1, the subproblem becomes

min
z∈Rn

�∇f1(y), z − y�+ g1(z) +
1

2α
�z − y�22, (5.2)

which is the subproblem of the single-objective FISTA (Algorithm 1.2). The distinc-
tive feature of our proposal (5.1) is the term fi(y)− fi(x), whereas the easy analogy
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from the single-objective subproblem (5.2) is

min
z∈Rn

max
i=1,...,m

[�∇fi(y), z − y�+ gi(z)] +
1

2α
�z − y�22.

By putting such a term, the inside of the max operator approximates Fi(z)− Fi(x)

rather than Fi(z)− Fi(y). This is a negligible difference in the single-objective case
but profoundly affects the proof in the multi-objective case.

Since gi is convex for all i = 1, . . . ,m, z �→ ϕacc
α (z; x, y) is strongly convex. Thus,

the subproblem (5.1) has a unique optimal solution paccα (x, y) and takes the optimal
function value θaccα (x, y), i.e.,

paccα (x, y) := argmin
z∈Rn

ϕacc
α (z; x, y) and θaccα (x, y) := min

z∈Rn
ϕacc
α (z; x, y). (5.3)

Moreover, the optimality condition of (5.1) implies

1

α
[y − paccα (x, y)] ∈ conv

i∈Iα(x,y)
[∇fi(y) + ∂gi(p

acc
α (x, y))] for all x, y ∈ Rn

with

Iα(x, y) := argmax
i=1,...,m

[�∇fi(y), p
acc
α (x, y)− y�+ gi(p

acc
α (x, y)) + fi(y)− Fi(x)]. (5.4)

Hence, for any x, y, z ∈ Rn, there exists λ(x, y) ∈ Δm such that λj(x, y) = 0

for j /∈ Iα(x, y) and

1

α
�y − paccα (x, y), z − pacc� (x, y)�

≤
m�

i=1

λi(x, y)[�∇fi(y), z − paccα (x, y)�+ gi(z)− gi(p
acc
α (x, y))], (5.5)

where Δm denotes the unit m-simplex (2.1). We also note that by taking z = y in
the objective function of (5.1), we have

θaccα (x, y) ≤ ϕacc
α (y; x, y) = max

i=1,...,m
[Fi(y)− Fi(x)] (5.6)

for all x ∈ dom(F ) and y ∈ Rn. We now characterize weak Pareto optimality
in terms of the mappings paccα and θaccα , similarly to Lemma 4.1 for the proximal
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gradient method.
Proposition 5.1
Let paccα (x, y) and θaccα (x, y) be defined by (5.3). Then, the statements below hold.

(i) The following three conditions are equivalent:

(a) y ∈ Rn is weakly Pareto optimal for (1.1);

(b) paccα (x, y) = y for some x ∈ Rn;

(c) θaccα (x, y) = maxi=1,...,m[Fi(y)− Fi(x)] for some x ∈ Rn.

(ii) The mappings paccα and θaccα are continuous. Particularly, if ∇fi is locally Lips-
chitz continuous, paccα and θaccα are locally Hölder continuous with exponent 1/2
and locally Lipschitz continuous, respectively.

Proof. Claim (i): From (5.6) and the fact that θaccα (x, y) = ϕacc
α (paccα (x, y); x, y),

the equivalence between (b) and (c) is apparent. Let us show that (a) and (b)
are equivalent. When y is weakly Pareto optimal, we can immediately see from
Lemma 4.1 that paccα (x, y) = pα(y) = y by letting x = y. Conversely, suppose
that paccα (x, y) = y for some x ∈ Rn. Let z ∈ Rn and β ∈ (0, 1). The optimality
of paccα (x, y) = y for (5.1) gives

max
i=1,...,m

[Fi(y)− Fi(x)] ≤ ϕacc
α (y + β(z − y); x, y)

= max
i=1,...,m

[�∇fi(y), β(z − y)�+ gi(y + β(z − y)) + fi(y)− Fi(x)]

+
1

2α
�β(z − y)�22.

Thus, from the convexity of fi, we get

max
i=1,...,m

[Fi(y)− Fi(x)] ≤ max
i=1,...,m

[Fi(y + β(z − y))− Fi(x)] +
1

2α
�β(z − y)�22.

Moreover, the convexity of Fi yields

max
i=1,...,m

[Fi(y)− Fi(x)]

≤ max
i=1,...,m

[βFi(z) + (1− β)Fi(y)− Fi(x)] +
1

2α
�β(z − y)�22

≤ β max
i=1,...,m

[Fi(z)− Fi(y)] + max
i=1,...,m

[Fi(y)− Fi(x)] +
1

2α
�β(z − y)�22.
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Therefore, we get
max

i=1,...,m
[Fi(z)− Fi(y)] ≥ − β

2α
�z − y�22.

Taking β � 0, we obtain

max
i=1,...,m

[Fi(z)− Fi(y)] ≥ 0,

which implies the weak Pareto optimality of y.

Claim (ii): Let Ω be a bounded subset of Rn and take x̂, ŷ, x̌, y̌ ∈ Ω. Adding (5.5)
with (x, y, z) := (x̂, ŷ, paccα (x̌, y̌)), (x̌, y̌, paccα (x̂, ŷ)) gives

1

α
�paccα (x̂, ŷ)− paccα (x̌, y̌)− (ŷ − y̌), paccα (x̂, ŷ)− paccα (x̌, y̌)�

≤
m�

i=1

λi(x̂, ŷ)[�∇fi(ŷ), p
acc
α (x̌, y̌)− paccα (x̂, ŷ)�+ gi(p

acc
α (x̌, y̌))− gi(p

acc
α (x̂, ŷ))]

+
m�

i=1

λi(x̌, y̌)[�∇fi(y̌), p
acc
α (x̂, ŷ)− paccα (x̌, y̌)�+ gi(p

acc
α (x̂, ŷ))− gi(p

acc
α (x̌, y̌))]

≤
m�

i=1

λi(x̂, ŷ)[�∇fi(ŷ), ŷ − paccα (x̂, ŷ)� − gi(p
acc
α (x̂, ŷ))− fi(ŷ) + Fi(x̂)]

+
m�

i=1

λi(x̌, y̌)[�∇fi(y̌), y̌ − paccα (x̌, y̌)� − gi(p
acc
α (x̌, y̌))− fi(y̌) + Fi(x̌)]

+
m�

i=1

λi(x̂, ŷ)[�∇fi(ŷ), p
acc
α (x̌, y̌)− ŷ�+ gi(p

acc
α (x̌, y̌)) + fi(ŷ)− Fi(x̂)]

+
m�

i=1

λi(x̌, y̌)[�∇fi(y̌), p
acc
α (x̂, ŷ)− y̌�+ gi(p

acc
α (x̂, ŷ)) + fi(y̌)− Fi(x̌)].
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Since λj(x, y) for j ∈ Iα(x) with Iα given by (5.4), we get

1

α
�paccα (x̂, ŷ)− paccα (x̌, y̌)− (ŷ − y̌), paccα (x̂, ŷ)− paccα (x̌, y̌)�

≤ min
i=1,...,m

[�∇fi(ŷ), ŷ − paccα (x̂, ŷ)� − gi(p
acc
α (x̂, ŷ))− fi(ŷ) + Fi(x̂)]

+ min
i=1,...,m

[�∇fi(y̌), y̌ − paccα (x̌, y̌)� − gi(p
acc
α (x̌, y̌))− fi(y̌) + Fi(x̌)]

+
m�

i=1

λi(x̂, ŷ)[�∇fi(ŷ), p
acc
α (x̌, y̌)− ŷ�+ gi(p

acc
α (x̌, y̌)) + fi(ŷ)− Fi(x̂)]

+
m�

i=1

λi(x̌, y̌)[�∇fi(y̌), p
acc
α (x̂, ŷ)− y̌�+ gi(p

acc
α (x̂, ŷ)) + fi(y̌)− Fi(x̌)]

≤
m�

i=1

λi(x̌, y̌)[�∇fi(ŷ), ŷ − paccα (x̂, ŷ)� − gi(p
acc
α (x̂, ŷ))− fi(ŷ) + Fi(x̂)]

+
m�

i=1

λi(x̂, ŷ)[�∇fi(y̌), y̌ − paccα (x̌, y̌)� − gi(p
acc
α (x̌, y̌))− fi(y̌) + Fi(x̌)]

+
m�

i=1

λi(x̂, ŷ)[�∇fi(ŷ), p
acc
α (x̌, y̌)− ŷ�+ gi(p

acc
α (x̌, y̌)) + fi(ŷ)− Fi(x̂)]

+
m�

i=1

λi(x̌, y̌)[�∇fi(y̌), p
acc
α (x̂, ŷ)− y̌�+ gi(p

acc
α (x̂, ŷ)) + fi(y̌)− Fi(x̌)].

Thus, quick calculations imply

1

α
�paccα (x̂, ŷ)− paccα (x̌, y̌)�22 ≤

1

α
�paccα (x̂, ŷ)− paccα (x̌, y̌), ŷ − y̌�

≤
m�

i=1

λi(x̂, ŷ)[�∇fi(ŷ)−∇fi(y̌), p
acc
α (x̌, y̌)�+ fi(ŷ)− fi(y̌)− (Fi(x̂)− Fi(x̌))]

+
m�

i=1

λi(x̌, y̌)[�∇fi(y̌)−∇fi(ŷ), p
acc
α (x̂, ŷ)�+ fi(y̌)− fi(x̂)− (Fi(x̌)− Fi(x̂))]

+
m�

i=1

[λi(x̌, y̌)− λi(x̂, ŷ)][�∇fi(ŷ)−∇fi(y̌), ŷ�+ �∇fi(y̌), ŷ − y̌�].

When (x̂, ŷ) → (x̌, y̌), the right-hand side tends to zero, so paccα and θaccα are contin-
uous. Moreover, assume that ∇fi is locally Lipschitz continuous for i = 1, . . . ,m.
Since fi, gi, Fi are also locally Lipschitz, the above inequality shows that paccα is
locally Hölder continuous with exponent 1/2.
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On the other hand, the definition (5.3) of paccα and θaccα gives

θaccα (x̂, ŷ)− θaccα (x̌, y̌) ≤ ϕacc
α (paccα (x̌, y̌); x̂, ŷ)− ϕacc

α (paccα (x̌, y̌); x̌, y̌)

= max
i=1,...,m

[�∇fi(ŷ), p
acc
α (x̌, y̌)− ŷ�+ gi(p

acc
α (x̌, y̌)) + fi(ŷ)− Fi(x̂)]

− max
i=1,...,m

[�∇fi(y̌), p
acc
α (x̌, y̌)− y̌�+ gi(p

acc
α (x̌, y̌)) + fi(y̌)− Fi(x̌)]

+
1

2α

�
�paccα (x̌, y̌)− ŷ�22 − �paccα (x̌, y̌)− y̌�22

�

≤ max
i=1,...,m

[�∇fi(y̌), y̌ − ŷ�+ �∇fi(ŷ)−∇fi(y̌), p
acc
α (x̌, y̌)− ŷ�

+ fi(ŷ)− fi(y̌)− Fi(x̂) + Fi(x̌)]

+
1

2α
�2paccα (x̌, y̌)− ŷ − y̌, y̌ − ŷ�

≤ max
i=1,...,m

�∇fi(y̌)�2�ŷ − y̌�2 + �ŷ − paccα (x̌, y̌)�2 max
i=1,...,m

�∇fi(ŷ)−∇fi(y̌)�2

+ max
i=1,...,m

|fi(ŷ)− fi(y̌)|+ max
i=1,...,m

|Fi(x̂)− Fi(x̌)|

+
1

2α
�2paccα (x̌, y̌)− ŷ − y̌�2�ŷ − y̌�2,

where the second inequality follows from (2.2), and the third inequality comes from
the Cauchy-Schwarz inequalities. Since the above inequality holds even if we inter-
change (x̂, ŷ) and (x̌, y̌), we can show the Lipschitz continuity of θaccα on Ω in the
same way as in the previous paragraph. �

Proposition 5.1 suggests that we can use �paccα (x, y)− y�∞ < ε for some ε > 0 as a
stopping criterion. Now, we state below the proposed algorithm.

The sequence {tk} defined in lines 2 and 8 of Algorithm 5.1 generalizes the well-
known momentum factors in single-objective accelerated methods. For example,
when a = 0 and b = 1/4, they coincide with the one in Algorithm 5.1 and the
original FISTA [82, 11] (t1 = 1 and tk+1 = (1+

�
1 + 4t2k)/2). Moreover, if b = a2/4,

then {tk} has the general term tk = (1−a)k/2+(1+a)/2, which corresponds to the
one used in [24, 97, 5, 4]. This means that our generalization allows finer algorithm
tuning by varying a and b. We show below some properties of {tk} and {γk}.
Lemma 5.1
Let {tk} and {γk} be defined by lines 2, 8 and 9 in Algorithm 5.1 for arbitrary a ∈
[0, 1) and b ∈ [a2/4, 1/4]. Then, the following inequalities hold for all k ≥ 1.

(i) tk+1 ≥ tk +
1− a

2
and tk ≥

1− a

2
k +

1 + a

2
;



94
CHAPTER 5. AN ACCELERATED PROXIMAL GRADIENT METHOD FOR

MULTI-OBJECTIVE OPTIMIZATION

Algorithm 5.1 Accelerated proximal gradient method with general stepsizes
for (1.1)
Input: x0 = y1 ∈ dom(F ), a ∈ [0, 1), b ∈ [a2/4, 1/4], ε > 0.
Output: x∗: A weakly Pareto optimal point

1: k ← 1
2: t1 ← 1
3: loop
4: xk ← paccα (xk−1, yk) for some stepsize α > 0
5: if �xk − yk�∞ < ε then
6: return xk

7: end if
8: tk+1 ←

�
t2k − atk + b+ 1/2

9: γk ← (tk − 1)/tk+1

10: yk+1 ← xk + γk(x
k − xk−1)

11: k ← k + 1
12: end loop

(ii) tk+1 ≤ tk +
1− a+

√
4b− a2

2
and tk ≤

1− a+
√
4b− a2

2
(k − 1) + 1 ≤ k;

(iii) t2k − t2k+1 + tk+1 = atk − b+
1

4
≥ atk;

(iv) 0 ≤ γk ≤
k − 1

k + 1/2
;

(v) 1− γ2
k ≥ 1

tk
.

Proof. Claim (i): From the definition of {tk}, we have

tk+1 =
�

t2k − atk + b+
1

2
=

��
tk −

a

2

�2

+

�
b− a2

4

�
+

1

2
. (5.7)

Since b ≥ a2/4, we get
tk+1 ≥

���tk −
a

2

���+ 1

2
.

Since t1 = 1 ≥ a/2, we can quickly see that tk ≥ a/2 for any k by induction. Thus,
we have

tk+1 ≥ tk +
1− a

2
.
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Applying the above inequality recursively, we obtain

tk ≥
1− a

2
(k − 1) + t1 =

1− a

2
k +

1 + a

2
.

Claim (ii): From (5.7) and the relation
√
β1 + β2 ≤

√
β1 +

√
β2 with β1, β2 ≥ 0,

we get the first inequality. Using it recursively, it follows that

tk ≤
1− a+

√
4b− a2

2
(k − 1) + t1 =

1− a+
√
4b− a2

2
(k − 1) + 1.

Since a ∈ [0, 1), b ∈ [a2/4, 1/4], we observe that

1− a+
√
4b− a2

2
≤ 1− a+

√
1− a2

2
≤ 1.

Hence, the above two inequalities lead to the desired result.

Claim (iii): An easy computation shows that

t2k − t2k+1 + tk+1 = t2k −
��

t2k − atk + b+
1

2

�2
+
�

t2k − atk + b+
1

2

= atk − b+
1

4
≥ atk,

where the inequality holds since b ≤ 1/4.

Claim (iv): The first inequality is clear from the definition of γk since claim (i)
yields tk ≥ 1. Again, the definition of γk and claim (i) give

γk =
tk − 1

tk+1

≤ tk − 1

tk + (1− a)/2
= 1− 3− a

2tk + 1− a
.

Combining with the claim (ii), we get

γk ≤ 1− 3− a�
1− a+

√
4b− a2

�
(k − 1) + 3− a

=

�
1− a+

√
4b− a2

�
(k − 1)�

1− a+
√
4b− a2

�
(k − 1) + 3− a

=
k − 1

k − 1 + (3− a)/
�
1− a+

√
4b− a2

� .

(5.8)
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On the other hand, it follows that

min
a∈[0,1),b∈[a2/4,1/4]

3− a

1− a+
√
4b− a2

= min
a∈[0,1)

3− a

1− a+
√
1− a2

=
3

2
, (5.9)

where the second equality follows from the monotonic non-decreasing property im-
plied by

d

da

�
3− a

1− a+
√
1− a2

�
=

2
√
1− a2 + 3a− 1

�√
1− a2 − a+ 1

�2√
1− a2

> 0 for all a ∈ [0, 1).

Combining (5.8) and (5.9), we obtain γk ≤ (k − 1)/(k + 1/2).
Claim (v): claim (i) implies that tk+1 > tk ≥ 1. Thus, the definition of γk implies

that

1− γ2
k = 1−

�
tk − 1

tk+1

�2

≥ 1−
�
tk − 1

tk

�2

=
2tk − 1

t2k
≥ 2tk − tk

t2k
=

1

tk
.

�

We end this section by noting some remarks about the proposed algorithm.

Remark 5.1
(i) Since x ∈ dom(F ) implies paccα (x, y) ∈ dom(F ), every xk computed by the

above algorithm is in dom(F ). However, yk is not necessarily in dom(F ).

(ii) Since y1 = x0, it follows from (5.6) that

θaccα (x0, y1) ≤ 0,

but the inequality θaccα (xk−1, yk) ≤ 0 does not necessarily hold for k ≥ 2.

(iii) When m = 1, we can remove the term fi(y)−Fi(x) from the subproblem (5.1),
so Algorithm 5.1 corresponds to the Fast Iterative Shrinkage-Thresholding Al-
gorithm (FISTA) [11] for single-objective optimization.

(iv) Algorithm 5.1 induces the accelerated versions of first-order algorithms such
as the steepest descent [40], proximal point [17], and projected gradient meth-
ods [57].
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5.3 Convergence rates analysis
This section shows that Algorithm 5.1 has the O(1/k2) convergence rate under
Assumption 4.2. For simplicity, we suppose the constant stepsize α ∈ (0, 1/Lf ].
Then, Lemmas 2.2 and 2.3 implies

θaccα (x, y) ≥ max
i=1,...,m

[Fi(p
acc
α (x, y))− Fi(x)] (5.10)

for all x ∈ dom(F ) and y ∈ Rn. When it is challenging to estimate Lf , we can use
the backtracking procedure like Section 4.2.2.

We present below the main theorem of this section.
Theorem 5.1
Let

�
xk
�
be a sequence generated by Algorithm 5.1 and recall that u∞ is given

by (3.1). Then, the following two equations hold:

(i) Fi

�
xk
�
≤ Fi(x

0) for all i = 1, . . . ,m and k ≥ 0;

(ii) u∞
�
xk
�
= O(1/k2) as k → ∞ under Assumption 4.4.

Claim (i) means that
�
xk
�

⊆ levF (F (x0)), where levF (x0)(F ) denotes the level
set of F (cf. (2.5)). Note, however, that the objective functions are generally not
monotonically non-increasing. Claim (ii) also claims the global convergence rate.

Before proving Theorem 5.1, let us give several lemmas. First, we present some
properties of {tk} and {γk}. As in [101], we also introduce σk : R

n → [−∞,+∞)

and ρk : R
n → R for k ≥ 0 as follows, which assist the analysis:

σk(z) := min
i=1,...,m

�
Fi

�
xk
�
− Fi(z)

�
,

ρk(z) :=
��tk+1x

k+1 − (tk+1 − 1)xk − z
��2
2
.

(5.11)

The following lemma on σk is helpful in the subsequent discussions.
Lemma 5.2
Let

�
xk
�
and

�
yk
�
be sequences generated by Algorithm 5.1. Then, the following

inequalities hold for all z ∈ Rn and k ≥ 0:

(i) σk+1(z) ≤ − 1

α

�
yk+1 − xk+1, z − yk+1

�
− 1

2α

��xk+1 − yk+1
��2
2
;

(ii) σk+1(z)−σk(z) ≤ max
i=1,...,m

�
Fi

�
xk+1

�
− Fi

�
xk
��

≤ − 1

α

�
yk+1 − xk+1, xk − yk+1

�
−

1

2α

��xk+1 − yk+1
��2
2
.
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Proof. Suppose that z ∈ Rn and k ≥ 0. Recall that a Lagrange multi-
plier λ

�
xk, yk+1

�
∈ Δm exists and satisfies the optimality condition (5.5).

Claim (i): From the definition (5.11) of σk+1, we get

σk+1(z) = min
i=1,...,m

�
Fi

�
xk+1

�
− Fi(z)

�

≤
m�

i=1

λi

�
xk, yk+1

��
Fi

�
xk+1

�
− Fi(z)

�

=
m�

i=1

λi

�
xk, yk+1

��
Fi

�
xk+1

�
− Fi

�
xk
�
+ Fi

�
xk
�
− Fi(z)

�
.

where the inequality follows from λ
�
xk, yk+1

�
∈ Δm. From (5.10), we have

σk+1(z) ≤ θaccα

�
xk, yk+1

�
+

m�

i=1

λi

�
xk, yk+1

��
Fi

�
xk
�
− Fi(z)

�

=
m�

i=1

λi

�
xk, yk+1

���
∇fi

�
yk+1

�
, xk+1 − yk+1

�
+ gi

�
xk+1

�
+ fi

�
yk+1

�
− Fi(z)

�

+
1

2α

��xk+1 − yk+1
��2
2
,

where the second inequality comes from (5.3) and (5.4). The convexity of fi yields

σk+1(z)

≤
m�

i=1

λi

�
xk, yk+1

���
∇fi

�
yk+1

�
, xk+1 − z

�
+ gi

�
xk+1

�
− gi(z)

�
+

1

2α

��xk+1 − yk+1
��2
2
.

Equation (5.5) gives

σk+1(z) ≤ − 1

α

�
yk+1 − xk+1, z − xk+1

�
+

1

2α

��xk+1 − yk+1
��2
2

= − 1

α

�
yk+1 − xk+1, z − yk+1

�
− 1

2α

��xk+1 − yk+1
��2
2
.
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Claim (ii): Again, from the definition (5.11) of σk, we obtain

σk+1(z)− σk(z)

= min
i=1,...,m

�
Fi

�
xk+1

�
− Fi(z)

�
− min

i=1,...,m

�
Fi

�
xk
�
− Fi(z)

�

≤ max
i=1,...,m

�
Fi

�
xk+1

�
− Fi

�
xk
��
,

where the inequality holds because of (2.2). Equation (5.10) leads to

max
i=1,...,m

�
Fi

�
xk+1

�
− Fi

�
xk
��

≤ θaccα

�
xk, yk+1

�

=
m�

i=1

λi

�
xk, yk+1

���
∇fi(y

k+1), xk+1 − yk+1
�
+ gi

�
xk+1

�
+ fi

�
yk+1

�
− Fi

�
xk
��

+
1

2α

��xk+1 − yk+1
��2
2

where the equality is from (5.3) and (5.4). From the convexity of fi, we obtain

max
i=1,...,m

�
Fi

�
xk+1

�
− Fi

�
xk
��

≤
m�

i=1

λi

�
xk, yk+1

���
∇fi(y

k+1), xk+1 − xk
�
+ gi

�
xk+1

�
− gi

�
xk
��

+
1

2α

��xk+1 − yk+1
��2
2
.

Equation (5.5) yields

max
i=1,...,m

�
Fi

�
xk+1

�
− Fi

�
xk
��

≤ − 1

α

�
yk+1 − xk+1, xk − xk+1

�
+

1

2α

��xk+1 − yk+1
��2
2

= − 1

α

�
yk+1 − xk+1, xk − yk+1

�
− 1

2α

��xk+1 − yk+1
��2
2
.

�

Therefore, from Lemma 5.1 (v), we can obtain the following result quickly in the
same way as in the proof of [101, Corollary 5.1].
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Lemma 5.3
Let

�
xk
�
and

�
yk
�
be sequences generated by Algorithm 5.1. Then, we have

σk2(z)− σk1(z) ≤ max
i=1,...,m

�
Fi

�
xk2
�
− Fi

�
xk1
��

≤ − 1

2α

�
��xk2 − xk2−1

��2
2
−
��xk1 − xk1−1

��2
2
+

k2−1�

k=k1

1

tk

��xk − xk−1
��2
2

�

for any k2 ≥ k1 ≥ 1.

Proof. Let k ≥ 1. From Lemma 5.2 (ii) is equivalent to

σk+1(z)− σk(z) ≤ max
i=1,...,m

�
Fi

�
xk+1

�
− Fi

�
xk
��

≤ − 1

2α

���xk+1 − xk
��2
2
−
��yk+1 − xk

��2
2

�

= − 1

2α

���xk+1 − xk
��2
2
− γ2

k

��xk − xk−1
��2
2

�
,

where the equality comes from line 10 of Algorithm 5.1. Adding up this inequality
from k = k1 to k = k2 − 1 yields

σk2(z)− σk1(z) ≤ max
i=1,...,m

�
Fi

�
xk2
�
− Fi

�
xk1
��

≤ − 1

2α

�
��xk2 − xk2−1

��2
2
−
��xk1 − xk1−1

��2
2
+

k2−1�

k=k1

�
1− γ2

k

���xk − xk−1
��2
2

�
.

Using Lemma 5.1 (v), we get the desired inequality. �

We can now show the first part of Theorem 5.1.

Proof of Theorem 5.1 (i). It is clear from Lemma 5.3 with k1 = 0 and k2 = k. �

The next step is to prepare the proof of Theorem 5.1 (ii).

Lemma 5.4
Let

�
xk
�
and

�
yk
�
be sequences generated by Algorithm 5.1. Also, let σk and ρk be
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defined by (5.11). Then, we have

1

1− a

�
t2k+1 − atk+1 +

�
1

4
− b

�
k

�
σk+1(z)

+
1

2α(1− a)

�
a(t2k+1 − tk+1) +

�
1

4
− b

�
k

���xk+1 − xk
��2
2

+
1

2α(1− a)

k�

p=1

�
a2(tp − 1) +

�
1

4
− b

�
p− tp + a(tp − 1)

tp

���xp − xp−1
��2
2

+
1

2α
ρk(z) ≤

1

2α

��x0 − z
��2
2
.

for all k ≥ 0 and z ∈ Rn.

Proof. Let p ≥ 1 and z ∈ Rn. Adding Lemma 5.2 (ii) multiplied by (tp+1 − 1)

and Lemma 5.2 (i), both with k = p, yields

tp+1σp+1(z)− (tp+1 − 1)σp(z)

≤ − 1

2α

�
tp+1

��xp+1 − yp+1
��2
2
+ 2

�
xp+1 − yp+1, tp+1y

p+1 − (tp+1 − 1)xp − z
��
.

Multiplying this inequality by tp+1 and using the relation t2p = t2p+1 − tp+1 + (atp −
b+ 1/4) (cf. Lemma 5.1 (iii)), we get

t2p+1σp+1(z)− t2pσp(z) ≤ − 1

2α

���tp+1(x
p+1 − yp+1)

��2
2

+ 2tp+1

�
xp+1 − yp+1, tp+1y

p+1 − (tp+1 − 1)xp − z
��

−
�
atp − b+

1

4

�
σp(z).

Applying (2.3) to the right-hand side of the above inequality with

v1 := tp+1y
p+1, v2 := tp+1x

p+1, v3 := (tp+1 − 1)xp + z,

we get

t2p+1σp+1(z)− t2pσp(z)

≤ − 1

2α

���tp+1x
p+1 − (tp+1 − 1)xp − z

��2
2
−
��tp+1y

p+1 − (tp+1 − 1)xp − z
��2
2

�

−
�
atp − b+

1

4

�
σp(z).
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Recall that ρp(z) := �tp+1x
p+1 − (tp+1 − 1)xp − z�22. Then, considering the definition

of yp given in line 10 of Algorithm 5.1, we obtain

t2p+1σp+1(z)− t2pσp(z) ≤ − 1

2α
[ρp(z)− ρp−1(z)]−

�
atp − b+

1

4

�
σp(z).

Now, let k ≥ 0. Lemma 5.3 with (k1, k2) = (p, k + 1) implies

t2p+1σp+1(z)− t2pσp(z) ≤ − 1

2α
[ρp(z)− ρp−1(z)]

−
�
atp − b+

1

4

��
σk+1(z)+

1

2α

�
��xk+1 − xk

��2
2
−
��xp − xp−1

��2
2
+

k�

r=p

1

tr

��xr − xr−1
��2
2

��
.

Adding up the above inequality from p = 1 to p = k, the fact that t1 = 1 and ρ0(z) =

�x1 − z�22 leads to

t2k+1σk+1(z)− σ1(z) ≤ − 1

2α

�
ρk(z)−

��x1 − z
��2
2

�

−
�
a

k�

p=1

tp +

�
1

4
− b

�
k

��
σk+1(z) +

1

2α

��xk+1 − xk
��2
2

�

+
1

2α

k�

p=1

�
atp − b+

1

4

���xp − xp+1
��2
2

− 1

2α

k�

p=1

�
atp − b+

1

4

� k�

r=p

1

tr

��xr − xr−1
��2
2
. (5.12)

Let us write the last two terms of the right-hand side for (5.12) as S1 and S2,
respectively. (2.4) yields

S2 = − 1

2α

k�

r=1

r�

p=1

�
atp − b+

1

4

�
1

tr

��xr − xr−1
��2
2

= − 1

2α

k�

p=1

p�

r=1

�
atr − b+

1

4

�
1

tp

��xp − xp−1
��2
2
.
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Hence, it follows that

S1 + S2 = − 1

2α

k�

p=1

�
1

tp

p�

r=1

�
atr − b+

1

4

�
−
�
atp − b+

1

4

����xp − xp−1
��2
2

= − 1

2α

k�

p=1

1

tp

�
a

�
p−1�

r=1

tr − t2p + tp

�
+

�
1

4
− b

�
(p− tp)

�
��xp − xp−1

��2
2
. (5.13)

Again t1 = 1 gives

−t2p + tp =

p−1�

r=1

(−t2r+1 + tr+1 + t2r − tr) =

p−1�

r=1

�
−(1− a)tr − b+

1

4

�

= −(1− a)

p−1�

r=1

tr +

�
1

4
− b

�
(p− 1),

where the second equality comes from Lemma 5.1 (iii). Thus, we get

p−1�

r=1

tr =
t2p − tp

1− a
+

�
1

4
− b

�
p− 1

1− a
. (5.14)

Substituting this into (5.13), it follows that

S1+S2 = − 1

2α(1− a)

k�

p=1

�
a2(tp − 1) +

�
1

4
− b

�
p− tp + a(tp − 1)

tp

���xp − xp−1
��2
2
.

Combined with (5.12) and (5.14), we have

t2k+1σk+1(z)− σ1(z)

≤ − 1

2α

�
ρk(z)−

��x1 − z
��2
2

�

− 1

1− a

�
a(t2k+1 − tk+1) +

�
1

4
− b

�
k

��
σk+1(z) +

1

2α

��xk+1 − xk
��2
2

�

− 1

2α(1− a)

k�

p=1

�
a2(tp − 1) +

�
1

4
− b

�
p− tp + a(tp − 1)

tp

���xp − xp−1
��2
2
.
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Easy calculations give

1

1− a

�
t2k+1 − atk+1 +

�
1

4
− b

�
k

�
σk+1(z)

+
1

2α(1− a)

�
a(t2k+1 − tk+1) +

�
1

4
− b

�
k

���xk+1 − xk
��2
2

+
1

2α(1− a)

k�

p=1

�
a2(tp − 1) +

�
1

4
− b

�
p− tp + a(tp − 1)

tp

���xp − xp−1
��2
2

+
1

2α
ρk(z) ≤ σ1(z) +

1

2α

��x1 − z
��2
2
.

Lemma 5.2 (i) with k = 0 and y1 = x0 and (2.3) with (v1, v2, v3) = (x0, x1, z) lead
to

σ1(z) ≤ − 1

2α

���x1 − z
��2
2
−
��x0 − z

��2
2

�
.

From the above two inequalities, we can derive the desired inequality. �

Let us define the linear function P : R → R and quadratic ones Q1 : R → R,
and Q2 : R → R by

P (β) :=
a2(β − 1)

2
,

Q1(β) :=
1− a

4
β2 +

�
1− a

2
+

1− 4b

4(1− a)

�
β + 1,

Q2(β) :=
a(1− a)

4
β2 +

�
a

2
+

1− 4b

4(1− a)

�
β.

(5.15)

The following lemma provides the critical relation to evaluate the convergence rate
of Algorithm 5.1.

Lemma 5.5
Under Assumption 4.4 with Ω ⊆ Rn, Algorithm 5.1 generates a sequence

�
xk
�
such

that

Q1(k)u∞
�
xk+1

�
+

1

2α
Q2(k)

��xk+1 − xk
��2
2
+

1

2α

k�

p=1

P (p)
��xp − xp−1

��2
2
= O(1)

for all k ≥ 0, where O : [0,+∞) → R satisfies limsupt→∞ O(t)/t <

+∞, P,Q1, Q2 : R → R are given in (5.15), respectively, and u∞ is the gap function
defined by (3.1).
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Proof. Let k ≥ 0. With similar arguments used in the proof of Theorem 4.4, we get

sup
z∈Ω

σk+1(z) = u∞
�
xk+1

�
.

Since ρk(z) ≥ 0 and Ω is bounded, Lemma 5.4 and the above equality lead to

1

1− a

�
t2k+1 − atk+1 +

�
1

4
− b

�
k

�
σk+1(z)

+
1

2α(1− a)

�
a(t2k+1 − tk+1) +

�
1

4
− b

�
k

���xk+1 − xk
��2
2

+
1

2α(1− a)

k�

p=1

�
a2(tp − 1) +

�
1

4
− b

�
p− tp + a(tp − 1)

tp

���xp − xp−1
��2
2

+
1

2α
ρk(z) = O(1).

We now show that the coefficients of the three terms on the right-hand side can be
bounded from below by the polynomials given in (5.15). First, by using the relation

tk+1 ≥
1− a

2
k + 1 (5.16)

obtained from Lemma 5.1 (i) and a ∈ [0, 1), we have

1

1− a

�
t2k+1 − atk+1 +

�
1

4
− b

�
k

�
=

1

1− a

�
tk+1(tk+1 − a) +

�
1

4
− b

�
k

�

≥ 1

1− a

��
1− a

2
k + 1

��
1− a

2
k + 1− a

�
+

�
1

4
− b

�
k

�
= Q1(k).

Again, (5.16) gives

1

1− a

�
a(t2k+1 − tk+1) +

�
1

4
− b

�
k

�
=

a

1− a
tk+1(tk+1 − 1) +

1− 4b

4(1− a)
k

≥ a

1− a

�
1− a

2
k + 1

��
1− a

2
k

�
+

1− 4b

4(1− a)
k = Q2(k).

Moreover, since tp ≤ p (cf. Lemma 5.1 (ii)), tk ≥ 1 (cf. Lemma 5.1 (i)), and b ∈
(a2/4, 1/4], we obtain

1

1− a

�
a2(tp − 1) +

�
1

4
− b

�
p− tp + a(tp − 1)

tp

�
≥ a2

1− a
(tp − 1) ≥ P (p).
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Thus, combining the above equations, we get the desired inequality. �

Then, we can finally prove the main theorem.

Theorem 5.1 (ii). It is clear from Lemma 5.5 and Q1(k) = O(k2) as k → ∞. �

Remark 5.2
Lemma 5.5 also implies the following other claims than Theorem 5.1 (ii):

• O(1/k2) convergence rate of
���xk+1 − xk

��2
2

�
when a > 0;

• the absolute convergence of
�
k
��xk+1 − xk

��2
2

�
when a > 0;

Note that the second one generalizes [24, Corollary 3.2] for single-objective problems.

5.4 Convergence of the iterates
While the last section shows that Algorithm 5.1 has an O(1/k2) convergence rate,
this section proves the following theorem:
Theorem 5.2
Let

�
xk
�
be generated by Algorithm 5.1 with a > 0. Then, under Assumption 4.4,

the following two properties hold:

(i)
�
xk
�
is bounded, and it has an accumulation point;

(ii)
�
xk
�
converges to a weak Pareto optimum for (1.1).

The latter claim is also significant in applications. For example, finite-time man-
ifold (active set) identification, which detects the low-dimensional manifold where
the optimal solution belongs, essentially requires only the convergence of the gen-
erated sequence to a unique point rather than the strong convexity of the objective
functions [98].

Again, we will prove Theorem 5.2 after showing some lemmas. The following
lemma contributes strongly to the proof of the main theorem.
Lemma 5.6
Let {γq} be defined by line 9 in Algorithm 5.1. Then, we have

r�

p=s

p�

q=s

γq ≤ 2(s− 1) for all s, r ≥ 1.
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Proof. By using Lemma 5.1 (iv), we see that

p�

q=s

γq ≤
p�

q=s

q − 1

q + 1/2
.

Let Γ and B denote the gamma and beta functions defined by

Γ(α) :=

� ∞

0

τα−1 exp(−τ) dτ and B(α, β) :=

� 1

0

τα−1(1− τ)β−1 dτ, (5.17)

respectively. Applying the well-known properties:

Γ(α) = (α− 1)!, Γ(α + 1) = αΓ(α), and B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
. (5.18)

we get
p�

q=s

γq ≤
Γ(p)/Γ(s− 1)

Γ(p+ 3/2)/Γ(s+ 1/2)
=

B(p, 3/2)

B(s− 1, 3/2)
.

This implies
r�

p=s

p�

q=s

γq ≤
r�

p=1

B(p, 3/2)/B(s− 1, 3/2).

Then, it follows from the definition (5.17) of B that

r�

p=s

p�

q=s

γq ≤
r�

p=s

� 1

0

τ p−1(1− τ)1/2 dτ/B(s− 1, 3/2)

=

� 1

0

r�

p=s

τ p−1(1− τ)1/2 dτ/B(s− 1, 3/2)

=

� 1

0

τ s−1 − τ r

1− τ
(1− τ)1/2 dτ/B(s− 1, 3/2)

=
B(s, 1/2)− B(r + 1, 1/2)

B(s− 1, 3/2)
≤ B(s, 1/2)

B(s− 1, 3/2)
.

Using again (5.18), we conclude that

r�

p=s

p�

q=s

γq ≤
Γ(s)Γ(1/2)/Γ(s+ 1/2)

Γ(s− 1)Γ(3/2)/Γ(s+ 1/2)
= 2(s− 1).

�
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Now, we introduce two functions ωk : R
n → R and νk : R

n → R for any k ≥ 1,
which will help our analysis, by

ωk(z) := max
�
0,
��xk − z

��2
2
−
��xk−1 − z

��2
2

�
, (5.19)

νk(z) :=
��xk − z

��2
2
−

k�

s=1

ωs(z). (5.20)

The lemma below describes the properties of ωk and νk.
Lemma 5.7
Let

�
xk
�
be generated by Algorithm 5.1 and recall that levF ,ωk, and νk are defined

by (2.5), (5.19) and (5.20), respectively. Moreover, suppose that Assumption 4.4
holds with Ω ⊆ Rn and that σk(z) ≥ 0 for some k ≥ 1 and z ∈ Ω. Then, it follows
for all r = 1, . . . , k that

(i)
r�

s=1

ωs(z) ≤
r�

s=1

(6s− 5)
��xs − xs−1

��2
2
;

(ii) νr+1(z) ≤ νr(z).

Proof. Claim (i): Let k ≥ p ≥ 1. From the definition of yp+1 given in line 10 of
Algorithm 5.1, we have

��xp+1 − z
��2
2
− �xp − z�22

= −
��xp+1 − xp

��2
2
+ 2

�
xp+1 − yp+1, xp+1 − z

�
+ 2γp

�
xp − xp−1, xp+1 − z

�

= −
��xp+1 − xp

��2
2
+ 2

�
xp+1 − yp+1, yp+1 − z

�
+ 2

��xp+1 − yp+1
��2
2

+ 2γp
�
xp − xp−1, xp+1 − z

�
.

On the other hand, Lemma 5.2 (i) gives

2
�
xp+1 − yp+1, yp+1 − z

�
≤ −2ασp+1(z)−

��xp+1 − yp+1
��2
2
.

Moreover, Lemma 5.3 with (k1, k2) = (p+ 1, k + 1) implies

− 2ασp+1(z)

≤ −2

�
σk+1(z)−

��xk+1 − xk
��2
2
+
��xp+1 − xp

��2
2
−

k�

r=p+1

1

tr

��xr − xr−1
��2
2

≤
��xp+1 − xp

��2
2
,
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where the second inequality comes from the assumption on z ∈ Ω. Combining the
above three inequalities, we get

��xp+1 − z
��2
2
− �xp − z�22 ≤

��xp+1 − yp+1
��2
2
+ 2γp

�
xp − xp−1, xp+1 − z

�

=
��xp+1 − yp+1

��2
2
+ γp

�
�xp − z�22 −

��xp−1 − z
��2
2
+
��xp − xp−1

��2
2

+ 2
�
xp − xp−1, xp+1 − xp

��
.

Using the relation �xp+1 − yp+1�22 + 2γp�xp − xp−1, xp+1 − xp� = �xp+1 − xp�22 +

γ2
p�xp − xp−1�22, which holds from the definition of yk, we have

��xp+1 − z
��2
2
− �xp − z�22 ≤

��xp+1 − xp
��2
2

+ γp

�
�xp − z�22 −

��xp−1 − z
��2
2

�
+ (γp + γ2

p)
��xp − xp−1

��2
2
.

Since 0 ≤ γp ≤ 1 from Lemma 5.1 (iv), we obtain

��xp+1 − z
��2
2
− �xp − z�22

≤ γp

�
�xp − z�22 −

��xp−1 − z
��2
2
+ 2

��xp − xp−1
��2
2

�
+
��xp+1 − xp

��2
2

≤ γp

�
ωp(z) + 2

��xp − xp−1
��2
2

�
+
��xp+1 − xp

��2
2
,

where the second inequality follows from the definition (5.19) of ωp. Since the right-
hand side is non-negative, (5.19) again gives

ωp+1(z) ≤ γp

�
ωp(z) + 2

��xp − xp−1
��2
2

�
+
��xp+1 − xp

��2
2
.

Let s ≤ k. Applying the above inequality recursively and using γ1 = 0, we get

ωs(z) ≤ 3
s�

p=2

s�

q=p

γq
��xp − xp−1

��2
2
+ 2

s�

q=1

γq
��x1 − x0

��2
2
+
��xs − xs−1

��2
2

≤ 3
s�

p=2

s�

q=p

γq
��xp − xp−1

��2
2
+
��xs − xs−1

��2
2
.
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Adding up the above inequality from s = 1 to s = r ≤ k, we have

r�

s=1

ωs(z) ≤ 3
r�

s=1

s�

p=1

s�

q=p

γq
��xp − xp−1

��2
2
+

r�

s=1

��xs − xs−1
��2
2

= 3
r�

p=1

r�

s=p

s�

q=p

γq
��xp − xp−1

��2
2
+

r�

s=1

��xs − xs−1
��2
2

=
r�

s=1

�
3

r�

p=s

p�

q=s

γq + 1

�
��xs − xs−1

��2
2
,

where the first equality follows from (2.4). Thus, Lemma 5.6 implies

r�

s=1

ωs(z) ≤
r�

s=1

(6s− 5)
��xs − xs−1

��2
2
.

Claim (ii): (5.20) yields

νr+1(z) =
��xr+1 − z

��2
2
− ωr+1(z)−

r�

s=1

ωs(z)

=
��xr+1 − z

��2
2
−max

�
0,
��xr+1 − z

��2
2
− �xr − z�22

�
−

r�

s=1

ωs(z)

≤
��xr+1 − z

��2
2
−
���xr+1 − z

��2
2
− �xr − z�22

�
−

r�

s=1

ωs(z)

= �xr − z�22 −
r�

s=1

ωs(z) = νr(z),

where the second and third equalities come from the definitions (5.19) and (5.20)
of ωr+1 and νr, respectively. �

Let us now prove the first part of the main theorem.

Proof of Theorem 5.2 (i). Let k ≥ 1 and suppose that z ∈ Ω satisfies σk(z) ≥ 0.
Then, Lemma 5.7 (ii) gives

νk(z) ≤ ν1(z) =
��x1 − z

��2
2
− ω1(z)

=
��x1 − z

��2
2
−max

�
0,
��x1 − z

��2
2
−
��x0 − z

��2
2

�

≤
��x1 − z

��2
2
−
���x1 − z

��2
2
−
��x0 − z

��2
2

�
=
��x0 − z

��2
2
,
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where the second equality follows from the definition (5.19) of ω1. Considering the
definition (5.20) of νk, we obtain

��xk − z
��2
2
≤
��x0 − z

��2
2
+

k�

s=1

ωs(z).

Taking the square root of both sides and using (5.19), we get

��xk − z
�� ≤

�����x0 − z�22 +
k�

s=1

(6s− 5)�xs − xs−1�22.

Applying the reverse triangle inequality
��xk − x0

��
2
− �x0 − z�2 ≤

��xk − z
��
2
to the

left-hand side leads to

��xk − x0
�� ≤

��x0 − z
��
2
+

�����x0 − z�22 +
k�

s=1

(6s− 5)�xs − xs−1�22.

Since z belongs to a bounded set Ω and a > 0, the right-hand side is bounded from
above according to Lemma 5.5. This implies that

�
xk
�

is bounded, and so it has
accumulation points. �

Before proving Theorem 5.2 (ii), we show the following lemma.

Lemma 5.8
Let

�
xk
�
be generated by Algorithm 5.1 with a > 0 and suppose that Assumption 4.4

holds. Then, if x̄ is an accumulation point of
�
xk
�
, then

���xk − x̄
��
2

�
is convergent.

Proof. Assume that
�
xkj
�
⊆
�
xk
�

converges to x̄. Then, we have σkj(x̄) → 0 by
the definition (5.11) of σkj . Therefore, Lemma 5.7 with z = x̄ and k = ∞ means
that {νk(x̄)} is non-increasing and bounded, i.e., convergent. Hence

���xk − x̄
��
2

�
is

convergent. �

Finally, we finish the proof of the main theorem.

Proof of Theorem 5.2 (ii). Suppose that
�
xk1j

�
and

�
xk2j

�
converges to x̄1 and x̄2,

respectively. From Lemma 5.8, we see that

lim
j→∞

����xk2j − x̄1
���
2

2
−
���xk2j − x̄2

2

���
2

2

�
= lim

j→∞

����xk1j − x̄1
���
2

2
−
���xk1j − x̄2

2

���
2

2

�
.
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This yields that �x̄1 − x̄2�22 = −�x̄1 − x̄2�22, and so �x̄1 − x̄2�22 = 0, i.e.,
�
xk
�

is
convergent. Let xk → x∗. Since

��xk+1 − xk
��2
2
→ 0,

�
yk
�

is also convergent to x∗.
Therefore, Proposition 5.1 shows that x∗ is weakly Pareto optimal for (1.1). �

5.5 Numerical experiments

This section compares the performance of Algorithms 4.1 and 5.1 with various a

and b through numerical experiments. We run all experiments in Python 3.9.9 on a
machine with 2.3 GHz Intel Core i7 CPU and 32 GB memory. For Algorithm 5.1,
we test 15 different hyperparameters combining a = 0, 1/6, 1/4, 1/2, 3/4 and b =

a2/4, (a2 + 1)/8, 1/4, i.e.,

(a, b) =





(0, 0), (0, 1/8), (0, 1/4),

(1/6, 1/144), (1/6, 37/288), (1/6, 1/4),

(1/4, 1/64), (1/4, 17/128), (1/4, 1/4),

(1/2, 1/16), (1/2, 5/32), (1/2, 1/4),

(3/4, 9/64), (3/4, 25/128), (3/4, 1/4)





,

and we set ε = 10−5 for the stopping criteria.
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5.5.1 Artificial test problems (bi-objective and tri-objective)

First, we solve the multi-objective test problems in the form (1.1), modifications
from [63, 39], whose objective functions are defined by

f1(x) =
1

n
�x�22, f2(x) =

1

n
�x− 2�22, g1(x) = g2(x) = 0, (JOS1)





f1(x) =
1

n
�x�22, f2(x) =

1

n
�x− 2�22,

g1(x) =
1

n
�x�1, g2(x) =

1

2n
�x− 1�1,

(JOS1-L1)





f1(x) =
1

n2

n�

i=1

i(xi − i)4, f2(x) = exp

�
n�

i=1

xi

n

�
+ �x�22,

f3(x) =
1

n(n+ 1)

n�

i=1

i(n− i+ 1) exp(−xi), g1(x) = g2(x) = g3(x) = 0,

(FDS)





f1(x) =
1

n2

n�

i=1

i(xi − i)4, f2(x) = exp

�
n�

i=1

xi

n

�
+ �x�22,

f3(x) =
1

n(n+ 1)

n�

i=1

i(n− i+ 1) exp(−xi), g1(x) = g2(x) = g3(x) = δRn
+
(x),

(FDS-CON)

where x ∈ Rn, n = 50 and δRn
+

is an indicator function (1.7) of the nonnega-
tive orthant. We choose 1000 initial points, commonly for all algorithms, and
randomly with a uniform distribution between c and c, where c = (−2, . . . ,−2)�

and c = (4, . . . , 4)� for (JOS1) and (JOS1-L1), c = (−2, . . . ,−2)� and c = (2, . . . , 2)�

for (FDS), and c = (0, . . . , 0)� and c = (2, . . . , 2)� for (FDS-CON). Moreover, we use
backtracking for updating α to satisfy (5.10), with 1 as the initial value of α and 0.5

as the constant multiplied into α at each iteration. Furthermore, at each iteration,
we transform the subproblem (5.1) into their dual like (3.16) and solve them with
the trust-region interior point method [19] using the scientific library SciPy.

Figures 5.1 and 5.2 and Tables 5.1 and 5.2 present the experimental results.
Figure 5.1 and Table 5.1 implies that Algorithm 5.1 generates a wide range of Pareto
solutions faster than Algorithm 4.1. Figure 5.2 plots the solutions only for the
cases (a, b) = (0, 1/4), (3/4, 1/4), but other combinations also yield similar plots,
including a wide range of Pareto solutions. Table 5.2 shows that the new momentum
factors are fast enough to compete with the existing ones ((a, b) = (0, 1/4) or b =

a2/4) and better than them in some cases.
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Figure 5.1: Objective function values obtained by Algorithms 4.1 and 5.1
with (a, b) = (0, 1/4)
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Table 5.1: Average computational costs with Algorithms 4.1 and 5.1 with (a, b) =
(0, 1/4)

(a) (JOS1)

Algorithm 4.1 Algorithm 5.1
Time [s] 15.5 3.55
Iters. 231.7 65.0

(b) (JOS1-L1)

Algorithm 4.1 Algorithm 5.1
Time [s] 13.2 8.53
Iters. 219.6 161.2

(c) (FDS)

Algorithm 4.1 Algorithm 5.1
Time [s] 99.10 34.16
Iters. 636.1 216.1

(d) (FDS-CON)

Algorithm 4.1 Algorithm 5.1
Time [s] 134.64 40.03
Iterations 873.6 260.8
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Figure 5.2: Pareto solutions obtained with some (a, b)
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Table 5.2: Average computational costs of Algorithm 5.1 with various (a, b)

(a) (JOS1)

a b Time [s] Iterations
0 0 6.442 97.0
0 1/8 5.158 81.217
0 1/4 4.207 65.0
1/6 1/144 4.244 67.0
1/6 37/288 5.182 82.0
1/6 1/4 4.268 66.0
1/4 1/64 6.224 99.0
1/4 17/128 7.239 113.566
1/4 1/4 3.205 51.0
1/2 1/16 4.51 72.0
1/2 5/32 4.562 71.0
1/2 1/4 4.466 70.0
3/4 9/64 4.323 67.998
3/4 25/128 3.104 49.0
3/4 1/4 3.741 47.0

(b) (JOS1-L1)

a b Time [s] Iterations
0 0 10.733 157.512
0 1/8 11.054 161.065
0 1/4 11.122 161.734
1/6 1/144 9.85 141.731
1/6 37/288 9.994 144.863
1/6 1/4 10.399 150.592
1/4 1/64 9.271 135.804
1/4 17/128 9.463 137.108
1/4 1/4 9.662 139.848
1/2 1/16 7.439 109.082
1/2 5/32 7.642 110.204
1/2 1/4 7.723 111.599
3/4 9/64 5.253 77.366
3/4 25/128 5.39 79.425
3/4 1/4 5.678 82.37

(c) (FDS)

a b Time [s] Iterations
0 0 29.24 204.438
0 1/8 29.797 210.595
0 1/4 30.565 214.934
1/6 1/144 24.964 174.393
1/6 37/288 25.375 177.944
1/6 1/4 26.065 182.398
1/4 1/64 22.94 159.737
1/4 17/128 23.311 162.629
1/4 1/4 23.976 166.918
1/2 1/16 17.909 122.653
1/2 5/32 18.14 123.96
1/2 1/4 18.221 125.697
3/4 9/64 13.584 94.176
3/4 25/128 13.674 94.705
3/4 1/4 13.795 94.868

(d) (FDS-CON)

a b Time [s] Iterations
0 0 37.345 259.508
0 1/8 37.439 261.522
0 1/4 37.94 263.911
1/6 1/144 32.463 227.063
1/6 37/288 38.265 229.736
1/6 1/4 45.661 231.958
1/4 1/64 41.434 209.35
1/4 17/128 33.664 211.69
1/4 1/4 30.772 213.811
1/2 1/16 22.92 158.448
1/2 5/32 23.1 159.685
1/2 1/4 23.539 162.226
3/4 9/64 17.092 118.616
3/4 25/128 17.123 118.063
3/4 1/4 17.115 118.844
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5.5.2 Image deblurring (single-objective)
Since our proposed momentum factor is also new in the single-objective context,
we also tackle deblurring the cameraman test image via a single-objective �2-�1
minimization with Algorithm 5.1, inspired by [11]. In detail, as shown in Figure 5.3,
to a 256 × 256 cameraman test image with each pixel scaled to [0, 1], we generate
an observed image by applying a Gaussian blur of size 9× 9 and standard deviation
4 and adding a zero-mean white Gaussian noise with standard deviation 10−3.

(a) Original (b) Blurred and noisy

Figure 5.3: Deblurring of the cameraman

Letting θ, B, and W be the observed image, the blur matrix, and the inverse of
the Haar wavelet transform, respectively, consider the single-objective problem (1.1)
with m = 1 and

f1(x) := �BWx− θ�22 and g1(x) = λ�x�1,

where λ := 2×10−5 is a regularization parameter. Unlike in the previous subsection,
we can compute ∇f ’s Lipschitz constant by calculating (BW )�(BW )’s eigenvalues
using the two-dimensional cosine transform [59], so we use it constantly as α−1.
Moreover, we use the observed image’s Wavelet transform as the initial point.

Figure 5.4 shows the reconstructed image from the obtained solution. Images
produced by all hyperparameters are similar, so we present only (a, b) = (0, 1/4)

and (1/2, 1/4). Moreover, we summarize the numerical performance in Table 5.3
and Figure 5.5. Like the last subsection, this example suggests that our new mo-
mentum factors may occasionally improve the algorithm’s performance even for
single-objective problems.
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(a) (a, b) = (0, 1/4) (b) (a, b) = (1/2, 1/4)

Figure 5.4: Deblurred image

Table 5.3: Computational costs for the image deblurring

a b Total time [s] Iteration counts
0 0 75.227 558
0 1/8 75.176 558
0 1/4 75.388 558
1/6 1/144 66.499 460
1/6 37/288 66.866 462
1/6 1/4 66.685 462
1/4 1/64 61.791 421
1/4 17/128 61.622 421
1/4 1/4 35.69 421
1/2 1/16 26.828 306
1/2 5/32 26.274 304
1/2 1/4 25.535 303
3/4 9/64 32.54 369
3/4 25/128 30.473 364
3/4 1/4 27.713 360
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Figure 5.5: Values of u∞
�
xk
�
= F1(x) − F1(x

∗), where x∗ is the optimal solution
estimated from the original image

5.6 Conclusions
We have successfully accelerated the proximal gradient method for multi-objective
optimization by putting information on the previous points into the subproblem.
Moreover, we have generalized the momentum factor in a form that is even new in
the single-objective context and includes the known FISTA momentum factors [11,
24]. Furthermore, with the proposed momentum factor, we proved under reasonable
assumptions that the algorithm has an O(1/k2) convergence rate and that the iter-
ates converge to Pareto solutions. Moreover, the numerical results reinforced these
theoretical properties and suggested the potential for our new momentum factor to
improve the performance.



120
CHAPTER 5. AN ACCELERATED PROXIMAL GRADIENT METHOD FOR

MULTI-OBJECTIVE OPTIMIZATION



121

Chapter 6

Conclusions

This thesis has proposed new merit functions, the proximal gradient method, and the
accelerated proximal gradient method for non-smooth multi-objective optimization
problems. We summarize the results obtained here as follows:

(i) In Chapter 3, we have proposed three merit functions for non-smooth multi-
objective optimization: (a) the gap function for lower semi-continuous multi-
objective optimization; (b) the regularized gap function for convex multi-
objective optimization; (c) the regularized and partially linearized gap func-
tion for composite multi-objective optimization. First, we have shown that
they satisfy the properties of merit functions and proved the lower semi-
continuity of the item (a) and the locally Lipschitz continuity of the items (b)
and (c). We have also confirmed the differentiability of the items (b) and (c)
under reasonable assumptions and that the stationary points of the items (b)
and (c) solve the original multi-objective problem under strict convexity. Sec-
ondly, we have derived inequalities among different merit functions under cer-
tain conditions. We thirdly have demonstrated that the level-boundedness of
the objective functions implies the level-boundedness of the associated merit
functions. Finally, we proposed the multi-objective proximal-PL condition,
weaker than the strong convexity, and proved that it provides the error-bound
property of the proposed merit functions.

(ii) In Chapter 4, we have developed the proximal gradient method for composite
multi-objective optimization. We have shown that every accumulation point
of the generated sequence, if it exists, is Pareto stationary. Moreover, we
presented global convergence rates for the proposed algorithm, matching what
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we know in scalar optimization for non-convex O(
�
1/k) and convex O(1/k)

cases. We also have extended the so-called Polyak-Łojasieqicz (PL) inequality
for multi-objective optimization and established the linear convergence rate for
multi-objective problems that satisfy such inequalities. Furthermore, we have
converted the subproblems to well-known convex optimization problems for
the robust multi-objective problem. Finally, we have reported some numerical
results.

(iii) In Chapter 5, we have proposed the accelerated proximal gradient method for
convex composite multi-objective optimization. We have proved the proposed
methods’ O(1/k2) convergence rate and the global convergence property. This
method includes some hyperparameters, which is new even for single-objective
cases. We finally have reported some numerical results, showing that our
proposed method is faster than the method without acceleration and that some
choices of hyperparameters give better results than the classical algorithms.

We believe that these contributions have had some impact on non-smooth and
composite multi-objective optimization. However, there are still many open prob-
lems. We conclude this thesis by describing future works related to our results.

(i) We can consider our proposed merit function’s natural extension to infinite-
dimensional vector optimization. We can also regard other famous merit func-
tions’ generalization to multi-objective or vector problems, such as the implicit
Lagrangian [76] and the squared Fischer-Burmeister function [64]. Moreover,
developing a new multi-objective algorithm using such merit functions would
be interesting.

(ii) Extending the many variants of the proximal gradient method in single-
objective optimization to multi-objective optimization problems is a challenge
that needs addressing. Obtaining a theoretically sound extension will not be
straightforward for any method. However, we believe that finding practical
applications of composite multi-objective optimization, such as machine learn-
ing, will significantly impact this field.

(iii) Our proposed method has the potential to achieve finite-time manifold (active
set) identification [98] without the assumption of the strong convexity (or
its generalizations such as PL conditions or error bounds [65]). Moreover,
we took a single update rule of tk for all iterations in this work, but the
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adaptive change of the strategy in each iteration is conceivable, which has the
potential to guarantee linear convergence under PL conditions, as in [7]. It
might also be interesting to estimate the Lipschitz constant simultaneously
with that change, like in [92]. In addition, an extension to the inexact scheme
like [105] would be significant. Furthermore, it is crucial to extend the variants
of the accelerated proximal gradient method to multi-objective optimization,
as in [83, 28]. Moreover, applying our acceleration techniques to large-scale
problems like stochastic accelerated gradient descent would be interesting.
Developing internal techniques, such as a warm start for subproblems and
inexact methods, would also be necessary for applications.
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