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Abstract

The multiperiod portfolio selection model has attracted much attention in the financial
field, because a portfolio is usually rebalanced dynamically in order to get a desired return
even if the situation changes in the future. The scenario tree model is a popular multiperiod
model which consists of many “scenario paths”. However, this model has the disadvantage
that scenario paths grow explosively if we try to describe future situations in detail. In
this paper, in order to overcome this disadvantage, we propose a model that allows returns
on assets at each node to vary in a certain region, rather than increasing the number of
branchings at each node of the scenario tree. The model can deal with shortfall risks in
the case where the worst situation occurs in the region. We formulate the proposed model
as a second-order cone programming (SOCP) problem, which can be efficiently solved by
using the interior point method. Finally, we present some numerical results to show the
usefulness of the proposed model.
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1 Introduction

Recently, many regulations on the financial investment have been relaxed dramatically,
especially in Japan. This movement has made it possible for investors to control the
allocation of their fund in a more flexible manner. On the other hand, the investors are
asked to actively take risks for getting certain returns, because the interest rates have
been kept in a low level in Japan. Under such circumstances, the risk management in
investments has become increasingly important. Furthermore, mathematical approaches
have gradually been recognized as useful tools for the risk management, not only in the
academic field but also in the practical field. The purpose of this paper is to propose a
model which is useful in constructing a low risk portfolio. To this end, we aim to extend
the scenario tree model, which is one of popular multiperiod models for portfolio selection,
by introducing the second-order cone constraints.
Until now, various mathematical models have been proposed to formulate the portfolio

selection problem. Those models may be classified into two categories, the single-period
model and the multiperiod model, from the number of decision making opportunities
in the investment period. The single-period model, such as Mean-Variance model by
Markowitz [4] and CAPM model by Sharpe [12], have had significant effect on the real
investment in business. On the other hand, numerous papers about multiperiod models
have appeared since the framework of multiperiod models was introduced by Merton [5, 6]
and Samuelson [11]. As to these two models, it is known that the optimal portfolio
obtained by solving a single-period model repeatedly is the same as that obtained by
solving a multiperiod model, provided that the distribution of the returns on assets at
each period is independently and identically distributed (i.i.d) and the investor’s utility
function satisfies some assumptions [7]. However, if the distribution of the returns on
assets varies with period, the optimal portfolio in the multiperiod model may differ from
the one in the single-period model, because the optimal portfolio in the multiperiod model
has a factor of hedging against changes in the state variables. In fact, the analysis using
real market data shows that the optimal portfolio in the multiperiod model differs from
that of the single-period model [1, 2].
Multiperiod decision making has become an important subject in the practical invest-

ment as well as in the academic research on finance. One of the typical examples is the
investment for pension funds, of which investment period is so long that the economic sit-
uation may change drastically. The investors of the pension fund are asked to get a certain
return under any situation, so that they have to take various scenarios into account in
advance. Therefore, the investors should rebalance their asset allocation according to the
change of the economic situation during the investment period. This practical requirement
supports the significance of the multiperiod model.
If we know the distribution of the returns on assets in advance, then we can formulate
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the multiperiod model as a stochastic programming problem [6]. However, this problem
is difficult to deal with, because the wealth at each period is expressed as the product of
random variables that represent the rate of return on asset. Moreover, we need strong
assumptions on the distribution of the returns on assets for getting an optimal solution of
this problem. Therefore, it is helpful to consider approximation to the multiperiod model.
The scenario tree model approximates the distribution of the returns on assets at each
period by a discrete distribution.
Although the scenario tree model has the advantage that it allows us to make decision

according to the progress of situations, it has the disadvantage that we cannot describe
situations in detail because the number of scenarios increases explosively as the number
of branchings at each node increases. In this paper, we propose a model that does not
suffer from this disadvantage of the multiperiod scenario tree model. The basic idea
underlying the proposed model is as follows. Unlike the conventional scenario tree model,
we regard the rate of return on each asset as a parameter which varies in a certain region.
Furthermore, we are particularly interested in the case where the rate of return on the
whole portfolio becomes worst when the return on each asset varies in such a region. To
translate this idea into action, we add a special constraint to the conventional scenario
tree model. The constraint requires the wealth to be greater than a certain constant, even
if the worst case occurs. By using this constraint, we can cover the situation which cannot
be dealt with in the conventional scenario tree model. We represent this constraint as a
second-order cone constraint. Therefore, the proposed scenario tree model is formulated
as a Second-Order Cone Programming (SOCP) problem, which may be written as follows:

minimize f ′x

subject to ‖Aix+ bi‖ ≤ c′ix+ di i = 1, . . . , N (1.1)

Fx = g,

where x ∈ Rn is the decision variable, f ∈ Rn, Ai ∈ R(ni−1)×n, bi ∈ Rni−1, ci ∈ Rn, di ∈
R, F ∈ Rm×n, g ∈ Rm are problem parameters and ′ denotes transpose. We can solve
this problem efficiently by using the interior point method.
This paper consists of five sections. In Section 2, we describe the conventional for-

mulation of the multiperiod scenario tree model. In Section 3, we propose three models
that involve second-order cone constraints. In Section 4, we report some numerical results
for one of these models, and show the usefulness of the second-order cone programming
formulation. In Section 5, we conclude this paper with some remarks.
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2 Conventional Scenario Tree Model

In this section, we review the conventional formulation [14] of the scenario tree model.
Throughout we suppose the following situations. The investor invests his/her wealth
during T periods. That is, with the initial wealth W0, the investor first allocates W0 to
n assets, and then rebalances his/her assets at discrete time periods t = 1, . . . , T − 1.
Finally he/she gets a terminal wealth at time t = T . We call the initial time t = 0 the
beginning period, the intermediate times t = 1, . . . , T − 1 the internal periods, and the
final time t = T the ending period. We suppose that the investor knows possible future
situations that may occur from the current situation, but does not know precisely which
situation actually occurs. The situation changes from the beginning period to the ending
period. We call the path of these situations a scenario. Note that some scenarios may
have the same situations up to a certain period. These scenarios cannot be identified until
we reach that period. Therefore, the investment strategy on these scenarios must be the
same up to that period. From this reason, the progress of the situation can be expressed
as a tree with height T (see Figure 1). In the scenario tree, nodes represent all possible
situations that may occur in the future. We classify these nodes into three categories
according to the height which corresponds to the time, that is, root node v0 (t = 0),
internal nodes (t = 1, . . . , T − 1) and leaf nodes (t = T ). We use the following notations.
V : The set of all nodes
L ⊂ V : The set of nodes at the ending period, that is, the set of leaf nodes
U ⊂ V : The set of nodes at the internal periods
v0 ∈ V : The node at the beginning period, that is, the root node
πv ∈ Rn : The portfolio at node v
Wv ∈ R : The wealth at node v
R̄v ∈ Rn : The returns on assets when the node v occurs
pv ∈ [0, 1] : The probability that the node v occurs
h(v) : The time when node v occurs
w(v) : The parent node of node v
Iv ∈ R : The additional fund (> 0) or the consumption (< 0) at node v
θ ∈ R : The target wealth at the ending period

Here, we assume

• The probability pv is known for each v ∈ V ;

• The return R̄v ∈ Rn on assets is known for each v ∈ V ;

• The target wealth at the ending period θ is given.
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Figure 1: Scenario Tree

Under these assumptions, we consider the risk given by

∑
v∈L

pv(max {0, θ −Wv} )k, (2.1)

where k is a positive integer. This risk measure is called the lower partial moment of
dimension k. The model based on this risk measure is called the Mean Lower Partial
Moment model (MLPM model). Moreover, when the target wealth θ is replaced with∑

v∈L pvWv and k = 2, the lower partial moment reduces to the lower semi-variance.
Recent studies [3, 9] prove that the mean standard semideviation (square root of semi-
variance) model has a higher consistency with the expected utility theory than mean
deviation model.
Now, we consider the problem of finding a portfolio πv (v ∈ {v0}∪U) which minimizes

the lower partial moment with k = 2

∑
v∈L

pv(max {0, θ −Wv} )2, (2.2)

under the following two constraints: (i) The expected wealth in the ending period must
be no less than a certain amount α. (ii) The investment in each node must satisfy the
budget constraints on funds. In the multiperiod model, the budget constraints at each
node depend on the investment action in the previous period. Therefore, the budget
constraints at each node depend on the time h(v). We consider the budget constraints for
each node in detail. Let φ : Rn → R be a transaction cost function. That is, φ(πv −πw(v))
is the transaction cost when the investor rebalances his/her portfolio from πw(v) to πv. To
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simplify the discussion, we assume that the transaction cost function is separable, that is,
it can be expressed as φ(πv − πw(v)) =

∑n
i=1 φi((πv)i − (πw(v))i), where φi : R → R, i =

1, . . . , n. Moreover, we assume that the transaction cost φi((πv)i − (πw(v))i) on each asset
i is linear. Therefore, it is expressed as φ(πv − πw(v)) = a′(πv − πw(v)), where the vector
a ∈ Rn denotes the transaction cost of each asset. Then we may specify the budget
constraints for each period as follows:

Asset allocation at the beginning period : The investor allocates his/her initial wealth
W0 on the root node v0. So the budget constraint is written as

e′πv0 =W0, (2.3)

where e is the n-dimensional vector whose entries are all 1.

The wealth and rebalancing at each internal period : At node v ∈ U , the investor
obtains the wealthWv which is determined by the portfolio at the parent node w(v).
The wealth at node v therefore can be expressed as

Wv = R̄′
vπw(v). (2.4)

Furthermore, when the investor allocates his/her wealth on assets at node v ∈ U ,
he/she has to pay the transaction cost φ(πv −πw(v)) incurred by the rebalance. The
investor may also add new fund Iv > 0 or consume a part of his/her wealth Iv < 0.
Therefore, the budget constraint at node v ∈ U is given by

e′πv + φ(πv − πw(v)) =Wv + Iv. (2.5)

The wealth at the ending period : The investor no longer rebalances his/her portfo-
lio at node v ∈ L. So, the constraint at the ending period is simply written as

Wv = R̄′
vπw(v). (2.6)

Now we formulate the problem of minimizing the risk given by (2.2) under the con-
straints (2.3), (2.4), (2.5) and (2.6):

minimize
∑
v∈L

[
pv (max {0, θ −Wv})2

]

subject to
∑
v∈L

pvWv ≥ α

e′πv0 =W0 root
e′πv + φ(πv − πw(v)) = Wv + Iv
Wv = R̄′

vπw(v)

}
v ∈ U

Wv = R̄′
vπw(v) v ∈ L,
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where the decision variables are the portfolios πv at nodes v ∈ {v0} ∪ U , and the wealths
Wv at nodes v ∈ U ∪ L are dependent on πv and the additional funds Iv at nodes v ∈ U

are given constants. Since it is not convenient to deal with the function max {0, θ −Wv},
we transform this problem into an equivalent problem by using the artificial variables
yv, zv ∈ R|L| such that

θ −Wv = yv − zv, yv ≥ 0, zv ≥ 0. (2.7)

Then, we can rewrite the above problem as follows:

[Problem 1 ]

minimize
∑
v∈L

pvy
2
v

subject to
∑
v∈L

pvWv ≥ α

e′πv0 =W0 root
e′πv + φ(πv − πw(v)) = Wv + Iv
Wv = R̄′

vπw(v)

}
v ∈ U

Wv = R̄′
vπw(v)

θ −Wv = yv − zv, yv ≥ 0, zv ≥ 0

}
v ∈ L

Note that this problem is a convex quadratic programming problem. If we use the risk
measure max {0, θ −Wv}, instead of max {0, θ −Wv}2, we can formulate the portfolio se-
lection problem as a liner programming problem by means of a similar procedure. The liner
programming problem is easier to solve than the quadratic programming problem. There-
fore, when we deal with many assets, we may employ this risk measure max {0, θ −Wv}.
In Problem 1, the number of nodes and hence the number of decision variables

increase exponentially with the number of periods or branchings of situations. Until now,
various methods, such as the interior point method [15] and the decomposition method
using parallel computing [8, 10], have been proposed for solving Problem 1. However, it
is reported that those methods hardly reach the level of business use [14].
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3 The Proposed Models

In this section, we present three models that cover the disadvantage of the conventional
scenario tree model.
Since the scenario tree model can reflect the economical trends, it provides a rough

strategy of the investment under varying situations. This is the very advantage of the
scenario tree model. On the other hand, as mentioned in Section 2, the scenario tree
model has the serious disadvantage that it cannot describe future situations in full detail.
To overcome this difficulty, we regard the rate of return on each note as a parameter

which varies in a certain region. For each node v, let a set Γv ⊆ Rn be defined by

Γv := {R̄v +Hvu | ‖u‖ ≤ 1}, (3.1)

where Hv ∈ Rn×n is given matrix. We call this set a return set for the node v. We suppose
that the rate of return Rv at node v should belong to the return set Γv.

Remark 1 If matrix Hv in (3.1) is nonsingular, then Rv = R̄v +Hvu ∈ Γv if and only if

‖u‖2 = (Rv − R̄v)′H−2
v (Rv − R̄v) ≤ 1, (3.2)

and hence Rv belongs to an ellipsoid centered at R̄v.

Remark 2 If Hv is a diagonal matrix with positive diagonal entries σi, (i = 1, . . . , n),
then, Rv ∈ Γv satisfies

∑n
i=1 σ

−2
i (Rv − R̄v)2i ≤ 1, which particularly implies a return on

asset i lies in between (R̄v)i − σi and (R̄v)i + σi.

Now, we consider the case where the rate of return Rv on the whole portfolio becomes
worst when the return Rv varies in the return set Γv. In the following, we will use the
same notations as in the previous section.

3.1 The model securing floors at each node

We consider the requirement that the wealth at each node be no less than a certain
constant βv. This βv means the lowest acceptable wealth of the investor at node v, and it
is called a floor at node v. This requirement may be represented as follows.

[floor constraints] min
Rv∈Γv

R′
vπw(v) ≥ βv v ∈ U ∪ L. (3.3)

It is easy to understand the meaning of the constraints, but it is not convenient to deal
with. So, we transform the constraints into second-order cone constraints. Since

min
Rv∈Γv

R′
vπw(v) = min

‖u‖≤1
(R̄′

vπw(v) + u
′H ′

vπw(v))

= R̄′
vπw(v) + min‖u‖≤1

u′(Hvπw(v))

= R̄′
vπw(v) − ‖Hvπw(v)‖, (3.4)
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the constraint (3.3) is rewritten as

R̄′
vπw(v) − ‖Hvπw(v)‖ ≥ βv. (3.5)

These constraints are second-order cone constraints.
Adding the constraints (3.5) to Problem 1, we get the problem securing the floors at

each node:

[ Problem 2 ]

minimize s

subject to s ≥ ‖(diag(p))1/2y‖∑
v∈L

pvWv ≥ α

e′πv0 =W0 root
e′πv + φ(πv − πw(v)) = Wv + Iv
Wv = R̄′

vπw(v)

}
v ∈ U

θ −Wv = yv − zv, yv ≥ 0, zv ≥ 0
Wv = R̄′

vπw(v)

}
v ∈ L

‖Hvπw(v)‖ ≤ R̄′
vπw(v) − βv v ∈ U ∪ L,

where y is the vector whose entries are yv (v ∈ L) and diag(p) is the diagonal matrix whose
diagonal entries are pv (v ∈ L). This problem is SOCP, and hence it can be efficiently
solved by the interior point method.

3.2 The model securing floors on each scenario

In this subsection, we are interested in securing a desired return at the ending period even
if the worst case occurs. Let us pay attention to a scenario itself. Since a scenario is a
path of situations changing from the beginning period to the ending period, a scenario i
can be represented as

τ i = {v0, v(1, i), v(2, i), . . . , v(T, i)}, (3.6)

where v(t, i) ∈ V (t = 1, . . . , T ). We consider the extreme case where the return of
the portfolio πv(t,i) becomes worst at every node v(t, i) ∈ τ i (t = 1, . . . , T ). In other
words, we suppose that the wealth Wv(t,i) at each node v(t, i) ∈ τ i is no greater than
minRv(t,i)∈Γv(t,i)

R′
v(t,i)πw(v(t,i)). Moreover, the budget in the next period is estimated by

the lowest possible wealth. Consequently, the ending wealth Wv(T,i) becomes the worst
among all possible wealths yielded by the scenario τ i. Based on this idea, we give the
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following budget constraints.

e′πv0 =W0 root
e′πv + φ(πv − πw(v)) = Wv + Iv
Wv ≤ min

Rv∈Γv

R′
vπw(v)


 v ∈ U

Wv ≤ min
Rv∈Γv

R′
vπw(v) v ∈ L.

(3.7)

Using the equation (3.4), the constraint Wv ≤ min
Rv∈Γv

R′
vπw(v) can be rewritten as

Wv ≤ R̄′
vπw(v) − ‖Hvπw(v)‖. (3.8)

Replacing the constraints ofProblem 1 with (3.7) and using (3.8), we get the following
problem.

[ Problem 3 ]

minimize s

subject to s ≥ ‖(diag(p))1/2y‖∑
v∈L

pvWv ≥ α

e′πv0 =W0 root
e′πv + φ(πv − πw(v)) = Wv + Iv
‖Hvπw(v)‖ ≤ R̄′

vπw(v) −Wv

}
v ∈ U

‖Hvπw(v)‖ ≤ R̄′
vπw(v) −Wv

θ −Wv = yv − zv, yv ≥ 0, zv ≥ 0

}
v ∈ L

Similarly to Problem 2, we may also add the constraint (3.5) to Problem 3. Then the
constraints are given by

e′π0 =W0 root
e′πv + φ(πv − πw(v)) = Wv + Iv
‖Hvπw(v)‖ ≤ R̄′

vπw(v) −Wv

}
v ∈ U

‖Hvπw(v)‖ ≤ R̄′
vπw(v) −Wv v ∈ L

‖Hvπw(v)‖ ≤ R̄′
vπw(v) − βv v ∈ U ∪ L.

The combined problem is also SOCP, so this problem can be also solved efficiently [Ap-
pendixA].

3.3 The model treating asymmetric returns

In the previous sections, we defined a return set Γv by using matrix Hv. This implies that
the return Rv belongs to a symmetric region. However, the distribution of the returns on
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assets is generally asymmetric, especially in the case of the derivatives such as options.
Note that an option is the right to buy or sell an asset at the price (strike price) which
is determined in advance. So an option holder exercises his/her option only if he/she
can profit from it, and he/she abandons it otherwise. That is, the return on the option
depends on whether the holder exercises or not. This implies that the distribution of the
return on an option is asymmetric.
In such cases, the equality

min
Rv∈Γv

R′
vπw(v) = R̄′

vπw(v) − ‖Hvπw(v)‖

is not satisfied in general. Therefore, the wealth in the worst case cannot be expressed
as a second-order cone constraint as in the previous subsections. In the following, we
describe a return set Γv by using two diagonal matrices H+

v and H
−
v , where H

+
v are used

for holding assets and H−
v for shorting assets. Moreover we define Hv as

Hv =

(
H+

v 0
0 H−

v

)
. (3.9)

Using this matrix, we define the region Γv as

Γv =

{(
R̄v

−R̄v

)
+Hv

(
u+

u−

) ∣∣∣∣∣u =
(
u+

u−

)
, u+ ∈ Rn, u− ∈ Rn, ‖u‖ ≤ 1

}
. (3.10)

Using this return set, we may derive an equation similar to (3.4) for asymmetric returns.
To this end, we represent the portfolio πv on node v as the difference of two nonnegative
vectors π+

v and π
−
v , that is,

πv = π+
v − π−

v , π+
v ≥ 0, π−

v ≥ 0. (3.11)

Note that π+
v corresponds to the holding portfolio and π

−
v corresponds the shorting port-

folio.
Let

Πw(v) =

(
π+

w(v)

π−w(v)

)
.

Then we have

min
Rv∈Γv

R′
vΠw(v) = min

‖u‖≤1

((
R̄v

−R̄v

)′
Πw(v) + u

′H ′
vΠw(v))

)

=

(
R̄v

−R̄v

)′
Πw(v) + min‖u‖≤1

u′(HvΠw(v))

=

(
R̄v

−R̄v

)′
Πw(v) − ‖HvΠw(v)‖

10



= R̄′
v π

+
w(v) − R̄′

v π
−
w(v) −

∥∥∥∥∥∥
(
H+

v π+
p(v)

H−
v π−p(v)

)∥∥∥∥∥∥
= R̄′

v πw(v) −
∥∥∥∥∥∥
(
H+

v π+
p(v)

H−
v π−p(v)

)∥∥∥∥∥∥ . (3.12)

Therefore, we can deal with an asymmetric return distribution by means of second-order
cone constraints.
The obtained solution for this case seems to suggest that the investor should buy and

sell the same asset at the same time. However, we can show that the portfolio πv obtained
from (3.11) is valid even for such assets. To this end, suppose that π+

v and π
−
v , satisfy the

following inequality for a given η > 0:∥∥∥∥∥
(
H+

v π+
v

H−
v π−v

)∥∥∥∥∥ ≤ η. (3.13)

Let π̃+
v , π̃

−
v satisfy (3.11) with (π̃

+
v )i = 0 or (π̃

−
v )i = 0 for each i. Here, without loss of

generality, we consider π̃−
v = 0. Then, we have πv = π̃+

v , π̃
+
v ≥ 0 and π̃−v = 0 from (3.11).

Since H+
v and H

−
v are diagonal matrices, and since 0 ≤ π̃+

v ≤ π+
v , we have

∥∥H+
v π̃

+
v

∥∥2 ≤ ∥∥H+
v π

+
v

∥∥2

∥∥H−
v π̃

−
v

∥∥2 = 0 ≤ ∥∥H−
v π

−
v

∥∥2
.

By adding these inequalities, we obtain∥∥∥∥∥
(
H+

v π̃+
v

0

)∥∥∥∥∥ ≤
∥∥∥∥∥
(
H+

v π+
v

H−
v π−v

)∥∥∥∥∥ ≤ η, (3.14)

where the last inequality follows from (3.13). This implies that (π̃+
v , 0) is also a solution

of the problem, indicating the validity of the representation (3.11).
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4 Numerical Experiments

In this section, we report some numerical experiments for the proposed model with real
market data. First, we will explain how to construct a scenario tree from the real market
data. Next we will solve Problem 1 and Problem 2, and compare the obtained solutions
from the viewpoint of risk.

4.1 The model used in the experiments

In this subsection, we describe how to construct the scenario tree model used in the
numerical experiments from real market data. Moreover, we modify Problem 1 and
Problem 2, so that the problems involve the short-sale constraints. The reason is that
the optimal solutions of the original Problem 1 and Problem 2 may not be realistic,
since the portfolio may include a large amount of short selling.

The scenario tree : In our experiments, we consider three assets; stock, bond and cash.
We assume that the returns on these assets follow a multivariate normal distribution.
We estimate the mean vector µ ∈ R3 of the three assets, and the variance-covariance
matrix Σ ∈ R3×3 from the historical data. The used data are annual returns from
1990 to 2001 in Japanese market. We determine the return on each node of scenario
tree by using the multivariate normal distribution with µ and Σ. That is, the price
Si(t) (i = 1, 2, 3) of each asset i at each discrete time t (t = 0, 1, . . . , T ) is governed
by

∆S(t) = D(t)
(
µ+ (Σ)1/2ε

)
, (4.1)

where

∆S(t) =



∆S1(t)
∆S2(t)
∆S3(t)


 ≡




S1(t+ 1)− S1(t)
S2(t+ 1)− S2(t)
S3(t+ 1)− S3(t)


 , D(t) =




S1(t) 0 0
0 S2(t) 0
0 0 S3(t)




with the normal random variable ε ∈ R3. We generate a scenario tree with T = 4.
Each node of the scenario tree has 5 branchings. Therefore, the whole scenario tree
has 781 nodes. The rate of the return of each scenario is determined by (4.1).

The return sets Γv : We give the return sets Γv used in the proposed model as

Γv := { R̄v + δ (Σ)
1/2 u | ‖u‖ ≤ 1},

where Σ is a variance-covariance matrix obtained from the historical data and δ is a
positive constant. The reason why we choose Γv as the return set is as follows. If the
return on assets at node v is given by (4.1), then the return on assets is expressed
as

R̄v = µ+ (Σ)1/2εv,
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where εv denotes a constant vector randomly generated from normal distribution.
So, it is reasonable to expect that Rv belongs to the set Γv.

The short-sale constraints : The short-sale constraints are defined by

πv ≥ −νv ∀v ∈ v0 ∪ U,

where νv ∈ Rn is a given vector whose components are nonnegative. This constraint
means that the amount of short selling should not exceed νv. Without these con-
straints, the optimal portfolio may include a large amount of short selling, especially
in the model that used the historical data in Japan. To avoid unrealistic shorting
of assets, we add the short-sale constraints to the original problems. Note that the
constraints are liner, and hence adding the constraints to a SOCP does not increase
the complexity of the problem.

4.2 Numerical results

To see the usefulness of the proposed model, we made some numerical experiments with
the scenario tree constructed as described in the previous subsection, and compared it
with the conventional model.
We coded programs with MATLAB Version 5. We solved Problem 2, which is the

second order cone problem, by using SeDuMi [13]. Note that SeDuMi is a solver for convex
minimization problems on a self-dual cone and it uses the interior point method.
Simulations
First we explain our simulations. In the practical investment, the obtained strategy is used
only in the beginning period, and will not be in the future periods. This is because the
actual changes of situations are usually different from those predicted initially, and hence
it does not make sense to follow the strategy through the remaining periods. In practice,
whatever the investor allocates at the beginning period, he/she would consider a new
scenario tree in the next period and update the strategy using the revised information.
This procedure is repeated recursively from the beginning period t = 0 to the ending
period t = T , and the resulting final wealth is evaluated.
The procedure is as follows.

Step.0 Solve the problem with the scenario tree constructed in the manner explained in
the previous subsection, and obtain the portfolio π∗0. Set t := 1.

Step.1 Generate a sample return R by

R = µ+ (Σ)1/2ε,

where ε is a vector randomly generated from normal distribution, and revise the
wealth by R′π∗t−1.
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Step.2 If t = T , then terminate with the final wealth R′π∗t−1. Otherwise, let the initial
wealth be R′π∗t−1 and solve the problem with T − t investment periods to obtain the
updated portfolio π∗t . Set t := t+ 1 and go to Step.1.

In our experiments, we did the above simulations J times forProblem 1 andProblem
2 with the same scenario tree. Let the investor’s final wealth obtained in the j th simulation
be W j

T and define

W̄ :=
1
J

J∑
j=1

max(θ −W j
T , 0)

2. (4.2)

This value means the average of the risks obtained through the simulations. We did
the simulations with various values of the parameter α (see below). Note that when the
problem was infeasible at a certain period, we did not rebalance the portfolio at that
period, and kept holding the portfolio of the previous period.
We used the following values of the parameters.

Investment period T T = 4
The number of assets n n = 3
The number of branchings in each node 5
The initial wealth W0 W0 = 100
The matrix Hv at each node v Hv = 0.5Σ1/2

The floor βv at node v βv =W0

The target wealth θ θ = 1.0554W0

The number of simulation paths J J = 100
The required expected return α α = (1.03 + 0.0025 k)4W0 (k = 1, . . . , 30)
The additional fund Iv at node v Iv = 0
The vector of transaction costs a a = (0.01, 0.005, 0.001)′

Results of Simulations
We present the results of simulations in Figures 2, 3, 4 and 5.
Figure 2 shows the relationship between the average risk W̄ and the expected return

at the ending period. Figures 3 and 4 show the expected return and the average risk at the
ending period, respectively, for each value of the required expected return α. From Figure
3, we see that the expected return at the ending period in the proposed model is almost
the same as in the conventional model. However, Figure 4 indicates that the proposed
model can reduce the risk compared with the conventional model. From this, we conclude
that the proposed model is useful in finding a portfolio with lower risk. Figure 5 shows
the shortfall risk for each value of the required expected return α. It may be observed
from the figure that the proposed model is also useful in securing the floors.
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Figure 2: Expected return vs. the average of risks
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Figure 3: The required expected return α vs. expected return
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Figure 4: The required expected return α vs. the average of risks
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5 Conclusion

In this paper, we have proposed the model that extends the scenario tree model. The
proposed model takes into account the worst return of the portfolio at each node by
means of second-order cone constraints and is easy to solve by the interior point method.
Moreover, to show the usefulness of this model, we did some simulations. The numerical
results indicate that the proposed model is useful in reducing the shortfall risk.
Finally, we mention further research topics. In the simulations, we assumed that the

asset follows the multivariate normal distribution, and we used the squared root of the
variance-covariance matrix as Hv in the return set Γv. It may be worth considering how
to construct a more practical scenario tree and Hv for business use. Another important
task we have to do is to deal with models with practical (large) size.
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A Second-Order Cone Programming (SOCP)

The Second-order Cone Programming (SOCP) problem is stated as follows.

[ SOCP ]

minimize f ′x

subject to ‖Aix+ bi‖ ≤ c′ix+ di i = 1, . . . , N

Fx = g,

where ‖ · ‖ denotes the Euclidean norm, i.e., ‖z‖ = √
z′z and x ∈ Rn, f ∈ Rn, Ai ∈

R(ni−1)×n, bi ∈ Rni−1, ci ∈ Rn, di ∈ R, F ∈ Rm×n, g ∈ Rm The constraint

‖Aix+ bi‖ ≤ c′ix+ di i = 1, . . . , N

is called a second-order cone constraint. The second-order cone of dimension k is defined
by

Ck =

{[
u

t

] ∣∣∣∣∣ u ∈ Rk−1, t ∈ R, ‖u‖ ≤ t

}
.

For k = 1, the second-order cone is given by

C1 = {t | r ∈ R, 0 ≤ t}.

Therefore, the linear constraint

mix+ qi ≥ 0 i = 1, . . . , L

can be expressed as a second-order cone constraint with n = 1. So, the SOCP contains
the linear programming (LP) problem as a special case.
A second-order cone is a convex set, and the set of points satisfying the second-order

cone constraint ‖Aix+ bi‖ ≤ c′ix+ di is the inverse image of the second-order cone under
an affine mapping:

‖Aix+ bi‖ ≤ c′ix+ di ⇐⇒
[
Ai

c′i

]
x+

[
bi
di

]
∈ Cni .

Hence the set of points satisfying a second-order cone constraint is convex. The problem
[SOCP] is a convex programming problem since the problem has a convex cost function
and a convex constraint set.
The SOCP can be solved by using the primal-dual interior point method in O(

√
N)

iterations, and the computational cost of every iteration is O(n3+n2 ∑N
i=1 ni). Therefore,

we can solve SOCP in O(
√
N n3 +

√
N n2 ∑N

i=1 ni) arithmetic operations [16].
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