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Preface

Game theory has been employed across various domains of the economic discipline and has
emerged as a fundamental methodology in the field. Furthermore, the game-theoretic con-
structs have been expanded to encompass diverse domains beyond economics, including com-
puter science, political science, and psychology, up until the present time.

The game theory originated from the “Theory of Games and Economic Behavior” by J.
von Neumann and O. Morgenstern in 1944, which aims to elucidate the behavior of economic
agents using a rigorous mathematical methodology. The book mainly covers the theory of
a cooperative game in which players can choose strategies based on agreements with other
players. Meanwhile, in the 1950s J.F. Nash considered a noncooperative game in which all
players simultaneously and independently try to maximize their profits without cooperation.
An equilibrium point of the noncooperative game, referred to as Nash equilibrium, is a tuple
of all players’ strategies where no one can improve the profit by changing their strategy
unilaterally (other players keep their current strategies); we refer to the noncooperative game
to find Nash equilibrium as Nash game.

Nash equilibrium has played a central role in describing player optimality in noncoopera-
tive game theory to date, and the equilibrium concept unifies other equilibrium concepts that
appear in economics, such as Cournot competition, Stackelberg competition, and Bertrand
competition. Besides, the condition for the Nash equilibrium technically coincides with the
first-order optimality condition, such as a variational inequality, for each player’s payoff max-
imization problem. Against this background, Nash games have also been extensively studied
in terms of continuous optimization theory.

Nevertheless, there is room for research on more complex decision-making situations in
which each player makes a strategy under uncertainty, which is one of the motivations of
this thesis to establish mathematical methodologies to find a ‘better’ strategy for each player
under information uncertainty. In addition, we address Nash games with a bilevel structure
referred to as a multi-leader–follower game, in which two or more of the players, called leaders,
take actions first, and the rest of the players, called followers, take actions after observing
the leaders’ decisions. This game has been much attention in recent years.

Variational inequality, another interest of this thesis, was first systematically studied in
the 1960s by G. Stampacchia and his collaborators, who used the model to analyze a free
boundary problem. The class of problem has also been extensively studied over the years and
has many applications, such as game theory, engineering, traffic, physics, and so on. Although
there is also a long history of research on variational inequalities, few studies have considered
a variational inequality involving random vectors with an uncertain probability distribution.
This thesis addresses this issue through an approach called expected residual minimization.

This thesis provides models, algorithms, and distributional robustness in Nash games and
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variational inequalities, and the contributions of this thesis are summarized as follows:

1. We propose an algorithm for finding a (stationary) equilibrium for the multi-leader–
follower game and discuss the convergence of the algorithm. Then we report some
numerical results to illustrate the behavior of the algorithm;

2. We consider a Nash game involving random vectors with uncertain probability dis-
tributions, in which each player makes two-stage decisions in response to changes in
the conditions. We analyze this game from the perspective of distributionally robust
optimization and demonstrate the existence of a Nash equilibrium under certain as-
sumptions;

3. We address a variational inequality involving random vectors with an uncertain proba-
bility distribution and propose a distributionally robust expected residual minimization
to find an approximate solution for the model. We also provide a numerically tractable
reformulation for the minimization model to avoid numerical integration to evaluate the
expected residual functions.

Atsushi Hori
February 2023, Kyoto, Japan
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Chapter 1

Introduction

In this introductory chapter, we present the scope, motivations, and contributions of the
thesis. To this end, we begin by providing a broad perspective on the key concepts and
context, as well as a brief explanation of the problems being studied, to understand which
areas this thesis is closely related. The key technical concepts behind the thesis are Nash
games, variational inequalities, and distributionally robust optimization. We first describe a
brief summary of each concept and its relations.

Nash game Nash game is a subset of noncooperative game theory and originated from J.F.
Nash in the 1950s. Noncooperative game theory is vast in scope, and a variety of games have
been devised. Our highest interest in this thesis is a strategic form game: Defined players, each
player’s strategy set, and payoff, all players competitively maximize their profits. The Nash
game is a mathematical model to find an equilibrium point, referred to as Nash equilibrium,
at which no player has an incentive to gain more payoff. Unless otherwise specified, the
noncooperative game is often used as a synonym instead of the Nash game throughout this
thesis.

Variational inequality Variational inequality (VI) is a mathematical model, its rigorous
definition will be given later, and is regarded as a general class of continuous optimization in
a certain sense. VI appears in many real-world applications such as physics, chemistry, engi-
neering, traffic design, finance, game theory (our highest interests), and others. The relation
with Nash games is that the condition of Nash equilibrium is equivalently reformulated as VI
under suitable assumptions. Although we mainly deal with this class of problem involving
random variables in Chapter 5, the concept of VI plays an important role in analyzing and
establishing a numerical method for finding the equilibrium of Nash games; several variants
of VI will appear as well in Chapters 3 and 4.

Distributionally robust optimization Distributionally robust optimization (DRO) is
one of the modelling frameworks in optimization under uncertainty. The concept is “maximize
(minimize) the worst expected value of payoff (disutility) from a set of probability measures,”
under which the exact distribution of random variables which appears in a stochastic opti-
mization problem cannot exactly be estimated; for example, due to the lack of observation
data. A subclass of DRO is stochastic optimization and (scenario-based) robust optimization.
The former is the case in which the distribution of random variables is exactly known; that

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Structure of this thesis: This figure is a sketch to give a rough idea of the structure of this
thesis. In the context of this thesis, Nash games can be analyzed in terms of variational
inequalities, and hence the diagram is drawn so that the class of variational inequalities
includes Nash games.

is, the set of probability measures is a singleton. The latter is ‘distribution-free’ optimization
that “maximizes the worst-case payoff,” and this corresponds to the case when the set of
probability measures consists of all the measures satisfying the probability axioms1. Hence,
the distributionally robust optimization allows us to consider more advanced uncertainty for
each player’s decision-making in Nash games.

Figure 1.1 depicts the relationship among the above technical concepts. Particularly, in
Chapter 3 we focus on a bilevel-structured Nash game (see Figure 1.3), and in Chapter 4
we delve into the intersection of Nash games and distributionally robust optimization. In
Chapter 5, we explore the intersection of distributionally robust optimization and variational
inequalities. As we can see from the figure, the concept of Nash games and variational
inequalities appears in Chapters 3, 4, and 5 and constitutes the core of this thesis. Henceforth,
we introduce the overview of Nash games and variational inequalities in detail.

1.1 Overview of Nash games

Game theory is a branch of mathematics to analyze a strategic interaction among self-
interested decision makers, say players. It has been widely applied in various fields, including
economics, political science, psychology, computer science, and many others, along with social
changes. The powerful mathematical tool helps us analyze and understand social structures
that appear in our real lives; this is demonstrated by the history of game theory, which has
consistently been developing since its inception without decline.

The general theory of games was first introduced by J. von Neumann and O. Morgen-
stern in their seminal book Theory of Games and Economic Behavior [87], just before the
end of World War II. J.F. Nash [86] then considered an N -person noncooperative game of
mixed strategies and established the equilibrium of the game, called Nash equilibrium, using

1This explanation is not strictly correct. In fact, if the uncertainty set consists of an uncountable set, such
as an interval and ellipsoid, a continuous probability distribution of the ”random variable” may be defined.
However, the probability of taking only the worst-case scenario (a single point) is ”0” in terms of measure
theory. The explanation here is based on the case where probabilities are assigned to each scenario in an
uncertainty set composed of finitely many scenarios, and any one of the scenarios has probability ”1”.
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Kakutani’s fixed point theorem [65]. An ‘equilibrium’ in this context means that all players
have no incentive to change their strategies unilaterally to gain more profit. In other words,
Nash equilibrium simultaneously achieves the global optimality for each player’s optimization
problem parametrized by the rivals’ strategies. The solution concept derived from his work
has had a profound impact on various fields and is still used in fields such as microeconomics,
management science, and computer science [24,26,38,43,46,69,70,73].

Game theory not only helps us understand the interactions between humans and organi-
zations, but also leads to surprising discoveries through the modeling of strategic competition
between artificial decision makers since the recent growth of algorithmic game theory [108] in
computer science and machine learning. For example, adversarial models, which appear in
generative adversarial networks [39], adversarial training [22], and multi-agent reinforcement
learning [129], are some of the most successful implementations of game theory in recent years.
In summary, it has made significant contributions as a prescriptive mathematical modeling
paradigm and is expected to continue playing a role in analyzing more complex competitive
situations in numerous fields.

In this thesis, we focus on finding a Nash equilibrium of the noncooperative game; we call
such a game a Nash game. According to Li et al. [72], methods for finding an equilibrium
of the Nash game are divided into two approaches. The first method is identifying some
specific structures of the game, such as the supermodularity [121] or the property in which
the profit of each player is characterized by a potential function, called a potential game [84].
The second approach is reformulating the game as a variational inequality [30, 101], which
has been extensively studied and is efficient in finding the Nash equilibria of games with
continuous decision variables in a unified way; to name a few, see [44, 52, 64, 69, 88, 100, 114].
To our best knowledge, the variational inequality reformulation approach was first proposed
by Bensoussan [6].

Now we begin by introducing a mathematically fundamental model of the Nash game,
and then we introduce its generalization models that are related to our thesis. Throughout
the thesis, due to the consistency with the convention in optimization literature, we suppose
that the payoff is replaced by −1×payoff or a disutility, we refer to it as a cost function, and
each player tries to ‘minimize’ the cost function subject to a strategy set. Note that this does
not change the properties of the original model. Models of Nash games that we particularly
study in the thesis are marked with ∗ at the beginning of the paragraph.

Nash game Suppose that there are N players who compete for minimizing the cost function
θν : IR

n → IR subject to the strategy (constraint) setXν ⊂ IRnν , where ν ∈ {1, . . . , N} denotes
a label to distinguish the player, and n denotes the sum of all players’ dimensions for strategy
vectors, i.e., n := n1+· · ·+nN . Let xν ∈ Xν ⊂ IRnν be a strategy vector of player ν. Consider
that player ν solves the following optimization problem:

min
xν∈IRnν

θν(x
ν , x−ν) s.t. xν ∈ Xν , (1.1)

where x−ν := (x1, . . . , xν−1, xν+1, . . . , xN ) denotes all strategy vector except xν . Throughout
the thesis, we often write x := (x1, . . . , xN ) ∈ IRn as (xν , x−ν) to emphasize the strategy of
player ν. A Nash equilibrium is to find a tuple of strategies x∗ := (x∗,1, . . . , x∗,N ) such that
x∗,ν (globally) solves (1.1) for all ν ∈ {1, . . . , N}; that is,

x∗,ν ∈ arg min
xν∈Xν

θν(x
ν , x∗,−ν) ∀ν ∈ {1, . . . , N}.



4 CHAPTER 1. INTRODUCTION

The Nash game is a mathematical model to find the Nash equilibrium in the noncooperative
game.

Generalized Nash game While the classical formulation of the Nash game requires that
the strategy set of each player is unaffected by rival players, in many real-world applications
the strategy set of each player also depends on the other rival players’ strategies; that is, the
strategy set Xν is replaced by Xν(x−ν) in (1.1). For example, the players share some common
resources or limitations, such as an electrical transmission line or a common limit on the total
resources for production [55]. Such a Nash game is referred to as a generalized Nash game,
introduced by Arrow and Debreu [4], and has also been studied extensively, along with the
development of a quasi-variational inequality [28,42,92]. In general, this class is more difficult
to construct a numerical method to find the equilibrium. Hence, as we will see in Chapter
3, one of the techniques to overcome such difficulties is the reformulation of the generalized
Nash games into a Nash game by utilizing a penalization approach [36,48,66].

Stackelberg game A Stackelberg game [115] is a bilevel-structured Nash game in which
a player, referred to as a leader, takes action first, and then another player, referred to as
a follower, takes action after observing the leader’s action. Let θ : IRn+m → IR be a cost
function of the leader and γ : IRn+m → IR be that of the follower. The vectors x ∈ IRn and
y ∈ IRn denote the leader and follower’s strategies, respectively, and X ⊂ IRn and Y (x) ⊂ IRm

denote their strategy sets, respectively. Note that the follower’s strategy set Y (x) depends on
the leader’s strategy x in general. The Stackelberg game can be formulated as the following
bilevel optimization:

min
x∈X

θ(x, y)

s.t. y ∈ arg min
z∈Y (x)

γ(x, y).
(1.2)

We say that (x∗, y∗) ∈ X × Y (x∗) is a leader–follower equilibrium if it solves (1.2). This
model was originally proposed in microeconomics to analyze a market equilibrium between
a large enterprise (leader) and a small firm (follower). However, in recent years this model
has been much more active in machine learning, such as hyperparameter tuning and meta-
learning [32–34,51].

The game in which the number of followers is two or more is called a single-leader–multi-
follower game; see Figure 1.2. In the context of this thesis, the single-leader–follower game is
considered to be in the class of Stackelberg games in order to emphasize the difference from
a multi-leader-follower game, which will be discussed later.

In general, for a given leader’s strategy x ∈ X, the set of Nash equilibria for the lower-
level (followers’) game is not always a singleton. In such a case, the leader may estimate the
potential responses of the followers whether they will make a beneficial or disadvantageous
strategy to the leader: The former concept is called optimistic, and the latter is pessimistic.
The optimistic bilevel optimization is formulated as

min
x∈X

min
y∈S(x)

θ(x, y),

where S(x) is the set of Nash equilibria in the followers’ game, while the pessimistic bilevel
optimization is formulated as

min
x∈X

max
y∈S(x)

θ(x, y).
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(a) Stackelberg game (single-leader–single-follower) (b) Single-leader–multi-follower game

Figure 1.2: Structure of a Stackelberg game.

*Multi-leader–follower game (Chapter 3) A multi-leader-follower game is a general-
ization of the Stackelberg and single-leader–follower games, involving two or more leaders
and one or more followers. Consider a multi-leader–follower game consisting of N leaders
and M followers. The leaders are labeled ν ∈ {1, . . . , N}, and the followers are labeled
ω ∈ {1, . . . ,M}. Let xν ∈ IRnν , Xν ⊂ IRnν , and θν : IR

n+m → IR denote the strategy vector,
strategy set, and cost function of leader ν, respectively. Let yω ∈ IRmω , Y ω(x) ⊂ IRmω ,
and γω : IR

n+m → IR denote the strategy vector, strategy set, and cost function of fol-
lower ω, respectively. Here, n := n1 + · · · + nN and m := m1 + · · · + mM . For given
x−ν := (x1, . . . , xν−1, xν+1, . . . , xN ) ∈ IRn−nν and y := (y1, . . . , yM ) ∈ IRm, leader ν solves
the following optimization problem:

min
xν∈IRnν

θν(x
ν , x−ν , y) s.t. xν ∈ Xν . (1.3)

For a given tuple of leaders’ strategies x := (x1, . . . , xN ) ∈ X := X1×· · ·×XN ⊂ IRn and the
other followers’ strategies y−ω := (y1, . . . , yω−1, yω+1, . . . , yM ) ∈ IRm−mω , follower ω solves
the following optimization problem:

min
yω∈IRmω

γω(x, y
ω, y−ω) s.t. yω ∈ Y ω(x). (1.4)

Figure 1.3 shows an example of a multi-leader–follower game in which two large enterprises
(N = 2) act as leaders, and two small firms (M = 2) act as followers.

Figure 1.3: Structure of a multi-leader–follower game (two leaders and two followers).

Analogous to the discussion in the Stackelberg game, there may be non-unique solutions
in the followers’ Nash game. The optimistic and pessimistic formulation of the Stackelberg
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game can also be extended to the multi-leader–follower game; that is, each leader’s problem is
formulated as an optimistic or pessimistic bilevel optimization. In this thesis, we will focus on
the case where the followers’ response is unique, but potentially the model may be extended
to an optimistic case.

As a real-world application, the multi-leader–follower game has been used to investigate
the behaviors of producers (leaders) and regulators (followers) in the energy and telecommu-
nication markets [24,47,57,92]. In Chapter 3, we will examine a wholesale electricity market,
with energy companies serving as leaders and a market maker, known as an independent
system operator (ISO), acting as the follower to regulate the market.

Now we introduce Nash games under uncertainty.

Stochastic Nash game In this thesis, the definition of a stochastic Nash game is twofold:
an almost sure formulation and an expected value formulation. Let ξ : Ω → Ξ be a random
vector on the probability space (Ω,F , P )2. We say a stochastic Nash game in an almost sure
(a.s.) formulation is that player ν solves the following optimization problem:

min
xν∈IRnν

θν(x
ν , x−ν , ξ) s.t. xν ∈ Xν .

We consider this game in Chapter 5. A stochastic Nash game in an expected value (EV)
formulation is given by

min
xν∈IRnν

E[θν(xν , x−ν , ξ)] s.t. xν ∈ Xν , (1.5)

where E[f(ξ)] denotes an expected value of f(ξ) with respect to the random variable ξ.
Although we will not explicitly deal with the EV formulation, two-stage stochastic and dis-
tributionally robust Nash games, which will be considered in Chapter 4, are generalizations
of this game in a certain sense. See Lei and Shanbhag [69] for a survey of the stochastic
Nash game in the EV formulation. Note that we can further consider the case where Xν also
depends on ξ, but this is beyond the scope of this thesis.

The stochastic Nash game in the EV formulation imposes that each player should be
risk-neutral, but players could be risk-averse. The risk-averse stochastic Nash games can be
considered that the objective function of player ν is defined by a risk measure [78,93,98]; for
example, the conditional value at risk [100,104] (at level α):

CV@Rα[f(ξ)] := min
t∈IR

[
t+

1

1− α
E[[f(ξ)− t]+]

]
,

where [·]+ := max(·, 0). Player ν solves the following minimization of the conditional value at
risk of θν(x

ν , x−ν , ξ):

min
xν∈IRnν

CV@Rα[θν(x
ν , x−ν , ξ)].

Figure 1.4 indicates a graphical illustration of an expected value and conditional value at risk.

2Note that the random variable is independent of the decisions by players.
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Figure 1.4: Graphical illustrations of expectation (risk-neutral) and conditional value at risk (CVaR,
risk-averse).

Robust Nash game Aghassi and Bertsimas [2] have proposed a distribution-free model
of incomplete-information games, with/without private information, in which the players
use a robust optimization approach to contend with payoff uncertainty. In this model, a
cost function θν and/or a strategy set Xν depends on an uncertainty parameter, and the
distribution of the uncertainty parameter may be unknown. In a robust Nash game, player ν
solves the following robust optimization problem:

min
xν∈IRnν

max
ûν∈Ûν

θν(x
ν , x−ν , ûν) s.t. xν ∈ Xν(ũν) ∀ũν ∈ Ũν , (1.6)

where ûν and ũν are uncertainty parameters but the player knows that ûν and ũν respectively
belong to the sets Ûν and Ũν of uncertainty.

The advantage of this model is that players do not need to know the probability dis-
tribution of uncertainty parameters, and also (1.6) can be recast as a second-order cone
programming under suitable assumptions, which may allow us to reduce the computation
time to obtain the equilibrium of the game. As an independent work of [2], Hayashi et al. [44]
then considered the concept of robust Nash equilibria for bimatrix games to reformulate it to
a second-order cone complementarity problem. Although [2] considered the mixed strategy
games in which each player intrinsically solves a linear programming problem, Nishimura et
al. [88] systematically analyzed a nonlinear case and presented sufficient conditions for the
existence and uniqueness of equilibrium.

Distributionally robust stochastic Nash game Consider a stochastic Nash game in
both the almost sure and expected value formulations. When the probability distribution
of random vectors cannot exactly be identified due to the lack of sample data, and the
observation may contain noise, players may not be able to estimate the expected value of
the cost function in (1.5). In such a case, players may incur a significant loss when the
true probability is different from what the players estimate. Meanwhile, as is well known
in terms of robust optimization, an equilibrium obtained from robust Nash models may be
too conservative because each player acts with the utmost importance on the tragedies that
rarely occur probabilistically.
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In response to those issues and taking advantage of the methodology of distributionally
robust optimization, Sun and Xu [119], and Liu et al. [77] recently considered a Nash game
in which player ν solves the following distributionally robust optimization:

min
xν∈Xν

max
P∈Pν

EP [θν(x
ν , x−ν , ξ)],

where Pν denotes an ambiguity set ; that is, the set of probability distributions that may
be constructed from observation data. The game may be regarded as a generalization of
the stochastic and robust Nash games: When Pν is a singleton for all ν, this game corre-
sponds to the stochastic Nash game in the EV form. Meanwhile, when Ξ is compact, and
Pν is the set of all probability measures over the support Ξ, maxP∈Pν EP [θν(x

ν , x−ν , ξ)] =
maxξ∈Ξ θν(x

ν , x−ν , ξ), which corresponds to the formulation of robust Nash games. Liu
et al. [77] further considered a hierarchical capacity competition problem in supply chain
management as an application. This problem is characterized by a distributionally robust
Stackelberg game in which either a leader (large enterprise) or followers (suppliers) solves
distributionally robust optimization.

As is well known in the literature on distributionally robust optimization, the robust
counterpart (duality form of the inner maximization) of each player’s optimization problem
is numerically tractable under suitable Pν . For example, if Pν is constructed based on the
class of measures called ϕ-divergence, the robust counterpart is known to be a convex conic
optimization [97].

Two-stage stochastic Nash game In recent years, as two- and multistage stochastic
variational inequalities have been extensively studied [16,17,59–62,103,107,120], a two-stage
stochastic Nash game has also been studied [17, 61, 93, 132]. In this game, each player takes
actions in two stages: In the first stage, before a future event (scenario) occurs, each player
solves a stochastic optimization by evaluating the expected cost for the second stage. In the
second stage, after observing the realization, the player solves a ‘deterministic’ optimization
problem for each scenario. Figure 1.5 shows an example of the two-stage stochastic Nash game
in which two firms compete in the first (production) and second stages (supplying products).

Inherently, in the two-stage stochastic Nash game each player’s optimization problem is
given by a two-stage stochastic programming parameterized by other players’ strategies. For
a more detailed explanation of the formulation, see Section 4.2. Indeed, according to our
knowledge, Haurie et al. [43] have already considered a similar model in the 1990s to analyze
an oligopoly market. However, no systematical methodology has been conducted until recent
years.

In the second stage at a scenario ξ ∈ Ξ (Ξ is known in advance), player ν solves the
optimization problem for a given first-stage strategy x = (xν , x−ν):

Qν(x
ν , x−ν , ξ) := min

yν(ξ)∈Y ν(xν ,ξ)
γν(y

ν(ξ), y−ν(ξ), xν , x−ν , ξ), (1.7)

where yν(ξ), γν(·, ·, ·, ·, ξ), and Y ν(·, ξ) are the second-stage strategy vector, cost function, and
strategy set at the scenario ξ ∈ Ξ, respectively. Here, y−ν(ξ) := (y1(ξ), . . . , yν−1(ξ), yν+1(ξ),
. . . , yN (ξ)) denotes a tuple of the other rivals’ strategies in the second stage at the scenario
ξ ∈ Ξ. In the first stage, since all players do not know which scenario will realize in the
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Figure 1.5: Structure of a two-stage stochastic Nash game (duopoly market): In this game, the
random variable is a future demand, which is characterized by an inverse demand function
(price). There are two scenarios: ξH and ξL represent prices at high and low, with their
probabilities P (ξH) and P (ξL), respectively. In the first stage before a future demand is
observed, players try to minimize the sum of the first stage cost (θν(x

ν , x−ν)) and the
expected value of the second stage cost (E[Qν(x

ν , x−ν , ξ)]). Then after players observed
either one of two scenarios, two firms play a (classical) Nash game under the given
scenario (i.e., compute Qν(x

ν , x−ν , ξL) and Qν(x
ν , x−ν , ξH)).

future, they evaluate the expected value of Qν(x
ν , x−ν , ξ), and player ν solves the following

stochastic optimization problem:

min
xν∈Xν

{θν(xν , x−ν) + E[Qν(x
ν , x−ν , ξ)]},

where θν is a first-stage cost function.

*Two-stage distributionally robust stochastic Nash game (Chapter 4) In two-stage
stochastic Nash games, the probability distribution of the random variable in the second stage
is known in advance; that is, in Figure 1.5 all players know the probability distribution of the
future demand. Then all players can evaluate the future expected cost. However, as we have
mentioned in the (first-stage) distributionally robust stochastic Nash game, the probability
distribution of random variables is often unknown in real-world applications.

To tackle this issue, a two-stage distributionally robust Nash game has been considered by
Li et al. [72] more recently. Player ν solves the following distributionally robust optimization
in the first stage:

min
xν∈Xν

{θν(xν , x−ν) + max
P∈Pν

EP [Qν(x
ν , x−ν , ξ)]}.

Note that since all players have already observed a scenario in the second stage, the formula-
tion of the second-stage problem is the same as (1.7). When Pν is a singleton for all ν, the
game is reduced to the two-stage stochastic Nash game. Similar to Jiang et al. [61] in the case
of the two-stage stochastic Nash game, Chen et al. [17], and Hori and Yamashita [50] consid-
ered a distributionally robust Cournot–Nash competition as an application of the game. The
former analyzed the competition from the perspective of ex-post (distribution-free) equilib-
rium, which intrinsically corresponds to the concept proposed by Aghassi and Bertsimas [2],
and the latter first established a concept of an equilibrium explicitly in the sense of Nash
equilibrium.
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1.2 Overview of variational inequality

The subject of variational inequalities originates in the calculus of variations associated with
the minimization of infinite-dimensional functionals. The systematic study of variational
inequalities began in the early 1960s with the seminal work of the Italian mathematician G.
Stampacchia and his collaborators, who used the variational inequality as an analytic tool for
studying free boundary problems defined by nonlinear partial differential operators arising
from unilateral problems in elasticity and plasticity theory and in mechanics [30]. Since
variational inequalities have been studied so extensively over the years, it is difficult even
to summarize them here. The reader refers to a two-volume monograph by Facchinei and
Pang [30] for a detailed history of variational inequalities and research trends.

Given a certain convex set S and a vector-valued function F : IRn → IRn, a variational
inequality (VI) is to find x∗ ∈ S such that

⟨F (x∗), x− x∗⟩ ≥ 0 ∀x ∈ S. (1.8)

By introducing a normal cone of S at x ∈ S defined as

NS(x) := {z ∈ IRn | ⟨z, y − x⟩ ≤ 0 ∀y ∈ S} ,

VI (1.8) can also be denoted as the generalized equation:

0 ∈ F (x∗) +NS(x
∗).

When S = IRn
+ := {x ∈ IRn | xi ≥ 0, i = 1, . . . , n}, VI (1.8) is reduced to a complementarity

problem (CP): Find x∗ such that

0 ≤ x∗ ⊥ F (x∗) ≥ 0.

This class also plays an important role in optimization theory, engineering, traffic, and so
on. We will see the detailed mathematical properties of the VI and CP in Chapter 2. More
specifically, when S = IRn, VI (1.8) corresponds to a nonlinear equation F (x∗) = 0.

Hereafter, to identify the scope of this thesis, we begin by introducing the relationship
between VI and Nash games, and then we introduce some classes of stochastic variational
inequalities that appeared in Chapters 4 and 5.

Relation between VI and Nash games Consider the Nash game where each player
solves (1.1). When the strategy set Xν is closed convex, and the cost function θν(·, x−ν) is
convex for any fixed x−ν , x∗ = (x∗,1, . . . , x∗,N ) is the Nash equilibrium if and only if x∗ solves
variational inequality (1.8) by setting

F (x) =

 ∇x1θ1(x
1, x−1)
...

∇xN θN (xN , x−N )

 , S = X1 × · · · ×XN .

Because of such affinity between VI and Nash games in terms of formulation, the analysis of
Nash games is often attributed to VI [6, 64].
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Figure 1.6: Stochastic variational inequality in the almost sure formulation: A point x∗ satisfies the
inequality in (1.9) when ξ = ξ1, but not when ξ = ξ2.

Stochastic variational inequality For a random vector ξ, a stochastic variational in-
equality (SVI) in an almost sure (a.s.) formulation is defined by

⟨F (x∗, ξ), x− x∗⟩ ≥ 0 ∀x ∈ S, for ξ ∈ Ξ, almost surely. (1.9)

SVI in an expected value (EV) formulation is defined as

⟨E[F (x∗, ξ)], x− x∗⟩ ≥ 0 ∀x ∈ S. (1.10)

The stochastic Nash games in the almost sure and expected value formulations defined in
the previous section can also be recast as the SVI in each formulation, respectively, under a
certain assumption.

In general, (1.9) has no solution that satisfies the inequality for almost all ξ ∈ Ξ, as
depicted in Figure 1.6. Therefore, SVI in the almost sure formulation is often considered
as an expected residual minimization [14, 18, 19, 49, 80, 81]: Let f : S × Ξ → IR+ be a merit
function for the SVI, i.e., for a fixed ξ ∈ Ξ, f(x, ξ) = 0 if x satisfies the inequality in (1.9) and
f(x, ξ) > 0 if x does not satisfy the inequality. The expected residual minimization model is
to minimize the expected value of the merit function:

min
x∈IRn

E[f(x, ξ)] s.t. x ∈ S. (1.11)

Chen and Fukushima [14] compared the solutions to ERM (1.11) and EV (1.10) in the class
of stochastic linear complementarity problems, and then they found that if the variance of
the random variable ξ is not small, a solution to (1.10) may violate the complementarity
conditions more than a solution to (1.11) for many realizations of the random variables.
Then Chen et al. [19] quantitatively analyzed the robustness of the solutions to (1.11) and
(1.10) for monotone stochastic linear complementarity problems.

Two- and multistage stochastic variational inequality As an extension of ‘single-
stage’ SVI in the EV form (1.10), Rockafellar and Wets [107] first explicitly proposed a
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multistage SVI. In particular the formulation of a two-stage SVI is given as follows: Find
(x∗, y∗(·)) ∈ X × Y such that

0 ∈ E[F (x∗, y∗(ξ), ξ)] +NX(x∗),

0 ∈ G(x∗, y∗(ξ), ξ) +NY (ξ)(y
∗(ξ)), almost every ξ ∈ Ξ,

where F : IRn × IRm × Ξ → IRn, G : IRn × IRm × Ξ → IRm, X ⊂ IRn, Y : Ξ → IRm, and Y :=
{y(·) | y(·) ∈ Y (·)}. Then Rockafellar and Sun [103] proposed a progressive hedging algorithm
to solve the multistage SVI with discrete random variables. Particularly, the two-stage SVI has
been studied mainly to date. Chen et al. [15] proposed an expected residual minimization for
the two-stage SVI. Chen et al. [17] proposed a discrete approximation method for the two-stage
stochastic linear complementarity problem with continuously underlying random variables,
and Jiang et al. [62] considered its extension to the multistage SVI. Chen et al. [16] proposed
a sample average approximation method for a two-stage stochastic generalized equation. See
a survey on the two-stage SVI by Sun and Chen [120] for more detailed research trends.

Distributionally robust variational inequality As another extension of SVI in the
EV formulation (1.10), Sun et al. [118] recently proposed a distributionally robust VI: Find
(x∗, P ∗) ∈ S × P such that

⟨EP ∗ [F (x∗, ξ)], x− x∗⟩ ≥ 0 ∀x ∈ S,

P ∗ ∈ arg max
Q∈P

EQ[f(x
∗, ξ)], (1.12)

where f : S × Ξ → IR and P is an ambiguity set. One of the examples of the model is that
the optimality condition for a distributionally robust optimization

min
x∈S

max
P∈P

EP [f(x, ξ)],

is written as (1.12) by setting F := ∇xf(x, ξ) under certain assumptions. In [118], they
considered a case with continuously underlying random vectors in (1.12) and proposed a
discrete approximation method for a monotone distributionally robust VI. They showed that
if a discrete approximated problem of (1.12) can successfully be solved, the solution converges
to the solution to (1.12) as the number of samples increases. However, the convergence of the
numerical algorithm to solve the discretized distributionally robust VI is still open. Hori and
Yamashita [50] introduced a two-stage distributionally robust VI to reformulate the two-stage
distributionally robust Nash game with discrete random variables.

1.3 Research issues and contributions of the thesis

The fundamental goal of this thesis is to generalize the concepts of previous studies to more
advanced decision-making situations in deterministic/stochastic Nash games and variational
inequalities. Particularly, we address the following research issues:

(RI1) Algorithms for multi-leader–follower games with inequality constraints in followers’ op-
timization problems have not been established: When each follower’s optimization prob-
lem (1.4) contains inequality constraints, the multi-leader–follower game becomes much
more difficult because the complementarity condition appears. However, there are only
a handful of studies that systematically address this case in multi-leader–follower games,
and more concrete clarification is needed;
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(RI2) Few studies on stochastic Nash games and stochastic variational inequalities when
the probability distribution of random vectors is uncertain: Recent developments in
distributionally robust optimization have led to a move toward extensions to various
models. However, few studies have considered distributionally robust stochastic Nash
games [72,77] and variational inequalities [118].

In response to the above research issues, the contributions to the above research issues
are summarized as follows:

(C1) In Chapter 3, we address (RI1) in a nonlinear multi-leader–follower game. By the
well-known reformulation approach for the bilevel optimization, we first reformulate
the multi-leader–follower game to an equilibrium problem with equilibrium constraints.
Then we propose a Gauss–Seidel type algorithm with a penalization technique for solv-
ing the equilibrium problem with equilibrium constraints. Using this approach, the
resultant problem is a standard Nash game, and we can solve it with an off-the-shelf
nonlinear solver. We discuss the convergence of the algorithm and report some numer-
ical results to illustrate the behavior of the algorithm. We also suggest a refinement
procedure to obtain more accurate solutions. Finally, we consider an application of
the multi-leader–follower game, a wholesale electricity market. This game consists of
electricity firms (leaders) and a market maker (follower). The leaders determine how
much they sell electricity to each demand node (consumer), and the follower corrects
the balance of demand and supply of electricity by paying the bid costs.

(C2) In Chapter 4, to tackle (RI2) in stochastic Nash games, we consider the two-stage dis-
tributionally robust stochastic Nash game. Existing studies on this model have been
limited to strict assumptions, such as linear decision rules, and supposes that each
player solves a two-stage linear distributionally robust optimization with a specifically
structured ambiguity set. This motivated us to generalize and analyze the game in a
nonlinear case. The contributions of this study are (i) demonstrating the conditions
for the existence of two-stage Nash equilibria under convexity and compactness as-
sumptions, and (ii) consideration of a two-stage distributionally robust Cournot–Nash
competition as an application, as well as an investigation into the conditions for the
existence of market equilibria in an economic sense. We also report some results of
numerical experiments to illustrate how distributional robustness affects the decision of
each player in the Cournot–Nash competition.

(C3) In Chapter 5, we address (RI2) in stochastic variational inequalities in the almost sure
formulation (1.9) when the exact probability distribution of random variables ξ may
not be known. We propose a distributionally robust expected residual minimization for
the stochastic variational inequalities:

min
x∈IRn

max
P∈P

EP [f(x, ξ)] s.t. x ∈ S. (1.13)

This approach may be regarded as the extension of ERM method (1.11) [14,18,80,81].
In general, solving (1.13) is quite computationally expensive because it includes the
computation of the expected value (integration) and the maximization with respect to
the probability. However, under suitable assumptions we demonstrate that the distri-
butionally robust expected residual minimization can be reformulated as a determin-
istic nonlinear semidefinite programming problem to avoid numerical integration. We
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also show a sufficient condition that the deterministic optimization problem is convex.
Finally, we conduct some numerical experiments to verify the robustness against the
perturbation of probability distributions by comparing with the existing ERM method.



Chapter 2

Preliminaries

This chapter provides some basic mathematical concepts used throughout the thesis.

2.1 Mathematical terms and notations

Vectors Let IRn be the n-dimensional Euclidean space. A vector x ∈ IRn is denoted as

x :=

 x1
...
xn

 = (x1, . . . , xn)
⊤ = (xi)

n
i=1.

where the superscript ⊤ denotes the transpose operation. For simplicity, we often omit ⊤ to
represent column vectors. We use the following notations:

ei := (0, . . . , 0, 1, 0, . . . , 0) ∈ IRn,

1 := (1, 1, . . . , 1) ∈ IRn,

where ei ∈ IRn represents a unit vector along the xi-axis.

For any vectors x ∈ IRn and y ∈ IRn, the inner product ⟨x, y⟩ or x⊤y is defined by

⟨x, y⟩ = x⊤y := x1y1 + · · ·+ xnyn.

The norms ∥x∥1, ∥x∥2, and ∥x∥∞ of x ∈ IRn are defined as follows:

∥x∥1 := |x1|+ · · ·+ |xn|, ∥x∥2 :=
√

⟨x, x⟩, ∥x∥∞ := max
i=1,...,n

|xi|.

In particular, let ∥ · ∥ denote ∥ · ∥2 unless otherwise specified.

We say that a finite list of vectors x1, . . . , xk in a vector space V is linearly independent
if and only if for scalars α1, . . . , αk ∈ IR, the equation α1x

1 + · · · + αkx
k = 0 can only be

satisfied by αi = 0 for i = 1, . . . , k. A finite list of vectors x1, . . . , xk in a vector space V is
linearly dependent if and only if it is not linearly independent.

15
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Matrices Let IRm×n be the m × n-dimensional Euclidean space. A matrix A ∈ IRm×n is
denoted by

A :=


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 .
We say that the matrix A ∈ IRn×n is symmetric if and only if A⊤ = A, and the space of
n-dimensional symmetric matrices denotes Sn.

A symmetric matrix A ∈ Sn is positive semidefinite if and only if x⊤Ax ≥ 0 for all x ∈ IRn,
and the space of symmetric positive semidefinite matrices is denoted by Sn+. A symmetric
matrix A ∈ Sn is positive definite if and only if x⊤Ax > 0 for all x ∈ IRn \ {0}, and the space
of symmetric positive definite matrices is denoted by Sn++. For a matrix A ∈ Sn, A ∈ Sn+ and
A ∈ Sn++ are often denoted by A ⪰ O and A ≻ O, respectively. For two matrices A ∈ Sn and
B ∈ Sn, A ⪰ (≻)B means A − B ⪰ (≻)O. We say a symmetric matrix A ∈ Sn is negative
(semi)definite if and only if −A is positive (semi)definite, and we write A ⪯(≺)O to indicate
that A is negative (semi)definite.

For any matrices X ∈ Sm and Y ∈ Sm, the matrix inner product ⟨X,Y ⟩ is defined by

⟨X,Y ⟩ := tr(XY ) =
m∑

i,j=1

XijYij .

Differentiablility Let h : IRn → (−∞,+∞] be finite-valued in a certain neighborhood of
x ∈ IRn. If h has the partial derivative

∂h(x)

∂xi
:= lim

δ→0

h(x+ δei)− h(x)

δ
, i = 1, . . . , n,

and if
h(x+ ε) = h(x) + ⟨∇h(x), ε⟩+ o(∥ε∥) ∀ε ∈ IRn

with o : [0,+∞) → IR satisfying limδ→0 o(δ)/δ = 0 and

∇h(x) :=


∂h(x)
∂x1
...

∂h(x)
∂xn

 ,
then h is differentiable at x, where ∇h(x) ∈ IRn is called a gradient of h at x. If ∇h(x) is
continuous at x, we say that h is continuously differentiable at x. Likewise if h has second-
order derivatives and

h(x+ ε) = h(x) + ⟨∇h(x), ε⟩+ 1

2
⟨ε,∇2h(x)ε⟩+ o(∥ε∥2)

with

∇2h(x) :=


∂2h(x)
∂x1∂x1

. . . ∂2h(x)
∂x1∂xn

...
. . .

...
∂2h(x)
∂xn∂x1

. . . ∂2h(x)
∂xn∂xn

 ,
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then h is twice differentiable at x, and ∇2h(x) is referred to as the Hessian of h at x. When
∇2h(x) is continuous at x, we say h is twice continuously differentiable at x, and ∇2h(x)
is symmetric. For a vector-value function h : IRn → IRm with h := (h1, . . . , hm)⊤, J h(x)
denotes the Jacobian matrix of h at x; that is,

J h(x) :=


∂h1(x)
∂x1

. . . ∂h1(x)
∂xn

...
. . .

...
∂hm(x)
∂x1

. . . ∂hm(x)
∂xn

 = [∇h1(x), . . . ,∇hm(x)]⊤ ∈ IRm×n.

Henceforth, we denote J h(x)⊤, transposed Jacobian matrix, as ∇h(x) for convenience, and
we say it is the Jacobian matrix of h at x.

First- and second-order directional derivative Let f be any function from IRn to IR,
and let x be a point where f is finite. The first-order directional derivative of f at x in the
direction d is defined to be the limit

f ′(x; d) := lim
δ↓0

f(x+ δd)− f(x)

δ
,

if it exists. If f is continuously differentiable, f ′(x; d) = ⟨∇f(x), d⟩. Suppose that f ′(x; d)
exists. The second-order directional derivative of f at x in the directions d and v is defined
to be the limit

f ′′(x; d, v) := lim
δ↓0

f(x+ δd+ δ2v)− f(x)− δf ′(x; d)

δ2
,

whenever this limit exists [9]. If f is twice continuously differentiable, then

f ′′(x; d, v) = ⟨∇f(x), v⟩+ 1

2
⟨d,∇2f(x)d⟩.

For a function f : IRn → IR, an effective domain dom f of f is defined as

dom f := {x | f(x) < +∞}.

In this thesis, any functions are assumed to be proper unless otherwise specified; that is, for
a given function f : IRn → [−∞,+∞], f(x) > −∞ for all x, and dom f ̸= ∅. A graph gphΦ
of a set-valued function Φ: IRn ⇒ IRm is defined by

gphΦ := {(x, y) ∈ IRn × IRm | y ∈ Φ(x)}.

Definition 2.1.1 (convex set). A set S ⊂ IRn is said to be convex if and only if

(1− λ)x+ λy ∈ S ∀x, y ∈ S, λ ∈ (0, 1).

Definition 2.1.2 (cone). A set C ⊂ IRn is called a cone if

x ∈ C, α ∈ [0,∞) =⇒ αx ∈ C.

Definition 2.1.3 (polar cone). Given a nonempty set C ⊂ IRn, the polar cone C∗ of C is
given by

C∗ := {y ∈ IRn | ⟨y, x⟩ ≤ 0 ∀x ∈ C}.
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Definition 2.1.4 (tangent cone). Given a nonempty set S ⊂ IRn, a tangent cone of S at
x ∈ S is given by

TS(x) :=
{
y ∈ IRn

∣∣∣∣ y = lim
k→∞

αk(x
k − x), lim

k→∞
xk = x, xk ∈ S, αk ≥ 0, k = 1, 2, . . .

}
.

Definition 2.1.5 (normal cone). Given a nonempty set S ⊂ IRn, a normal cone of S at
x ∈ S is given by the polar cone of the tangent cone TS(x); that is,

NS(x) := T ∗
S (x) = {z ∈ IRn | ⟨z, y⟩ ≤ 0 ∀y ∈ TS(x)}.

Particularly, when S ⊂ IRn is convex, the normal cone NS is equivalent to

NS(x) = {z ∈ IRn | ⟨z, y − x⟩ ≤ 0 ∀y ∈ S}.

Definition 2.1.6 (convex function). Let C ⊂ dom f be a convex set. A function f : C →
(−∞,+∞] is said to be

(a) convex if and only if

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) ∀x, y ∈ C, λ ∈ (0, 1);

(b) strictly convex if and only if

f((1− λ)x+ λy) < (1− λ)f(x) + λf(y) ∀x, y ∈ C, λ ∈ (0, 1);

(c) strongly convex with modulus σ > 0 if and only if

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y)− σ

2
(1− λ)λ∥x− y∥2 ∀x, y ∈ C, λ ∈ (0, 1).

It is obvious that [strongly convex ⇒ strictly convex ⇒ convex]. In addition, we say that
a function f is concave if −f is convex. If a convex function is (twice) differentiable, we have
the following properties.

Theorem 2.1.7 (e.g., Boyd and Vandenberghe [13, Section 3.1]). Let C ⊂ dom f be an open
convex set. Suppose that f : C → IR is differentiable on C. Then a function f is convex on
C if and only if

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ ∀x, y ∈ C.

Moreover, the function f is strictly convex on C if and only if the above inequality is strict
whenever x ̸= y.

Theorem 2.1.8 (e.g., Boyd and Vandenberghe [13, Section 3.1]). Let C ⊂ dom f be an open
convex set. Suppose that f : C → IR is twice continuously differentiable on C. Then the
function f is convex if and only if

∇2f(x) ⪰ O ∀x ∈ C,

Moreover, if ∇2f(x) is positive definite for all x ∈ C, then f is strictly convex1.

1The converse is not true.
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The (orthogonal) projection operator projS [x] from x ∈ IRn onto a convex set S ⊂ IRn

is defined as follows:
projS [x] := argmin

z∈S
∥z − x∥,

which has the following properties.

Proposition 2.1.9 (e.g., Facchinei and Pang [30, Theorem 1.5.5]). For each x ∈ IRn, projS [·]
satisfies

⟨x− projS [x], y − projS [x]⟩ ≤ 0 ∀y ∈ S.

Proposition 2.1.10 (e.g., Facchinei and Pang [30, Theorem 1.5.5]). The projection operator
is nonexpansive; i.e.,

∥projS [x]− projS [y]∥ ≤ ∥x− y∥ ∀x, y ∈ IRn.

Next the monotonicity of a set-valued function is given as follows.

Definition 2.1.11 (monotone mapping). A set-valued function F : IRn ⇒ IRn is said to be

(a) monotone if

x, y ∈ IRn, ξ ∈ F (x), η ∈ F (y) =⇒ ⟨ξ − η, x− y⟩ ≥ 0;

(b) strictly monotone if

x, y ∈ IRn, x ̸= y, ξ ∈ F (x), η ∈ F (y) =⇒ ⟨ξ − η, x− y⟩ > 0;

(c) strongly monotone with modulus σ > 0, or σ-strongly monotone, if

x, y ∈ IRn, ξ ∈ F (x), η ∈ F (y) =⇒ ⟨ξ − η, x− y⟩ ≥ σ∥x− y∥2.

Among the above monotonicity properties, the following relations hold: [strongly mono-
tone ⇒ strictly monotone ⇒ monotone].

Definition 2.1.12 (maximal monotone mapping). A monotone map Φ: IRn ⇒ IRn is max-
imal monotone if no enlargement of its graph is possible in IRn × IRn without destroying
monotonicity; that is, no monotone map Ψ exists such that gphΦ ⊂ gphΨ.

The word ‘maximal’ is derived from the maximal maps with respect to set value inclusion.
Another rephrasing of maximal monotonicity is the following: A monotone map Φ is maximal
monotone if and only if every solution (y, η) ∈ IRn × IRn of the system of inequalities

⟨η − ξ, y − x⟩ ≥ 0 ∀(x, ξ) ∈ gphΦ,

belongs to gphΦ.

Proposition 2.1.13 (Facchinei and Pang [30, Proposition 2.3.2]). Let F : D → IRn be con-
tinuously differentiable on the open convex set D ⊂ IRn. The following statements are valid:

(a) F is monotone on D if and only if the Jacobian matrix ∇F (x) is positive semidefinite
for all x in D;
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(b) F is strictly monotone on D if ∇F (x) is positive definite for all x in D;

(c) F is strongly monotone on D with modulus σ > 0 if and only if ∇F (x) is uniformly
positive definite for all x in D; that is,

d⊤∇F (x)d ≥ σ∥d∥2 ∀d ∈ IRn,

for all x ∈ D.

We next introduce a subgradient and subdifferential of a convex real-valued function.

Definition 2.1.14 (subgradient). Let f : IRn → IR be convex and let x ∈ dom f . A vector
ξ ∈ IRn is called a subgradient of f at x if

f(y) ≥ f(x) + ⟨ξ, y − x⟩ ∀y ∈ dom f.

The set of all subgradients of f at x is called the subdifferential of f at x, denoted by
∂f(x). When x /∈ dom f , we define ∂f(x) = ∅.

Definition 2.1.15 (locally Lipschitz continuous function). For a given function f : IRn → IR
and a bounded set E ⊂ IRn, f is locally Lipschitz continuous if there exists LE > 0 such that

|f(x)− f(y)| ≤ LE∥x− y∥ ∀x, y ∈ E.

Particularly, when LE is independent of E, f is said to be (globally) Lipschitz continuous.
It is known that continuously differentiable functions and finite-valued convex functions are
locally Lipschitz continuous. A locally Lipschitz continuous function is differentiable almost
everywhere in the sense of Lebesgue measure from Rademacher’s theorem. Using this prop-
erty, for a locally Lipschitz continuous function f : IRn → IR, the subdifferential of f at x is
given by

∂f(x) = conv

{
lim
k→∞

∇f(xk)
∣∣∣∣ lim
k→∞

xk = x, {xk} ⊂ Df

}
⊂ IRn, (2.1)

where Df ⊂ IRn is the set of points at which f is differentiable, and conv denotes the
convex hull of a given set [21]. Similar to (2.1), the subdifferential of a vector-valued function
F : IRn → IRm is obtained as follows:

∂F (x) = conv

{
lim
k→∞

∇F (xk)
∣∣∣∣ lim
k→∞

xk = x, {xk} ⊂ DF

}
⊂ IRn×m,

where DF ⊂ IRn is the set of points at which F is differentiable. We say that an element of
∂F (x) is a generalized Jacobian matrix of F at x.

Lemma 2.1.16. For a locally Lipschitz continuous function F : IRn → IRm, we have

∂F (x) ⊂ [∂F1(x) . . . ∂Fm(x)],

where the right-hand side denotes the set of matrices on IRn×m whose ith column is a vector
in ∂Fi(x) ⊂ IRn.
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Now we introduce an optimality condition for the following problem:

min
x∈IRn

f(x) s.t. x ∈ S, (2.2)

where f : IRn → IR is locally Lipschitz continuous, and S ⊂ IRn is nonempty. For problem
(2.2), a vector x is said to be a feasible solution if x ∈ S; the set S is called a feasible set of
problem (2.2).

Definition 2.1.17 (optimality). A feasible solution x∗ ∈ S is said to be

(a) a globally optimal solution of problem (2.2) if

f(x∗) ≤ f(x) ∀x ∈ S;

(b) a locally optimal solution of problem (2.2) if there exists δ > 0 such that

f(x∗) ≤ f(x) ∀x ∈ {x ∈ IRn | ∥x− x∗∥ ≤ δ} ∩ S.

The first-order necessary condition for optimality in (2.2) is given as follows.

Theorem 2.1.18 (e.g., Clarke [21, Corollary of Proposition 2.4.3]). Consider problem (2.2).
If a feasible solution x∗ ∈ S is a locally optimal solution, then it satisfies

0 ∈ ∂f(x∗) +NS(x
∗). (2.3)

Moreover, if (2.2) is a convex optimization, i.e., f and S are convex, the converse is true.

In general, a point satisfying (2.3) is called a stationary point of problem (2.2).
In the remainder of this section, we provide another first-order necessary condition for

optimality. Suppose that the feasible set S ⊂ IRn is defined by the collection of equality and
inequality constraints:

S := {x ∈ IRn | g(x) ≤ 0, h(x) = 0},

where g : IRn → IRl and h : IRn → IRm are continuously differentiable on IRn. Suppose also
that f is continuously differentiable.

Definition 2.1.19 (Karush–Kuhn–Tucker point). A point x∗ ∈ S is called a Karush–Kuhn–
Tucker (KKT) point, along with a Lagrange multiplier (λ∗, µ∗) ∈ IRl

+ × IRm if they satisfy

∇f(x∗) +∇g(x∗)λ∗ +∇h(x∗)µ∗ = 0,

λ∗i ≥ 0, gi(x
∗) ≤ 0, λ∗i gi(x

∗) = 0, i = 1, . . . , l,

h(x∗) = 0.

(2.4)

The following definition indicates so-called constraint qualifications to guarantee that the
KKT condition is the first-order necessary condition for optimality.

Definition 2.1.20 (constraint qualification). We say that

(a) the linear independence constraint qualification (LICQ) holds at x if vectors ∇gi(x),
i ∈ I(x) and ∇hj(x), j = 1, . . . ,m are linearly independent, where I(x) := {i | gi(x) =
0, i = 1, . . . , l}.
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(b) the Slater’s constraint qualification holds if gi is convex for all i ∈ {1, . . . , l}, hj is affine
for all j ∈ {1, . . . ,m}, and there exists x0 ∈ IRn such that gi(x

0) < 0, i = 1, . . . , l and
hj(x

0) = 0, j = 1, . . . ,m.

Theorem 2.1.21. Let x∗ ∈ IRn be a locally optimal solution of (2.2). Then if either of the
LICQ (a) or the Slater’s CQ (b) in Definition 2.1.20 holds, there exists (λ∗, µ∗) ∈ IRl

+ × IRm

such that the KKT condition (2.4) holds. Moreover, if the LICQ holds at x∗ ∈ IRn, then the
Lagrange multiplier (λ∗, µ∗) satisfying (2.4) is unique.

2.2 Noncooperative games and their equilibria

Consider that there are N self-interested decision makers, and ν ∈ {1, . . . , N} denotes the
label of the player. Let xν ∈ IRnν , Xν ⊂ IRnν , and θν : IR

n → IR be a strategy vector,
strategy set, and cost function of player ν, respectively, where n := n1 + · · ·+nN denotes the
sum of dimensions of all players’ strategy vectors. Suppose that player ν solves the following
optimization problem:

min
x∈IRnν

θν(x
ν , x−ν) s.t. xν ∈ Xν , (2.5)

where x−ν := (x1, . . . , xν−1, xν+1, . . . , xN ) ∈ IRn−nν denotes a tuple of strategies of rival
players. In order to emphasize the strategy xν of player ν, we often write x := (x1, . . . , xN ) ∈
IRn as (xν , x−ν).

Definition 2.2.1 (Nash equilibrium). A Nash equilibrium x∗ := (x∗,1, . . . , x∗,N ) ∈ X :=
X1 × · · · ×XN solves (2.5) for all ν ∈ {1, . . . , N}; that is,

x∗,ν ∈ arg min
xν∈Xν

θν(x
ν , x∗,−ν) ∀ν ∈ {1, . . . , N}.

Definition 2.2.1 indicates that no player has an incentive to change the strategy unilater-
ally.

In the same manner as Rosen’s proof [109] in a Nash game with a common strategy set
among all players, we show the existence of Nash equilibrium in which player ν solves (2.5).

We define the following function:

ψ(x, z) :=

N∑
ν=1

θν(z
ν , x−ν).

Lemma 2.2.2. A point x∗ ∈ X is a Nash equilibrium if and only if x∗ ∈ argminz∈X ψ(x∗, z).

Proof. First we show the “only if” part. Suppose that x∗ is a Nash equilibrium. Then, by
the definition, we have

θν(x
∗,ν , x∗,−ν) ≤ θν(z

ν , x∗,−ν) ∀zν ∈ Xν , ∀ν ∈ {1, . . . , N}.

Summing up with respect to ν from 1 to N on both sides of the inequality leads that x∗ must
be a globally optimal solution of ψ(x∗, ·).

Next we show the “if” part by contradiction. Suppose that x∗ is not a Nash equilibrium.
There exists a player ν ′ ∈ {1, . . . , N} such that they can reduce the cost unilaterally; that is,
there exists x̄ν

′ ∈ Xν′ such that

θν′(x̄
ν′ , x∗,−ν) < θν′(x

∗,ν′ , x∗,−ν′),

which contradicts that x∗ is a globally optimal solution of ψ(x∗, ·).



2.3. VARIATIONAL INEQUALITY AND COMPLEMENTARITY PROBLEM 23

Proposition 2.2.3. Suppose that for all ν, Xν ⊂ IRnν is compact convex on IRnν . Suppose
also that θν : IR

n → IR is continuous on IRn, and for each fixed x−ν , the function θν(·, x−ν)
is convex in xν . Then there exists a Nash equilibrium x∗ ∈ X.

Proof. By Lemma 2.2.2, x∗ is a Nash equilibrium if and only if x∗ ∈ argminz∈X ψ(x, z). Then,
for a defined mapping Γ: X ⇒ X, x 7→ argminz∈X ψ(x, z), it suffices to show the existence of
a fixed point of Γ. Since θν is continuous, so is ψ(x, ·). By [106, Theorem 2.6, Theory 7.41],
Γ is upper semi-continuous that maps each point of the convex compact set X into a closed
convex subset of X. Therefore, Kakutani’s fixed point theorem [65, Theorem 1] ensures that
there exists x∗ ∈ X such that x∗ ∈ Γ(x∗). This completes the proof.

In order to analyze the Nash game and to obtain an equilibrium solution, variational
inequalities and complementarity problems are essential mathematical tools. The relationship
between Nash games and variational inequalities will be presented in the second half of the
next section.

2.3 Variational inequality and complementarity problem

First, we introduce a mathematical definition of variational inequalities and complementar-
ity problems. Then we will describe the relationship between Nash games and variational
inequalities in the second half of this section.

The definitions of variational inequalities and complementarity problems are given as
follows.

Definition 2.3.1 (variational inequality). Given a convex set S ⊂ IRn and vector-valued
function F : IRn → IRn, a variational inequality, denoted as VI(S, F ), is to find x∗ ∈ S such
that

⟨F (x∗), x− x∗⟩ ≥ 0 ∀x ∈ S.

By the definition of the normal cone for a convex set, the variational inequality can also
be denoted as

0 ∈ F (x∗) +NS(x
∗).

When problem (2.2) is convex, and f is differentiable, the necessary and sufficient condition
for optimality corresponds to VI(S,∇f).

Definition 2.3.2 (complementarity problem). For a given vector-valued function F : IRn →
IRn, a complementarity problem, denoted as CP(F ), is to find x such that

0 ≤ x ⊥ F (x) ≥ 0,

where 0 ≤ x ⊥ y ≥ 0 denotes x ≥ 0, y ≥ 0, and x⊤F (x) = 0.

When S = IRn
+, VI(S, F ) is reduced to the complementarity problem. More specifically,

when S = IRn, VI(S, F ) is reduced to a nonlinear equation F (x) = 0.
Next we describe the reformulation of VI(S, F ) and CP(F ) into a nonlinear equation (that

is not necessarily smooth). Let us define the following natural mapping:

Fnat(x) := x− projS [x− F (x)],

where projS [z] denotes the projection of z ∈ IRn onto the convex set S ⊂ IRn. VI(S, F ) is
equivalently reformulated as a nonlinear equation.
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Theorem 2.3.3 (Facchinei and Pang [30, Proposition 1.5.8]). A point x ∈ IRn satisfies
Fnat(x) = 0 if and only if x is the solution to VI(S, F ).

Moreover, for a positive constant α > 0, let us define

Hα(x) := projS [x− α−1F (x)].

Then the same assertion as Theorem 2.3.3 on x−Hα(x) holds for any α > 0 [35].
Next let us introduce the reformulation of CP(F ) into another nonlinear equation.

Definition 2.3.4 (C-function). A function ϕ : IR2 → IR satisfying the following properties is
referred to as a C-function2: For any pair (a, b) ∈ IR2,

ϕ(a, b) = 0 ⇐⇒ 0 ≤ a ⊥ b ≥ 0;

equivalently, ϕ is a C-function if the set of its zeros is the two nonnegative semiaxes.

For any given C-functions ϕ, CP(F ) is equivalent to a system of equations:

Φ(x) :=

 ϕ(x1, F1(x))
...

ϕ(xn, Fn(x))

 = 0. (2.6)

There are two well-known C-functions: the min-function

ϕmin(a, b) := min(a, b),

and the Fischier–Burmeister (FB) function

ϕFB(a, b) := a+ b−
√
a2 + b2.

It is known that the FB-function is not differentiable at which (a, b) = (0, 0) but the squared
FB-function is continuously differentiable everywhere as we will see in Proposition 2.4.3.
Meanwhile, ϕmin(a, b) is not differentiable at which a = b. Unless otherwise noted, we omit
FB for ϕFB since we mainly use this C-function throughout the thesis.

The generalized Jacobian matrix of Φ is given as follows.

Proposition 2.3.5 (Facchinei and Pang [30, Proposition 9.1.4 (a)]). Assume that F : Ω → IRn

is continuously differentiable on the open set Ω ⊂ IRn. The generalized Jacobian matrix of Φ
satisfies

∂Φ(x) ⊂ Da(x) +∇F (x)Db(x),

where Da(x) and Db(x) are the sets of n × n diagonal matrices diag(a1(x), . . . , an(x)) and
diag(b1(x), . . . , bn(x)) respectively, with

(ai(x), bi(x))


=

1− xi√
x2i + F 2

i (x)
, 1− Fi(x)√

x2i + F 2
i (x)

 if (xi, Fi(x)) ̸= (0, 0),

∈ {(1− ξ, 1− η) | ξ2 + η2 ≤ 1} if (xi, Fi(x)) = (0, 0).
2‘C-’ stands for ‘complementarity.’
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For C2 functions G,H : IRn → IR, if (G(z), H(z)) ̸= (0, 0), ϕ(G(z), H(z)) is twice contin-
uously differentiable with respect to z ∈ IRn. By direct calculation, its gradient and Hessian
are respectively given by

∇zϕ(G(z), H(z)) =

(
1− G(z)√

G(z)2 +H(z)2

)
∇G(z) +

(
1− H(z)√

G(z)2 +H(z)2

)
∇H(z),

(2.7)

and

∇2
zϕ(G(z), H(z)) =(

1− G(z)√
G(z)2 +H(z)2

)
∇2G(z) +

(
1− H(z)√

G(z)2 +H(z)2

)
∇2H(z)

− 1√
G(z)2 +H(z)2

3 [H(z)∇G(z)−G(z)∇H(z)][H(z)∇G(z)−G(z)∇H(z)]⊤. (2.8)

Now we introduce a basic property associated with the existence of a solution to the
variational inequality.

Theorem 2.3.6 (Facchinei and Pang [30, Theorem 2.3.3]). Let S ⊂ IRn be closed convex and
F : S → IRn be continuous.

(a) If F is strictly monotone on S, VI(S, F ) has at most one solution.

(b) If F is σ-strongly monotone, VI(S, F ) has a unique solution.

(c) If F is defined, Lipschitz continuous, and σ-strongly monotone on a set Ω ⊃ S, then
there exists a constant c′ > 0 such that for every vector x ∈ Ω,

∥x− x∗∥ ≤ c′∥Fnat(x)∥,

where x∗ is the unique solution to VI(S, F ).

For linear constrained variational inequalities, i.e., for VI(S, F ), S is given by a polyhedral
set over IRn, it is well-known that if F is strongly monotone and Lipschitz continuous, ∥x−
projS [x−F (x)]∥ is a global error bound for the solution to VI(S, F ), which plays an important
role in analyzing the convergence rate of iterate algorithms [91]. Here, a function r : IRn → IR
is a global error bound for a variational inequality problem VI(S, F ) if the following condition
holds: there exists a constant c > 0 such that

dist(x,SOL(S, F )) ≤ cr(x) ∀x ∈ IRn,

where SOL(S, F ) ⊂ IRn denotes the solution set of VI(S, F ), and dist(x,SOL(S, F )) denotes
the distance between the point x ∈ IRn and the set SOL(S, F ).

The rest of this section describes the relationship between Nash games and variational
inequalities.

Recall the N -person Nash game in which player ν ∈ {1, . . . , N} solves (2.5), introduced
in Section 2.2. The following assertion is an essential connection between Nash games and
variational inequalities.
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Proposition 2.3.7 (Facchinei and Pang [30, Proposition 1.4.2]). For all ν, let each Xν be
closed convex on IRnν . Suppose that for each fixed x−ν , the function θν(·, x−ν) is convex and
continuously differentiable. Then a tuple x∗ is a Nash equilibrium if and only if x∗ belongs to
the solution set of VI(X,F ), where

X := X1 × · · · ×XN , F (x) :=

 ∇x1θ1(x
1, x−1)
...

∇xN θN (xN , x−N )

 .
Utilizing this property, Nash equilibrium can be computed via algorithms for VI [30] by

reformulating the game into VI.
The uniqueness of Nash equilibrium is shown as follows in the context of variational

inequalities.

Theorem 2.3.8. Suppose that the assumption of Proposition 2.3.7 holds. Assume that either
of the following statements holds:

(a) Xν is compact, and the mapping F : IRn → IRn is strictly monotone, i.e., Defini-
tion 2.1.11–(b) holds.

(b) F : IRn → IRn is strongly monotone, i.e., Definition 2.1.11–(c) holds.

Then VI(X,F ) has a unique solution, and hence the Nash equilibrium uniquely exists.

Proof. If (a) holds, then the Nash equilibrium exists by Proposition 2.2.3. It follows from
Proposition 2.3.7 that VI(X,F ) has a solution. Theorem 2.3.6–(a) ensures that the solution
to VI(X,F ) is at most one. Therefore, the Nash equilibrium uniquely exists.

If (b) holds, then VI(X,F ) has a unique solution by Theorem 2.3.6–(b); hence, the solution
coincides with a unique Nash equilibrium.

When problem (2.5) is nonconvex, the existence of Nash equilibrium is not guaranteed in
general, and it is difficult to confirm whether a point obtained via an algorithm for VI is a
Nash equilibrium.

Definition 2.3.9 (stationary Nash equilibrium). Consider the Nash game in which player
ν solves (2.5). Then the solution to VI(X,F ) is said to be a stationary Nash equilibrium,
where X and F are defined in Proposition 2.3.7.

Obviously, if x∗ is a Nash equilibrium, then x∗ is a stationary Nash equilibrium, and by
Proposition 2.3.7, the converse is true when (2.5) is convex in xν for all ν.

Note that even if for every player, θν(x
ν , x−ν) is strongly convex in xν for any fixed x−ν ,

the mapping F defined in Proposition 2.3.7 is not strongly monotone in general. Moreover,
if player ν solves a convex optimization problem in xν , the Nash game does not necessarily
admit any Nash equilibrium as indicated in the following example.

Example 2.3.1 (Lei and Shanbhag [69]). Consider a two-person Nash game: Player 1 solves

min
x1∈IR

−x1 + x2 s.t. x1 ≥ 0,

and player 2 solves

min
x2∈IR

1

2
(x2)2 + x2 s.t. x2 ≥ 0.
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By Proposition 2.3.7, this game can be compactly stated as the following complementarity
problem:

0 ≤
[
x1

x2

]
⊥
[
0 1
0 1

] [
x1

x2

]
+

[
−1
1

]
≥ 0.

However, the complementarity problem does not have a solution, and hence the Nash game
does not admit any Nash equilibrium.

2.4 Merit functions

Merit functions for VI/CP have also been extensively studied for long years. Roughly speak-
ing, a merit function is a real-valued function to measure the distance between a point on IRn

and a solution set to VI.

A function f : IRn → IR is the merit function to VI if the following properties hold:

1. f(x) = 0 if x is a solution to a VI;

2. f(x) > 0 if x is not a solution to a VI.

For example, since the zero of the natural equation Fnat(x) = 0 coincides with the solution
to VI(S, F ) by Theorem 2.3.3, it is obvious that the function f(x) := ∥Fnat(x)∥ = ∥x −
projS [x−F (x)]∥ is the merit function for VI but it is not differentiable even if the mapping
F is differentiable; hence, it is not necessarily useful from a numerical perspective.

Let us begin with well-known merit functions for VI(S, F ).

Auslender [5] introduced the following gap function for VI(S, F ):

f∞(x) := max
y∈S

⟨F (x), x− y⟩.

It is easy to see that f∞(x) ≥ 0 for all x ∈ S, and f∞(x) = 0 if and only if x solves VI(S, F ).
This function is simple and easy to evaluate but has some numerical drawbacks, such as
unboundedness and nondifferentiability.

Fukushima [35] then proposed the following regularized gap function to overcome the
issue:

fα(x) := max
y∈S

{
⟨F (x), x− y⟩ − 1

2α
∥y − x∥2

}
,

where α > 0. The function inside the maximization is whenever strongly concave with respect
to y for any α > 0, and then fα(x) is differentiable if F is continuously differentiable. It is
easy to see that Hα(x) = projS [x−α−1F (x)] coincides with the unique solution to the inner
maximization of fα. The derivative of fα(x) is given by

∇fα(x) = F (x)− [∇F (x)− α−1I](Hα(x)− x),

The function fα satisfies the merit function for VI(S, F ) over S, and a globally optimal
solution of the following optimization problem corresponds to the solution to VI(S, F ):

min
x∈S

fα(x). (2.9)
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Theorem 2.4.1 (Fukushima [35, Theorem 3.3]). Assume that the mapping F : IRn → IRn is
continuously differentiable. If x∗ is a stationary point of problem (2.9), i.e.,

⟨∇fα(x∗), x− x∗⟩ ≥ 0 ∀x ∈ S,

and the Jacobian matrix ∇F (x∗) is positive definite, then x∗ is a global optimal solution of
problem (2.9), and hence it solves VI(S, F ).

Yamashita et al. [128] then found that the following difference of regularized gap functions
is the merit function for VI(S, F ) over IRn:

fαβ(x) := fα(x)− fβ(x), α > β > 0.

Then VI(S, F ) can be reformulated as the following unconstrained minimization problem:

min
x∈IRn

fαβ(x). (2.10)

In addition, Yamashita and Fukushima [127] elucidated that fα provides an error bound for
a certain α > 0 under the strong monotonicity of F , and Yamashita et al. [128] investigated
conditions under which fαβ provides a global error bound for the VI.

Theorem 2.4.2 (Yamashita et al. [128, Theorem 3.3]). Assume that F is continuously dif-
ferentiable. If x∗ is a stationary point of (2.10), i.e., ∇fαβ(x∗) = 0, and the Jacobian matrix
∇F (x∗) is positive definite, then x∗ is a global optimal solution of (2.10), and hence it solves
VI(S, F ).

Now we introduce a merit function for CP(F ) and its properties.

It is easy to verify that the following function is the merit function for CP(F ):

Ψ(x) :=
1

2
∥Φ(x)∥2 = 1

2

n∑
i=1

ϕ(xi, Fi(x))
2.

Moreover, Ψ enjoys the following properties.

Proposition 2.4.3 (Facchinei and Soares [31, Proposition 3.4]). If F is continuously differ-
entiable, Ψ is continuously differentiable and its gradient is GΦ(x), where G ∈ ∂Φ(x) is the
generalized Jacobian matrix of the subdifferential ∂Φ(x) of Φ at x.

Definition 2.4.4 (P0-function). A function F : IRn → IRn is a P0-function if, for every x
and y in IRn with x ̸= y, there is an index i such that

xi ̸= yi, (xi − yi)[Fi(x)− Fi(y)] > 0.

Theorem 2.4.5 (Facchinei and Soares [31, Theorem 4.1]). Suppose that F is a P0-function.
Then every stationary point of Ψ, i.e., ∇Ψ(x) = 0, is such that Ψ(x) = 0.

Next we give the second-order directional derivative of the squared FB-function, which
plays an important role to analyze the second-order optimality of C1,1 functions in Chapter 3.
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Lemma 2.4.6. Suppose G,H : IRn → IR are C2 functions. The second-order directional
derivative of the squared FB-function ϕ(G(z), H(z))2 at z in the directions d ∈ IRn and
v ∈ IRn is given as follows:

(a) If (G(z), H(z)) ̸= (0, 0), then

[ϕ(G,H)2]′′(z; d, v) =

2ϕ(G,H)

[(
1− G√

G2 +H2

)
∇G⊤v +

(
1− H√

G2 +H2

)
∇H⊤v

]
+ϕ(G,H)

[(
1− G√

G2 +H2

)
d⊤∇2Gd+

(
1− H√

G2 +H2

)
d⊤∇2Hd

]
+

[(
1− G√

G2 +H2

)
∇G⊤d+

(
1− H√

G2 +H2

)
∇H⊤d

]2
−ϕ(G,H)

(
H∇G⊤d−G∇H⊤d

)2(√
G2 +H2

)3 ; (2.11)

(b) If (G(z), H(z)) = (0, 0), then

[ϕ(G,H)2]′′(z; d, v) =

[
∇G⊤d+∇H⊤d−

√
(∇G⊤d)2 + (∇H⊤d)2

]2
. (2.12)

Proof. The proof of (a) is obtained from (2.7) and (2.8). The proof of (b) is obtained from
the definition of the second-order directional derivatives.
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Chapter 3

Gauss–Seidel method for
multi-leader–follower games

3.1 Introduction

When one of the players, called the leader, has the initiative, or it can decide before the
other players, called the followers, make decisions, the game is called a Stackelberg game or
a single-leader–follower (single-L/F) game. This game was proposed by H.F. von Stackel-
berg [115] in the 1930s and has been applied in various fields [45]. In the single-L/F game,
the leader chooses his/her own strategy taking into account the followers’ optimal strategies
with the leader’s strategy given. The single-L/F game can be regarded as a bilevel optimiza-
tion. The problem may further be reformulated as a mathematical program with equilibrium
constraints (MPEC) by incorporating the optimality conditions for the followers’ problems
into the constraints of the leader’s problem. The MPEC has extensively been studied since
the 1990s, see the monographs by Luo et al. [82] and Outrata et al. [90].

In the real world, we may also consider a situation in which two or more leaders decide
their strategies first, and then the followers observe the leaders’ actions and decide their own
strategies. Such a problem can be modeled as the multi-leader–follower (multi-L/F) game.
However, it would be more difficult to estimate followers’ responses for each leader because
the response of each follower depends on all leaders’ strategies. Applications of multi-L/F
games are found for example in deregulated electricity markets [20,47,71,92].

There are two major approaches for multi-L/F games. The first approach is to regard
the followers’ responses as functions of leaders’ strategies and substitutes those functions for
the followers’ strategies in each leader’s optimization problem. The resultant problem does
not include the followers’ strategies explicitly. Thus, the multi-L/F game can be regarded
as a single level Nash game among the leaders. The works that adopt this approach include
[52,53,55].

The second approach is to incorporate the optimality conditions of each follower’s op-
timization problem into all leaders’ constraints, just like the reformulation of a single-L/F
game as an MPEC. The resultant single level Nash game, in which each leader’s optimization
problem is an MPEC, is called an equilibrium problem with equilibrium constraints (EPEC).
In general, the constraints of each leader’s problem depend on the other leaders’ strategies,
and all leaders share decision variables of the followers. The concepts of an equilibrium for
EPECs are often defined in terms of a stationarity concept in MPECs. For example, a tuple

31
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of solutions to the MPECs of the leaders is called a Bouligand stationary point of an EPEC,
if it is composed of Bouligand stationary points of those MPECs. Outrata [89] showed the
necessary conditions for an EPEC stationary point. Su [117] proposed a regularization scheme
called the sequential NCP method and established convergence to a B-stationary point of an
EPEC under some assumptions. For more details about earlier works on multi-L/F games
and EPECs, refer to the survey paper by Hu and Fukushima [55].

In this thesis, we adopt the second approach to reformulate a multi-L/F game into an
EPEC and propose an algorithm that combines the penalty approach for an MPEC studied
by Huang et al. [58] with a nonlinear Gauss–Seidel method. The nonlinear Gauss–Seidel
method is one of the diagonalization methods, which solves each leader’s MPEC cyclically
by fixing the other rival leaders’ strategies. In the proposed method, each leader’s MPEC
is transformed into a differentiable optimization problem by means of a penalty technique,
in such a way that the constraints of the problem do not depend on the other rival players’
strategies. Hence it can be dealt with as a classical Nash game. Furthermore, the algorithm
is easy to implement. We show that a limit point of the sequence generated by the algorithm
is an EPEC C-/M-/B-stationarity point under suitable assumptions.

This chapter is organized as follows. In Section 3.2, we provide the basic concepts of the
mathematical program with complementarity constraints (MPCC) which is a special class
of MPEC. In Section 3.3, we show the convergence of the penalty method for parametrized
MPCC. In Section 3.4, we reformulate a multi-L/F game as an EPEC and then propose a
Gauss–Seidel penalty method for the EPEC. We also discuss the convergence of the proposed
method to a C-/M-/B-stationary point of the multi-L/F game. Moreover, we consider an
additional refinement procedure to obtain more accurate solutions. In Section 3.6, we report
some results of numerical experiments.

3.2 Preliminaries: Stationarity of parametrized MPCC

In this subsection, we recall some stationarity concepts of the parametrized mathematical
program with complementarity constraints (PMPCC). To this end, we define some notions
of MPCC.

We consider the following MPCC parametrized by a ∈ IRt:

PMPCC(a) : min
z∈IRn

f(z, a)

s.t. g(z, a) ≤ 0, h(z, a) = 0,
0 ≤ G(z, a) ⊥ H(z, a) ≥ 0,

where f(·, a) : IRn → IR, g(·, a) : IRn → IRr, h(·, a) : IRn → IRs, G(·, a) : IRn → IRm and
H(·, a) : IRn → IRm are twice continuously differentiable for any fixed a ∈ IRt, and we assume
that ∇zf(·, ·) and ∇2

zf(·, ·) are continuous. Component functions of g, h,G,H will be denoted
by gi, hi, Gj , Hj , respectively. Let F(a) denote the feasible set of problem PMPCC(a). For a
feasible solution z̄ ∈ F(a), we define the following sets of indices:

Ig(z̄, a) := {i : gi(z̄, a) = 0},
JG(z̄, a) := {j : Gj(z̄, a) = 0},
JH(z̄, a) := {j : Hj(z̄, a) = 0}.

It is well known that any feasible solution to MPCC fails to satisfy standard constraint
qualifications (CQs) in nonlinear optimization such as linear independence constraint quali-
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fication (LICQ) and Mangasarian-Fromovitz constraint qualification (MFCQ). The following
CQ is a variant of LICQ tailored to MPCC.

Definition 3.2.1. The linear independence constraint qualification for MPCC (MPCC-LICQ)
is said to hold at z̄ ∈ F(a), if the gradient vectors ∇zgi(z̄, a) (i ∈ Ig(z̄, a)),∇zhi(z̄, a) (i =
1, . . . , q),∇zGj(z̄, a) (j ∈ JG(z̄, a)),∇zHj(z̄, a) (j ∈ JH(z̄, a)) are linearly independent.

We give a definition of stationarity for PMPCC(a).

Definition 3.2.2 (Scheel and Scholtes [110]). A feasible point z̄ ∈ F(a) is called a weak
stationary point of PMPCC(a) if there exist λ̄ ∈ IRr, µ̄ ∈ IRs, ξ̄ ∈ IRm, and η̄ ∈ IRm such
that

∇zf(z̄, a) +
∑

i∈Ig(z̄,a)

λ̄i∇zgi(z̄, a) +

s∑
i=1

µ̄i∇zhi(z̄, a)

−
∑

j∈JG(z̄,a)

ξ̄j∇zGj(z̄, a)−
∑

j∈JH(z̄,a)

η̄j∇zHj(z̄, a) = 0,

λ̄i ≥ 0, λ̄igi(z̄, a) = 0, i = 1, . . . , r

Gj(z̄, a)ξ̄j = 0, j = 1, . . . ,m,

Hj(z̄, a)η̄j = 0, j = 1, . . . ,m.

(3.1)

Definition 3.2.3 (Scheel and Scholtes [110]). A feasible point z̄ ∈ F(a) of PMPCC(a) is
called

(a) a Clarke (C-) stationary point at z̄ if (3.1) and ξ̄j η̄j ≥ 0 (j ∈ JG(z̄, a)∩JH(z̄, a)) hold;

(b) a Mordukhovich (M-) stationary point at z̄ if (3.1) and either ξ̄j > 0, η̄j > 0 or ξ̄j η̄j = 0
(j ∈ JG(z̄, a) ∩ JH(z̄, a)) hold;

(c) a Bouligand (B-) stationary point at z̄ if (3.1) and ξ̄j ≥ 0, η̄j ≥ 0 (j ∈ JG(z̄, a) ∩
JH(z̄, a)) hold.

Note that if z̄ ∈ F(a) is a B-stationary point and satisfies the MPCC-LICQ, z̄ is the strong
(S-) stationary point. The concepts of C-stationarity, M-stationarity, and B-stationarity are
all equivalent if strict complementarity holds at z̄, i.e., JG(z̄, a) ∩ JH(z̄, a) = ∅. However,
in general B-stationarity is stronger than M-stationarity which, in turn, is stronger than
C-stationarity [110]. Figure 3.1 illustrates the differences among the stationarity concepts
related to the Lagrange multipliers ξ̄j and η̄j , where j ∈ JG(z̄, a) ∩ JH(z̄, a).

Figure 3.1: MPCC stationarity (B-/M-/C-/weak stationarity); The figure is based on Figure 1 in [3].

Moreover, the following condition plays an important role in discussing convergence of our
proposed algorithm to a B-stationary point.
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Definition 3.2.4 (Scheel and Scholtes [110]). The upper-level strict complementarity (ULSC)
is said to hold at z̄ ∈ F(a), if there exist Lagrange multipliers λ̄ ∈ IRr, µ̄ ∈ IRs, ξ̄ ∈ IRm,
η̄ ∈ IRm satisfying (3.1), and the following condition holds:

ξ̄j η̄j ̸= 0, j ∈ JG(z̄, a) ∩ JH(z̄, a).

3.3 Penalty method for parametrized MPCC

In this section, we apply a smooth penalization method for a parametrized family of problems
PMPCC(a). The complementarity conditions are often transformed into a system of equations
by using the following function ϕ : IR2 → IR called the Fischer-Burmeister (FB) function:

ϕ(α, β) := α+ β −
√
α2 + β2.

Since the FB-function has the property that ϕ(α, β) = 0 if and only if α ≥ 0,
β ≥ 0, αβ = 0, we can rewrite the complementarity conditions as follows:

0 ≤ G(z, a) ⊥ H(z, a) ≥ 0 ⇐⇒ ϕ(Gj(z, a), Hj(z, a)) = 0, j = 1, . . . ,m.

The FB-function is not differentiable at (α, β) = (0, 0). However, the squared FB-function
is continuously differentiable by Proposition 2.4.3, and its gradient is locally Lipschitz [31].
Hence, the second-order directional derivative exists as we stated in Lemma 2.4.6. We utilize
this property in the penalty method. By introducing a penalty parameter ρ > 0, we define
the function f̄ρ : IR

n+t → IR by

f̄ρ(z, a) := f(z, a) +
ρ

2

 r∑
i=1

[gi(z, a)]
2
+ +

s∑
i=1

|hi(z, a)|2 +
m∑
j=1

|ϕ(Gj(z, a), Hj(z, a))|2
 ,

where [gi(z, a)]+ := max {gi(z, a), 0}. Observe that f̄ρ(·, a) is continuously differentiable at
any z. We then consider the penalized problem associated with PMPCC(a):

Pρ(a) : min
z∈IRn

f̄ρ(z, a).

Let us define the following index sets:

I+
g (z, a) := {i : gi(z, a) > 0},
Ih(z, a) := {i : hi(z, a) = 0},
IC
h (z, a) := {1, . . . , s} \ Ih(z, a),
J ′(z, a) := {j : ϕ(Gj(z, a), Hj(z, a)) ̸= 0},

J0+(z, a) := {j : Gj(z, a) = 0 < Hj(z, a)},
J+0(z, a) := {j : Gj(z, a) > 0 = Hj(z, a)},
J00(z, a) := {j : Gj(z, a) = 0 = Hj(z, a)}.

The feasibility issue underlying this method is verified in the following lemma.

Lemma 3.3.1. Let ρk → ∞, and consider sequences {zk} and {ak} converging to z̄ and
ā, respectively. If the sequence {f̄ρk(zk, ak)} is bounded above, then z̄ is a feasible point of
PMPCC(ā).
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Proof. By the boundedness assumption on the sequence {f̄ρk(zk, ak)}, there exists a real
number M satisfying

f̄ρk(z
k, ak) = f(zk, ak) +

ρk
2

[
r∑

i=1

[gi(z
k, ak)]2+ +

s∑
i=1

∣∣∣hi(zk, ak)∣∣∣2
+

m∑
j=1

∣∣∣ϕ(Gj(z
k, ak), Hj(z

k, ak))
∣∣∣2 ] ≤M, ∀k > 0.

Since {f(zk, ak)} is bounded, there exists a real number M ′ > 0 such that

r∑
i=1

[gi(z
k, ak)]2+ +

s∑
i=1

∣∣∣hi(zk, ak)∣∣∣2
+

m∑
j=1

∣∣∣ϕ(Gj(z
k, ak), Hj(z

k, ak))
∣∣∣2 ≤ M ′

ρk
, ∀k > 0.

Since ρk → ∞, we have

[gi(z
k, ak)]+ → 0, hi(z

k, ak) → 0, ϕ(Gj(z
k, ak), Hj(z

k, ak)) → 0,

which implies that z̄ is a feasible solution to PMPCC(ā).

To show the first- and second-order condition for optimality of PMPCC(ā), we give the
following formula: For the C2 function g(·, a), [g(z, a)]2+ is a C1,1 function, and its second-
order directional derivative is given as follows [9, Proposition 3.3]:

(g2+)
′′(z, a; d, v) =


2g(z, a)∇g(z, a)⊤v + g(z, a)d⊤∇2g(z, a)d

+ (∇g(z, a)⊤d)2, if g(z, a) > 0;

(∇g(z, a)⊤d)2, if g(z, a) = 0;
0, if g(z, a) < 0.

The next result is a first- and second-order optimality for the penalized problem P̄ρ(a);
its proof is based on Huang et al. [58] for a parameter-free MPCC.

Lemma 3.3.2. If z is a local optimal solution to Pρ(a), then it satisfies the first-order nec-
essary condition for optimality

∇zf(z, a) + ρ

[ ∑
i∈I+

g (z,a)

gi(z, a)∇zgi(z, a) +
∑

i∈IC
h (z,a)

hi(z, a)∇zhi(z, a)

+
∑

j∈J ′(z,a)

ϕ(Gj(z, a), Hj(z, a))∇zϕ(Gj(z, a), Hj(z, a))

]
= 0. (3.2)
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Moreover, it satisfies the weak second-order necessary condition for optimality

d⊤∇2
zf(z, a)d+ ρ

∑
i∈I+

g (z,a)

[
gi(z, a)(d

⊤∇2
zgi(z, a)d) + (∇zgi(z, a)

⊤d)2
]

+ ρ
∑

i∈IC
h (z,a)

[
hi(z, a)(d

⊤∇2
zhi(z, a)d) + (∇zhi(z, a)

⊤d)2
]

+ ρ
∑

j∈J ′(z,a)

ϕ(Gj(z, a), Hj(z, a))

[(
1− Gj(z, a)√

Gj(z, a)2 +Hj(z, a)2

)

d⊤∇2
zGj(z, a)d+

(
1− Hj(z, a)√

Gj(z, a)2 +Hj(z, a)2

)
d⊤∇2

zHj(z, a)d

−
{
Hj(z, a)(∇zGj(z, a)

⊤d)−Gj(z, a)(∇zHj(z, a)
⊤d)
}2(√

Gj(z, a)2 +Hj(z, a)2
)3

]

+ ρ
∑

j∈J ′(z,a)

[(
1− Gj(z, a)√

Gj(z, a)2 +Hj(z, a)2

)
∇Gj(z, a)

⊤d

+

(
1− Hj(z, a)√

Gj(z, a)2 +Hj(z, a)2

)
∇Hj(z, a)

⊤d

]2
≥ 0 (3.3)

for any d ∈ IRn such that

∇zgi(z, a)
⊤d = 0, i ∈ Ig(z, a),

∇zhi(z, a)
⊤d = 0, i ∈ Ih(z, a),

∇zGj(z, a)
⊤d = 0, j ∈ J0+(z, a) ∪ J00(z, a),

∇zHj(z, a)
⊤d = 0, j ∈ J+0(z, a) ∪ J00(z, a).

(3.4)

(3.5)

(3.6)

(3.7)

Proof. We first show the first-order necessary condition for optimality (3.2). If z is a local
optimum of Pρ(a), then

∇z f̄ρ(z, a) = 0.

Since

∇z[gi(z, a)]
2
+ = 2gi(z, a)+∇zgi(z, a),

∇z[ϕ(Gj(z, a), Hj(z, a))]
2 = 2ϕ(Gj(z, a), Hj(z, a))∇zϕ(Gj(z, a), Hj(z, a)),

∇z[hj(z, a)]
2 = 2hj(z, a)∇zhj(z, a),
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we obtain

∇z f̄ρ(z, a) =∇zf(z, a) + ρ

[
r∑

i=1

∇zgi(z, a)gi(z, a)+ +
s∑

i=1

∇zhi(z, a)hi(z, a)

+
m∑
j=1

∇zϕ(Gj(z, a), Hj(z, a))ϕ(Gj(z, a), Hj(z, a))


=∇zf(z, a) + ρ

 ∑
i∈I+

g (z,a)

gi(z, a)∇zgi(z, a) +
∑

i∈IC
h (z,a)

hi(z, a)∇zhi(z, a)

+
∑

j∈J ′(z,a)

ϕ(Gj(z, a), Hj(z, a))∇zϕ(Gj(z, a), Hj(z, a))

 = 0.

This proves the first half.

We next prove the second-order condition (3.3). By the first-order condition (3.2), we
have

f̄ ′ρ(z, a; d) = ∇z f̄ρ(z, a)
⊤d = 0 ∀d ∈ IRn,

Then [9, Theorem 6.5] ensures that

f̄ ′′ρ (z, a; d, d) ≥ 0 ∀d ∈ IRn.

Calculating the second-order directional derivative of f̄ ′′ρ leads to

f̄ ′′ρ (z, a; d, d) =

f ′′(z, a; d, d) +
ρ

2

[ r∑
i=1

[(gi)
2
+]

′′(z, a; d, d) +

s∑
i=1

[h2i ]
′′(z, a; d, d) +

m∑
j=1

[ϕ(Gj , Hj)
2]′′(z, a; d, d)

]

=∇zf(z, a)
⊤d+ ρ

 ∑
i∈I+

g (z,a)

gi(z, a)∇zgi(z, a)
⊤d+

∑
i∈IC

h (z,a)

hi(z, a)∇zhi(z, a)
⊤d

+
∑

j∈J ′(z,a)

ϕ(Gj(z, a), Hj(z, a))∇zϕ(Gj(z, a), Hj(z, a))
⊤d


+

1

2

{
d⊤∇2

zf(z, a)d+ ρ
∑

i∈I+
g (z,a)

gi(z, a)d
⊤∇2

zgi(z, a)d

+ ρ
∑

i∈I+
g (z,a)

(∇zgi(z, a)
⊤d)2 + ρ

∑
i∈Ig(z,a)

(∇zgi(z, a)
⊤d)2+

+ ρ
∑

i∈IC
h (z,a)

{
(∇zhi(z, a)

⊤d)2 + hi(z, a)d
⊤∇2

zhi(z, a)d

}
+ ρ

∑
i∈Ih(z,a)

(∇zhi(z, a)
⊤d)2

(3.8)

(3.9)
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+ ρ
∑

j∈J00(z,a)

[
∇Gj(z, a)

⊤d+∇Hj(z, a)
⊤d−

√
(∇Gj(z, a)⊤d)2 + (∇Hj(z, a)⊤d)2

]2

+ ρ
∑

j∈{1,...,m}\J00(z,a)

ϕ(Gj(z, a), Hj(z, a))

[(
1− Gj(z, a)√

Gj(z, a)2 +Hj(z, a)2

)
d⊤∇2Gj(z, a)d

+

(
1− Hj(z, a)√

Gj(z, a)2 +Hj(z, a)2

)
d⊤∇2Hj(z, a)d

]

+ ρ
∑

j∈{1,...,m}\J00(z,a)

[(
1− Gj(z, a)√

Gj(z, a)2 +Hj(z, a)2

)
∇Gj(z, a)

⊤d

+

(
1− Hj(z, a)√

Gj(z, a)2 +Hj(z, a)2

)
∇Hj(z, a)

⊤d

]2

− ρ
∑

j∈{1,...,m}\J00(z,a)

ϕ(Gj(z, a), Hj(z, a))

(
Hj(z, a)∇Gj(z, a)

⊤d−Gj(z, a)∇Hj(z, a)
⊤d
)2(√

Gj(z, a)2 +Hj(z, a)2
)3

}

≥ 0.

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

The terms (3.8)–(3.9) vanish since they are equal to ∇z f̄ρ(z, a)
⊤d. The term (3.10) is cal-

culated from (2.12), and terms (3.11) to (3.15) are calculated from (2.11). Then, for any
d ∈ IRn satisfying (3.4)–(3.7), we obtain (3.3) (Note that J ′(z, a) = {1, . . . ,m} \ (J0+(z, a)∪
J+0(z, a) ∪ J00(z, a)) ⊂ {1, . . . ,m} \ J00(z, a)). The proof is complete.

Lemma 3.3.3. Assume that the assumption of Lemma 3.3.1 holds. Suppose that the sequence
{zk} satisfying first-order condition (3.2) for all k converges to z̄, and MPCC-LICQ for
PMPCC(a) holds at the limit z̄. Then, z̄ is a weak stationary point; that is, there exist
λ̄ ∈ IRr, µ̄ ∈ IRs, ξ̄ ∈ IRm, and η̄ ∈ IRm such that

∇zf(z̄, ā) +
∑

i∈Ig(z̄,ā)

λ̄i∇zgi(z̄, ā) +
s∑

i=1

µ̄i∇zhi(z̄, ā)

−
∑

j∈J0+(z̄,ā)∪J00(z̄,ā)

ξ̄j∇zGj(z̄, ā)−
∑

j∈J+0(z̄,ā)∪J00(z̄,ā)

η̄j∇zHj(z̄, ā) = 0,

λ̄i ≥ 0, λ̄igi(z̄, a) = 0, i = 1, . . . , r

Gj(z̄, a)ξ̄j = 0, j = 1, . . . ,m,

Hj(z̄, a)η̄j = 0, j = 1, . . . ,m.

(3.16)

Proof. The statement can be proved by appropriate modifications of the arguments in Lemma
4.3 in Huang et al. [58] by the continuity of ∇zf , ∇2

zf , etc.; see Appendix A for the overview
of the proof.

As a result, we establish convergence of the penalty method for the parametrized family
of problems PMPCC(a).

Theorem 3.3.4. Let ρk → ∞, ak → ā, and zk → z̄, where zk is a stationary point of P̄ρk(a
k),

i.e., (3.2) holds, for each k. Assume that the sequence {f̄ρk(zk, ak)} is bounded above. Suppose
that the MPCC-LICQ holds at the limit z̄. Then,

(a) z̄ is a C-stationary point of PMPCC(ā);
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(b) if weak second-order condition (3.3) holds at z̄, then z̄ is an M-stationary point of
PMPCC(ā);

(c) if weak second-order condition (3.3) and the ULSC hold at z̄, then z̄ is a B-stationary
point of PMPCC(ā).

Proof. First, we have z̄ ∈ F(ā) by Lemma 3.3.1. Moreover, by Lemma 3.3.3, there exist
λ̄ ∈ IRr

+, µ̄ ∈ IRs, ξ̄ ∈ IRm, and η̄ ∈ IRm such that (3.16) holds at z̄ ∈ F(ā). The proof of
each claim is presented as follows:

(a) It suffices to show that ξ̄j η̄j ≥ 0 for j ∈ J00(z̄, ā). Indeed, we have

ξkj η
k
j =

{
0 if j ∈ J0+(z

k, ak) ∪ J+0(z
k, ak) ∪ J00(z

k, ak);
(ρk)

2ϕ(Gj(z
k, ak), Hj(z

k, ak))2akj b
k
j if j ∈ J ′(zk, ak),

where

akj := 1− Gj(z
k, ak)√

Gj(zk, ak)2 +Hj(zk, ak)2
, bkj := 1− Hj(z

k, ak)√
Gj(zk, ak)2 +Hj(zk, ak)2

.

Then we have ξkj η
k
j ≥ 0 for all j, and hence ξ̄j η̄j ≥ 0 for j ∈ J00(z̄, ā).

(b) Assume that z̄ is not a M-stationary point; that is, there exists j∗ ∈ J00(z̄, ā) such that
ξ̄j∗ < 0 and η̄j∗ < 0. Then we can show the rest of the proof as the same technique as
Theorem 4.4 in [58]1; see Appendix A for the sketch of the proof tailored to our model.

(c) Since z̄ is an M-stationary point by (b), under the ULSC assumption, it follows from
the definition of B-stationary point that z̄ is a B-stationary point.

This completes the proof.

3.4 Method for multi-L/F games

In this section, we propose a numerical method for multi-L/F games by way of EPECs. First
we describe the reformulation of multi-L/F games as EPECs. Then we elaborate on a Gauss–
Seidel type penalty method for EPECs, and a refinement procedure to obtain more accurate
solutions.

3.4.1 Reformulation of the multi-L/F game as EPEC

Recall the multi-L/F game comprised of N leaders andM followers, introduced in Section 1.1.
For given x−ν := (x1, . . . , xν−1, xν+1, . . . , xN ) ∈ IRn−nν and y := (y1, . . . , yM ) ∈ IRm, leader
ν solves the following problem:

min
xν∈IRnν

θν(x
ν , x−ν , y) s.t. xν ∈ Xν , (3.17)

1While only B-stationarity is shown in [58], in fact it can be seen that most of the proof is intrinsically
devoted to the convergence to the M-stationary point.
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where θν : IR
n+m → IR is twice continuously differentiable. In this chapter, suppose that the

strategy set Xν ⊂ IRnν of leader ν in (3.17) is given by

Xν := {xν | gν(xν) ≤ 0, hν(xν) = 0},

where gν : IRnν → IRrν and hν : IRnν → IRsν are twice continuously differentiable.
For a given tuple of leaders’ strategies x := (x1, . . . , xN ) ∈ X := X1 × · · · × XN ⊂ IRn

and the other followers’ strategies y−ω := (y1, . . . , yω−1, yω+1, . . . , yM ) ∈ IRm−mω , follower ω
solves the following problem:

min
yω∈IRmω

γω(x, y
ω, y−ω) s.t. yω ∈ Y ω(x), (3.18)

where γω : IR
n+m → IR is thrice continuously differentiable. Suppose that follower ω’s strategy

set Y ω(x) ⊂ IRmω in (3.18) is given by

Y ω(x) := {yω | uω(x, yω) ≤ 0, vω(x, yω) = 0},

where uω : IRn+mω → IRpω and vω : IRn+mω → IRqω are thrice continuously differentiable. We
assume that problem (3.18) is convex with respect to yω, i.e., for any x and y−ω, γω(x, ·, y−ω),
and uω(x, ·) are convex, and vω(x, ·) is affine, and the problem satisfies an appropriate con-
straint qualification for any fixed x and y−ω.

The convexity assumption for all ω ensures that for each x, the followers’ Nash game can
be written as the following mixed complementarity system, which is comprised of the KKT
conditions for ω = 1, . . . ,M :

ψ(x, y, z, λ, µ) = 0, 0 ≤ z ⊥ λ ≥ 0, (3.19)

where

ψ(x, y, z, λ, µ) :=



∇y1γ1(x, y
1, y−1) +∇y1u1(x, y1)λ1 +∇y1v1(x, y1)µ1

...
∇yMγM (x, yM , y−M ) +∇yMuM (x, yM )λM +∇yM vM (x, yM )µM

u1(x, y1) + z1

...
uM (x, yM ) + zM

v1(x, y1)
...

vM (x, yM )


∈ IRm+p+q.

Here, λω := (λω1 , . . . , λ
ω
pω)

⊤ ∈ IRpω , µω := (µω1 , . . . , µ
ω
qω)

⊤ ∈ IRqω are Lagrange multipliers,
and zω ∈ IRpω is a vector of slack variables for the inequality constraints uω(x, yω) ≤ 0.
Further, z := (z1, . . . , zM ) ∈ IRp, λ := (λ1, . . . , λM ) ∈ IRp, µ := (µ1, . . . , µM ) ∈ IRq, where
p := p1 + · · ·+ pM and q := q1 + · · ·+ qM .

By incorporating (3.19) into each leader’s optimization problem (3.17), we have the fol-
lowing parametrized MPCC for leader ν:

PMPCCν(x−ν) : min
xν ,y,z,λ,µ

θν(x
ν , x−ν , y)

s.t. gν(xν) ≤ 0, hν(xν) = 0,
ψ(xν , x−ν , y, z, λ, µ) = 0,
0 ≤ z ⊥ λ ≥ 0.
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Thus the multi-L/F game is reduced to the EPEC, which seeks an equilibrium point that
simultaneously achieves optimality in (PMPCCν(x−ν))Nν=1. We call (y, z, λ, µ) ∈ IRm+2p+q

shared variables, because all leaders have those as decision variables. Now, we define a C-
/M-/B-stationary equilibrium point of the EPEC.

Definition 3.4.1. A tuple (x∗, y∗, z∗, λ∗, µ∗) ∈ IRn+m+2p+q is called a Clarke (C-), Mor-
dukhovich (M-), and Bouligand (B-) stationary equilibrium point of the EPEC (or multi-
L/F game), if for each leader ν, (xν,∗, y∗, z∗, λ∗, µ∗) is a C-stationary, M-stationary, and
B-stationary point of PMPCCν(x−ν,∗), respectively.

Next we discuss the uniqueness of a solution to the followers’ KKT system. First we show
the uniqueness of y = (y1, . . . , yM ). Note that the y-part of the solution to (3.19) represents
the Nash equilibrium for the followers’ Nash game because of the necessity and sufficiency for
optimality of the KKT conditions. However, as mentioned in Section 1.1, the equilibrium of
the followers’ Nash game is not determined uniquely in general. To ensure the existence and
uniqueness, we need more assumptions.

To this end, define the mapping F : IRn+m → IRm by

F (x, y) :=

 ∇y1γ1(x, y
1, y−1)

...
∇yMγM (x, yM , y−M )

 ,
and the set Y (x) ⊂ IRm by Y (x) := Y 1(x) × · · · × YM (x), which is closed and convex by
assumption. It is well known that the Nash game among the followers is equivalent to the
following VI problem parametrized by x by the convexity assumption: Find y∗ ∈ Y (x) such
that

⟨F (x, y∗), y − y∗⟩ ≥ 0 ∀y ∈ Y (x). (3.20)

We denote (3.20) as VI(Y (x), F (x, ·)).
Lemma 3.4.2. If the mapping F (x, ·) : IRm → IRm is strongly monotone on Y (x) for any
given x, then the solution y∗ ∈ Y (x) to (3.20) uniquely exists. Moreover, for any given x,
if the linear independence constraint qualification holds for each ω’s optimization problem
(3.18), then the pair (λ, µ) of Lagrange multipliers uniquely exists.

Proof. This is directly obtained from Theorem 2.3.8 in the first half statement. The proof of
the second half statement is shown by Theorem 2.1.21.

3.4.2 Gauss–Seidel penalty method

In this and the next subsections, we develop a numerical method for solving multi-L/F games.
In this subsection, we propose a Gauss–Seidel penalty method. To this end, we reformulate
each leader’s MPCC as a nonsmooth optimization problem, and then we transform it into a
differentiable unconstrained problem using a penalty technique. Our method is a combination
of the smooth penalization method [58] and the nonlinear Gauss–Seidel method.

In leader ν’s problem PMPCCν(x−ν), the complementarity constraints can be replaced
by the equality constraints by means of the FB-function ϕ : IR2 → IR as mentioned in Section
3.3. Specifically, PMPCCν(x−ν) can be rewritten as

Pν(x−ν) : min
xν ,y,z,λ,µ

θν(x
ν , x−ν , y)

s.t. gν(xν) ≤ 0, hν(xν) = 0,
Ψ(xν , x−ν , y, z, λ, µ) = 0,
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where

Ψ(xν , x−ν , y, z, λ, µ) :=


ψ(xν , x−ν , y, z, λ, µ)

Φ(z1, λ1)
...

Φ(zM , λM )

 ,

Φ(zω, λω) :=

 ϕ(zω1 , λ
ω
1 )

...
ϕ(zωpω , λ

ω
pω)

 , ω = 1, . . . ,M.

However, Pν(x−ν) is nonsmooth because of the nondifferentiability of the FB-function. To
avoid this difficulty, we use the property that the squared FB-function is differentiable every-
where [31]. Define the penalty function associated with problem Pν(x−ν) by

θ̄ρν(x
ν , x−ν , y, z, λ, µ) := θν(x

ν , x−ν , y) +
ρ

2

[
rν∑
i=1

[gνi (x
ν)]2+

+

sν∑
i=1

|hνi (xν)|2 +

m+2p+q∑
j=1

|Ψj(x
ν , x−ν , y, z, λ, µ)|2

]
,

where ρ > 0 is a penalty parameter. The penalized problem for leader ν’s problem Pν(x−ν)
is written as

P
ν
ρ(x

−ν) : min
xν ,y,z,λ,µ

θ̄ρν(x
ν , x−ν , y, z, λ, µ),

which is a differentiable unconstrained optimization problem. The proposed algorithm is
formally stated in Algorithm 1.

Algorithm 1 Gauss–Seidel Penalty Method

Input: Initial point x(0) := (x1,(0), . . . , xN,(0)), y(0), z(0), λ(0), µ(0), an increasing positive se-
quence {ρk}, a tolerance ε > 0, and the maximum number of major iterations Kmax.

Output: An approximate stationary equilibrium point of EPEC (PMPCCν(x−ν))Nν=1, or the
multi-L/F game.

1: Set k = 0.
2: For each ν, solve P

ν
ρk
(x̄−ν,(k)) to obtain the solution

w̄ν,(k+1) := (x̄ν,(k+1), ȳν,(k+1), z̄ν,(k+1), λ̄ν,(k+1), µ̄ν,(k+1)),

where x̄−ν,(k) := (x̄1,(k+1), . . . , x̄ν−1,(k+1), x̄ν+1,(k), . . . , x̄N,(k)).
3: Stop if

max

{
max

1≤i≤rν
[gνi (x̄

ν,(k+1))]+, max
1≤i≤sν

|hνi (x̄ν,(k+1))|, max
1≤i≤m+2p+q

|Ψi(w̄
ν,(k+1), x̄−ν,(k))|

}
< ε

holds for all ν.
4: If k < Kmax, set k := k + 1 and go to Step 2. If k = Kmax, terminate.

In Step 2 of Algorithm 1, we use the notation ȳν , z̄ν , λ̄ν , µ̄ν to distinguish among leaders,
because all leaders do not necessarily output the same solutions y, z, λ, µ. Note that leader ν
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uses the latest rival strategies from leader 1 to ν−1, which originates from the update scheme
of a Gauss–Seidel method for a linear equation.

Next we discuss the convergence of the proposed algorithm with ε = 0 and Kmax = ∞.
First, we argue the feasibility issue of Algorithm 1.

Lemma 3.4.3. Let ρk → ∞, and for each ν, w̄ν,(k) → w̄ν,(∞), x̄−ν,(k) → x̄−ν,(∞). Assume
that the sequence {θ̄ρkν (w̄ν,(k+1), x̄−ν,(k))} is bounded above. Then, w̄ν,(∞) is a feasible solution
to Pν(x̄−ν,(∞)), i.e., PMPCCν(x̄−ν,(∞)).

Proof. Setting ak := x̄−ν,(k) in Lemma 3.3.1 yields the conclusion of the lemma.

The next lemma gives conditions under which the sequence of shared variables ȳν,(k) and
Lagrange multipliers (λ̄ν,(k), µ̄ν,(k)) converge to limit points independent of ν.

Lemma 3.4.4. Assume that the conditions of Lemma 3.4.3 hold. Suppose the sequence
{(x̄ν,(k), x̄−ν,(k), ȳν,(k), z̄ν,(k), λ̄ν,(k), µ̄ν,(k))}Nν=1 generated by the algorithm converges to {(x̄(∞),
ȳν,(∞), z̄ν,(∞), λ̄ν,(∞), µ̄ν,(∞))}Nν=1, and the mapping F (x, ·) : IRm → IRm is strongly monotone
for any fixed x. Then the shared variable ȳν,(k) converges to the same limit ȳ(∞) indepen-
dent of ν. Furthermore, if the LICQ holds at ȳ(∞) in the followers’ problems (3.18), then
(λ̄ν,(k), µ̄ν,(k)) also converges to the same limit (λ̄(∞), µ̄(∞)).

Proof. By Lemma 3.4.3, the limit (x̄ν,(∞), ȳν,(∞), z̄ν,(∞), λ̄ν,(∞), µ̄ν,(∞)) is a feasible solution to
Pν(x̄−ν,(∞)), which implies

Ψ(x̄ν,(∞), x̄−ν,(∞), ȳν,(∞), z̄ν,(∞), λ̄ν,(∞), µ̄ν,(∞)) = 0.

Moreover, by the given assumption, {(x̄ν,(k), x̄−ν,(k))} converges to the identical limit x̄(∞)

independent of ν. Consider the system of equations

Ψ(x̄(∞), y, z, λ, µ) = 0.

A solution (y, z, λ, µ) constitutes the Nash equilibrium together with the corresponding La-
grange multipliers in the followers’ problems with the leaders’ strategies x̄(∞) given.

Under the given strong monotonicity assumption, the y-part of the solution is unique from
the first half of Lemma 3.4.2. Hence, ȳν,(∞) are identical, i.e., ȳν,(∞) = ȳ(∞) for all ν. Under
the LICQ assumption, the remaining part of the solution is also unique from the second half
of Lemma 3.4.2. Consequently, we have (z̄ν,(∞), λ̄ν,(∞), µ̄ν,(∞)) = (z̄(∞), λ̄(∞), µ̄(∞)) for all
ν.

We are ready to show that if the algorithm converges, then the limit is a C-/M-/B-
stationary point of the EPEC under appropriate assumptions.

Theorem 3.4.5. Let ρk → ∞. Suppose, for each ν = 1, . . . ,M , (w̄ν,(k), x̄−ν,(k)) → (x̄(∞),
ȳν,(∞), z̄ν,(∞), λ̄ν,(∞), µ̄ν,(∞)), where w̄ν,(k+1) is a stationary point of problem P

ν
ρk
(x̄−ν,(k)) for

each k. Assume that the conditions of Lemmas 3.4.3 and 3.4.4 hold. Moreover, suppose that,
for each ν, the MPCC-LICQ for PMPCCν(x̄−ν,(∞)) holds at the limit point (x̄ν,(∞), ȳν,(∞),
z̄ν,(∞), λ̄ν,(∞), µ̄ν,(∞)). Then, the limit point (x̄ν,(∞), ȳν,(∞), z̄ν,(∞), λ̄ν,(∞), µ̄ν,(∞)) is

(a) a C-stationary point of PMPCCν(x̄−ν,(∞)) for each ν;

(b) an M-stationary point of PMPCCν(x̄−ν,(∞)) for each ν if weak second-order condition
(3.3), where z, a, and ρ are replaced by wν,(k), x̄−ν,(k), and ρk, respectively, holds;
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(c) a B-stationary point of PMPCCν(x̄−ν,(∞)) for each ν if the weak second-order condition
(see (b)) and ULSC hold,

and those limit points are identical. Consequently, it respectively constitutes a C-/M-/B-
stationary equilibrium point of the multi-L/F game.

Proof. Notice that each leader ν solves PMPCC(a) with a := x̄−ν mentioned in Section 3.3,
and x̄−ν,(k) converges to x̄−ν,(∞) by assumption. First observe that, from Lemma 3.4.3, the
limit point (x̄ν,(∞), ȳν,(∞), z̄ν,(∞), λ̄ν,(∞), µ̄ν,(∞)) is feasible to PMPCCν(x̄−ν,(∞)). The claims
(a), (b), and (c) can be straightforwardly shown by Theorem 3.3.4. By Lemma 3.4.4, those
limit points are identical for all ν. Hence, (x̄(∞), ȳ(∞), z̄(∞), λ̄(∞), µ̄(∞)) is a C-/M-/B-
stationary equilibrium point of the multi-L/F game, respectively.

From the numerical viewpoint, the squared penalty method has some drawbacks. The
main issue is that the penalized problem becomes ill-conditioned as the penalty parameter
ρk increases, and hence it is difficult to find an accurate solution. In such a case, we may
use the algorithm as the identification phase of active sets in the complementarity constraints
0 ≤ z ⊥ λ ≥ 0, and then transfer to the refinement phase proposed in the next subsection to
obtain a more accurate equilibrium of the EPEC.

3.4.3 Refined Gauss–Seidel method

The basic tool used in the previous subsection is the quadratic penalty technique in con-
strained optimization. However, a computed solution may not be exact for Pν(x−ν,(k)), or
PMPCCν(x−ν,(k)), even for a sufficient large k. Nevertheless, it may provide useful infor-
mation about active sets in the complementarity constraints. In fact, if the active sets are
correctly identified, we may further refine the solution produced by Algorithm 1. To this end,
we present another Gauss–Seidel-based method for obtaining a more accurate solution.

Let w̄∗,ν = (w̄∗,1, . . . , w̄∗,N ) be a solution obtained by Algorithm 1, and define the index
sets:

Īν := {i : |z̄∗,νi | < δ, |λ̄∗,νi | ≥ δ },
J̄ ν := {i : |z̄∗,νi | < δ, |λ̄∗,νi | < δ },
K̄ν := {i : |z̄∗,νi | ≥ δ, |λ̄∗,νi | < δ },

(3.21)

where δ > 0 is a sufficiently small number. We assume that those index sets are independent
of ν, i.e., Ī := Īν , J̄ := J̄ ν , K̄ := K̄ν for all ν. We define the following optimization problem
for each leader ν:

P̃ν(x−ν) : min
xν ,y,z,λ,µ

θν(x
ν , x−ν , y)

s.t. gν(xν) ≤ 0, hν(xν) = 0,
ψ(xν , x−ν , y, z, λ, µ) = 0,
zi = 0, λi ≥ 0 (i ∈ Ī),
zi = 0, λi = 0 (i ∈ J̄ ),
zi ≥ 0, λi = 0 (i ∈ K̄).

Indeed, the above nonlinear optimization may be regarded as an approximation of a tightened
nonlinear program for PMPCCν(x−ν) at w̄∗,ν (which may be close to the feasible set of
PMPCCν(x−ν)) in the sense of Scheel and Scholtes [110].

Now the algorithm is stated in Algorithm 2.
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Algorithm 2 Refined Gauss–Seidel Method

Input: Initial point w̃(0) := (w̃1,(0), . . . , w̃N,(0)), which is supposed to be the last point ob-
tained by Algorithm 1, the step size tolerance ε′ > 0, and the maximum number of
iterations Kmax.

Output: A stationary equilibrium point of the EPEC (PMPCCν(x−ν))Nν=1, or the multi-L/F
game.

1: Set k = 0.
2: For each ν, solve P̃ν(x̃−ν,(k)) to obtain the solution w̃ν,(k+1), where

x̃−ν,(k) := (x̃1,(k+1), . . . , x̃ν−1,(k+1), x̃ν+1,(k), . . . , x̃N,(k)).

3: Stop if ||w̃ν,(k+1) − w̃ν,(k)|| < ε′ holds for all ν.
4: If k < Kmax, set k := k + 1 and go to Step 2. If k = Kmax, terminate.

If a tuple of solutions (w̃∗,1, . . . , w̃∗,N ) is obtained and, for each leader ν, the KKT con-
ditions of P̃ν(x̃1,(k+1), . . . , x̃ν−1,(k+1), x̃ν+1,(k+1), . . . , x̃N,(k+1)) are sufficiently satisfied, the al-
gorithm successfully terminates. Then by Definition 3.2.2, the point satisfies (at least) the
weak stationarity of PMPCCν(x̃−ν) for all ν [110].

3.5 Application of multi-L/F games

In this section, we introduce an application of multi-L/F games. In the middle of the 1990s,
the deregulation of electricity markets by governments stated mainly in Europe and the United
States. Since then, the study of electricity markets has become popular [20, 47, 57, 71]. We
introduce a wholesale market of electricity in terms of multi-L/F games or EPECs. The model
we discuss is a simple model of competitive bidding under some macroeconomic regulation,
which is an extension of [52]2.

In this model, we assume that there are two electricity firms labeled ν ∈ {I, II} and
one market maker, called the independent system operator (ISO), who tries to correct the
balance of demand and supply of electricity by paying the bid costs under the market clearing
mechanism. The ISO also determines the price of electricity and then sells it to consumers.
The two firms are competing with each other for market power in an electricity network with
M nodes (consumers), and determine the bid price.

Let xν := (xν1 , . . . , x
ν
M ) ∈ IRM be the bid parameter of firm ν in which the firm indirectly

determines how much it sells the electricity to each node. Let y := (yI1, . . . , y
I
M , y

II
1 , . . . , y

II
M ) ∈

IR2M be the quantity of electricity, where yνi means how much quantity of electricity the ISO
buys from firm ν and supplies it to consumer i. The bid price function of firm ν is defined
by bν(xν , y) :=

∑M
i=1 x

ν
i y

ν
i . We assume that two firms produce electricity up to quantities aI

and aII, and then send it to all nodes at the price pi(y
I
i , y

II
i ) := αi−βi(y

I
i + yIIi ), where αi and

βi are positive constants. The revenue for the ISO by selling electricity to node i is given as
the cumulative sum from zero to yIi + yIIi ; see Figure 3.2. Thus, the ISO makes a profit given
by qi(y

I
i , y

II
i ) := αi(y

I
i + yIIi )−

βi

2 (y
I
i + yIIi )

2.

2The author of [52] considered inequality constraints in the ISO’s optimization problem. However, they
omitted the constraints in the reformulation.
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Figure 3.2: Price function pi and revenue qi

Firm ν needs to pay the transaction cost according to the bid parameter xνi , which is
defined by tν(xν) := 1

2

∑M
i=1 τ

ν
i (x

ν
i )

2 with a constant τνi > 0, and tries to maximize its revenue
by bidding from the ISO minus transaction costs. Then the optimization problem of firm ν
can be written as follows:

min
xν∈IRM

θν(x
ν , x−ν , y) := tν(xν)− bν(xν , y)

s.t. xν ∈ Xν ,
(3.22)

where Xν is a nonempty strategy set.

On the other hand, the ISO also tries to maximize its revenue by selling electricity to
consumers. Furthermore, we assume that some economic interventionism by governments
works in the market to maintain the equilibrium between the quantities of electricity at each

node i, or to reflect the ratio of quantities aI and aII, which is denoted by ζi
2

(
yIi
aI

− yIIi
aII

)2
,

where ζi > 0 is the interventionism parameter. Hence, the optimization problem of ISO can
be written as follows:

min
y∈IR2M

M∑
i=1

[
ζi
2

(
yIi
aI

− yIIi
aII

)2

− qi(y
I
i , y

II
i )

]
+ bI(xI, y) + bII(xII, y)

s.t.

M∑
i=1

yIi − aI ≤ 0,

M∑
i=1

yIIi − aII ≤ 0,

y ≥ 0.

Note that the ISO’s problem is a convex optimization problem for the variable y. In
particular, the objective function is strongly convex for any x. Then, the solution is uniquely
determined for any given x by Lemma 3.4.2. Furthermore, the response is piecewise linear
with respect to the variable x [82].
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3.6 Numerical experiments

In this section, we present some numerical results to demonstrate the validity of the proposed
method. We coded the algorithm in MATLAB 9.1.0 (2016b).

Examples 3.6.1–3.6.3 below are EPECs taken from [53], and player ν ∈ {I, II} solves the
following MPEC with shared linear complementarity constraints:

min
xν∈IRn,y∈IRm

1

2
(xν)⊤Hνx

ν + (xν)⊤Gνx
−ν + (cν)⊤y

s.t. Aνx
ν ≤ bν

0 ≤My +NIx
I +NIIx

II + q ⊥ y ≥ 0.

In our examples, the matrix M is a P-matrix, which ensures that the solution to the linear
complementarity system 0 ≤My+NIx

I+NIIx
II+q ⊥ y ≥ 0 for the variable y uniquely exists

for any xI, xII. To implement the algorithm, we set ρk := 20(k + 1), ε = 0.01 in Algorithm 1,
and set (x(0), y(0), z(0), λ(0), µ(0)) := (0, 0, 0, 0, 0). For the identification of active sets, we set
δ := 0.01 in (3.21). Then we set ε′ =1.0e-07 in Algorithm 2. More detailed numerical results
are shown in Appendix B.

Example 3.6.1. The problem is Example 6.2 in [53], and the data are given as follows. We
modified the matrix HI and M in [53]3.

N = 2, nν = 2 (ν = I, II), m = 2,

HI =

[
3.6 −1.8
−1.8 7.2

]
, HII =

[
7.5 −2.6
−2.6 5.7

]
, GI =

[
1.1 −1.3
−2.4 1.6

]
, GII =

[
−1.2 2.3
1.4 −2.5

]
,

cI =

[
−2.3
−3.2

]
, cII =

[
−2.5
−2.4

]
, AI =

[
3.3 −2.4

]
, AII =

[
−2.5 2.1

]
, bI = −2.8, bII = −7.5,

M =

[
3.6 −1.2
−1.5 2.8

]
, NI =

[
2.1 −1.3
−3.4 2.3

]
, NII =

[
−5.4 1.6
−6.2 2.1

]
, q =

[
1.2
1.6

]
.

Algorithm 1 produced the following solution after 10 iterations:

xI =

[
−0.26175
0.80676

]
, xII =

[
2.69422
−0.36402

]
, yI =

[
7.15349
8.51906

]
, yII =

[
7.15349
8.51906

]
,

and the distance between yI and yII is 1.0372e-06. We found that the solution already satisfies
the KKT conditions for each leader’s MPCC and hence an accurate solution was obtained
without using Algorithm 2 in this example.

3The authors of [53] have confirmed that there were typos in the matrices HI and M shown there. We use
the correct data in our numerical experiments and obtained almost the same results as those of Table 1 in [53].
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Example 3.6.2. The problem is Example 6.3 in [53] and the data are given as follows:

N = 2, nν = 3 (ν = I, II), m = 3,

HI =

 10.0 3.6 2.7
3.6 12.0 −1.9
2.7 −1.9 15.0

 , HII =

 12.0 −1.2 3.1
−1.2 10.0 2.5
3.1 2.5 8.0

 , GI =

 1.2 0.0 −1.6
1.3 −2.1 0.0
−1.2 1.5 0.3

 ,
GII =

 1.2 0.0 −1.5
1.5 1.4 0.0
−1.2 1.1 −1.4

 , cI =
 −3.6

−2.7
−4.8

 , cII =
 −3.2

−2.4
−4.5

 , AI =

[
1.6 −1.3 −1.2
1.2 −1.7 1.3

]
,

AII =

[
1.3 −1.5 −1.2
1.8 1.2 −1.3

]
, bI =

[
−2.3
−2.7

]
, bII =

[
−1.4
−1.6

]
, M =

 5.6 −1.2 1.5
3.2 7.2 −2.4
−1.8 2.5 6.4

 ,
NI =

 −1.1 0.0 −1.2
1.5 −1.0 −0.3
−1.4 0.0 1.3

 , NII =

 −1.3 0.9 −0.6
−1.4 1.2 0.0
1.5 −0.7 1.4

 , q =
 −3.2

−2.5
−4.8

 .

Algorithm 1 produced the following solution after 6 iterations:

xI =

 −0.71047
0.99977
−0.11371

 , xII =
 −0.55146

0.04696
0.51055

 , yI =
 0.30697

0.54867
0.51239

 , yII =
 0.30697

0.54867
0.51239

 ,
and the distance between yI and yII is 9.2085e-07. We found that the solution already satisfies
the KKT conditions for each leader’s MPCC and hence an accurate solution was obtained
without using Algorithm 2 in this example.

Example 3.6.3. The problem data are the same as in Example 3.6.2, except

cI =

 −3.6
2.7
−4.8

 , cII =
 3.2

−2.4
4.5

 , q =
 −3.2

2.5
−4.8

 .

Algorithm 1 produced the following solution after 16 iterations:

xI =

 −0.70535
1.00460
−0.11212

 , xII =
 −0.53491

0.04466
0.53135

 , yI =
 0.15341

0.00000
0.67569

 , yII =
 0.15345

0.00000
0.67566

 ,
and the distance between yI and yII is 4.6016e-05. Then we proceed to Algorithm 2 and
obtained the following solution after 2 iterations:

xI,∗ =

 −0.70535
1.00460
−0.11212

 , xII,∗ =
 −0.53491

0.04466
0.53135

 , yI,∗ =
 0.15345

0.00000
0.67566

 , yII,∗ =
 0.15345

0.00000
0.67566

 ,
and the distance between y∗,I and y∗,II is 1.1602e-09. We checked the KKT conditions for
each leader’s MPCC and confirmed that the solution is a B-stationary equilibrium.
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Remark 3.6.4. In Examples 3.6.2 and 3.6.3, the solutions reported in [53] are inaccurate.
In our numerical experiments, we obtained more accurate solutions and confirmed that they
are B-stationary equilibrium points of these examples.

Next we consider a multi-L/F game consisting of N leaders and one follower. Leader ν
solves the following optimization problem:

min
xν∈IRnν

1

2
(xν)⊤Hνx

ν +

N∑
ν′=1,ν′ ̸=ν

(xν)⊤Gν,ν′x
ν′ + (xν)⊤Dνy

s.t. Aνx
ν ≤ bν .

(3.23)

On the other hand, the follower solves the following optimization problem:

min
y∈IRm

γ(x, y) :=
1

2
y⊤My + q⊤y −

N∑
ν=1

(xν)⊤Dνy

s.t. c⊤y +
N∑
ν=1

(dν)⊤xν + a ≥ 0.

(3.24)

We reformulate the multi-leader-follower game as the following EPEC.

min
xν∈IRnν ,y∈IRm,λ∈IR

1

2
(xν)⊤Hνx

ν +

N∑
ν′=1,ν′ ̸=ν

(xν)⊤Gν,ν′x
ν′ + (xν)⊤Dνy

s.t. Aνx
ν ≤ bν ,

My + q −
N∑
ν=1

D⊤
ν x

ν − cλ = 0,

0 ≤ λ ⊥ c⊤y +

N∑
ν=1

(dν)⊤xν + a ≥ 0,

where λ ∈ IR is the Lagrange multiplier of the KKT conditions of the follower’s optimization
problem (3.24).

Example 3.6.5. In this example, the data in (3.23) and (3.24) are given by

N = 2, nν = 2 (ν = I, II), m = 3,

HI =

[
2.1 1.2
1.2 2.8

]
, HII =

[
2.7 1.3
1.3 3.6

]
, GI,II =

[
1.8 1.4
1.5 2.7

]
, GII,I =

[
1.3 1.7
2.4 0.3

]
,

DI =

[
2.3 1.4 2.6
1.3 2.1 1.7

]
, DII =

[
2.5 1.9 1.4
1.3 2.4 1.6

]
, AI =

 2.0 0.2
−1.1 1.2
0.4 1.5

 , bI =
 1.8

−0.6
1.4

 ,
AII =

 1.3 0.5
−1.2 2.8
−1.4 −0.3

 , bII
 0.9

−0.9
1.8

 , M =

 2.5 1.8 0.2
1.8 3.6 2.1
0.2 2.1 4.6

 , q =
 1.4

2.6
2.1

 , c =
 −0.7

0.5
1.5

 ,
dI =

[
2.5
2.8

]
, dII =

[
0.7
−1.3

]
, a = −1.3,

where HI, HII,M are positive definite.
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Algorithm 1 produced the following solution after 6 iterations:

xI =

[
0.18728
−0.32833

]
, xII =

[
0.41732
−0.14258

]
,

yI =

 −0.71012
−0.38255
0.64535

 , yII =
 −0.70855

−0.38256
0.64596

 , λI = 2.56077, λII = 2.56094,

and the distance between (yI, λI) and (yII, λII) is 0.0017. Then we proceed to Algorithm 2
and obtained the following solution after 11 iterations:

x∗,I =

[
0.18615
−0.32936

]
, x∗,II =

[
0.41828
−0.14216

]
,

y∗,I =

 −0.71278
−0.38023
0.64692

 , y∗,II =
 −0.71278

−0.38023
0.64692

 , λ∗,I = 2.56838, λ∗,II = 2.56838,

obj. value of leader I : 0.25236, γ(x∗,I, x∗,II, y∗,I) = 1.548565,

obj. value of leader II : −0.54157, γ(x∗,I, x∗,II, y∗,II) = 1.548565,

and the distance between (y∗,I, λ∗,I) and (y∗,II, λ∗,II) is 8.1342e-08. We checked the KKT con-
ditions for each leader’s MPCC and confirmed that the solution is a B-stationary equilibrium
of the multi-L/F game.

Example 3.6.6. In this example, the data in (3.23) and (3.24) are given by

N = 3, nν = 3 (ν = I, II, III), m = 3,

HI =

 2.7 1.6 1.4
1.6 2.7 1.4
1.4 1.4 1.9

 , HII =

 3.0 1.8 1.3
1.8 2.8 1.0
1.3 1.0 3.5

 , HIII =

 3.0 1.6 1.1
1.6 2.5 1.1
1.1 1.1 2.8

 ,
GI,II

 0.4 1.8 1.5
0.8 0.6 1.2
0.5 −0.7 0.8

 , GI,III =

 0.7 −0.9 −0.8
−0.8 1.2 0.3
0.8 −0.6 −0.3

 , GII,I =

 −0.5 1.2 1.4
−1.0 −0.7 −0.7
−0.2 1.4 −0.9

 ,
GII,III =

 0.7 0.4 1.4
−0.3 −0.1 1.6
2.0 0.7 0.1

 , GIII,I =

 0.2 0.2 1.1
−0.4 0.7 −0.9
−0.8 −0.7 1.2

 ,
GIII,II =

 0.7 −0.7 −0.4
1.2 1.2 −0.3
−0.9 −0.6 −0.3

 , DI =

 1.7 0.8 2.0
0.2 0.3 1.3
0.1 2.2 0.6

 , DII =

 2.4 0.9 2.0
1.1 0.5 1.1
2.1 2.0 2.4

 ,
DIII =

 1.4 2.0 1.6
1.2 0.6 1.7
2.3 1.5 1.4

 , AI =

 1.9 0.6 −0.2
0.9 1.8 1.7
0.1 1.6 −1.9

 , bI =
 2.3

1.5
2.2

 ,
AII =

 0.8 −1.8 −0.1
−0.6 −0.2 1.7
1.6 2.3 1.6

 , bII =
 1.0

0.4
2.4

 , AIII =

 1.5 1.1 −1.3
−1.7 1.0 1.6
0.4 0.8 2.4

 ,
bIII =

 2.0
2.8
1.8

 ,M =

 3.3 1.7 1.2
1.7 2.6 1.3
1.2 1.3 3.4

 , l =
 1.7

2.1
1.7

 , A =
[
1.5 1.3 2.8

]
,

dI =

 0.6
1.2
1.5

 , dII =
 0.3

0.7
1.2

 , dIII =
 0.5

1.3
0.5

 , a = 1.4.
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Algorithm 1 produced the following solution after 5 iterations:

xI =

 0.10548
−0.20951
0.18411

 , xII =
 −0.05528

0.08292
0.19299

 , xIII =
 0.10182

0.16997
−0.01800

 ,
yI =

 −0.08013
−0.29607
−0.08449

 , yII =
 −0.08203

−0.29643
−0.08629

 , yIII =
 −0.08191

−0.29343
−0.08845

 ,
λI = 0.00000, λII = 0.00000, λIII = 0.00000,

and the maximum distance between the three points (yI, λI), (yII, λII) and (yIII, λIII) is 0.0051.
Then we proceed to Algorithm 2 and obtained the following solution after 28 iterations:

x∗,I =

 0.09671
−0.18608
0.17755

 , x∗,II =
 −0.05856

0.08488
0.18874

 , x∗,III =
 0.10744

0.15510
−0.00855

 ,
y∗,I =

 −0.08550
−0.29371
−0.08962

 , y∗,II =
 −0.08550

−0.29371
−0.08962

 , x∗,III =
 −0.08550

−0.29371
−0.08962

 ,
λ∗,I = 0.00000, λ∗,II = 0.00000, λ∗,III = 0.00000,

obj. val. of leader I : −0.11683, γ(x∗,I, x∗,−I, y∗,I) = −0.22397,

obj. val. of leader II : −0.14690, γ(x∗,II, x∗,−II, y∗,II) = −0.22397,

obj. val. of leader III : −0.13657, γ(x∗,III, x∗,−III, y∗,III) = −0.22397,

and the maximum distance between (y∗,I, λ∗,I), (y∗,II, λ∗,II) and (y∗,III, λ∗,III) is reduced to
4.4136e-07. We checked the KKT conditions for each leader’s MPCC and confirmed that the
solution is a B-stationary equilibrium point of the multi-L/F game.

Next we consider the electricity model introduced in Section 3.5.

Example 3.6.7. The strategy set Xν in (3.22) is given by Xν := {xν ∈ IRM | 0 ≤ xν ≤ σν}.
The numerical data are found in the first example in [52] as follows:

M(number of nodes) : 2,

σI =

[
1
1

]
, σII =

[
1
1

]
, τ I =

[
1.2
1

]
, τ II =

[
1.3
1.5

]
,

α1 = 1.5, β1 = 0.6, α2 = 1.8, β2 = 0.7,

aI = 1.2, aII = 1.8.

When we set the interventionism parameters as ζ = (0.05, 0.05), we obtained the following
solution after 4 iterations:

xI =

[
0.54065
0.55121

]
, xII =

[
0.64019
0.64516

]
,

yI =


0.59275
0.60725
0.79670
1.00330

 , yII =


0.58504
0.61496
0.80512
0.99488

 , λI = [ 0.12354
0.03017

]
, λII =

[
0.12358
0.02683

]
,
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and the distance between (yI, λI) and (yII, λII) is 0.0929. Note that yν and λν mean the leader
ν’s solutions of shared variables (y, λ). Then we proceed to Algorithm 2 and obtained the
following solution after 7 iterations:

x∗,I =

[
0.54027
0.55168

]
, x∗,II =

[
0.63999
0.64533

]
,

y∗,I =


0.58774
0.61226
0.80285
0.99715

 , y∗,II =


0.58774
0.61226
0.80285
0.99715

 , λ∗,I = [ 0.12356
0.02687

]
, λ∗,II =

[
0.12356
0.02687

]
,

obj. val. of firm I : −0.32800, γ(x∗,I, x∗,−I, y∗,I) = −1.683419,

obj. va. of firm II : −0.57874, γ(x∗,II, x∗,−II, y∗,II) = −1.683419,

and the distance between (y∗,I, λ∗,I) and (y∗,II, λ∗,II) is 1.0795e-05. We checked the KKT
conditions for each firm’s MPCC and confirmed that the solution is a B-stationary point.

Next we observe the ratio of the electric supplies by the two firms yIi : yIIi at each node
i. In this example, the ratio of the total electric supplies is aI : aII = 1 : 1.5. Let yI and
yII denote yI := (yI,∗1 , yI,∗2 ), yII := (yI,∗3 , yI,∗4 ). As Table 3.1 shows, we found that the ratios
yI1 : y

II
1 and yI2 : y

II
2 are getting closer to 1 : 1.5 as ζi, i = 1, 2, increase. The objective function

value of each firm was almost unchanged in these three cases. However, that of ISO was is
increased as the sum of ζi increases.

Table 3.1: Ratio of quantities

ζ (0.05, 0.05) (0.05, 0.5) (0.5, 0.05) (0.5, 0.5)

yI1 : y
II
1 1 : 1.36601 1 : 1.38229 1 : 1.3823 1 : 1.39730

yI2 : y
II
2 1 : 1.62862 1 : 1.61336 1 : 1.6134 1 : 1.59831

3.7 Concluding remarks

In Chapter 3, we proposed a numerical method for solving multi-L/F games based on the
penalty method and the nonlinear diagonalized Gauss–Seidel method. The method consists
of two phases. The first phase of the method may be regarded as the identification of the
active sets in the complementarity constraints, and the second phase is to find more accurate
solutions with the active sets identified in the first phase. We discussed the convergence of
the Gauss–Seidel penalty method to a C-/M-/B-stationary equilibrium point under respec-
tive suitable assumptions. Furthermore, we confirmed the validity of the algorithm through
numerical experiments.
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Chapter 4

Two-stage distributionally robust
noncooperative games: Existence of
Nash equilibrium and its
application to Cournot–Nash
competition

4.1 Introduction

Nash games in stochastic situations, which include random variables in the optimization
problem of each player, have also been extensively studied for both pure and mixed strategies.
It is natural to consider stochastic Nash games in which each player makes multistage decisions
in response to changes in the conditions. For multistage stochastic games played with in finite
action spaces, many approaches have been extensively studied. However, in continuous cases,
because multistage variational inequalities have not been well developed until quite recently,
few studies on variational inequality approaches have been conducted.

The notion of multistage stochastic variational inequalities was first explicitly presented
by Rockafellar and Wets [107]. Rockafellar and Sun [103] then proposed a progressive hedging
algorithm for solving it. The method corresponds to the proximal point algorithm [102] for
maximal monotone problems with a linear transformation. As an advantage of progressive
hedging, its subproblem can be computed in parallel, which drastically reduces the compu-
tational time. Based on their developments, several researchers have extended the idea into
cases with continuously underlying random variables [15–17,61,62]. In [17,61,120,131,132], a
variational inequality approach for two-stage stochastic Nash games was recently described.

Despite these various efforts on Nash games and variational inequalities under uncertainty,
the ambiguity of the probability distributions have been ignored in both single- and multistage
cases. Consider certain cases in which the available data may contain noise, and the number
of sample data from an observation is small. An empirical distribution may be used and the
above mentioned stochastic approaches can be applied. However, is the Nash equilibrium
obtained through such approaches reliable? These questions have motivated researchers to
consider distributionally robust stochastic Nash games, induced by the recent attention paid

53
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Table 4.1: Recent works on distributionally robust Nash games

Finite strategies
(mixed strategies)1

Continuous pure strategies2

One-stage
Qu and Goh [96]
Loizou [78,79]
Peng et al. [94]

Sun and Xu [119]
Liu et al. [77]

Two-stage ————
Li et al. [72] (linear case)

Chen et al. [17] (Cournot competition)
this chapter (nonlinear case)

to distributionally robust optimization (DRO). Here, DRO aims to minimize the worst-case
expected value of a measurable objective function from a set of probability distributions,
called an ambiguity set. This model is supported by decision-making theory, which states
that each player makes a decision based on the maximin criteria. The recent progress made
in distributionally robust Nash games is shown in Table 4.1.

One-stage models have been widely applied in both finite and continuous cases. To our best
knowledge, Qu and Goh [96] were the first to consider the distributional robustness in Nash
stochastic games. Its extensions were then discussed by Loizou [78, 79] and Peng et al. [94],
both of which demonstrated the reformulation into a tractable optimization problem under
specific-structured ambiguity sets. Sun and Xu [119] applied the framework to a continuous
case. Liu et al. [77] then showed the conditions for the existence of Nash equilibrium in
one-stage distributionally robust continuous games. They also demonstrated that some can
be reduced to classic stochastic games in special cases with ambiguity sets.

In comparison with one-stage models, studies on two-stage models are still in their infancy.
Li et al. [72] considered a linear case in which each player solves a two-stage distributionally
robust linear stochastic programming with a Wiesemann–Kuhn–Sim-type ambiguity set [122].
They demonstrated that under the linear decision rule [112], an equilibrium of the game can
be obtained by solving a deterministic conic variational inequality. Note that the linear de-
cision rule is merely an assumption tailored to numerical tractability; thus, particularly in
nonlinear cases, adopting the rule into the games may be more inaccurate than in linear cases
because of the complexity of the decision-making. Chen et al. [17] discussed a two-stage dis-
tributionally robust Cournot–Nash competition based on an “ex-post” equilibrium concept
corresponding to a distribution-free robust Nash equilibrium presented in [2]. However, an
ex-post equilibrium may not exist depending on the ambiguity set even when the two-stage
DRO of each player is “well-posed” in a certain sense, for example, convexity and compact-
ness; hence, it may be occasionally an ill-posed problem when one considers high uncertainty
situations.

Therefore, the motivation of this chapter is to discuss a more general class of two-stage
distributionally robust Nash games and give a more certain definition for the games based on
the concept of Nash equilibria, which is unlike ex-post equilibrium. The contributions of this
chapter are summarized as follows:

1We state that a mixed strategy with a finite strategy set is a probability assignment of taking from a set
of finite pure strategy sets to a polyhedron.

2A case in which each player’s pure strategy set is given by a subset of the Euclidean space as well as their
decision variable takes continuous.
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• We consider a two-stage (nonlinear) distributionally robust Nash game. We propose a
definition of an equilibrium concept based on Nash equilibrium under a general setting
and show the existence of an equilibrium point under the continuity, compactness, and
convexity of each player’s optimization.

• As an application, we revisit the two-stage distributionally robust Cournot–Nash compe-
tition introduced in [17] and show the existence of an equilibrium based on the definition
of Nash equilibrium.

• We conduct a numerical experiment on the Cournot–Nash competition and investigate
how distributional robustness affects the two-stage decisions of each player.

This chapter is organized as follows. In Section 4.2, we introduce the model and define a
two-stage distributionally robust Nash equilibrium. Then we present the conditions for the
existence of the equilibria. In Section 4.3, we consider a reformulation of the game into a
variational inequality for analysis and for the construction of solution methods. In Section 4.4,
we introduce a two-stage distributionally robust Cournot–Nash competition as an application
of the game and provide the conditions for the existence of equilibrium in an economic sense.
In Section 4.5, we report the results of some numerical experiments conducted to illustrate
how distributional robustness affects the decision-making of each player. In Section 4.6, we
provide some concluding remarks.

4.2 Two-stage distributionally robust Nash games and the ex-
istence of Nash equilibrium

In Section 1.1 we briefly introduced the two-stage stochastic and distributionally robust Nash
games. Again we explain the model in more detail, and then we present sufficient conditions
under which the equilibrium point exists.

4.2.1 Model and definition of Nash equilibrium

Let ξ : Ω → Ξ ⊂ IRt be a random vector and P(Ξ) := {P | P (Ξ) = 1, P (·) ≥ 0} be a set
of any probability measures supported over Ξ, which is equipped with the measurable space
(Ξ,B(Ξ)).

We describe the N -person two-stage stochastic Nash game considered in this chapter.
Hereafter, we use the following notations regarding player ν ∈ {1, . . . , N}:

• xν ∈ IRnν , yν : Ξ → IRmν : first- (here-and-now) and second-stage (wait-and-see) strate-
gies of player ν, respectively;

• Xν ⊂ IRnν , Y ν : Xν × Ξ ⇒ IRmν : first- and second-stage strategy sets of player ν,
respectively;

• θν : IR
n → IR, γν : IR

m × IRn × Ξ → IR: first- and second-stage cost functions of player
ν, respectively;

• Yν := {yν(·) | yν(·) ∈ Y ν(xν , ·) ∀xν ∈ Xν}: a set of all functions from Ξ to Y ν(xν , ξ) ⊂
IRmν for all xν ∈ Xν ;
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Here, n :=
∑N

ν=1 nν andm :=
∑N

ν=1mν are the sums of the dimensions for all players’ strategy
vectors at the first and second stages, respectively, and X := ΠN

ν=1X
ν and Y := ΠN

ν=1Yν are
the Cartesian products of Xν and Yν , ν = 1, . . . , N .

We suppose that player ν minimizes θν at the first stage and then minimizes γν at the
second stage where ξ ∈ Ξ is observed.

Player ν solves the following optimization problem at ξ ∈ Ξ of the second stage:

Qν(x
ν , x−ν , ξ) := min

yν(ξ)∈IRmν
γν(y

ν(ξ), y−ν(ξ), xν , x−ν , ξ)

s.t. yν(ξ) ∈ Y ν(xν , ξ),
(4.1)

where y−ν(ξ) ∈ IRm−mν indicates the other rival players’ strategies. We call Qν(·, ·, ξ) :
IRn → IR a recourse function or an optimal value function at ξ ∈ Ξ. We also suppose that
player ν does not know which of the scenarios will occur when choosing xν . Thus, the player
tries to minimize the expected value E[Qν(x

ν , x−ν , ξ)] of the recourse function Qν(x
ν , x−ν , ξ)

before observing ξ ∈ Ξ under a probability distribution.

However, our highest interest is for a case in which each player does not have strong con-
fidence in the probability distribution (e.g., because of a lack of sample data to determine the
distribution). Hence, we consider that they make their decisions based on the DRO frame-
work, namely, the maximin criterion. That is, player ν minimizes supP∈Pν EP [Qν(x

ν , x−ν , ξ)],
where Pν ⊂ P denotes an ambiguity set or a collection of probability distributions from the
observed data. We assume that the probability distribution of ξ is independent of all players’
decisions.

Consequently, the two-stage distributionally robust optimization (DRO) of player ν in the
first stage is formulated as

min
xν∈IRnν

Θν(x
ν , x−ν) := {θν(xν , x−ν) + sup

P∈Pν
EP [Qν(x

ν , x−ν , ξ)]}

s.t. xν ∈ Xν ,
(4.2)

where x−ν ∈ IRn−nν is a tuple of the other rival players’ strategies.

Note that when Pν is a singleton, (4.2) reduces to a two-stage stochastic programming
problem [93]. Moreover, when Pν = P(Ξ), and Ξ is compact, the model (4.2) coincides
with the two-stage (distribution-free) robust optimization since EP [f(ξ)] ≤ maxξ∈Ξ f(ξ) for
any P and measurable functions f . Thus, the distributionally robust framework may also be
regarded as a generalization of stochastic/robust approaches. In addition, Li et al. [72] dealt
with a case in which θν and γν are linear with respect to player ν’s decision variable, and Xν

and Y ν(xν , ξ) are the sets of linear constraints, which means our model is a generalization of
theirs.

We consider an equilibrium of the game consisting of (4.2), ν = 1, . . . , N .

Definition 4.2.1. The point (x∗, y∗(·)) ∈ X ×Y is the simultaneous strategy of the first and
second stages, respectively, and is called a two-stage distributionally robust Nash equilibrium
(TSDRNE) if and only if the following conditions hold for all ν ∈ {1, . . . , N}:

x∗,ν ∈ arg min
xν∈Xν

Θν(x
ν , x∗,−ν),

y∗,ν(ξ) ∈ arg min
yν(ξ)∈Y ν(x∗,ν ,ξ)

γν(y
ν(ξ), y∗,−ν(ξ), x∗,ν , x∗,−ν , ξ) ∀ξ ∈ Ξ.

(4.3)

(4.4)
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Note that a similar definition of equilibria is found in Zhang et al. [130, Definition 2.7].
However, under a first-stage condition (4.3), we consider the distributional robustness in Θν .

When two-stage DRO (4.2) is linear for all ν, Li et al. [72] reformulate the two-stage
distributionally robust Nash games into a deterministic variational inequality. The authors
showed that the solution to the variational inequality satisfies (4.3) and (4.4), although they
did not explicitly introduce the above definition.

4.2.2 Existence of two-stage Nash equilibrium

We provide some assumptions for the existence of a TSDRNE.

Assumption 4.2.2. The following assertions hold for all ν ∈ {1, . . . , N}:

(a) The function θν is continuous, and θν(·, x−ν) is convex for each fixed x−ν ;

(b) The feasible set Xν ⊂ IRnν is compact and convex;

(c) The ambiguity set Pν is weakly compact3;

(d) The function γν is continuous, and γν(·, y−ν(ξ), ·, x−ν , ξ) is jointly convex, i.e., γν is
convex with respect to (xν , yν(ξ)), for each fixed x−ν , y−ν(ξ) and ξ ∈ Ξ;

(e) Y ν : Xν × Ξ ⇒ IRmν is continuous, and Y ν(xν , ξ) is nonempty (namely, is a relatively
complete recourse), compact, and convex for every (xν , ξ) ∈ Xν × Ξ.

Remark 4.2.1. The convexity of Qν(·, x−ν , ξ) is stated from Theorem 34 by Birge and Lou-
veaux [11] when the following feasible set Y ν(xν , ξ) is convex for any xν ∈ Xν and ξ ∈ Ξ:

Y ν(xν , ξ) :=

{
yν(ξ) ∈ IRmν

∣∣∣∣∣ gνi (yν(ξ), xν , ξ) ≤ 0, i = 1, . . . , r′ν ,

gνi (y
ν(ξ), xν , ξ) = 0, i = r′ν + 1, . . . , rν .

}
.

where gνi (·, ·, ξ), i = 1, . . . , rν , are continuous. The convexity of Y ν(xν , ξ) is guaranteed if
the functions gνi (·, ·, ξ), i = 1, . . . , r′ν , are jointly convex and gνi (·, ·, ξ), ν = r′ν + 1, . . . , rν , are
affine with respect to (yν(ξ), xν).

For one-stage distributionally robust games, Liu et al. [77] do not assume the convexity
of Xν but only its compactness. However, as we can see in the following lemma, the two-
stage model also requires the convexity of Xν to ensure the convexity of the recourse function
Qν(·, x−ν , ξ).

Lemma 4.2.3. Suppose that Assumption 4.2.2 holds. Then the recourse function Qν(·, ·, ξ)
is continuous, and Qν(·, x−ν , ξ) is convex with respect to xν for every fixed x−ν and ξ ∈ Ξ.

Proof. It suffices to show the above assertion for a specific case in which player ν’s two-stage
DRO is independent of the other rival players’ strategies; hence, we omit label ν and a tuple
of rival players’ strategies x−ν and y−ν(ξ).

By Assumptions 4.2.2-(d) and (e), the continuity of the recourse function Q holds.
Next, we show the convexity of Q(·, ξ) for each fixed ξ ∈ Ξ. Let us define S(ξ) := Y (ξ)×X,

where Y (ξ) := {y(ξ) | y(ξ) ∈ Y (x, ξ) ∀x ∈ X}, and S(ξ) is convex for any ξ ∈ Ξ by

3We state a space A is weakly compact if and only if every sequence {Pi} ⊂ A contains a subsequence
{Pi′} and P ∗ ∈ A such that Pi′ weakly converges to P ∗.
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Assumptions 4.2.2-(b) and (e). Suppose that y1(ξ) ∈ Y (x1, ξ) and y2(ξ) ∈ Y (x2, ξ) are
optimal solutions to the second stage problem for fixed x1 ∈ X and x2 ∈ X, respectively. For
any α ∈ (0, 1), let (y′(ξ), x′) = α(y1(ξ), x1)+ (1−α)(y2(ξ), x2), and thus (y′(ξ), x′) ∈ S(ξ) by
the convexity of S(ξ). It follows from the joint convexity of γ in Assumption 4.2.2-(d) that

Q(x′, ξ) ≤ γ(y′(ξ), x′, ξ) ≤αγ(y1(ξ), x1, ξ) + (1− α)γ(y2(ξ), x2, ξ) =

αQ(x1, ξ) + (1− α)Q(x2, ξ).

Therefore, we have completed the proof.

Combining the continuity of Qν by Lemma 4.2.3 and the relatively complete recourse
(Assumption 4.2.2-(e)), EP [Qν(x

ν , x−ν , ξ)] is also continuous and bounded for any x ∈ X
and P ∈ Pν . Thus, by the weak compactness of Pν (Assumption 4.2.2-(c)), there exists
P ∈ Pν that achieves the maximum value of EP [Qν(x

ν , x−ν , ξ)] for any x ∈ X. Moreover,
by the convexity of Qν(·, x−ν , ξ) from Lemma 4.2.3 and θν(·, x−ν) from Assumption 4.2.2-(a),
we can easily show the convexity of Θν(·, x−ν), which is stated as follows.

Lemma 4.2.4. Suppose that Assumption 4.2.2 holds. Then the objective function Θν in (4.2)
is continuous and convex with respect to xν ∈ Xν for any x−ν .

We now show the existence of TSDRNE points under Assumption 4.2.2.

Theorem 4.2.5. Suppose that Assumption 4.2.2 holds. Then the two-stage distributionally
robust Nash equilibrium (x∗, y∗(·)) ∈ X × Y exists.

Proof. Lemma 4.2.4 states the continuity of Θν and convexity of Θν(·, x−ν) for each fixed
x−ν . By Assumption 4.2.2-(b) and using Proposition 2.2.3, a Nash equilibrium x∗ ∈ X that
satisfies (4.3) exists.

The existence of the second stage Nash equilibrium y∗(ξ) can be likewise shown. By
Assumptions 4.2.2-(d), (e), and using Proposition 2.2.3, there exists a Nash equilibrium y∗(ξ),
and the assertion holds for each fixed ξ ∈ Ξ, thus implying (4.4). Therefore, the proof is
complete.

4.3 Two-stage distributionally robust variational inequality
under discrete probability distributions

This section presents a variational inequality reformulation for the condition of the TSDRNE
stated in Definition 4.2.1.

Hereafter, we consider discrete probability cases, where the support set is given by Ξ :=
{ξ1, . . . , ξK}, and the probability of ξk for player ν is represented by P ν(ξk). Let P ν :=
(P ν(ξ1), . . . , P

ν(ξK)) ∈ IRK and P := (P 1, . . . , PN ) ∈ IRNK . We also denote ∆ := {p ∈
IRK |

∑K
k=1 pk = 1, p ≥ 0} as the polyhedron of the probabilities supported on Ξ, and

P := ΠN
ν=1P

ν is the Cartesian product of Pν , ν = 1, . . . , N .

First, we give the definition of a two-stage distributionally robust variational inequality,
which is inspired by the one-stage version by Sun et al. [118].

Definition 4.3.1. Let Pν ⊂ ∆, ν = 1, . . . , N be convex ambiguity sets supported on Ξ. Sup-
pose that X ⊂ IRn is a nonempty closed convex set and that Y (ξ) ⊂ IRm is also a nonempty
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closed convex set for each fixed ξ ∈ Ξ. A two-stage distributionally robust variational in-
equality (TSDRVI) is to find a pair (x∗, y∗(·)) ∈ X ×Y and P ∗ ∈ P satisfying the following
inclusions:

0 ∈ EP ∗ [F (x∗, y∗(ξ), ξ)] +NX(x∗),

0 ∈ G(x∗, y∗(ξ), ξ) +NY (ξ)(y
∗(ξ)) ∀ξ ∈ Ξ,

P ∗,ν ∈ arg max
P∈Pν

EP [fν(x
∗,ν , x∗,−ν , ξ)], ν = 1, . . . , N,

(4.5)

(4.6)

(4.7)

where F : IRn × IRm ×Ξ → IRn, G : IRn × IRm ×Ξ → IRm, fν : IR
nν ×Ξ → IR, and NX(x) :=

{z ∈ IRn | ⟨z, w − x⟩ ≤ 0 ∀w ∈ X} denotes a normal cone of X at x ∈ X. The expectation
operator EP [F (x, y(ξ), ξ)] is defined as

EP [F (x, y(ξ), ξ)] := (EP 1 [F1(x, y(ξ), ξ)], . . . ,EPN [FN (x, y(ξ), ξ)]) ,

where EP ν [Fν(x, y(ξ), ξ)] :=
∑

k P
ν(ξk) · Fν(x, y(ξk), ξk) and Fν := IRn × IRm × Ξ → IRnν .

When the ambiguity set Pν is a singleton for all ν, the above TSDRVI reduces to two-
stage stochastic variational inequalities [107,120].

Note that for a variational inequality 0 ∈ F̂ (x) +NX(x), when X is given by the nonneg-
ative orthant IRn

+, the inclusion reduces to the complementarity 0 ≤ x ⊥ F̂ (x) ≥ 0, which
suggests that the class of variational inequalities includes complementarity problems.

Remark 4.3.1. Chen et al. [17] considered a two-stage distributionally robust linear comple-
mentarity problem in the following form:

0 ≤ x ⊥ Ax+ EP [B(ξ)y(ξ)] + q1 ≥ 0 ∀P ∈ P,

0 ≤ y(ξ) ⊥M(ξ)y(ξ) +N(ξ)x+ q2(ξ) ≥ 0 for P–almost every ξ ∈ Ξ,

(4.8)

(4.9)

where A ∈ IRn×n, q1 ∈ IRn, B : IRt → IRn×m,M : IRt → IRm×m, N : IRt → IRn×m and
q2 : IR

t → IRm are continuous matrix/vector-valued mappings. When X = IRn
+ and Y (ξ) ≡

IRm
+ for all ξ ∈ Ξ in (4.5) and (4.6), the difference between TSDRVI (4.5)–(4.7) and (4.8)–

(4.9) is based on whether the solution x ∈ IRn
+ to the first stage variational inequality (or

the linear complementarity problem) depends on the probability distributions. In addition, we
should emphasize that the solution to (4.8) and (4.9), called an ‘ex-post’ equilibrium, is also
the solution to TSDRVI (4.5)–(4.6). However, the converse does not hold in general. This
suggests that the notion of TSDRVI (4.5)–(4.7) is weaker than that of the ex-post equilibrium
formulation (4.8)-(4.9), which is shown in Appendix C.

We now show the main assertion of this section.

Theorem 4.3.2. Suppose that Assumption 4.2.2 holds and that Pν ⊂ ∆ is convex and
compact for all ν. The tuple (x∗, y∗(·)) is a TSDRNE if and only if there exists P ∗ ∈ P such
that (x∗, y∗(·)) satisfies the following TSDRVI:

0 ∈ Fθ(x
∗) + EP ∗ [v(x∗, ξ)] +NX(x∗),

0 ∈ G(x∗, y∗(ξ), ξ) +NY (x∗,ξ)(y
∗(ξ)) ∀ξ ∈ Ξ,

P ∗,ν ∈ arg max
P∈Pν

EP [Qν(x
∗,ν , x∗,−ν , ξ)], ν = 1, . . . , N,

(4.10)

(4.11)

(4.12)
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where
Fθ(x) := [∇xνθν(x

ν , x−ν)]Nν=1,

v(x, ξ) ∈ ∂x1Q1(x
1, x−1, ξ)× · · · × ∂xNQN (xN , x−N , ξ) ⊂ IRn,

G(x, y(ξ), ξ) := [∇yν(ξ)γν(y
ν(ξ), y−ν(ξ), xν , x−ν , ξ)]Nν=1,

Y (x, ξ) := ΠN
ν=1Y

ν(xν , ξ).

Proof. We first show the ‘only if’ part. Let (x∗, y∗(·)) be a TSDRNE. By the compactness
of Pν , for all ν ∈ {1, . . . , N}, there exists a probability vector P ∗,ν ∈ Pν that achieves the
maximum of EP [Qν(x

∗,ν , x∗,−ν , ξ)].

Now, we focus on the νth two-stage DRO, that is, problem (4.2) and the right-hand side
of (4.1). Since (x∗,ν , y∗,ν(·)) is the global optimal solution to (4.2), we have

0 ∈ ∇xνθν(x
∗,ν , x∗,−ν) + ∂xνEP ∗,ν [Qν(x

∗,ν , x∗,−ν , ξ)] +NXν (x∗,ν),

0 ∈ ∇yν(ξ)γν(y
∗,ν(ξ), y∗,−ν(ξ), x∗,ν , x∗,−ν , ξ) +NY ν(x∗,ν ,ξ)(y

∗,ν(ξ)) ∀ξ ∈ Ξ,

P ∗,ν ∈ arg max
P∈Pν

EP [Qν(x
∗,ν , x∗,−ν , ξ)].

(4.13)

(4.14)

(4.15)

Since Qν(·, x−ν , ξ) is convex from Lemma 4.2.3, it is Clarke regular [21, Definition 2.3.4]. It
then follows from [21, Corollary 3 (p.40)] that, for all P ν ∈ Pν ,

∂xνEP ν [Qν(x
∗,ν , x∗,−ν , ξ)] = EP ν [∂xνQν(x

∗,ν , x∗,−ν , ξ)].

Hence, (4.13) implies that there exists vν(x∗,ν , x∗,−ν , ξ) ∈ ∂xνQν(x
∗,ν , x∗,−ν , ξ) such that

0 ∈ ∇xνθν(x
∗,ν , x∗,−ν) + EP ∗,ν [vν(x∗,ν , x∗,−ν , ξ)] +NXν (x∗,ν). (4.16)

It then follows from (4.16), (4.14), and (4.15) that (4.10)–(4.12) holds. This completes the
proof of the ‘only if’ part.

Next, we show the ‘if’ part. Suppose that there exists (x∗, y∗(·)) and P ∗ ∈ P that satisfy
TSDRVI (4.10)–(4.12). In the first-stage variational inequality (4.10), by the definition of
the normal cone, (4.10) implies (4.16) for all ν. Since first-stage problem (4.2) is convex
by Assumption 4.2.2-(b), (4.16) is the necessary and sufficient condition for the optimality
of player ν’s first-stage optimization (4.2). Then, x∗ ∈ X satisfies condition (4.3) of the
first-stage Nash equilibrium. Likewise, we can show that y∗(ξ) satisfies condition (4.4) of
the second-stage Nash equilibrium for every ξ ∈ Ξ. Therefore, (x∗, y∗(·)) is a TSDRNE. The
proof is completed.

The calculation of ∂Qν depends on the properties of the second-stage optimization problem
in practice, which is beyond the scope of this thesis to mention a general approach to obtain
an explicit form for ∂Qν ; for example, see Ralph and Xu [99], and Bonnans and Shapiro [12]
for advanced discussions. Meanwhile, as we will see in Section 4.4, an explicit form for ∂Qν

is given under specific assumptions.

Unfortunately, solution methods for solving two-stage stochastic variational inequalities
under a distributional ambiguity have yet to be established. However, a TSDRNE can be
obtained using recent results on two-stage stochastic variational inequalities. For such an
example, we will present the progressive hedging algorithm [103] in Section 4.5.1 for the
numerical experiments.
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4.4 Application to Cournot–Nash competition

In this section, we consider a two-stage distributionally robust Cournot–Nash competition in
an oligopoly market and investigate the conditions for the existence of market equilibria in
an economic sense.

First, let us distinguish conventional works from our study relating to two-stage Cournot–
Nash competitions under uncertainty. The most similar two-stage distributionally robust
Cournot–Nash competition was analyzed by Chen et al. [17] from the viewpoint of an ex-post
equilibrium, i.e., the solution to (4.8) and (4.9) as shown in Remark 4.3.1. However, they do
not provide the sufficient conditions for the existence of a solution satisfying (4.8) and (4.9).
Also note that another similar two-stage stochastic Cournot–Nash competition under which
the probability distribution is exactly known was developed by Zhang et al. [130] and Xu et
al. [123]. The authors introduced a class of stochastic equilibrium problems with equilibrium
constraints (SEPEC) to analyze the competition and find market equilibria. However, solving
SEPECs has some numerical difficulties, such as nonconvexity and nonmonotonicity, and
hence it is difficult to find a global Nash equilibrium in general. In addition, an SEPEC
approach requires the second-stage problem to have a unique solution for any given first-
stage variables and ξ ∈ Ξ in practice. As seen later, we do not need such uniqueness of the
second-stage equilibrium for our model.

Next we provide an example of two-stage stochastic Cournot–Nash competitions in real-
world applications. Consider an oligopoly market of N firms who compete in investing and
supplying homogeneous products, e.g., crude oil, steel, and some other resources whose qual-
ities are independent of producers. For example, in a crude oil market, the majority of the
world’s crude oil is supplied by a few large oil exporting countries and they are viewed col-
lectively as a finite number of large agents from which price-taking consumers purchase the
product at the same price [61]. Jiang et al. [61] investigated the crude oil market through
a two-stage stochastic Cournot–Nash competition model. In the model, each major oil-
producing country takes action in every term (e.g., daily, weekly, and monthly) on how much
oil to produce and supply. Finally, they found that the stochastic Cournot–Nash competi-
tion model is suitable to reproduce, predict, and potentially capable to explain stable market
shares of crude oil through numerical experiments.

We now move on to our model. In the first stage, firm ν determines the upper capacity
xν ≥ 0 of the product without certain information regarding the market demand in the future,
and the investment cost of firm ν for the capacity is defined by θν(x

ν). In the second stage,
firm ν decides how much the products to supply to the market, not to exceed xν , which
denotes yν(ξ) ∈ [0, xν ]. Here, suppose that the future demand is only characterized by an
inverse demand function p(q(ξ), ξ), where q(ξ) :=

∑N
ν=1 y

ν(ξ) is the aggregate quantity of
products in the market under scenario ξ ∈ Ξ. Firm ν ∈ {1, . . . , N} tries to maximize the
following worst-case expected profit from the ambiguity set Pν :

max
xν∈IR

Θν(x
ν) := { min

P∈Pν
EP [Qν(x

ν , ξ)]− θν(x
ν)}

s.t. xν ≥ 0,
(4.17)

where Qν(x
ν , ξ) is the optimal value of the profit maximization under scenario ξ ∈ Ξ:

max
yν(ξ)∈IR

p(q(ξ), ξ)yν(ξ)−Hν(y
ν(ξ), ξ)

s.t. 0 ≤ yν(ξ) ≤ xν ,
(4.18)
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where Hν(y
ν(ξ), ξ) is the cost of supplying the product to the market.

Following Xu [123], we now make certain assumptions to ensure the convexity of the
problems.

Assumption 4.4.1. For all ν, θν(x
ν) and Hν(y

ν(ξ), ξ) are twice continuously differentiable
with respect to xν and yν(ξ), respectively, and

θ′ν(x
ν) ≥ 0, θ′′ν(x

ν) ≥ 0 for xν ≥ 0,

H ′
ν(y

ν(ξ), ξ) ≥ 0, H ′′
ν (y

ν(ξ), ξ) ≥ 0 for yν(ξ) ≥ 0 and ξ ∈ Ξ.

Assumption 4.4.2. The inverse demand function p(q(ξ), ξ) satisfies the following conditions:

(a) p(q(ξ), ξ) is twice continuously differentiable in q(ξ) and p′q(q(ξ), ξ) < 0 for q(ξ) ≥ 0
and ξ ∈ Ξ;

(b) p′q(q(ξ), ξ) + q(ξ)p′′qq(q(ξ), ξ) ≤ 0 for q(ξ) ≥ 0 and ξ ∈ Ξ.

Assumptions 4.4.1 and 4.4.2–(a) indicate the monotonicity of the investment/supply cost
functions and inverse demand functions, respectively. To explain the meanings of Assumption
4.4.2–(b), consider a monopoly market with an extraneous supply q̄ ≥ 0. If the monopoly’s
output is q(ξ), then its revenue at demand scenario ξ is q(ξ)p(q(ξ) + q̄, ξ). The marginal
revenue is p(q(ξ) + q̄, ξ) + q(ξ)p′q(q(ξ) + q̄, ξ). The rate of change of this marginal revenue
with respect to the increase in the extraneous supply q̄ is p′q(q(ξ)+ q̄, ξ)+ q(ξ)p

′′
qq(q(ξ)+ q̄, ξ).

Assumption 4.4.2–(b) implies that this rate is not positive when q̄ = 0 for any ξ ∈ Ξ. In
other words, any extraneous supply will potentially reduce the monopoly’s marginal revenue
in any demand scenario; see Sherali et al. [113] for a similar explanation for a deterministic
leader–followers’ market.

Under the above assumptions, Xu [123] established the following result.

Proposition 4.4.3 (Xu [123, Proposition 2.4]). Suppose that Assumption 4.4.2 holds. Then
the following assertions hold: For a fixed q̄ ≥ 0,

i. p′q(q(ξ) + q̄, ξ) + qp′′qq(q(ξ) + q̄, ξ) ≤ 0 for q(ξ) ≥ 0 and ξ ∈ Ξ;

ii. q(ξ)p(q(ξ) + q̄, ξ) is strictly concave in q(ξ) for q(ξ) ≥ 0 and ξ ∈ Ξ.

Using the above results, it is easy to see that the first- and second-stage optimization
problems of firm ν are convex with respect to xν and yν(ξ) for ξ ∈ Ξ, respectively (i.e., the
objective functions and strategy sets at each stage are concave and convex, respectively).

Under convexity Assumptions 4.4.1 and 4.4.2, the necessary and sufficient condition for
the optimality of problem (4.17) of firm ν is written as

0 ∈ θ′ν(x
ν)− EP ν [∂xνQν(x

ν , ξ)] +N[0,∞)(x
ν),

0 ≤ yν(ξ) ⊥ H ′
ν(y

ν(ξ), ξ)− p(q(ξ), ξ)

− p′q(q(ξ), ξ))y
ν(ξ) + λν(ξ) ≥ 0 ∀ξ ∈ Ξ,

0 ≤ λν(ξ) ⊥ xν − yν(ξ) ≥ 0 ∀ξ ∈ Ξ,

P ν ∈ arg min
P∈Pν

EP [Qν(x
ν , ξ)],

(4.19)

(4.20)

(4.21)

(4.22)
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where λν(ξ) is the Lagrange multiplier for yν(ξ) ≤ xν . By the result of [17], ∂xνQν(x
ν , ξ) is

calculated as

∂xνQν(x
ν , ξ) =

{
λν(ξ) if xν > 0,
{λν(ξ) | λν(ξ) ≥ [p(q(ξ), ξ)−H ′

ν(0, ξ)]+} if xν = 0.

Note that when xν > 0, λν(ξ) uniquely exists from the linear independence constraint quali-
fication of problem (4.18).

Summarizing both cases finally yields the following two-stage distributionally robust vari-
ational inequality:

0 ≤ xν ⊥ θ′ν(x
ν)− EP [λ

ν(ξ)] ≥ 0,

0 ≤ yν(ξ) ⊥ H ′
ν(y

ν(ξ), ξ)− p(q(ξ), ξ)−
p′yν (q(ξ), ξ))y

ν(ξ) + λν(ξ) ≥ 0 ∀ξ ∈ Ξ,

0 ≤ λν(ξ) ⊥ xν − yν(ξ) ≥ 0 ∀ξ ∈ Ξ,

P ν ∈ arg min
P∈Pν

EP [Qν(x
ν , ξ)].

(4.23)

(4.24)

(4.25)

(4.26)

Using the variational inequality reformulation above, we can state the following condition
for the nontriviality of xν in the competition.

Proposition 4.4.4. For firm ν, if the following inequality holds, then xν > 0.

θ′ν(0) < EP [p(q
−ν(ξ), ξ)−H ′

ν(0, ξ)] ∀P ∈ Pν , (4.27)

where q−ν(ξ) :=
∑N

ν′ ̸=ν y
ν′(ξ).

Proof. We show by contradiction: Assume that xν = 0. The optimality condition for two-
stage DRO of firm ν is written as (4.23)–(4.26). By the assumption of xν = 0, we have
yν(ξ) ≡ 0 for all ξ ∈ Ξ, and then we can reduce (4.23)–(4.25) to

θ′ν(0)− EP [λ
ν(ξ)] ≥ 0,

λν(ξ) ≥ [p(q−ν(ξ), ξ)−H ′
ν(0, ξ)]+ ∀ξ ∈ Ξ.

(4.28)

It follows from the second inequality that

EP [λ
ν(ξ)] ≥ EP [p(q

−ν(ξ), ξ)−H ′
ν(0, ξ)] ∀P ∈ Pν .

Hence, the above inequality, (4.28), and (4.27) yield

0 ≤ θ′ν(0)− EP [λ
ν(ξ)] ≤ θ′ν(0)− EP [p(q

−ν(ξ), ξ)−H ′
ν(0, ξ)] < 0 ∀P ∈ Pν .

This is a contradiction, and hence the proof is complete.

Proposition 4.4.4 indicates that if the worst-case expected marginal profit of firm ν at
xν = 0 (yν(ξ) ≡ 0 for all ξ ∈ Ξ) is greater than the first-stage marginal cost, the firm has an
incentive to invest at least a small number of products.

To ensure the existence of a TSDRNE in the Cournot–Nash competition, we need the
following extra assumption.
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Assumption 4.4.5. For all ν, there exists x̄ν ≥ 0 and P ν ∈ Pν such that

EP ν [p(yν(ξ), ξ)] < θ′ν(x
ν) for xν ≥ x̄ν (0 ≤ yν(ξ) ≤ xν ∀ξ ∈ Ξ), (4.29)

where P ν ∈ argminP∈Pν EP [Qν(x
ν , ξ)].

The above assumption suggests that (even if firm ν monopolized the market) the marginal
cost exceeds the expected market price under the worst-case probability for a certain xν ≥ x̄ν .
In practice, Assumption 4.4.5 is not special when the law of increasing marginal costs holds
in the market.

We now show the existence of the market equilibrium.

Theorem 4.4.6. Suppose that Assumptions 4.4.1, 4.4.2, and 4.4.5 hold. Then a TSDRNE
of the Cournot–Nash competition exists.

Proof. Note that this game satisfies Assumption 4.2.2 except for the compactness of the first-
stage constraint set of each firm. If the set is compact, then a TSDRNE of the competition
exists from Theorem 4.2.5. Thus, it suffices to show that there exists a finite numberMν such
that

sup
xν≥0

Θν(x
ν) = max

0≤xν≤Mν

Θν(x
ν).

Consider optimality condition (4.23)–(4.26). By Assumptions 4.4.1 and 4.4.2, we have

[p′q(q(ξ), ξ)y
ν(ξ) + p(q(ξ), ξ)−H ′

ν(y
ν(ξ), ξ)]+ ≤ p(q(ξ), ξ)

≤ p(yν(ξ), ξ) ∀ξ ∈ Ξ,

where the last inequality holds from the monotonicity of p(·, ξ) for all ξ ∈ Ξ. Then the
above inequalities also hold regarding their expected values under the probability distribution
P ν ∈ argminP∈Pν EP [Qν(x

ν , ξ)].
Now we can take λν(ξ) = [p′q(q(ξ), ξ)y

ν(ξ)+p(q(ξ), ξ)−H ′
ν(y

ν(ξ), ξ)]+ for all ξ ∈ Ξ because
the solution of second-stage TSDRVI (4.24)–(4.25) is λν(ξ) ≥ [p′q(q(ξ), ξ)y

ν(ξ) + p(q(ξ), ξ)−
H ′

ν(y
ν(ξ), ξ)]+ ≥ 0, and EP [λ

ν(ξ)] ≤ θ′ν(x
ν) in (4.23). Then it follows from Assumption 4.4.5

that

EP ν [λν(ξ)] ≤ EP ν [p(yν(ξ), ξ)] < θ′ν(x
ν) for xν ≥ x̄ν .

This implies that there exists xν ≤ x̄ν such that the first stage optimality (4.23) holds; that
is,

sup
xν≥0

Θν(x
ν) = max

0≤xν≤x̄ν
Θν(x

ν).

We have thus completed the proof.

Roughly speaking, Theorem 4.4.6 means that under the law of increasing marginal costs
and Assumption 4.4.5 in the market, the firm has no incentive to invest more than x̄ν ; hence,
an equilibrium point exists in the market.

In fact, the result of the existence of a TSDRNE can be easily obtained by assuming
xν ≤ Mν for a large number Mν > 0 in the first stage constraint of firm ν. As a benefit
of the absence of such a capacity limit, the first-stage complementarity condition does not
require an additional Lagrange multiplier for the upper constraint xν ≤ Mν . In addition,
Assumption 4.4.5 is meaningful for analyzing the detailed economic behavior of each firm.
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4.5 Numerical experiments

In this section, we report some results of numerical experiments conducted to investigate
the characteristics of the TSDRNE in the two-stage distributionally robust Cournot–Nash
competition presented in Section 4.4. First, we consider a more specific case and provide a
TSDRVI reformulation of the competition. We then provide a solution method for solving
the TSDRVI. Finally, we report the results of the numerical experiments conducted.

Consider a duopoly market, i.e., N = 2. Recall that each firm competes with each other
to maximize the worst-case expected profit: In the first stage, firm ν ∈ {1, 2} solves

max
xν≥0

{
min
P∈Pν

EP [Qν(x
ν , ξ)]− θν(x

ν)
}
, (4.30)

and the second-stage optimization is defined as

Qν(x
ν , ξ) := max

0≤yν(ξ)≤xν
{p(q(ξ), ξ)yν(ξ)−Hν(y

ν(ξ), ξ)} . (4.31)

In this experiment, the cost functions and inverse demand are given as follows:

θν(x
ν) :=

1

2
aν(x

ν)2 + bνx
ν + cν (aν , bν , cν > 0),

Hν(y
ν(ξ), ξ) :=

1

2
ην(ξ)(y

ν(ξ))2 + ζν(ξ)y
ν(ξ) + sν(ξ)

(ην(ξ), ζν(ξ), sν(ξ) > 0) ∀ξ ∈ Ξ,

p(q(ξ), ξ) := α(ξ)− β(ξ)q(ξ) (α(ξ) > β(ξ) > 0) ∀ξ ∈ Ξ.

Note that Assumptions 4.4.1, 4.4.2, and 4.4.5 hold for this case; hence, a TSDRNE of the
Cournot–Nash competition exists in this competition.

In this thesis, we use a Kullback–Leibler (KL) divergence-based ambiguity set because this
has been widely used in the literature on distributionally robust optimization [56, 63, 76, 77]
as well as the numerical tractability4. Suppose that Ξ consists of K scenarios, i.e., Ξ =
{ξ1, . . . , ξK}. Let the ambiguity set Pν of firm ν be defined as follows:

Pν := {P ∈ ∆ | DKL(P∥P ν
0 ) ≤ ρν}, (4.32)

where ρν ≥ 0, P ν
0 is a nominal (empirical) probability distribution of firm ν, and DKL(P∥P ν

0 )
denotes the KL divergence by

DKL(P∥P ν
0 ) :=

K∑
k=1

P (ξk) · log
(
P (ξk)

P ν
0 (ξk)

)
,

where P (ξk) and P
ν
0 (ξk) are the probabilities when ξ = ξk under the distributions P and P ν

0 ,
respectively, and also Pν is a convex set.

4Besides KL divergence, a distributionally robust optimization with a class of measures called ϕ-divergence
is known to be recast as a convex conic optimization; see Table 3 of Rahimian and Mehrotra [97] for more
detail.
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Since problems (4.30) and (4.31) are convex with respect to xν and yν(ξ), respectively,
the necessary and sufficient optimality conditions of firm ν can be written as follows:

0 ≤ x∗,ν ⊥ aνx
∗,ν + bν − EP ∗,ν [λ∗,ν(ξ)] ≥ 0,

0 ≤ y∗,ν(ξ) ⊥ (ην(ξ) + 2β(ξ))y∗,ν(ξ) + λ∗,ν(ξ)+β(ξ)
∑
ν′ ̸=ν

y∗,ν
′
(ξ)−

α(ξ) + ζν(ξ) ≥ 0 ∀ξ ∈ Ξ,

0 ≤ λ∗,ν(ξ) ⊥ x∗,ν − y∗,ν(ξ) ≥ 0 ∀ξ ∈ Ξ,

P ∗,ν ∈ arg min
P∈Pν

EP [Qν(x
∗,ν , ξ)].

(4.33)

(4.34)

(4.35)

(4.36)

Gathering the systems (4.33)–(4.35) and (4.36) of all firms, the condition for the TSDRNE
can be written as the following TSDRVI:

0 ≤ x∗ ⊥ Ax∗ − EP ∗ [λ∗(ξ)] + b ≥ 0,

0 ≤ y∗(ξ) ⊥ Π(ξ)y∗(ξ) + λ∗(ξ) + r(ξ) ≥ 0 ∀ξ ∈ Ξ,

0 ≤ λ∗(ξ) ⊥ x∗ − y∗(ξ) ≥ 0 ∀ξ ∈ Ξ,

P ∗,ν ∈ arg min
P∈Pν

EP [Qν(x
∗,ν , ξ)], ν = 1, . . . , N.

(4.37)

(4.38)

where

A := diag(a1, a2), b := (b1, b2)
⊤, Π(ξ) := diag(η1(ξ), η2(ξ)) + β(ξ)(I + 11⊤)

1 := (1, 1)⊤ ∈ IR2, r(ξ) := (r1(ξ), r2(ξ)), rν(ξ) := ζν(ξ)− α(ξ), ν = 1, 2.

Note that since each firm’s optimization problem and the ambiguity set Pν are convex,
a solution of TSDRVI (4.37) and (4.38) is a TSDRNE of the Cournot–Nash competition by
Theorem 4.3.2.

4.5.1 Solution method using progressive hedging

Here, an algorithm based on progressive hedging is presented to solve TSDRVI (4.37) and
(4.38).

The progressive hedging algorithm (PHA) for multistage stochastic variational inequalities
was recently developed by Rockafellar and Sun [103] as an extension of [105] for solving mul-
tistage stochastic programming. The benefit of using the PHA is to reduce the computational
complexity by solving the variational inequalities for each scenario ξ ∈ Ξ in parallel.

Preserving the computational efficiency, our idea is to alternately solve (4.37) and (4.38)
because if we fix a probability distribution, the two-stage stochastic variational inequality
(4.37) can be solved by the PHA. The main loop of the proposed method is given in Al-
gorithm 3, and its inner loop is shown in Algorithm 4, where the regularization parameter
σ > 0 determines the performance of the algorithm and depends on numerical instances. In
line 3 of Algorithm 4, it is well known that the subproblem always has a unique solution
regarding (x, y(·), λ(·)) by Theorem 2.3.6 since the mapping of the variational inequality is
strongly monotone by proximal terms. Note that Algorithm 3 has no guarantee of conver-
gence in general, while Algorithm 4 ensures the convergence of sequence generated under the
monotonicity of SVI (4.37) for a fixed probability distribution [103].
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In practice, the sample data ξ used in the algorithm needs to follow a reference probability
distribution which is an empirical distribution in a certain sense; hence, we assume that
the ambiguity set consists of probability distributions that include the reference probability
distribution. We may also suppose that the true probability distribution is included in Pν .

Algorithm 3 Main loop: Solve TSDRVI

Input: (x0, y0(ξ1), . . . , y
0(ξK), λ0(ξ1), . . . , λ

0(ξK)).
Output: (x∗, y∗(ξ1), . . . , y

∗(ξK), λ∗(ξ1), . . . , λ
∗(ξK))

1: Set j = 0, x(j) = x0, y(j)(ξk) = y0(ξk), and λ
(j)(ξk) = λ0(ξk) for all k.

2: For each ν, solve

P ν,(j+1) ∈ arg min
P∈Pν

EP [p(q
(j)(ξ), ξ)yν,(j)(ξ)−Hν(y

ν,(j)(ξ), ξ)],

where q(j)(ξ) :=
∑N

ν=1 y
ν,(j)(ξ).

3: Stop if (x(j), y(j)(ξ1), . . . , y
(j)(ξK), λ(j)(ξ1), . . . , λ

(j)(ξK)) and P (j+1) approximately satis-
fies (4.37) and (4.38).

4: Solve two-stage SVI (4.37) for a fixed P (j+1) using Algorithm 4 and obtain a solution
(x(j+1), y(j+1)(ξ1), . . . , y

(j+1)(ξK), λ(j+1)(ξ1), . . . , λ
(j+1)(ξK)).

5: Set j := j + 1 and go to line 2.

Since the Pν is given in the KL ambiguity set, by utilizing the result [56], the worst-case
probability distribution in line 2 of Algorithm 3 is efficiently computed as follows:

P ν,(j+1)(ξk) := P ν
0 (ξk) ·

g(yν,(j)(ξk), y
−ν,(j)(ξk), α

ν,(j+1))

EP0

[
g(yν,(j)(ξ), y−ν,(j)(ξ), αν,(j+1))

] ∀k, ν = 1, . . . , N,

where
αν,(j+1) := argmin

α≥0

{
α logEP0 [g(y

ν,(j)(ξ), y−ν,(j)(ξ), α)] + αρν

}
,

g(yν(ξ), y−ν(ξ), α) := exp

(
p(q(ξ), ξ)yν(ξ)−Hν(y

ν(ξ), ξ)

α

)
.

Recall that P ν
0 (ξk) denotes the probability when ξ takes ξk under the nominal probability

distribution of firm ν, which is empirically estimated in practice. We adopt the following
stopping criterion for Algorithm 3:

∥min(z,Mz + h)∥2 ≤ ϵ = 1.0× 10−6,

where

M :=


A B1 . . . BK

E D1
...

. . .

E DK

 , h := [b⊤, ĥ⊤1 , . . . , ĥ
⊤
K ]⊤

Bk := [0, −diag(P 1(ξk), P
2(ξk))], E := [0, I]⊤, Dk :=

[
Π(ξk) I
−I 0

]
,

ĥk := (r(ξk)
⊤, 0⊤)⊤, z := (x, y(ξ1), . . . , y(ξK), λ(ξ1), . . . , λ(ξK)).

The tolerance of the inner iteration in Algorithm 4 is 10−8, and the regularization parameter is
set as σ = 0.8. Note that min(z,Mz+h) = 0 is equivalent to two-stage stochastic variational
inequality (4.37) for a fixed probability distribution.
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Algorithm 4 Progressive Hedging Algorithm

Input: (x(j),0, y(j),0(ξ1), . . . , y
(j),0(ξK), λ(j),0(ξ1), . . . , λ

(j),0(ξK)), P (j+1), and w(0)(ξ1), . . . ,
w(0)(ξK) such that

∑
k w

(0)(ξk) = 0.
Output: (x(j+1), y(j+1)(ξ1), . . . , y

(j+1)(ξK), λ(j+1)(ξ1), . . . , λ
(j+1)(ξK))

1: Set ℓ = 0, x(ℓ)(ξk) = x(j),0, y(ℓ)(ξk) = y(j),0(ξk) and λ(ℓ)(ξk) = λ(j),0(ξk) for all k. Let
x(ℓ) := x(j),0.

2: Stop if (x(ℓ), y(ℓ)(ξ1), . . . , y
(ℓ)(ξK), λ(ℓ)(ξ1), . . . , λ

(ℓ)(ξK)) satisfies a stopping criterion.
3: For each scenario ξ ∈ Ξ, obtain a unique solution (x̂(ℓ)(ξ), ŷ(ℓ)(ξ), λ̂(ℓ)(ξ)) to

0 ≤ x(ξ) ⊥ Ax(ξ)− λ(ξ) + b+ w(ℓ)(ξ) + σ(x(ξ)− x(ℓ)(ξ)) ≥ 0

0 ≤ y(ξ) ⊥ Π(ξ)y(ξ) + λ(ξ) + r(ξ) + σ(y(ξ)− y(ℓ)(ξ)) ≥ 0

0 ≤ λ(ξ) ⊥ x(ξ)− y(ξ) + σ(λ(ξ)− λ(ℓ)(ξ)) ≥ 0

4: Let x̄ν,(ℓ+1) :=
∑K

k=1 P
ν,(j+1)(ξk) · x̂ν,(ℓ)(ξk) for ν = 1, 2, and for all k, let

x(ℓ+1)(ξk) := x(ℓ+1) := x̄(ℓ+1), y(ℓ+1)(ξk) := ŷ(ℓ)(ξk), λ
(ℓ+1)(ξk) := λ̂(ℓ)(ξk),

w(ℓ+1)(ξk) := w(ℓ)(ξk) + σ(x̂(ℓ)(ξk)− x̄(ℓ+1))

5: Set ℓ := ℓ+ 1 and go to line 2.

4.5.2 Numerical results

We use the PATH5 solver [27] for MATLAB to obtain the solution to the variational inequal-
ities in line 3 in Algorithm 4, the tolerance of which is 10−9. Throughout this chapter, we
carry out the experiments on a computer with an Intel Xeon 2.10 GHz CPU, 128 GB of RAM,
and 64-bit Windows 10 OS.

We use the following data for the model:

a1 = 0.0874, a2 = 0.1767, b1 = 1.7162, b2 = 1.9021, c1 = 0.5212, c2 = 0.8314,

η1(ξ) = 0.2065 + 0.1ξ1, η2(ξ) = 0.2700 + 0.1ξ1,

ζ1(ξ) = 0.5598 + 0.1ξ1, ζ2(ξ) = 0.9748 + 0.1ξ1,

s1(ξ) = 0.1602 + 0.1ξ1, s2(ξ) = 0.1932 + 0.1ξ1, α(ξ) = 20 + 5ξ1, β(ξ) = 2 + ξ2,

where ξ ∈ Ξ = [−1, 1]3, ξi := −1 + 2ξ0i , i = 1, 2, 3, and the reference probability distribution
of the random variable ξ0 ∈ [0, 1]3 is uniform. The constant of each data except α(ξ) and
β(ξ) is randomly generated so that Assumptions 4.4.1 and 4.4.2 hold, and we verified that the
sequence {(x(j), y(ν)(·), λ(ν)(·), P (ν))}j generated by Algorithm 3 converges in this numerical
case.

We set the sample size K = 60, and ρν , ν = 1, 2, in ambiguity set (4.32) are set as
ρ1 = ρ ≥ 0, ρ2 = 2 − ρ ≥ 0. To avoid a sample dependence of ξ, we conducted 30 trials for
each ρ ∈ {0, 0.1, 0.2, . . . , 2.0} by changing the sample data ξ during each trial and plotting
the average results.

The numerical results are shown in Figures 4.1a–4.1d. Figures 4.1a and 4.1b represent
the profit and strategy (x∗,ν , ȳ∗,ν) for each player, respectively, where ȳ∗,ν := (y∗,ν(ξ1)+ · · ·+
y∗,ν(ξK))/K denotes the average value of y∗,ν(ξk), k = 1, . . . ,K. These values decrease as
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ρν increases. It is noteworthy that the difference x∗,ν − ȳ∗,ν also decreases as ρν increases;
that is, when ρν is large, the difference x∗,ν − y∗,ν(ξ) is zero for any scenario ξ ∈ Ξ. In
addition, as Figure 4.1c indicates, the decrease of x∗,ν − ȳ∗,ν also affects the slope of the curve
for the average shadow price λ̄∗,ν := (λ∗,ν(ξ1) + · · · + λ∗,ν(ξK))/K, i.e, a mean of marginal
revenues when a corresponding firm unilaterally increases a unit of production (with fixed
rival production and supply). When the difference x∗,ν − ȳ∗,ν is zero, and the difference
x∗,−ν − ȳ∗,−ν of the rival firm is positive, the curve of λ̄∗,ν is decreasing, which means that
firm ν has a passive involvement in the market because the rival firm has much more market
information than firm ν. This also implies a monopolization by the rival firm. Note that
under a catastrophe (e.g., economic crisis) in the market, the rival firm may incur significant
losses, whereas firm ν does not lose much in comparison.

Figure 4.1d represents the curve of the maximum of the absolute directional deriva-
tive |δ⊤Qν(x

∗,ν , ·)| for the expected value EP ∗,ν [Qν(x
∗,ν , ξ)] with respect to the perturbed

probability δ ∈ IRK subject to
∑
δk = 0 (because P ∗,ν + δ must be included in ∆ under∑

P ∗,ν(ξk) = 1). As the absolute value |δ⊤Qν(x
∗,ν , ·)| decreases, it suggests that the solution

x∗,ν is robust regarding the perturbation of the probability distribution. Eventually, a small
directional derivative indicates that the performance of the out-of-sample validation is less
sensitive.

4.6 Concluding remarks

In this chapter we discussed a class of nonlinear two-stage distributionally robust Nash games
and demonstrated the existence of TSDRNE points under convexity, compactness, and con-
tinuity. We introduced a two-stage distributionally robust variational inequality to construct
a solution method for finding an equilibrium point. We also considered a two-stage distri-
butionally robust Cournot–Nash competition as an application and showed the existence of
equilibria.

We have only provided the existence of TSDRNE, and some readers may be interested
in the uniqueness of TSDRNE. However, establishing the uniqueness of TSDRNE may be
more difficult than its existence. A general technique to show the uniqueness of equilibrium
in such a noncooperative game is to identify the strict/strong monotonicity of a mapping for
reformulated variational inequalities, as we have shown in Theorem 4.3.2. We have tried this
approach and investigated such properties of the TSDRVI. However, as Sun et al. [118] have
already pointed out the same thing in one-stage DRVI, the class of DRVI is no longer strictly
monotone since DRVI intrinsically contains the probability maximization such as (4.12) in
Section 4.3, which can also be said to the TSDRVI; please refer to [118, Section 3.3] for more
detailed mathematical reasons. For the above reasons, the two-stage distributionally robust
Nash equilibrium (TSDRNE) may not be unique in general.

Two challenges still exist: 1) More efficient algorithms should be established to find a so-
lution to TSDRVI, which also guarantees global convergence. 2) The idea should be extended
to a case in which the random variable ξ follows a continuous probability distribution, and
the convergence of its discrete approximation methods should be analyzed.
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(a) Profit at TSDRNE (b) Strategies

(c) Shadow price λ̄∗,ν (d) Directional derivative

Figure 4.1: Results of numerical experiments in the Cournot–Nash competition (N = 2)
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Chapter 5

Distributionally robust expected
residual minimization for stochastic
variational inequality problems

5.1 Introduction

In this chapter, we consider the following stochastic variational inequality problem (SVIP):
Find x∗ ∈ S such that

⟨F (x∗, ξ), x− x∗⟩ ≥ 0 ∀x ∈ S,

for ξ ∈ Ξ, almost surely,

(5.1)

where F : IRn × Ξ → IRn, and S ⊂ IRn is closed and convex set. Hereafter, we consider the
case where the probability distribution of the random vector ξ may be unknown and provided
only partial information, and let Ξ ⊂ IRm be a closed convex set referred to as the support of
distributions of ξ. SVIP (5.1) is applied in several fields such as economics or engineering to
design a market or traffic model, respectively. In particular, when the set S is given as the
nonnegative orthant IRn

+ := {x ∈ IRn | x ≥ 0}, SVIP (5.1) can be deduced as the stochastic
nonlinear complementarity problem (SNCP): Find x∗ such that

x∗ ≥ 0, F (x∗, ξ) ≥ 0, ⟨F (x∗, ξ), x∗⟩ = 0, (5.2)

and it has also been studied for a long time. If the mapping F is linear, SNCP (5.2) is referred
to as the stochastic linear complementarity problem (SLCP).

In general, there may be no solution that satisfies (5.1) or (5.2) for almost every ξ ∈ Ξ;
thus, the important goal is to find a reasonable solution that minimizes the violation of (5.1).
To obtain such solutions, several models have been proposed such as the expected value (EV)
model, expected residual minimization (ERM) model, and distributionally robust model.

The EV model [41] considers the following deterministic variational inequality:

⟨F̂ (x∗), x− x∗⟩ ≥ 0 ∀x ∈ S, (5.3)

where F̂ (x) := E [F (x, ξ)]. Note that an alternative way can also be considered for the
expected value of F , such as F (x,E [ξ]); however, this is not equivalent to the mapping F̂ in
general.

71
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On the other hand, the ERM was proposed by Chen and Fukushima [14] for the SLCP.
The primary purpose was to reformulate (5.2) as a stochastic optimization problem by using
a merit function for the LCP, e.g., the squared Fischer–Burmeister function. They verified
that the ERM tends to output more conservative solutions compared with the EV because
the ERM is designed to minimize the mean distance to the solution set of VI for each ξ ∈ Ξ,
while the EV only considers the mean F̂ of the mapping F (·, ξ).

As the natural extension, the ERM for SVIP (5.1) can be considered as follows by using
a merit function f(·, ξ) : IRn → IR+ for variational inequalities:

(ERM) min E [f(x, ξ)]
s.t. x ∈ S,

where the function f(·, ξ) satisfies the following properties for any fixed ξ ∈ Ξ:

(i) f(x, ξ) ≥ 0 for every x ∈ S;

(ii) x∗ ∈ S is a solution of the VIP if and only if f(x∗, ξ) = 0.

To date, several ERM models have been proposed corresponding to each merit function [18,
80,81].

However, the ERM has two drawbacks. First, its distribution of the random vector ξ is
assumed to be known in spite of the fact that it may not be observed in various real situations.
Even if one can estimate a distribution from observations, the reliability and robustness of
solutions for SVIP (5.1) or SNCP (5.2) are not guaranteed unless the estimation is sufficiently
close to the true distribution, which is referred to as ‘black swans’ in risk theory. Second, the
ERM requires a numerical integration such as the (quasi-)Monte Carlo method to evaluate
the expected residual value. However, numerical integration is computationally expensive in
general; it is advisable to avoid such a sample-based approach.

To tackle these issues, Zhu et al. [133] proposed the following conservative approximation
model for SNCP (5.2):

min
x∈IRn

sup
P∈P

{EP [Ψ(x, ξ)] | P ({F (x, ξ) ≥ 0} ∩ Ξ) ≥ 1− ε}

s.t. x ≥ 0,
(5.4)

where 0 < ε < 1 is a tolerance parameter, and Ψ: IRn × Ξ → IR is a complementarity
measure, e.g., Ψ(x, ξ) = ∥x ◦ F (x, ξ)∥22, where ◦ denotes the Hadamard product defined by
x◦y = (x1y1, x2y2, . . . , xnyn) for the vectors x ∈ IRn and y ∈ IRn. Here, EP [·] is the expected
value with respect to a distribution function P (·) ∈ P, where P is an uncertainty set of the
distribution functions supported over Ξ called an ambiguity set. They considered P as the
following moment ambiguity set:

P =
{
P ∈ MΞ

∣∣∣ EP [ξ] = µ0,EP [ξξ
⊤] = Σ0 + µ0µ

⊤
0

}
, (5.5)

where MΞ denotes a set of all probability measures supported over Ξ, and µ0 and Σ0 re-
spectively denote the (estimated) mean and variance of ξ from observation. Then they refor-
mulated (5.4) into a nonlinear semidefinite programming problem (NSDP). In the definition
of (5.5), however, it is implicitly assumed that an observer knows the exact mean µ0 and
variance Σ0. In the absence of this assumption, the model may not perform properly because
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observation errors are not considered. In terms of the distributionally robust optimization
(DRO), it is often considered that µ0 and Σ0 cannot be estimated exactly, e.g., the lack of
sample data, which motivates us to adopt a more general moment ambiguity set.

In this study, we propose a distributionally robust model of SVIP (5.1) under uncertainty
of distribution, where the ambiguity set is based on Delage and Ye [23] (eq. (5.10) in As-
sumption 5.2.1). Note that our methodology differs from an analysis of the (qualitative or
quantitative) statistical robustness [40, 60, 67] of a solution obtained from a sample average
approximation approach, whose data may contain noise; this is one of the key concepts to
study a stochastic model under the uncertainty distribution. This thesis rather focuses on
distributional robustness by constructing the ambiguity set with the data. We propose the
following distributionally robust ERM (DRERM) model:

(DRERM) min sup
P∈P

EP [f(x, ξ)]

s.t. x ∈ S.

This model can be regarded as an extension of the ERM and utilizes some remarkable aspects
as stated below: We illustrate a reformulation of (DRERM) into an NSDP under certain
suitable assumptions. Consequently, it is not required to compute numerical integrals to
evaluate the expected value of the stochastic gap functions.

In this thesis, we mainly focus on the following regularized gap function [35] as a merit
function f in (DRERM):

f(x, ξ) = fα(x, ξ) := max
y∈S

{
⟨F (x, ξ), x− y⟩ − 1

2α
∥y − x∥2

}
. (5.6)

where α > 0 is a regularization parameter. When S = IRn, the regularized gap function is
reduced to (α/2)∥F (x, ξ)∥2. Therefore, the ERM with fα is regarded as an extension of the
least square problem, and hence it is popular [1,15,80,81]. Moreover, as we will see in Section
5.2.2, (DRERM) with fα can be reformulated into a convex NSDP for certain SVIPs. Note
that the NSDP approximation proposed in [133] is not convex in general.

The remainder of this chapter is organized as follows. In Section 5.2, we propose an
NSDP model that conservatively approximates (DRERM). In addition, we show the convexity
of the NSDP under certain assumptions. In Section 5.3, we conduct two types of numerical
experiments to illustrate the behavior of our reformulation model. In Section 5.4, we conclude
this study.

5.2 Reformulation and convexity of distributionally robust ERM

First, we introduce several approaches to solving (DRERM). Second, we reformulate (DR-
ERM) into a deterministic NSDP to find its solution efficiently. Finally, we provide a sufficient
condition for the convexity of the NSDP when the mapping F is affine with respect to x.

A general technique for solving (DRERM), regardless of the definition of P, is to reformu-
late it into the following semi-infinite programming and apply the cutting-surface method [83]:

min
x,θ

θ

s.t. θ ≥ EP [fα(x, ξ)] ∀P ∈ P,
x ∈ S.

(5.7)
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Moreover, when Ξ is a finite sample space, i.e., Ξ :=
{
ξ1, ξ2, . . . , ξL

}
, problem (5.7) is conse-

quently reduced to the following robust optimization problem because P can be regarded as
a subset of IRL:

min
x,θ

θ

s.t. θ ≥ 1

L

L∑
k=1

fα(x, ξ
k)Pk ∀P ∈ P ⊂ {P ∈ IRL

+ |
∑L

k=1 Pk = 1},

x ∈ S.

(5.8)

Thus, nonlinear robust optimization frameworks can be directly applied to (5.8). For more
details, see [7, 8, 10].

Another strategy to solve (DRERM) is to consider the duality of the inner supremum
part:

sup
P∈P

EP [fα(x, ξ)] , (5.9)

and solve the dual problem. We adopt this approach and demonstrate that (DRERM) can
be reformulated as a deterministic NSDP under certain assumptions. For more detailed
techniques to deal with general DRO, see [97].

In the remainder of this study, we assume that ξ is a continuous random variable, and
the ambiguity set P is assumed to be given as the following moment set [23], which has been
widely applied in the existing literature on DRO.

Assumption 5.2.1 (Delage and Ye [23]). The ambiguity set P is given by

P :=

{
P ∈ MΞ

∣∣∣∣∣ (EP [ξ]− µ0)
⊤Σ−1

0 (EP [ξ]− µ0) ≤ γ1

EP

[
(ξ − µ0) (ξ − µ0)

⊤
]
⪯ γ2Σ0

}
(5.10)

where γ1 ≥ 0, γ2 ≥ 1, µ0 ∈ Ξ, and Σ0 ∈ Sm++.

The first condition of (5.10), i.e., (EP [ξ]− µ0)
⊤Σ−1

0 (EP [ξ]− µ0) ≤ γ1, represents the
uncertainty of the true mean EP [ξ] given by an ellipsoid centered on the estimated mean µ0.
In addition, if γ1 = 0, then EP [ξ] = µ0. The second condition EP [(ξ − µ0)(ξ − µ0)

⊤] ⪯ γ2Σ0

refers to the uncertainty of the true variance-covariance EP [(ξ−µ0)(ξ−µ0)⊤]. The parameters
γ1 and γ2 determine the strength of the confidence of estimations µ0 and Σ0, respectively;
hence, they are referred to as confidence parameters. A method for determining suitable γ1
and γ2 from observed samples is introduced in Section 3.4 in [23].

Remark 5.2.1. When γ1 = 0, γ2 = 1, and the equality holds in the variance-covariance
condition in (5.10), the set P is reduced to (5.5) considered by Zhu et al [133].

Under Assumption 5.2.1, we obtain the following property.

Theorem 5.2.2. Suppose that Assumption 5.2.1 holds. Then (DRERM) is equivalently re-
formulated as the following semi-infinite programming with second-order cone constraints:

(SIP) min
(x,y0,y,Y,z0)∈V

y0 + z0 + µ⊤0 y +
〈
γ2Σ0 + µ0µ

⊤
0 , Y

〉
s.t. z0 ≥

√
γ1

∥∥∥Σ1/2
0 (y + 2Y µ0)

∥∥∥ ,
ξ⊤Y ξ + ξ⊤y + y0 ≥ fα(x, ξ) ∀ξ ∈ Ξ,
x ∈ S, Y ∈ Sm+ ,

where V := IRn × IR× IRm × Sm × IR.
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Proof. From Assumption 5.2.1 and Lemma 1 of [23], for any fixed x, the optimal value of
(5.9), which is denoted by Ψ(x; γ1, γ2), is equal to that of the following dual problem of (5.9):

min
y0,y,Y,z0

y0 + z0 + µ⊤0 y +
〈
γ2Σ0 + µ0µ

⊤
0 , Y

〉
s.t. z0 ≥

√
γ1

∥∥∥Σ1/2
0 (y + 2Y µ0)

∥∥∥ ,
ξ⊤Y ξ + ξ⊤y + y0 ≥ fα(x, ξ) ∀ξ ∈ Ξ,
Y ∈ Sm+ .

(5.11)

Thus, we obtain the equivalent reformulation of (DRERM) by considering min {Ψ(x; γ1, γ2) |
x ∈ S}. Since optimal values of (SIP) and (DRERM) are equal, the assertion is shown.

5.2.1 Reformulation of SIP into NSDP

The goal of this section is to prove that the semi-infinite constraint

ξ⊤Y ξ + ξ⊤y + y0 ≥ fα(x, ξ) ∀ξ ∈ Ξ, (5.12)

can be reformulated as a semidefinite constraint by using the duality for the inner maximiza-
tion of (5.6).

In the remainder of this chapter, we assume that the closed convex set S is given as a
polyhedron:

S := {x ∈ IRn | Ax = b, x ≥ 0},

where A ∈ IRl×n and b ∈ IRl.
First, we provide an equivalent form of (5.12) by using the strong duality of the maxi-

mization problem in (5.6).

Lemma 5.2.3. The point (x, y0, y, Y ) satisfies (5.12) if and only if there exists (λ, µ) ∈
IRl × IRn

+ such that

ξ⊤Y ξ + ξ⊤y + y0 ≥ ωα(x, λ, µ; ξ) ∀ξ ∈ Ξ. (5.13)

Here,

ωα(x, λ, µ; ξ) :=
α

2
∥F (x, ξ) +A⊤λ− µ∥2 + ⟨b−Ax, λ⟩+ ⟨µ, x⟩ . (5.14)

Proof. First, we prove (5.13) implies (5.12). We have the following minimization problem by
considering the duality of the maximization problem included in (5.6).

min
(λ,µ)∈IRl×IRn

ωα(x, λ, µ; ξ)

s.t. µ ∈ IRn
+

(5.15)

From the weak duality, we have ωα(x, λ, µ; ξ) ≥ fα(x, ξ) for each (x, ξ) ∈ S×Ξ. Thus, if there
exists (λ, µ) ∈ IRl× IRn

+ such that (x, λ, µ, y0, y, Y ) satisfies (5.13), then the point (x, y0, y, Y )
satisfies (5.12).

Next, we prove the converse, i.e., (5.12) implies (5.13). The inner maximization in the
function fα is a convex optimization problem whose optimal value is finite for any x ∈ S.
Moreover, owing to the strong duality, there exists (λ, µ) ∈ IRl × IRn

+ such that fα(x, ξ) =
ωα(x, λ, µ; ξ) for each (x, ξ) ∈ S × Ξ. Therefore, if (x, y0, y, Y ) satisfies the condition (5.12),
there exists (λ, µ) ∈ IRl × IRn

+ such that (5.13) holds.
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Now, we make assumptions on the mapping F and the support Ξ in SVIP (5.1). Similar
assumptions on F and Ξ have already been considered by Zhu et al. [133] for SNCP (5.2)1.
For certain examples that satisfy the following assumptions on SVIP (5.1), see [1].

Assumption 5.2.4.

(i) The i-th element of the mapping F is affine with respect to ξ:

Fi(x, ξ) :=
(
ci(x)

)⊤
ξ + ci0(x), i = 1, 2, . . . , n.

(ii) The support Ξ is given as

Ξ := {ξ ∈ IRm | gi(ξ) ≤ 0, i = 1, 2, . . . , p} . (5.16)

Here, gi : IR
m → IR is defined by

gi(ξ) := ξ⊤Ãiξ + 2b̃⊤i ξ + c̃i, i = 1, 2, . . . , p, (5.17)

where Ãi ∈ Sm, b̃i ∈ IRm, and c̃i ∈ IR.

As preliminaries, let us introduce the S-procedure and its special case.

Lemma 5.2.5 (S-procedure Derinkuyu and Pınar [25]). Let Ξ be given as (5.16) and

g0(ξ) := ξ⊤Ā0ξ + 2ξ⊤b̄0 + c̄0, (5.18)

where Ā0 ∈ Sm, b̄0 ∈ IRm, and c̄0 ∈ IR. Assume that there exists s ∈ IRp
+ such that

g0(ξ) +

p∑
i=1

sigi(ξ) ≥ 0 ∀ξ ∈ IRm. (5.19)

Then, g0(ξ) ≥ 0 for all ξ ∈ Ξ.

The following lemma indicates that the converse also holds when p = 1 in Lemma 5.2.5.

Lemma 5.2.6 (Pólik and Terlaky [95]). Suppose that Ξ is given by (5.16) with p = 1 and
let g0(ξ) be defined as (5.18). Assume that there exists ξ̂0 such that g1(ξ̂0) < 0. Then, the
statements (i) and (ii) are equivalent:

(i) For all ξ ∈ IRm, g1(ξ) ≤ 0 implies g0(ξ) ≥ 0;

(ii) there exists some nonnegative number s ≥ 0 such that

g0(ξ) + sg1(ξ) ≥ 0 ∀ξ ∈ IRm.

We further introduce an equivalence between nonnegative quadratic functions on IRm and
semidefiniteness.

1Only when the complementarity measure is evaluated by ∥x◦F (x, ξ)∥∞, the mapping F of (5.4) is allowed
up to second-order with respect to ξ.
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Lemma 5.2.7 (Proposition 2 in Sturm and Zhang [116]). Let Ã ∈ Sm, b̃ ∈ IRm, and c̃ ∈ IR
be given. Then, the following two conditions (i) and (ii) are equivalent:

(i)
[
1, ξ⊤

] [ c̃ b̃⊤

b̃ Ã

] [
1
ξ

]
≥ 0 ∀ξ ∈ IRm;

(ii)

[
c̃ b̃⊤

b̃ Ã

]
⪰ O.

Zhu et al. [133] proposed a certain NSDP that conservatively approximates DRO (5.4),
where the conservative approximation denotes that the optimal value of the NSDP is not
less than that of DRO (5.4). In this chapter, we also provide the following conservative
approximation of (DRERM) based on their technique.

(NSDP) min
(w,z0,s)∈W×IR×IRp

z0 + y0 + µ⊤0 y +
〈
γ2Σ0 + µ0µ

⊤
0 , Y

〉
s.t. z0 ≥

√
γ1

∥∥∥Σ1/2
0 (y + 2Y µ0)

∥∥∥ ,
Dα(w) +

p∑
i=1

siÃi ⪰ O,

x ∈ S, µ ∈ IRn
+, Y ∈ Sm+ , s ∈ IRp

+,

where w := (x, λ, µ, y0, y, Y ) ∈ W := IRn × IRl × IRn × IR× IRm × Sm, and Dα : W → Sm+1 is
a symmetric-matrix-valued function defined as follows:

Dα(w) :=

[
y0 1/2y⊤

1/2y Y

]
−

{
G(x, λ, µ) +

α

2

n∑
i=1

H i(x, λ, µ)

}
, (5.20)

where

G(x, λ, µ) :=

[
⟨b−Ax, λ⟩+ ⟨µ, x⟩ 0⊤

0 Om×m

]
,

H i(x, λ, µ) :=

[
pi0(x, λ, µ)

2 pi0(x, λ, µ)c
i(x)⊤

pi0(x, λ, µ)c
i(x) ci(x)ci(x)⊤

]
, i = 1, 2, . . . , n,

pi0(x, λ, µ) := ci0(x) +
l∑

j=1

ajiλj − µi, i = 1, 2, . . . , n,

and Ãi is defined as

Ãi :=

[
c̃i b̃⊤i
b̃i Ãi

]
i = 1, 2, . . . , p.

Next, we provide several definitions and lemmas to prove that (NSDP) gives a conservative
approximation of (DRERM). Now, we define

Ã0 := Y − α

2

n∑
i=1

ci(x)ci(x)⊤, b̃0 :=
y

2
− α

2

n∑
i=1

pi0(x, λ, µ)c
i(x),

c̃0 := y0 − ⟨b−Ax, λ⟩ − ⟨µ, x⟩ − α

2

n∑
i=1

pi0(x, λ, µ)
2,

and

h(ξ) := ξ⊤Ã0ξ + 2ξ⊤b̃0 + c̃0. (5.21)
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Under Assumption 5.2.4–(i), (5.14) is written as

ωα(x, λ, µ; ξ) =
[
1, ξ⊤

]{
G(x, λ, µ) +

α

2

n∑
i=1

H i(x, λ, µ)

}[
1
ξ

]
. (5.22)

Through the straightforward calculation, we obtain the following equalities:[
1, ξ⊤

]
Dα(w)

[
1
ξ

]
= ξ⊤Y ξ + ξ⊤y + y0 − ωα(x, λ, µ; ξ) = h(ξ). (5.23)

Lemma 5.2.8. The nonlinear semidefinite constraint included in (NSDP), i.e.,

Dα(w) +

p∑
i=1

siÃi ⪰ O, (5.24)

is equivalent to

h(ξ) +

p∑
i=1

sigi(ξ) ≥ 0 ∀ξ ∈ IRm. (5.25)

Proof. By Lemma 5.2.7, (5.24) is equivalent to

[
1, ξ⊤

](
Dα(w) +

p∑
i=1

siÃi

)[
1
ξ

]
≥ 0 ∀ξ ∈ IRm. (5.26)

Since [1, ξ⊤]Dα(w)

[
1
ξ

]
= h(ξ) from (5.23) and [1, ξ⊤]Ãi

[
1
ξ

]
= gi(ξ), (5.26) can be

equivalently represented as (5.25).

The next lemma provides a sufficient condition for semi-infinite constraint (5.12).

Lemma 5.2.9. Suppose that Assumption 5.2.4 holds. Whenever p ≥ 1, if there exists (w, s) ∈
W × IRp such that µ ∈ IRn

+, s ∈ IRp
+, and (5.24), i.e.,

Dα(w) +

p∑
i=1

siÃi ⪰ O,

then the subvector (x, y0, y, Y ) satisfies the semi-infinite constraint (5.12), i.e.,

ξ⊤Y ξ + ξ⊤y + y0 ≥ fα(x, ξ) ∀ξ ∈ Ξ.

Furthermore, when p = 1 and the assumption of Lemma 5.2.6 holds, the converse is also true,
i.e., if (x, y0, y, Y ) satisfies (5.12), then there exists (λ, µ, s) ∈ IRl×IRn

+×IRp
+ such that (5.24)

satisfies.

Proof. First, we prove the general case where p ≥ 1. Assume that there exist w ∈ W and
s ∈ IRp

+ such that semidefinite constraint (5.24) holds. Then, by Lemma 5.2.8, we have (5.25),
i.e.,

h(ξ) +

p∑
i=1

sigi(ξ) ≥ 0 ∀ξ ∈ IRm.
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By regarding h(ξ) as g0(ξ) in Lemma 5.2.5, (5.25) implies h(ξ) ≥ 0 for all ξ ∈ Ξ, and it then
follows from (5.23) that (5.13) holds, i.e.,

ξ⊤Y ξ + ξ⊤y + y0 ≥ ωα(x, λ, µ; ξ) ∀ξ ∈ Ξ.

Finally, Lemma 5.2.3 states that w satisfies (5.13) if and only if its subvector (x, y0, y, Y )
satisfies semi-infinite constraint (5.12). The first part of the proof is completed.

Next, we prove that the converse when p = 1 and the assumption of Lemma 5.2.6 holds.
Suppose that (x, y0, y, Y ) satisfies (5.12). By Lemma 5.2.3, (5.12) holds if and only if there
exists (λ, µ) ∈ IRl × IRn

+ such that (5.13) holds. Note that under Assumption 5.2.4–(i), the
function ωα(x, λ, µ; ξ) is given as (5.22). Then, ξ⊤Y ξ + ξ⊤y + y0 − ωα(x, λ, µ; ξ) ≥ 0 and
(5.23) yield h(ξ) ≥ 0. Note that h(ξ) ≥ 0 for all ξ ∈ Ξ if and only if for all ξ ∈ IRm, g1(ξ) ≤ 0
implies h(ξ) ≥ 0. It then follows from Assumption 5.2.4–(ii) with p = 1 and Lemma 5.2.6
that there exists s ∈ IR+ such that h(ξ) + sg1(ξ) ≥ 0 for all ξ ∈ IRm. By Lemma 5.2.8, this
condition is equivalent to semidefinite constraint (5.24) in (NSDP). Thus, we have proved the
converse.

The following result shows the feasibility between the constraints of (SIP) and (NSDP).

Proposition 5.2.10. Suppose that Assumption 5.2.4 holds. Whenever p ≥ 1, if (w, z0, s) ∈
W × IR × IRp is feasible to (NSDP), then its subvector (x, y0, y, Y, z0) ∈ V is also feasible to
(SIP). Moreover, when p = 1 and the assumption of Lemma 5.2.6 holds, if (x, y0, y, Y, z0) ∈ V
is feasible to (SIP), then there exists (λ, µ, s) ∈ IRl × IRn

+ × IRp
+ such that (w, z0, s) ∈ W ×

IR× IR+ is also feasible to (NSDP).

Proof. Note that all constraints in (NSDP) except (5.24) coincide with those in (SIP) exclud-
ing semi-infinite constraint (5.12). This statement and Lemma 5.2.9 ensure that if p ≥ 1, and
(w, s, z0) is the feasible solution of (NSDP), then its subvector (x, y0, y, Y, z0) is the feasible
solution to (SIP). Thus, we showed the general case where p ≥ 1.

Suppose that p = 1, and (x, y0, y, Y, z0) ∈ V is a feasible solution to (SIP). As mentioned
above, (w, z0, s) satisfies the constraints of (NSDP) except (5.24). Moreover, Lemma 5.2.9
guarantees that there exists (λ, µ, s) ∈ IRl × IRn

+ × IRp
+ such that (w, z0, s) satisfies constraint

(5.24). We have completed the proof.

By using the above lemmas, we show one of the main results.

Theorem 5.2.11. Suppose that Assumptions 5.2.4 holds. Then, (SIP) can be conservatively
approximated as (NSDP).

Proof. Suppose that (w, z0, s) ∈ W × IR × IRp
+ is a feasible point of (NSDP). It then follows

from Proposition 5.2.10 that the subvector (x, y0, y, Y, z0) satisfies the constraints of (SIP).
From the above facts, the optimal value of (NSDP) can never be less than that of (SIP).
Therefore, (NSDP) is a conservative approximation of (SIP). The proof is completed.

Here, we provide some examples of Ξ that can be expressed as the intersection of nonneg-
ative quadratic functions.

Example 5.2.2 (Box set). Consider Ξ given by the following box set:

Ξ :=
{
ξ ∈ IRm | ξli ≤ ξi ≤ ξui , i = 1, 2, . . . ,m

}
.



80 CHAPTER 5. DISTRIBUTIONALLY ROBUST ERM MODEL

By using a quadratic function, ξli ≤ ξ ≤ ξui can be rewritten as follows:

gi(ξ) = ξi(ξ
u
i + ξli)− ξui ξ

l
i − ξ2i =

[
1, ξ⊤

]
Ti

[
1
ξ

]
≥ 0,

where

Ti :=

[
−ξui ξli −1

2ξi(ξ
u
i + ξli)(e

i)⊤

−1
2ξi(ξ

u
i + ξli)e

i −Ĩi

]
.

Here, ei ∈ IRm is the i-th column vector of the identity matrix, and Ĩi ∈ IRm×m is a matrix
whose elements are all zero except the (i, i) entry which is 1.

This example corresponds to the case where Ãi = Ĩi, b̃i =
1
2ξi(ξ

u
i + ξli)e

i, and c̃i = ξui ξ
l
i in

(NSDP).

Example 5.2.3 (Ellipsoids). Consider Ξ given by the following ellipsoids:

Ξ :=
{
ξ ∈ IRm | (ξ − ξ̂i)⊤P−1

i (ξ − ξ̂i) ≤ 1, i = 1, 2, . . . , p
}
, (5.27)

where the vector ξ̂i ∈ IRm is the center of the i-th ellipsoid, and the matrix Pi is supposed to
be positive definite. This example corresponds to the case where Ãi = P−1, b̃i = −P−1

i ξ̂i, and

c̃i = (ξ̂i)⊤P−1
i ξ̂i − 1 in (NSDP).

Next, we illustrate the special case of Theorem 5.2.11, which ensures that a solution of
(NSDP) solves (DRERM).

Corollary 5.2.12. Suppose that p = 1 in (5.27), and that the assumption of Lemma 5.2.6
holds. Then, if (w, z0, s) ∈ W × IR × IR is a global optimum of (NSDP), then (x, y0, y, Y, z0)
and x are also global optima to (SIP) and (DRERM), respectively. In addition, the optimal
value of (NSDP) is equal to those of (SIP) and (DRERM).

Proof. Let (w, z0, s) be a global optimum to (NSDP). Assume that its subvector (x, y0, y, Y, z0)
is not a global optimum of (SIP). Note that (x, y0, y, Y, z0) is the feasible solution to (SIP)
from Proposition 5.2.10. By the assumption, there exists a feasible solution (x′, y′0, y

′, Y ′, z′0)
in (SIP) such that

z′0 + y′0 + µ⊤0 y
′ +
〈
γ2Σ0 + µ0µ

⊤
0 , Y

′
〉
< z0 + y0 + µ⊤0 y +

〈
γ2Σ0 + µ0µ

⊤
0 , Y

〉
. (5.28)

Proposition 5.2.10 guarantees that if the solution (x′, y′0, y
′, Y ′, z′0) is the feasible point to

(SIP), then there exists (λ′, µ′, s′) ∈ IRl × IRn
+ × IR+ such that (w′, z′0, s

′) ∈ W × IR × IR+ is
the feasible solution to (NSDP), where w′ := (x′, λ′, µ′, y′0, y

′, Y ′) ∈ W. Because the objective
functions of (SIP) and (NSDP) coincide, the solution (w′, z′0, s

′) of (NSDP) also satisfies the
inequality (5.28). Hence, it contradicts that (w, z0, s) is a global optimum to (NSDP). We
have that (x, y0, y, Y, z0), which is the subvector of the global optimum (w, z0, s) of (NSDP),
is also the global optimum in (SIP), and optimal values are equal because their objective
functions coincide. Moreover, since (DRERM) is equivalent to (SIP) from Theorem 5.2.2, x
is also a global optimum to (DRERM), and their optimal values are equal.
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In addition, when Ξ = IRm, then we can show an equivalence between (SIP) (or (DR-
ERM)) and the following NSDP:

(NSDP′) min
(w,z0)∈W×IR

z0 + y0 + µ⊤0 y +
〈
γ2Σ0 + µ0µ

⊤
0 , Y

〉
s.t. z0 ≥

√
γ1

∥∥∥Σ1/2
0 (y + 2Y µ0)

∥∥∥ ,
Dα(w) ⪰ O,
x ∈ S, µ ∈ IRn

+.

To show this property, we prepare a lemma below.

Lemma 5.2.13. Let (x, y0, y, Y ) be given. Then, the following two statements are equivalent:

(i) There exists (λ, µ) ∈ IRl × IRn
+ such that Dα(w) ⪰ O;

(ii) Y ∈ Sm+ and

ξ⊤Y ξ + ξ⊤y + y0 ≥ fα(x, ξ) ∀ξ ∈ Ξ = IRm. (5.29)

Proof. First, we show that (i) implies (ii). By Lemma 5.2.7 and the first equality of (5.23),
Dα(w) ⪰ O if and only if

ξ⊤Y ξ + ξ⊤y + y0 ≥ ωα(x, λ, µ; ξ) ∀ξ ∈ IRm. (5.30)

As we mentioned in Lemma 5.2.3, ωα(x, λ, µ; ξ) is the dual function of the maximization
problem in fα. This implies that for any x ∈ S and ξ ∈ IRm, ωα(x, λ, µ; ξ) ≥ fα(x, ξ) ≥ 0.
Then, (5.30) implies ξ⊤Y ξ + ξ⊤y + y0 ≥ 0, and by Lemma 5.2.7, we have[

y0 1/2y⊤

1/2y Y

]
⪰ O.

By the Schur complement, this ensures the positive semidefiniteness of Y . Furthermore, (5.30)
implies (5.29) by Lemma 5.2.3. We have proved the former part of the proof.

Next, we prove that (ii) implies (i). Suppose that Y ∈ Sm+ and (5.29) holds. Then, by
Lemma 5.2.3, there exists (λ, µ) ∈ IRl × IRn

+ such that (5.30) holds, and it is immediately
observed that Dα(w) ⪰ O. Hence, the proof is completed.

We obtain the relation regarding the feasibility between (SIP) and (NSDP′) by using
Lemma 5.2.13.

Proposition 5.2.14. The point (x, y0, y, Y, z0) ∈ V is a feasible solution to (SIP) if and only
if there exists (λ, µ) ∈ IRl × IRn

+ such that (w, z0) ∈ W × IR is also a feasible solution to
(NSDP′).

Proof. Similar to the proof of Proposition 5.2.10, all the constraints in (NSDP′) except the
semidefinite constraint Dα(w) ⪰ O coincide with those in (SIP) excluding semi-infinite con-
straint (5.12). This statement and Lemma 5.2.13 ensure that for given (x, y0, y, Y ), the point
(x, y0, y, Y, z0) is feasible to (SIP) if and only if there exists (λ, µ) ∈ IRl×IRn

+ such that (w, z0)
is feasible to (NSDP′).

Finally, the optimality between (NSDP′) and (SIP) is obtained as follows.
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Theorem 5.2.15. Suppose that Assumption 5.2.4–(i) holds, and that Ξ = IRm. If (w, z0) is
a global optimum to (NSDP′), then its subvector (x, y0, y, Y, z0) and x are also global optima
for (SIP) and (DRERM), respectively.

Proof. Let (w, z0) be a global optimum to (NSDP′). Assume that its subvector (x, y0, y, Y, z0)
is not a global optimum of (SIP). Note that (x, y0, y, Y, z0) is a feasible solution to (SIP) by
Proposition 5.2.14. Since (x, y0, y, Y, z0) is not a global optimum of (SIP), there exists a
feasible solution (x′, y′0, y

′, Y ′, z′0) such that

z′0 + y′0 + µ⊤0 y
′ +
〈
γ2Σ0 + µ0µ

⊤
0 , Y

′
〉
< z0 + y0 + µ⊤0 y +

〈
γ2Σ0 + µ0µ

⊤
0 , Y

〉
. (5.31)

Moreover, by Proposition 5.2.14, the feasible solution (x′, y′0, y
′, Y ′, z′0) of (SIP) is also feasible

to (NSDP′) for some (λ′, µ′) ∈ IRl × IRn
+. This statement and (5.31) contradict each other;

thus, (x, y0, y, Y, z0) is a global optimum of (SIP).

Since (DRERM) is equivalent to (SIP), x, which is the subvector of the global optimum
(x, y0, y, Y, z0) of (SIP), is also a global optimum to (DRERM). Thus, the optimal value of
(NSDP′) coincides with those of (SIP) and (DRERM), respectively.

Remark 5.2.4. Zhu et al. [133] have only shown a conservative NSDP approximation for
problem (5.4); that is, the subvector x ≥ 0 of a global optimal solution of the conservative
approximated NSDP may not globally solve (5.4) in general. However, as Theorem 5.2.15 and
Corollary 5.2.12 state, if Ξ is IRm or a single ellipsoid, the variable x ∈ S of a global optimal
point obtained from (NSDP) or (NSDP′) solves (DRERM).

5.2.2 Convexity of NSDP

First, the sufficient condition is presented under which (NSDP) and (NSDP′) are convex.

Assumption 5.2.16. The mapping F is affine with respect to x, i.e.,

F (x, ξ) :=M(ξ)x+ q(ξ),

whereM : Ξ → IRn×n and q : Ξ → IRn. Here, the (i, j)-entry ofM(ξ) is denoted by (M(ξ))ij :=(
mij
)⊤
ξ +mij

0 , and the i-th element of q(ξ) is (q(ξ))i :=
(
qi
)⊤
ξ + qi0, where m

ij , qi ∈ IRm,

mij
0 , q

i
0 ∈ IR. Hence, ci(x) and ci0(x) defined in Assumption 5.2.4 can be rewritten as follows:

ci(x) := qi + M̄ix ∈ IRm, i = 1, 2, . . . , n,

ci0(x) := qi0 + (m̄i
0)

⊤x ∈ IR, i = 1, 2, . . . , n,

where
M̄i := [mi,1,mi,2, . . . ,mi,n] ∈ IRm×n, i = 1, 2, . . . , n,

m̄i
0 := [mi,1

0 ,mi,2
0 , . . . ,mi,n

0 ]⊤ ∈ IRn, i = 1, 2, . . . , n.

Remark 5.2.5. In Assumption 5.2.16, suppose that

M(ξ) =M · repvec(ξ;n) +M0, q(ξ) = Qξ + q0,
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where

M :=


(m1,1)⊤ (m1,2)⊤ . . . (m1,n)⊤

(m2,1)⊤ (m2,2)⊤ . . . (m2,n)⊤

...
...

. . .
...

(mn,1)⊤ . . . . . . (mn,n)⊤

 ∈ IRn×mn,

repvec(ξ;n) :=


ξ

ξ
. . .

ξ

 ∈ IRmn×n, M0 := [m̄1
0, m̄

2
0, . . . , m̄

n
0 ]

⊤ ∈ IRn×n,

Q := [q1, q2, . . . , qn]⊤ ∈ IRn×m, q0 := [q10, q
2
0, . . . , q

n
0 ] ∈ IRn.

Then, F (x, ξ) can also be written as

F (x, ξ) = (M · repvec(ξ;n) +M0)x+ (Qξ + q0).

Let us introduce the convexity of nonlinear matrix-valued functions and its related prop-
erty.

Definition 5.2.17 (Shapiro [111]). A nonlinear matrix-valued function X : IRm → Sn is said
to be positive semidefinite (psd-) convex if

X(γx+ (1− γ)y)− γX(x)− (1− γ)X(y) ⪯ O (5.32)

for all x, y ∈ IRm and γ ∈ [0, 1].

Proposition 5.2.18. The mapping X is psd-convex if and only if for any v ∈ IRn with
v1 = 1, the function ϕ(·; v) : IRm → IR defined by

ϕ(x; v) :=
[
1, v⊤

]
X(x)

[
1
v

]
is convex with respect to x ∈ IRm.

Proof. Lemma 5.2.7 ensures that matrix inequality (5.32) is equivalent to

[
1, v′⊤

]
(X(γx+ (1− γ)y)− γX(x)− (1− γ)X(y))

[
1
v′

]
≤ 0,

for any v′ ∈ IRn−1. Hence, we have

ϕ(γx+ (1− γ)y; v) ≤ γϕ(x; v) + (1− γ)ϕ(y; v)

for any v ∈ IRn with v1 = 1. Therefore, X is psd-convex if and only if ϕ(·, v) is convex with
respect to x ∈ IRm for every v ∈ IRn.

We show the convexity of (NSDP) and (NSDP′).
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Theorem 5.2.19. Suppose that Assumption 5.2.16 holds and that the matrix M(ξ) defined
in Assumption 5.2.16 satisfies the following condition: There exists β0 > 0 such that

inf
ξ∈Ξ,∥v∥=1

v⊤M(ξ)v ≥ β0. (5.33)

Then the matrix-valued function −Dα is psd-convex for all α ≥ 1/(2β0); thus, (NSDP) and
(NSDP′) are convex.

Proof. Note that if the matrix-valued function −Dα is psd-convex, (NSDP) and (NSDP′)
are convex optimization problems. Therefore, we verify that −Dα is psd-convex for all α ≥
1/(2β0).

Suppose that α ≥ 1/(2β0). Proposition 5.2.18 states that −Dα is psd-convex if and only
if for all ξ ∈ IRm, the following function ϕα(·, ξ) : W → IR is convex with respect to w:

ϕα(w; ξ) :=
[
1, ξ⊤

]
(−Dα(w))

[
1
ξ

]
= −y0 − ξ⊤y − ξ⊤Y ξ + ωα(x, λ, µ; ξ),

where the last equality follows from (5.23).
Now, since the function ϕα(·, ξ) is linear with respect to (y0, y, Y ), it suffices to show that

ωα is convex with respect to (x, λ, µ) for all α ≥ 1/(2β0). The Hessian of ωα in regard to
(x, λ, µ) is given by

∇2
(x,λ,µ)ωα(x, λ, µ; ξ) = α

[
M(ξ)⊤M(ξ) (M(ξ)− 1

αI)
⊤A⊤ −M(ξ)⊤ + 1

αI
A(M(ξ)− 1

αI) AA⊤ −A
−M(ξ) + 1

αI −A⊤ I

]
.

By considering the Schur complement of the above matrix,[
M(ξ)⊤M(ξ) (M(ξ)− 1

αI)
⊤A⊤

A(M(ξ)− 1
αI) AA⊤

]
−
[

−M(ξ)⊤ + 1
αI

−A

] [
−M(ξ) +

1

α
I −A⊤

]
=

1

α

[
(M(ξ)⊤ +M(ξ))− 1

αI O
O O

]
⪰ O

if and only if ∇2
(x,λ,µ)ωα(x, λ, µ; ξ) ⪰ O. Since (M(ξ)⊤+M(ξ))−1/α I ⪰ O from α ≥ 1/(2β0),

it can be easily seen that∇2
(x,λ,µ)ωα(x, λ, µ; ξ) ⪰ O, i.e., −Dα is psd-convex for all α ≥ 1/(2β0).

Hence, (NSDP) and (NSDP′) are convex optimization problems.

Remark 5.2.6. Condition (5.33) is rather restrictive for some applications. One remedy
is to add a proximal term ϵ(x − xk) to the mapping F , where ϵ > 0 is a sufficiently small
constant.

Remark 5.2.7. When S = IRn
+, problem (5.4) for the SLCP proposed by Zhu et al. [133] may

not be reformulated as a convex NSDP because the objective function Ψ(x, ξ) = ∥x ◦F (x, ξ)∥22
is not convex with respect to x in general.

Although we adopt the regularized gap function for the NSDP approximation, simi-
lar results may also be obtained by utilizing another merit function, such as f∞(x, ξ) :=
maxz∈S⟨F (x, ξ), x− z⟩. However, it would be necessary to discuss whether the DRERM with
f∞ is a reasonable method for solving the SVIP. In fact, the ERM with f∞ may be unsuitable
to measure the distance to solutions of SVIP (5.1) because f∞(x, ξ) takes +∞ for some x ∈ S
and is not differentiable in general. For such reasons, we did not adopt f∞ for (DRERM).
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5.3 Numerical experiments

This section provides numerical results to demonstrate the validity of the DRERM model. In
particular, we first compare the DRERM with the ERM proposed by Luo and Lin [80] in terms
of robustness. Second, we quantitatively investigate the robustness of solutions obtained from
the DRERM model when the confidence parameters γ1 and γ2 for the mean and variance of
the ambiguity set P, respectively, are gradually changed.

Throughout this section, we use the following example.

Example 5.3.1 (Two-person noncooperative games). Two players are competing with each
other to minimize their own cost functions. Each player ν ∈ {1, 2} solves the following
optimization problem:

min
xν∈IRnν

1

2
(xν)⊤Mνx

ν + vν(xν , x−ν , ξ) + qν(ξ)⊤xν

s.t. Aνx
ν ≤ bν ,

(5.34)

where Mν ∈ Snν
++, Aν ∈ IRlν×nν , bν ∈ IRlν , and qν(ξ) ∈ IRnν . Here, vν(xν , x−ν , ξ) is a

zero-sum function defined by

vν(xν , x−ν , ξ) :=

{ (
x1
)⊤
R(ξ)x2 if ν = 1,

−
(
x2
)⊤
R(ξ)⊤x1 if ν = 2,

where R(ξ) ∈ IRn1×n2, and x−ν ∈ IRn−ν is the decision variable of the rival player.

The above noncooperative game can be reformulated as SVIP (5.1) when the mapping
F (·, ξ) : IRn → IRn and the set S ⊂ IRn are given as follows:

F (x, ξ) =

[
M1 R(ξ)

−R(ξ)⊤ M2

]
x+

[
q1(ξ)
q2(ξ)

]
,

S =

{
x ∈ IRn

∣∣∣∣ [ A1 O
O A2

]
x ≤

[
b1

b2

]}
,

x =
[
(x1)⊤, (x2)⊤

]⊤
∈ IRn1+n2 .

(5.35)

Note that it is easy to verify that the coefficient matrix in (5.35) satisfies the assumption of
Theorem 5.2.19; hence, we solve a convex NSDP in the experiments.

We generate numerical instances of problem (5.34) according to the following manners:

• We set n1 = n2 = 2, m = n1n2 + 2 = 6, and l1 = l2 = 2.

• The matrix Mν is generated by LνLν
⊤ + I, where the matrix Lν ∈ IR2×2 is lower

triangular and its elements are randomly generated from the interval [−5, 5).

• Each element of the matrix Aν ∈ IR2×2 and the vector bν ∈ IR2 is randomly generated
from [−2, 2) and [0, 10), respectively.

• We set the regularization parameter α by 1/β0 to ensure that the derived NSDP is
convex, where β0 is the minimum eigenvalue of the matrix[

M1 On1×n2

On2×n1 M2

]
∈ IR4×4.
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• We define the random variable ξ ∈ IRm by ξ = [ξ1, . . . , ξ6]
⊤.

• The matrix R(ξ) is defined by

R(ξ) :=

[
ξ1 ξ2
ξ3 ξ4

]
+R0 ∈ IR2×2, R0 :=

[
r1,10 r1,20

r2,10 r2,20

]
∈ IR2×2

where ri,j0 , i, j = 1, 2 are nominal values generated randomly from [−5, 5).

• The vector q(ξ) :=
(
q1(ξ)⊤, q2(ξ)⊤

)⊤ ∈ IR4 is defined by

q(ξ) = Qξ + q0,

where

Q =


0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1

 , q0 = −
[

M1 R0

−R⊤
0 M2

]
x∗0,

and the vector x∗0 ∈ IR4 is randomly generated from [−2, 2).

In the experiments, all programs are implemented with Python 3.8 and run on a machine
with Intel Core i7-8700K @ 3.70GHz CPU and 32 GB RAM.

5.3.1 Comparison to the ERM model

Here, we suppose that Ξ = IR6 and ξ follows the normal distribution N (µ0,Σ0), where the
mean µ0 and the variance-covariance matrix Σ0 are given as follows:

µ0 = 0, Σ0 =


2 1.6 · · · 1.6
1.6 2 · · · 1.6
...

...
. . .

...
1.6 1.6 · · · 2

 . (5.36)

In the ERM model, we use the regularized gap function fα proposed by Luo and Lin [80]
as the merit function f . In the experiments, because it is difficult to exactly compute the
expected value E[fα(x, ξ)], we obtain its approximate value using a quasi-Monte Carlo method
described below:

E[fα(x, ξ)] ≈ θk(x) :=
1

Nk

∑
ξ̂k∈Ξk

fα(x, ξ̂
k)p(ξ̂k),

where the uniform random vector ξ̂k ∈ Ξk is generated by

ξ̂k =
(
(µ0 − 3

√
2) + (µ0 + 3

√
2)ζi

)
1m,

and ζi is a Sobol point from the interval [0, 1). The set Ξk := {ξ̂i | i = 1, 2, . . . , Nk} ⊂ Ξ is the
collection of the samples ξ̂k, which approximates the support Ξ, and p(·) is the probability
density function of the normal distribution N (µ0,Σ0). Note that as the number of samples Nk

and dimensions m increased, it may face underflow and subsequently fail to evaluate θk(x).
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To avoid this, we multiply θk(x) by 1/p(µ0). Summarizing the above arguments, we solve the
following approximate problem for (ERM) with the regularized gap function:

min θk(x)/p(µ0)
s.t. x ∈ S,

(5.37)

We use the SLSQP package, which is based on sequential quadratic programming methods,
in the Scipy.Optimize module to obtain a solution to problem (5.37). The initial point is
set to 0, and the termination criterion for the residual of the Karush–Kuhn–Tucker condition
is set to 10−7.

In the DRERM, because we know the exact values µ0 and Σ0 in advance, the ambiguity set
P is given by (5.5). When Ξ = IR6 and P is given as (5.5), (DRERM) can be reformulated
as the following NSDP, which can be regarded as the special case of (NSDP′):

min
(x,λ,y0,y,Y )

y0 + µ⊤0 y +
〈
Σ0 + µ0µ

⊤
0 , Y

〉
s.t. Dα(x, λ, y0, y, Y ) ⪰ O,

Ax ≤ b, λ ∈ IR2
−,

(5.38)

where IR2
− := {λ ∈ IR2 | λ ≤ 0}. To solve (5.38), we utilize an interior point method, which is

a hybrid method of [125] and [126]. The initial point and termination criterion are the same
as the method for (5.37).

We prepare 10 numerical instances of SVIP (5.1) and solve them via (5.37) and (5.38),
where we set two cases where Nk = 80 and Nk = 10000 in (5.37). Let xi∗ERM and xi∗DRERM

be solutions to (5.37) and (5.38) at the i-th instance, respectively. In what follows, for a
realization ξ̄j of the random variable ξ, f ijERM and f ijDRERM respectively denote fα(x

i∗
ERM, ξ̄

j)
and fα(x

i∗
DRERM, ξ̄

j) for simplicity.

To quantitatively evaluate the solutions xi∗ERM and xi∗DRERM, we conduct the following
steps:

(i) Generate N := 5000 realizations {ξ̄j}Nj=1, where each realization ξ̄j follows the normal
distribution N (µ1,Σ1). Here, µ1 and Σ1 are respectively the perturbations of µ0 and
Σ0 as follows:

µ1 := µ0 + δµ, Σ1 := Σ0 +∆Σ,

where each element of δµ ∈ IR6 and ∆Σ ∈ S6 are uniformly generated from the interval
[−0.1, 0.1).

(ii) Compute the regularized gap function values {f ijERM}Nj=1 and {f ijDRERM}Nj=1 by using the

realizations {ξ̄j}Nj=1 for each solution.

(iii) Evaluate the solutions xi∗ERM and xi∗DRERM by using the following five indicators, which
represent the rates of change (RC):

• Minimum:

(min
j
f ijDRERM −min

j
f ijERM)/min

j
f ijERM, (5.39)

• Maximum:

(max
j
f ijDRERM −max

j
f ijERM)/max

j
f ijERM, (5.40)
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• Mean:

(mean f iDRERM −mean f iERM)/mean f iERM, (5.41)

where mean f i· :=
1
N

∑N
j=1 f

ij
· .

• Median:

(med f iDRERM −med f iERM)/med f iERM, (5.42)

where med f i· := (f
i[N/2]
· +f

i[N/2+1]
· )/2, and f

i[j]
· denotes the j-th largest regularized

gap function value in the 5000 realizations.

• Standard deviation (SD):

(sd f iDRERM − sd f iERM)/sd f iERM, (5.43)

where sd f i· :=
√

1
N−1

∑N
j=1(f

ij
· −mean f i· )

2.

The computational results are shown in Figure 5.1. In each graph, the horizontal and
the vertical axes represent the instance number and the RC, respectively. Figures 5.1(a)
and 5.1(b) indicate the RC evaluated by (5.39) for Nk = 80 and Nk = 10000, respectively,
and Figures 5.1(c) and 5.1(d) represent the RC evaluated by (5.40)–(5.43) for each Nk. Note
that the vertical axis of Figure 5.1(a) is a logarithmic scale.

First, we focus on the minimum values, i.e., Figures 5.1(a) and 5.1(b). We observe that for
most of the instances of Nk = 80 and Nk = 10000, the minimum values of the ERM tend to be
small compared with the DRERM. In particular, the 8th instance in Figure 5.1(a) indicates
a significant difference between the ERM and DRERM models. Indeed, minj f

8j
ERM = 0.0023

and minj f
8j
DRERM = 1.5784, and they have a 690-fold difference. In the case of Nk = 10000,

the gaps between the ERM and DRERM are small for all instances compared with Nk = 80.

Next, we focus on Figures 5.1(c) and 5.1(d). Notably, the values of the gap function of
maximum and SD on the DRERM are smaller than the ERM for all instances for Nk = 80 and
Nk = 10000. This is an important result that shows that the DRERM is reasonably designed
to consider the distributionally worst case in terms of the expected value of the regularized
gap function.

From the above results, we confirm that the DRERM can obtain more robust solutions
that consider outliers, while the ERM is not as robust as the DRERM even when Nk is
sufficiently large in spite of using the exact distribution function for evaluating the expected
value. This is because the ERM is designed to minimize the expected value of the regularized
gap function; hence, it cannot directly consider the variance and maximum value. In fact, the
median of f ijERM with Nk = 10000 is less than the DRERM; however, outliers of realizations
ξ̄j adversely affect the mean of the regularized gap values. As a result, the difference between
the mean of f ijERM with Nk = 10000 and that of f ijDRERM is insignificant.

5.3.2 Analysis of solution by varying confidence parameters

In this section, we assume that Ξ = IR6, and the estimated mean µ̃0 and variance-covariance
matrix Σ̃0 are given as follows:

µ̃0 := µ0 + u6, Σ̃0 := Σ0 + U6,
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(b) RC (5.39) when Nk = 10000
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(d) RC (5.40)–(5.43) when Nk = 10000

Figure 5.1: The rate of change between the ERM and the DRERM.

where each element of u6 ∈ IR6 and U6 ∈ S6 are uniformly generated from [−0.25, 0.25) and
[−0.2, 0.2), respectively. Here, the true µ0 and Σ0 are the same as (5.36), and the confidence
regions of µ̃0 and Σ̃0 in the ambiguity set P are given as follows:

(EP [ξ]− µ̃0)
⊤ Σ̃−1

0 (EP [ξ]− µ̃0) ≤ γ1,

EP

[
(ξ − µ̃0) (ξ − µ̃0)

⊤
]
⪯ γ2Σ̃0.

(5.44)

(5.45)

In this setting, we solve the following NSDP:

min
(x,λ,y0,y,Y,z0)

z0 + y0 + µ̃⊤0 y + ⟨γ2Σ̃0 + µ̃0µ̃
⊤
0 , Y ⟩

s.t. z0 ≥
√
γ1

∥∥∥Σ̃1/2
0 (y + 2Y µ̃0)

∥∥∥ ,
Dα(x, λ, y0, y, Y ) ⪰ O,
Ax ≤ b, λ ∈ IR2

−.

(5.46)

Here, we solve (5.46) using the interior point method, which is the same method for solv-
ing (5.38). The initial point is set as 0, and the stopping criterion is 10−7. Note that we set
α > 0 to ensure that problem (5.46) is convex. Let x∗γ1,γ2 be a solution of problem (5.46) for
given γ1 and γ2.

In the first experiment, we quantitatively analyze the characteristics of the solutions in
the case where γ1 is incremented by 0.1 from 0.1 to 2, and γ2 is set to 1 or 2. We prepare
realizations {ξ̄j}Nj=1, where each ξ̄j follows N (µ0,Σ0) and N = 5000. After obtaining a

solution x∗γ1,γ2 , we compute the maximum, mean, and SD of {fα(x∗γ1,γ2 , ξ̄
j)}Nj=1.
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Figure 5.2 shows the results of the first experiment. In each graph, the horizontal and
vertical axes represent the values of γ1 and the regularized gap function, respectively. The
curves in Figures 5.2(a) and 5.2(b) indicate the maximum of {fα(x∗γ1,γ2 , ξ̄

j)}Nj=1 for fixed
γ2 = 1 and γ2 = 2, respectively, and Figures 5.2(c) and 5.2(d) represent the mean and SD of
{fα(x∗γ1,γ2 , ξ̄

j)}Nj=1 for fixed γ2 = 1 and γ2 = 2, respectively.
In Figures 5.2(a) and 5.2(c) (when γ2 = 1), the maximum, mean, and SD of regularized

gap function values increase as γ1 increases. However, Figures 5.2(b) and 5.2(d) (when γ2 = 2)
indicate that the values of the maximum and SD are entirely smaller than the case where
γ2 = 1; we will discuss the reason in the next experiment. In particular, from Figure 5.2(d),
the curve of the mean gradually decreases for 0.1 ≤ γ1 ≤ 1, unlike the case where γ2 = 1.
Moreover, Figures 5.2(a) and 5.2(c) indicate that the optimal solutions x∗γ1,1 to problem (5.46)
are not changed for 1 ≤ γ1 ≤ 2.

To summarize the first experiment, as γ1 increases, the solution x∗γ1,γ2 tends to focus on
decreasing the mean of realizations of fα for the case of γ2 = 2. Moreover, the mean increases
as γ1 becomes larger when γ2 = 1. This implies that the uncertainty of the estimated
variance-covariance Σ̃0 is not sufficiently considered for the case of γ2 = 1.
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Figure 5.2: Maximum, mean, and SD of 5000 realizations of the regularized gap function when γ1 is
varied.

In the second experiment, we investigate the characteristics of the solutions in the case
where γ2 is incremented by 0.1 from 1 to 3, and γ1 is set to 0.1 or 1. We prepare 5000
realizations {ξ̄j}Nj=1, which are the same samples used in the first experiment and compute

the maximum, mean, and SD of {fα(x∗γ1,γ2 , ξ̄
j)}Nj=1 for the solution x∗γ1,γ2 to problem (5.46).
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Figure 5.3 depicts the results of the second experiment. In particular, Figures 5.3(a)
and 5.3(b) are maxj fα(x

∗
γ1,γ2 , ξ̄

j) for fixed γ1 = 0.1 and γ1 = 1, respectively. Figures 5.3(c)

and 5.3(d) are the mean and SD of {fα(x∗γ1,γ2 , ξ̄
j)}Nj=1 for fixed γ1 = 0.1 and γ1 = 1, respec-

tively.

For fixed γ1 = 0.1, the maximum and SD gradually decrease as γ2 increases, whereas the
mean increases. For fixed γ1 = 1, the maximum and SD also decrease; however, the values of
fα are larger than the case where γ1 = 0.1 entirely. Moreover, there is a diminutive change
in the curve of the mean in Figure 5.3(d) compared with that of Figure 5.3(c).

To summarize the second experiment, as γ2 increases, the DRERM outputs the solutions
x∗γ1,γ2 that tend to decrease the maximum and SD of fα. This is because, by the definition
of the moment ambiguity set (5.10), increasing γ2 leads to conservative behavior regarding
the variance of ξ. Consequently, fα also behaves conservatively, and its outlier tends to be
decreased as well. Meanwhile, when γ2 is very large, the mean increases.

Consequently, from the results of both experiments, we confirm that there are trade-off
relations between the mean and the SD, and the mean and the maximum, respectively, in
response to the confidence parameters γ1 and γ2.
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(c) Mean and SD for fixed γ1 = 0.1
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Figure 5.3: Maximum, mean, and SD of 5000 realizations of the regularized gap function when γ2 is
varied.

Remark 5.3.2. When the support Ξ is compact, the reasonable γ1 and γ2 can be analytically
obtained depending on the number of observations (refer to [23]). However, if Ξ is not com-
pact, such as in this experiment, one can obtain desired γ1, γ2, and solutions to SVIP (5.1)
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by approximating Ξ into a compact set.

5.4 Concluding remarks

We have proposed a DRERM model for an SVIP under uncertainty of distribution by incor-
porating the idea of the DRO into the ERM model with the regularized gap function. In
particular, we have shown that the DRERM can be conservatively approximated into a de-
terministic NSDP, and under suitable assumptions, the solution of the NSDP also solves the
DRERM. Furthermore, for the SVIP whose mapping F is affine with respect to x, we have
provided a sufficient condition of the regularization parameter of the regularized gap function
to ensure that the reformulated NSDP is a convex optimization problem. Meanwhile, the
reformulated NSDP proposed in the existing research is not convex in general. In numerical
experiments, we have confirmed the reasonability of the DRERM model by comparing it with
the ERM in terms of robustness, and we have analyzed their solutions by varying confidence
parameters γ1 and γ2 included in the ambiguity set P.

A remaining challenge is an NSDP approximation for more general cases of the following
ambiguity sets described in [124]:

P ′ =

{
P ∈ MΞ

∣∣∣∣ EP [Ψi(ξ)] = O, i = 1, 2, . . . , t′

EP [Ψi(ξ)] ⪯ O, i = t′ + 1, t′ + 2, . . . , t

}
,

where Ψi (i = 1, 2, . . . , t) is a symmetric matrix- or scalar-valued function over Ξ with measur-
able random components. We expect that our approach can be extended into the case of P ′

because the DRO with P ′ can be equivalently reformulated to a semi-infinite programming
problem, such as (SIP), by assuming a ‘Slater-type’ condition on P ′.
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Chapter 6

Conclusions and future works

6.1 Conclusions

In this thesis we studied some Nash games and those extensions under uncertainty, and we
addressed stochastic variational inequalities with uncertain probability distributions.

In Chapter 3, we studied a multi-leader–follower game and reformulated the game to an
equilibrium problem with equilibrium constraints, which is essentially and numerically diffi-
cult to solve because of the complementarity constraints on each leader’s problem, and they
depend on other leaders’ strategy vectors. To tackle such difficulties, we proposed a penaliza-
tion technique. Using this approach, the game consisting of the penalized problems on each
player is regarded as a classical standard differentiable Nash game. We solved the penalized
Nash game with the Gauss–Seidel approach, and then we discussed convergence of the se-
quence generated by the method to a stationary point of the multi-leader–follower game under
suitable assumptions. Finally, we demonstrated the validity of the algorithm through numer-
ical experiments. Moreover, we considered a wholesale electricity market as an application of
the game and analyzed the behavior of the market through numerical experiments.

In Chapter 4, we considered a two-stage distributionally robust Nash game in which
each player solves a two-stage distributionally robust optimization parametrized by the other
players’ strategies. Existing studies had a limitation such as the linear decision rule in second-
stage decisions and have only analyzed the game from the perspective of ex-post equilibrium.
We established a more general result to demonstrate the sufficient condition for the existence
of Nash equilibrium in the game and introduced a two-stage distributionally robust variational
inequality to construct a solution method for finding the Nash equilibrium. As an application
of the game, we considered a two-stage distributionally robust Cournot–Nash competition
that appeared in the theory of industrial organization in microeconomics. We proved the
existence of the equilibrium in the market under economically standard assumptions. Finally,
we conducted some numerical experiments and analyzed the behavior of each player in a
duopoly market from some perspectives. Particularly, we found that when one of the players
unilaterally knows the almost exact probability distribution, the rival player behaves in passive
involvement in the market because the shadow price of the player decreases.

In Chapter 5, we proposed a distributionally robust optimization model for stochastic
variational inequality problems with uncertain probability distributions via expected residual
minimization, referred to as a distributionally robust expected residual minimization (DR-
ERM). In general, the DRERM is computationally much demanding because of the evaluation
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of expected residual functions and maximization with respect to the probability distribution.
However, for a certain mapping F (x, ξ), set S, and moment ambiguity set, we proved that
the DRERM can be conservatively approximated as a deterministic nonlinear semidefinite
programming problem. Furthermore, we showed that when the support Ξ of the probability
distribution is given by IRm or a single ellipsoid, the globally optimal point of the semidefinite
programming coincides with the optimal solution of the DRERM. We also provided a suffi-
cient condition for the convexity of the nonlinear semidefinite programming when F (x, ξ) is
also affine with respect to x. In numerical experiments, we considered a stochastic Nash game
in an almost sure formulation and compared our method and the existing expected residual
minimization method that does not consider the uncertainty of distributions. We confirmed
the validity of the proposed method in terms of robustness against the perturbation of proba-
bility distributions. We also obtained knowledge of how the optimal solution of the DRERM
changes as the parameters of the moment ambiguity set change. These results may be useful
for model designers when adjusting the robustness of the solution to the DRERM.

6.2 Future works

Although the main direction of future works may be the generalization of the concepts in the
thesis to more inclusive decision-making situations, it is also essential to rigorously consider
details that we ignored, as indicated in the following research issues, in order to apply the
proposed method to real-world problems.

First, in the multi-leader–follower game presented in Chapter 3, when discussing the con-
vergence of the proposed algorithm (Theorem 3.4.5), we assumed that the followers’ response
is uniquely determined for any strategies of leaders. However, this assumption does not neces-
sarily hold in many real-world applications, and then an additional issue arises: whether the
leaders should choose a strategy that is most or least convenient for themselves from the set
of followers’ responses. The solution concepts are called an optimistic and pessimistic leader–
follower equilibrium, respectively, and few studies have addressed this issue in multi-leader–
follower games. In the literature on bilevel optimization (Stackelberg games), the special case
of multi-leader–follower games, some studies tackled the issue in recent years [68,74,75]. The
multi-leader–follower games under uncertainty, such as the concept of distributional robust-
ness in Chapter 4, are quite limited, while we found an approach in terms of robust Nash
games [54]. Finally, a sensitivity analysis of the game would be interesting as well.

The future works on two-stage distributionally robust Nash games presented in Chapter 4
are desired to extend the framework to a generalized Nash game in which the strategy set
depends on the other players’ strategies. Along with this development, multistage (distri-
butionally robust) stochastic variational inequalities should be extended to the framework of
quasi-variational inequalities. In this thesis, we focused on the case in which random variables
are independent of the decisions of players. However, in many real-world situations more gen-
eral cases can be considered such as the games with private information and the game in
which the probability of future scenarios depends on the decisions of players. In the course
of Chapter 4, we introduced a reformulation of the game to two-stage distributionally robust
variational inequalities, but the alternating-type method to solve them does not have global
convergence in general; there are no studies that address this issue as with the one-stage
case to the best of our knowledge. Other future studies include perturbation and sensitivity
analysis of the equilibrium and extensions to multistage games.
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As for the stochastic variational inequalities in Chapter 5, the proposed DRERM is lim-
ited to moment-based ambiguity sets. Hence, it would be interesting to adopt metric-based
ambiguity sets such as the Wasserstein ambiguity set, which has gained attention in recent
years in fields such as machine learning. We assumed that the function F (x, ξ) is linear with
respect to ξ, as in Assumption 5.2.4, for the purpose of obtaining an SDP approximation.
However, this assumption may not hold in many real-world applications, such as when F (x, ξ)
is nonlinear, as in the BPR (Bureau of Public Roads) function used in transportation engi-
neering. In more general cases, it may no longer be able to write a closed-form expression for
F (x, ξ) with respect to ξ. We think, however, such a closed-form assumption would be nec-
essary for obtaining an SDP approximation. Therefore, it would be important to establish a
method for approximating F (x, ξ) linearly with respect to ξ for general stochastic variational
inequalities so that Assumption 5.2.4 holds. Another interesting topic to study is the statisti-
cal robustness of the expected residual minimization for stochastic variational inequalities to
tackle research issue (RI2) from a different perspective. Additionally, it would be valuable to
compare the robustness of the solution of a distributionally robust variational inequality [118]
with the solution of our model.



96 CHAPTER 6. CONCLUSIONS AND FUTURE WORKS



Bibliography

[1] R.P. Agdeppa, N. Yamashita, and M. Fukushima, Convex expected residual models
for stochastic affine variational inequality problems and its application to the traffic
equilibrium problem, Pacific J. Optim., 6 (2010), 3–19.

[2] M. Aghassi and D. Bertsimas, Robust game theory, Math. Program., 107 (2006), 231–
273.

[3] R. Andreani, L. D. Secchin and P. J. S. Silva, Convergence properties of a second
order augmented Lagrangian method for mathematical programs with complementarity
constraints, SIAM J. Optim., 28 (2018), 2574–2600.

[4] K.J. Arrow and G. Debreu, Existence of an equilibrium for a competitive economy,
Econometrica, 22 (1954), 265–290.
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Appendix A

Details of the proof of Lemma 3.3.3
and Theorem 3.3.4–(b)

By the continuity of ∇zf,∇2
zf , etc., we can prove the lemma and theorem by appropriate

modifications of the arguments in Lemma 4.3 and Theorem 4.4 in Huang et al. [58].

The difference between our arguments and those of [58] is that our problem is parametric
while the problem in [58] is parameter-free. However, since our problem functions along
with their first- and second-derivatives are continuous and the sequence {ak} of parameters
is convergent, the proof technique in [58] can be adapted to our theorem in a straightforward
manner. Moreover, we have checked the proofs in [58] carefully and found no errors apart
from a few typos.

However, a complete proof of our theorem would be lengthy. In fact, Huang et al. [58]
spent 8 pages to prove their Lemma 4.3 and Theorem 4.4. So we will give a brief sketch of
the proof for Lemma 3.3.3 and Theorem 3.3.4 below.

Proof of Lemma 3.3.3

Proof. First, the feasibility at z̄ is ensured by Lemma 3.3.1. Next, we show z̄ satisfies weak
stationarity. If we set

ξkj = −ρkϕ(Gj(z
k, ak), Hj(z

k, ak))

(
1− Gj(z

k, ak)√
Gj(zk, ak)2 +Hj(zk, ak)2

)
, j ∈ J ′(zk, ak),

ηkj = −ρkϕ(Gj(z
k, ak), Hj(z

k, ak))

(
1− Hj(z

k, ak)√
Gj(zk, ak)2 +Hj(zk, ak)2

)
, j ∈ J ′(zk, ak),

ξkj = ηkj = 0, j ∈ J0+(z
k, ak) ∪ J+0(z

k, ak) ∪ J00(z
k, ak),

λki = ρkgi(z
k, ak), i ∈ I+

g (zk, ak),

λki = 0, i ∈ {1, 2, . . . , r} \ I+
g (zk, ak),

µk
i = ρkhi(z

k, ak), i ∈ IC
h (zk, ak),

µk
i = 0, i ∈ Ih(zk, ak),

(A.1)

(A.2)
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then the first-order condition in Lemma 3.3.2 yields

∇fz(zk, ak) +
r∑

i=1

λki∇zgi(z
k, ak) +

s∑
i=1

µki∇zhi(z
k, ak)

−
m∑
j=1

ξkj∇zGj(z
k, ak)−

m∑
j=1

ηkj∇zHj(z
k, ak) = 0

and

λki ≥ 0, i = 1, 2, . . . , r.

In a similar manner to the proof of Lemma 4.3 in [58], we can show that the sequences
{ξkj }mj=1, {ηkj }mj=1, {λki }ri=1 and {µki }si=1 are bounded under the MPEC-LICQ condition, and

so we may assume without loss of generality that those sequences converge to ξ̄j (j = 1, . . . ,m),
η̄j (j = 1, . . . ,m), λ̄i (i = 1, . . . , r) and µ̄i (i = 1, . . . , s), respectively. Moreover, we can show
that

ξ̄j = 0, j ∈ J+0(z̄, ā),

η̄j = 0, j ∈ J0+(z̄, ā),

λ̄i = 0, i ∈ I+
g (z̄, ā).

Consequently, we obtain

∇fz(z̄, ā) +
∑

i∈Ig(z̄,ā)

λ̄i∇zgi(z̄, ā) +
s∑

i=1

µ̄i∇zhi(z̄, ā)

−
∑

j∈J0+(z̄,ā)∪J00(z̄,ā)

ξ̄j∇zGj(z̄, ā)−
∑

j∈J+0(z̄,ā)∪J00(z̄,ā)

η̄j∇zHj(z̄, ā) = 0.

This completes the proof of Lemma 3.3.3.

Proof of Theorem 3.3.4–(b) Indeed, the proof technique used in [58] is an adaptation of
that used in Fukushima and Pang [37].

Proof. First, we can assume without loss of generality that

j∗ ∈ J ′(zk, ak) for all k. (A.3)

Moreover, by the definitions of (A.1), (A.2), and the fact that ξkj∗ → ξ̄j∗(< 0) and ηkj∗ →
η̄j∗(< 0) from Lemma 3.3.3, we have

ϕ(Gj∗(z
k, ak), Hj∗(z

k, ak)) > 0

and hence

Gj∗(z
k, ak) > 0, Hj∗(z

k, ak) > 0

for all k sufficiently large. In addition, {ρkϕ(Gj∗(z
k, ak), Hj∗(z

k, ak))} is shown to be bounded.
So we may assume without loss of generality that {ρkϕ(Gj∗(z

k, ak), Hj∗(z
k, ak))} converges,

and let

θ∗ = lim
k→∞

ρkϕ(Gj∗(z
k, ak), Hj∗(z

k, ak)).
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On the other hand, we define

akj∗ = 1− Gj∗(z
k, ak)√

Gj∗(zk, ak)2 +Hj∗(zk, ak)2
, bkj∗ = 1− Hj∗(z

k, ak)√
Gj∗(zk, ak)2 +Hj∗(zk, ak)2

,

and assume without loss of generality that limk→∞ akj∗ = a∗ and limk→∞ bkj∗ = b∗. Then, by

the definitions of ξkj , a
k
j∗ and θ∗, we have

0 > ξ̄j∗ = −θ∗a∗.

Since akj∗ ≥ 0 for all k, we obtain θ∗ > 0 as well as a∗ > 0. However, this leads to a
contradiction as sketched below, and so z̄ must be an M-stationary point.

In fact, the contradiction is derived by considering a bounded sequence of vectors {dk}
satisfying the system

∇Gj∗(z
k, ak)⊤dk = 1− Hj∗(z

k, ak)√
Gj∗(zk, ak)2 +Hj∗(zk, ak)2

,

∇Hj∗(z
k, ak)⊤dk = −

(
1− Gj∗(z

k, ak)√
Gj∗(zk, ak)2 +Hj∗(zk, ak)2

)
,

∇Gj(z
k, ak)⊤dk = ∇Hj(z

k, ak)⊤dk = 0, j ∈ J ′(zk, ak) \ {j∗},
∇Gj(z

k, ak)⊤dk = 0, j ∈ J0+(z
k, ak) ∪ J00(z

k, ak),

∇Hj(z
k, ak)⊤dk = 0, j ∈ J+0(z

k, ak) ∪ J00(z
k, ak),

∇gi(zk, ak)⊤dk = 0, i ∈ I+
g (zk, ak),

∇hi(zk, ak)⊤dk = 0, i ∈ IC
h (zk, ak).

(Recall j∗ ∈ J ′(zk, ak); see (A.3)). By the MPEC-LICQ at (z̄, ā), there exists dk satisfying
the above system for all k sufficiently large. However, we can show that the second-order
optimality condition shown in Lemma 3.3.2 does not hold for such dk when k becomes large,
since θ∗ > 0 ensures that the left-hand side of (3.3) tends to −∞ as k → ∞. This contradicts
the assumption that weak second-order condition (3.3) holds at z̄. Consequently, z̄ is an
M-stationary point of PMPCC(ā).
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Appendix B

Detailed results of numerical
experiments in Section 3.6

In this appendix, we show that the detail of the B-stationarity of each leader’s MPCC in
Examples 3.6.1 to 3.6.7 shown in Section 3.6.

Example 3.6.1 Here we discuss the detail of the results in Example 3.6.1. We checked
each player’s optimality conditions of MPCC. The active constraints of the complementarity
conditions at the solution (x1,∗, x2,∗, y1,∗, y2,∗) to Example 3.6.1 are (My+N1x

1+N2x
2+q)i ≥

0 (i = 1, 2), hence we have to check the KKT conditions for the following each player’s
optimization problem:

minimize
xν∈IR2,y∈IR2

θν(xν , x−ν , y)

subject to Aνx
ν ≤ bν ,

My +N1x
1 +N2x

2 + q = 0,
y ≥ 0.

(B.1)

For player 1:

H1x
1,∗ +G1x

−1,∗ +A⊤
1 λ

1,∗ +N⊤
1 ξ

1,∗ =

[
0.1332e− 14
0.0444e− 14

]
,

c1 +M⊤ξ1,∗ − η1,∗ =

[
−0.1033e− 15
0.4441e− 15

]
,

withλ1,∗ = 0.5972, ξ1,∗ =

[
1.3575
1.7246

]
, η1,∗ =

[
0.5871e− 05

0

]
,

A1x
1,∗ − b1 = −3.3493e− 06, My1,∗ +N1x

1,∗ +N2x
2,∗ + q =

[
−0.1148e− 12
−0.1115e− 12

]
.
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For player 2:

H2x
2,∗ +G2x

−2,∗ +A⊤
2 λ

2,∗ +N⊤
2 ξ

2,∗ =

[
0

0.8882e− 15

]
,

c2 +M⊤ξ2,∗ − η2,∗ =

[
−0.0888e− 14
0.1501e− 14

]
,

with λ2,∗ = 3.0775, ξ2,∗ =

[
1.2802
1.4058

]
, η2,∗ =

[
0

0.1956e− 05

]
,

A2x
2,∗ − b2 = −3.2132e− 06, My2,∗ +N1x

1,∗ +N2x
2,∗ + q =

[
0.1875e− 07
−0.1423e− 07

]
,

where λν,∗, ξν,∗, ην,∗ are the Lagrange multipliers for the constraints Aνx
ν ≤ bν ,My+N1x

1+
N2x

2 + q = 0, y ≥ 0, respectively. From the above considerations, we confirmed that the
algorithm successfully obtained a B-stationary equilibrium point.

Example 3.6.2 Here we discuss the detail of the results in Example 3.6.2. The active
constraints of the complementarity constraints are the same as Example 3.6.1, hence we have
to check the KKT conditions for the problem (B.1). For player 1:

H1x
1,∗ +G1x

−1,∗ +A⊤
1 λ

1,∗ +N⊤
1 ξ

1,∗ =

 −0.0444e− 14
0.4940e− 14
−0.2887e− 14

 ,
c1 +M⊤ξ1,∗ − η1,∗ =

 −0.1332e− 14
0.0888e− 14
−0.1450e− 14

 ,
with λ1,∗ =

[
0.8540
4.3951

]
, ξ1,∗ =

 0.7138
0.2580
0.6795

 , η1,∗ =
 0

0
−0.1831e− 06

 ,
A1x

1,∗ − b1 =

[
−0.1171e− 06
−0.0228e− 06

]
, My1,∗ +N1x

1,∗ +N2x
2,∗ + q =

 0.2471e− 08
0.1780e− 08
−0.3818e− 08

 .
For player 2:

H2x
2,∗ +G2x

−2,∗ +A⊤
2 λ

2,∗ +N⊤
2 ξ

2,∗ =

 0.1998e− 14
−0.2276e− 14
0.0722e− 14

 ,
c2 +M⊤ξ2,∗ − η2,∗ =

 −0.0513e− 14
0.1332e− 14
−0.0888e− 14

 ,
with λ2,∗ =

[
3.0130
1.1435

]
, ξ2,∗ =

 0.6488
0.2213
0.6341

 , η2,∗ =
 0.1123e− 07

0
0

 ,
A2x

2,∗ − b2 =

[
−0.3319e− 07
−0.8745e− 07

]
, My2,∗ +N1x

1,∗ +N2x
2,∗ + q =

 −0.1688e− 13
0.0266e− 13
0.0977e− 13

 .
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Example 3.6.3 Here we discuss the detail of the results in Example 3.6.3. The active con-
straints of the complementarity constraints for the example are (My+N1x

1+N2x
2+q){1,3} ≥

0, y2 ≥ 0. We checked the KKT conditions for the following each player’s optimization prob-
lem:

minimize θν(xν , x−ν , y)
subject to Aνx

ν ≤ bν ,
(My +N1x

1 +N2x
2 + q)1 = 0, y1 ≥ 0,

(My +N1x
1 +N2x

2 + q)2 ≥ 0, y2 = 0,
(My +N1x

1 +N2x
2 + q)3 = 0, y3 ≥ 0.

For player 1:

H1x
1,∗ +G1x

−1,∗ +A⊤
1 λ

1,∗ +N⊤
1 ξ

1,∗ =

 0.6292e− 06
0.5938e− 06
0.1957e− 06

 ,
c1 +M⊤ξ1,∗ − η1,∗ =

 0.1295e− 06
−0.0000e− 06
0.1343e− 06

 ,
with λ1,∗ =

[
0.8877
4.5799

]
, ξ1,∗ =

 0.8220
−0.0000
0.5573

 , η1,∗ =
 0.0000

3.1068
0.0000

 ,
A1x

1,∗ − b1 =

[
−0.2255e− 05
−0.0437e− 05

]
, My1,∗ +N1x

1,∗ +N2x
2,∗ + q =

 0.0000
0.1429
−0.0000

 .
For player 2:

H2x
2,∗ +G2x

−2,∗ +A⊤
2 λ

2,∗ +N⊤
2 ξ

2,∗ =

 0.0991e− 07
−0.0137e− 07
0.1245e− 07

 ,
c2 +M⊤ξ2,∗ − η2,∗ =

 0.4880e− 08
0.0000e− 08
−0.3825e− 08

 ,
with λ2,∗ =

[
2.5454
1.1247

]
, ξ2,∗ =

 0.7416
0.0000
0.5293

 , η2,∗ =
 −0.0000

2.8334
0.0000

 ,
A2x

2,∗ − b2 =

[
−0.3929e− 07
−0.8891e− 07

]
, My2,∗ +N1x

1,∗ +N2x
2,∗ + q =

 −0.0000
0.1429
0.0000

 .

Example 3.6.5 Here we discuss the detail of the results in Example 3.6.5. The active
constraint of the complementarity constraints is c⊤y+(d1)⊤x1+(d2)⊤x2+a ≥ 0. We checked
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the KKT conditions for the following each leader’s optimization problem:

minimize
xν∈IR2,y∈IR3,λ∈IR

θν(xν , x−ν , y)

subject to Aνx
ν ≤ bν ,

My + q −D⊤
1 x

1 −D⊤
2 x

2 − cλ = 0,
c⊤y + (d1)⊤x1 + (d2)⊤x2 + a = 0,
λ ≥ 0.

For player 1:

H1x
1,∗ +G1,2x

−1,∗ +D1y
2,∗ +A⊤

1 α
1,∗ −D1γ

1,∗ + d1η1,∗ =

[
−0.5574e− 05
−0.6135e− 05

]
,

D⊤
1 x

1,∗ +M⊤γ1,∗ + c η1,∗ =

 0.0156e− 06
0.1005e− 06
0.0486e− 06

 ,
− c⊤γ1,∗ − ξ1,∗ = 6.9036e− 08,

with α1,∗ =

 0.0000
0.6532
0.0000

 , γ1,∗ =
 −0.1189

0.2373
−0.1346

 , ξ1,∗ = −2.7155e− 09, η1,∗ = 0.1470,

A1x
1,∗ − b1 =

 −1.4936
−0.0000
−1.8196

 , c⊤y1,∗ + (d1)
⊤x1,∗ + (d2)

⊤x2,∗ + a = −2.2707e− 08,

For player 2:

H2x
2,∗ +G2,1x

−2,∗ +D2y
2,∗ +A⊤

2 α
2,∗ −D2γ

2,∗ + d2η2,∗ =

[
−0.1567e− 07
0.2881e− 07

]
,

D⊤
2 x

2,∗ +M⊤γ2,∗ + c η2,∗ =

 0.1075e− 07
0.0136e− 07
−0.1590e− 07

 ,
− c⊤γ2,∗ − ξ2,∗ = −2.7892e− 10,

with α2,∗ =

 0.0000
0.1061
0.0000

 , γ2,∗ =
 −0.3527

0.1367
−0.2102

 ξ2,∗ = −1.3078e− 10, η2,∗ = 0.2615

A2x
2,∗ − b2 =

 −0.4273
−0.0000
−2.3430

 , c⊤y2,∗ + (d1)
⊤x1,∗ + (d2)

⊤x2,∗ + a = −4.9960e− 14,

where αν,∗, γν,∗, ξν,∗, ην,∗ are Lagrange multipliers for the constraints Aνx
ν ≤ bν ,My + q −

D⊤
1 x

1 −D⊤
2 x

2 − c λ = 0, 0 ≤ λ ⊥ c⊤y + (d1)⊤x1 + (d2)⊤x2 + a ≥ 0, respectively.

Example 3.6.6 Here we discuss the detail of the results in Example 3.6.5. The active
constraints of the complementarity constraints for the example is λ ≥ 0. We checked the
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KKT conditions for the following each leader’s optimization problem:

minimize θν(xν , x−ν , y)
subject to Aνx

ν ≤ bν ,
λ = 0,
c⊤y + (d1)⊤x1 + (d2)⊤x2 + (d3)⊤x3 + a ≥ 0.

For leader 1:

H1x
1,∗ +G1,2x

2,∗ +G2,3x
3,∗ +D1y

1,∗ +A⊤
1 α

1,∗ −D1γ
1,∗ − d1η1,∗ =

 −0.2501e− 07
0.3491e− 07
−0.2658e− 07

 ,
D⊤

1 x
1,∗ +M⊤γ1,∗ − c η1,∗ =

 −0.1230e− 08
−0.9576e− 08
−0.4648e− 08

 ,
− c⊤γ1,∗ + ξ1,∗ = 0,

with α1,∗ =

 0.3022e− 08
−0.4926e− 08
−0.7129e− 08

 , γ1,∗ =
 0.0493

−0.2145
0.0476

 , ξ1,∗ = −0.0718, η1,∗ = 5.1410e− 09,

A1x
1,∗ − b1 =

 −2.2634
−1.4461
−2.8254

 , c⊤y1,∗ + (d1)
⊤x1,∗ + (d2)

⊤x2,∗ + (d3)⊤x3,∗ + a = 1.2594.

For leader 2:

H2x
2,∗ +G2,1x

1,∗ +G2,3x
3,∗ +D2y

2,∗ +A⊤
2 α

2,∗ −D2γ
2,∗ − d2η2,∗ =

 0.2420e− 06
0.0352e− 06
0.0760e− 06

 ,
D⊤

2 x
2,∗ +M⊤γ2,∗ − c η2,∗ =

 0.2149e− 06
−0.0708e− 06
0.1586e− 06

 ,
− c⊤γ2,∗ + ξ2,∗ = −5.5511e− 17,

with α2,∗ =

 −0.0083e− 05
0.6181e− 05
−0.0148e− 05

 , γ2,∗ =
 −0.0363

−0.0752
−0.0847

 , ξ2,∗ = −0.3893, η2,∗ = 5.4398e− 07,

A2x
2,∗ − b2 =

 −1.2185
−0.0610
−1.9965

 , c⊤y2,∗ + (d1)
⊤x1,∗ + (d2)

⊤x2,∗ + (d3)⊤x3,∗ + a = 1.2594.
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For leader 3:

H3x
3,∗ +G3,1x

1,∗ +G3,2x
2,∗ +D3y

3,∗ +A⊤
3 α

3,∗ −D3γ
3,∗ − d3η3,∗ =

 −0.3040e− 06
0.5118e− 06
−0.3482e− 06

 ,
D⊤

3 x
3,∗ +M⊤γ3,∗ − c η3,∗ =

 −0.0528e− 06
−0.3414e− 06
0.1187e− 06

 ,
− c⊤γ3,∗ + ξ3,∗ = 0,

with α3,∗ =

 −0.2038e− 06
−0.0584e− 06
0.2004e− 06

 , γ3,∗ =
 −0.0414

−0.0389
−0.0951

 , ξ3,∗ = −0.3790, η3,∗ = 9.3602e− 08,

A3x
3,∗ − b3 =

 −1.6571
−2.8412
−1.6535

 , c⊤y3,∗ + (d1)
⊤x1,∗ + (d2)

⊤x2,∗ + (d3)⊤x3,∗ + a = 1.2594.

Example 3.6.7 Here we discuss the detail of the results in Example 3.6.6. First, we write
each firm ν’s MPCC as follows.

minimize
xν∈IR2,(y,λ)∈IR6

1
2(x

ν)⊤diag(τν1 , τ
ν
2 )x

ν − (xν)⊤Dνy

subject to −xν ≤ 0, xν − σν ≤ 0,

0 ≤
[
By + c+D⊤

I x
I +D⊤

IIx
II +A⊤λ

a−Ay

]
⊥
[
y
λ

]
≥ 0.

where

DI :=

[
1 0 0 0
0 1 0 0

]
, DII :=

[
0 0 1 0
0 0 0 1

]
,

B :=


β1 +

ζ1
(aI)2

0 β1 − ζ1
aIaII

0

0 β2 +
ζ2

(aI)2
0 β2 − ζ2

aIaII

β1 − ζ1
aIaII

0 β1 +
ζ1

(aII)2
0

0 β2 − ζ2
aIaII

0 β2 +
ζ2

(aII)2

 , c :=


−α1

−α2

−α1

−α2

 ,

A :=

[
1 1 0 0
0 0 1 1

]
, a :=

[
aI

aII

]
.

At the solution we obtained by the algorithms, the active constraints of the complemen-
tarity constraints are (By + c +D⊤

I x
I +D⊤

IIx
II + A⊤λ)i ≥ 0 (i = 1, . . . , 4) and (a − Ay)i ≥

0 (i = 1, 2), hence we checked the KKT conditions for the following each firm’s problem:

minimize
xν∈IR2,(y,λ)∈IR6

1
2(x

ν)⊤diag(τν1 , τ
ν
2 )x

ν − (xν)⊤Dνy

subject to −xν ≤ 0, xν − σν ≤ 0,
By + c+D⊤

I x
I +D⊤

IIx
II +A⊤λ = 0,

a−Ay = 0,
y ≥ 0, λ ≥ 0.
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For firm I:

diag(τ I1, τ
I
2)x

I,∗ −DIy
I,∗ − χI,∗

l + χI,∗
u +DIξ

I,∗ =

[
−0.1722e− 07
−0.2299e− 07

]
,

−D⊤
I x

I,∗ +BξI,∗ −A⊤ηI,∗ − κI,∗y =


0.0503e− 07
−0.1270e− 07
−0.1214e− 07
0.0453e− 07

 ,
AξI,∗ − κI,∗λ =

[
0.0281e− 07
0.0002e− 07

]
,

with χI,∗
l =

[
0.0000
0.0000

]
, χI,∗

u =

[
0.1557e− 07
0.1145e− 07

]
, ξI,∗ =


−0.0606
0.0606
0.0571
−0.0571

 , ηI,∗ = [ −0.5458
0.0002

]
,

κI,∗y =


0.0152e− 06

0.0000
0.0000

0.0050e− 06

 , κI,∗λ =

[
0.1842e− 06
0.0015e− 06

]
,

[
ByI,∗ + c+D⊤

I x
I,∗ +D⊤

IIx
II,∗ +A⊤λI,∗

a−AyI,∗

]
=



−0.1221e− 13
0.0155e− 13
0.0444e− 13
0.0644e− 13
0.0022e− 13

0.0000

 .

For firm II:

diag(τ II1 , τ
II
2 )xII,∗ −DIy

II,∗ − χII,∗
l + χII,∗

u +DIIξ
II,∗ =

[
−0.4596e− 06
−0.4444e− 06

]
,

−D⊤
IIx

II,∗ +BξII,∗ −A⊤ηII,∗ − κII,∗y =


−0.0232e− 06
0.0057e− 06
0.0065e− 06
−0.0069e− 06

 ,
AξII,∗ − κII,∗λ =

[
0.0000

0.1287e− 06

]
,

with χII,∗
l =

[
0.0000
0.0000

]
, χII,∗

u =

[
0.0997e− 05
0.1018e− 05

]
, ξII,∗ =


0.0267
−0.0267
−0.0291
0.0292

 , ηII,∗ = [ 0.0001
−0.6425

]
,

κII,∗y =


0.0000

0.0002e− 04
0.0001e− 04

0.0000

 , κII,∗λ =

[
0.0000

0.1287e− 04

]
,
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[
ByII,∗ + c+D⊤

I x
I,∗ +D⊤

IIx
II,∗ +A⊤λII,∗

a−AyII,∗

]
=



0.6957e− 06
−0.3518e− 06

0.0000
0.0000
0.0000
0.0000

 ,

where χν
l , χ

ν
u, ξ

ν , ην , κνy and κνλ are the Lagrange multipliers for the constraints −xν ≤ 0, xν −
σν ≤ 0, By + c+D⊤

I x
I +D⊤

IIx
II +A⊤λ = 0, a−Ay = 0, y ≥ 0 and λ ≥ 0, respectively.



Appendix C

Distributionally robust Nash
equilibrium and ex-post equilibrium
in a one-stage stochastic Nash game

In Remark 4.3.1, we have described the difference of TSDRNE and ex-post equilibrium in the
sense of the formulations of two-stage distributionally robust variational inequalities.

As a specific case in which a distributionally robust Nash equilibrium exists whereas the
ex-post equilibrium does not, consider the following example borrowed from [77].

Example C.0.1 (Boxed pig (for details, see Liu et al. [77, Example 2.1])). A large pig and
a piglet are placed in a space with a lever at one end of the space and food dispenser at the
other end. The pig that presses the lever must run to the other side to eat, and by the time it
gets there, the other pig has eaten most, but not, all of the food. The large pig is dominant,
and the piglet is subordinate. Therefore, the large pig is able to prevent the piglet from getting
any food when both are at the food. When the large pig presses the lever, a disutility of α = 6
units will be incurred for the large pig and α = 2 units for the piglet (which can be interpreted
as the energies to be consumed), and ξ units (a random variable taking integer values) of food
will be released at the dispenser.

The pigs have two choices, whether to press the lever or wait at the dispenser. Because
the large pig dominates the game, if it gets to the dispenser first (wait at the dispenser) or
at the same time (both press the lever and then run to the dispenser) as the piglet, it will
receive the following amount of food:

pd(ξ) :=

{
ξ if ξ ≤ 9;
9 + log(ξ − 9) if ξ ≥ 10.

The piglet will receive the rest. Instead, if the piglet waits at the dispenser first, it will receive

ps(ξ) :=

{
ξ if ξ ≤ 4;
4 + log(ξ − 4) if ξ ≥ 5.

The game is summarized in Table C.1.
Now suppose that the random variable ξ follows the two potential distributions P1(ξ =

4) = 1/4 and P1(ξ = 15) = 3/4 or P2(ξ = 4) = 3/4 and P2(ξ = 15) = 1/4. The ambiguity set
P of each pig is P = {P1, P2}.

119



120 APPENDIX C. TSDRNE/EX-POST EQUILIBRIUM IN STOCHASTIC GAME

Table C.1: Boxed pigs

(piglet) (piglet)
Pull the lever Wait

(big pig) Pull the lever (pd(ξ)− 6, ξ − pd(ξ)− 2) (ξ − ps(ξ)− 6, ps(ξ))
(big pig) Wait (pd(ξ), ξ − pd(ξ)− 2) (0, 0)

First, we consider a case in which both pigs initially know that ξ follows P1. The expected
utility under P1 is shown in Table C.2, where the stochastic Nash equilibrium is displayed in
bold. The table indicates that, as the stochastic Nash equilibrium, either one of pigs pulls

Table C.2: Stochastic Nash equilibrium under P1 (bold fonts)

(piglet) (piglet)
Pull the lever Wait

(big pig) Pull the lever (3.0938, 1.1562) (0.4516,5.7984)
(big pig) Wait (9.0938,1.1562) (0, 0)

the lever, and the other pig waits. Next, consider a case where neither pig knows the exact
probability distribution. Suppose they play the game under the worst-case expected utilities.
The table of the worst-case expected utilities over P is summarized in Table C.3. As the
distributionally robust Nash equilibrium, both pigs wait.

Table C.3: Distributionally robust Nash equilibrium (bold fonts)

(piglet) (piglet)
Pull the lever Wait

(big pig) Pull the lever (−0.3021,−0.9479) (−3.8495, 4.5995)
(big pig) Wait (5.6979,−0.9479) (0,0)

These two results suggest that no ex-post equilibrium exists because the intersection
between the sets of stochastic Nash equilibria under P1 and the distributionally robust Nash
equilibria is empty. Therefore, the concept of distributionally robust equilibria is weaker than
that of ex-post equilibria.
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