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Abstract

As another alternative approximation method for multi-period dynamic
portfolio selection problems, a new model, called the hybrid simulation tree
model, has been proposed recently. In that model, the underlying uncertainty
is revealed as a simulation tree and, similar to the scenario tree model, dif-
ferent conditional decisions are allowed to be made for different bundles (or
groups) of sample paths which exhibit similar performance characteristics.
By adopting a fixed-quantity policy, it was formulated as a large-scale linear
programming problem, in which the compromise between describing the pre-
cision of the underlying uncertainty and making conditional decisions could be
well handled within a single framework. Such a model is much more general
than the conventional scenario tree model and simulation path model, and is
expected to be a promising method with various applications.

We extend this approach and combine it with two new ideas: (i) In order
to improve the performance, we use the Conditional Value-at-Risk as our risk
measure, which is a very important concept in the modern risk management
field. (ii) For consideration of preserving the stability of optimal solutions
and hedging a shortfall risk, we incorporate two different types of risk chance
constraints in our model. Then the problem is formulated as a Second-Order
Cone Programming (SOCP) problem, which can be solved efficiently by using
some sophisticated mathematical programming software packages. Numerical
experiments are also carried out to demonstrate the efficacy of the proposed
model in hedging against risk.
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1 Introduction

In this paper, we will consider a typical portfolio management problem over a long
period of time, faced by both individual and institutional investors. Such problems
are crucial for all business firms and many other industrial, public, academic and
governmental agencies. Starting with a given portfolio, a portfolio manager has to
assess the prevailing market information, such as asset prices, interest rates, transac-
tion costs, as well as the existing portfolio composition at each time point along the
planning horizon. Such information, in conjunction with predictions of possible fu-
ture interest rates, asset prices, regulation changes and so forth, is incorporated into
an investment decision, resulting in a sequence of selling and buying actions. We call
it an observation-reaction process. The goal of a portfolio manager is to determine a
sequence of portfolio decisions that maximizes his/her expected utility function or,
equivalently, to minimize the risk exposure under various constraints such as budget
constraints, investment bound constraints, and regulation restrictions.

Such decision making problems over a long period of time, inherently involving
uncertainty, are usually transformed into stochastic programming problems, whose
range of applications is as broad as any in optimization. See for instance [6, 17, 18,
7,30, 15, 9] and the references therein.

The overwhelming difficulty in stochastic programming problems stems from the
evaluation of random functions and expectations of random parameters. Since the
size as well as the complexity of a stochastic programming problem may grow rapidly
as additional uncertainties are modelled. Many of algorithm developments in this
area have mainly concentrated on methods to exploit stochastic program structure.
For example, Dantzig and Mandansky [8] introduced Dantzig-Wolfe decomposition
as a possible solution method, while Van Slyke and Wets [23] developed a form of
Benders decomposition [3] for stochastic programmming. Beyond algorithms, much
of stochastic programming research has considered various theoretical properties,
such as convexity, continuity, and stability properties, etc. See Wets [28] for a
general overview of these results.

In fact, without some sort of approximation methods for realistic problems, it is
difficult to obtain optimal solutions with closed form using stochastic programming.
Thus various approximation schemes, both deterministic and stochastic ones, have
been designed. The notion of scenario is typically employed for modelling random
parameters in the multi-period stochastic programming (MSP) models. Then the
input information of the underlying uncertainty can be represented in the form of a
scenario tree or event tree. Each path through the tree from the root to one of its
leaves corresponds to one scenario, i.e., to a particular sequence of realizations of
the underlying uncertainty. This model is based on the expansion of decision space,
taking into account the conditional nature of a scenario tree. Conditional decisions
are made at each node of this tree. The goal is to get a numerically tractable
optimization problem, or a sequence of such problems, whose solution would be
acceptable as an approximate solution of the true underlying problem.

In most cases, given the scenarios and their occurrence probabilities, the result-



ing problem is nothing else but a large-scale linear program of special structure. The
optimal value and the optimal solution depend on the choice of scenarios. Modi-
fication of scenarios will influence in general the whole structure of the problem.
Clearly, the number of scenarios is a crucial factor from the point of view of the
problem’s size and its numerical tractability.

The primary aim of scenario generation is to represent the underlying uncertain-
ties in a reasonable way. However, this is an ambitious task in which compromise
has to be made between describing the precision of the underlying uncertainty and
limiting the size of the approximate problem. If a representative set of scenarios is
constructed so as to cover the set of possibilities to a sufficient degree, the numbers
of decision variables and constraints appearing in the problem may grow exponen-
tially. Especially if the number of asset categories available for portfolio selection is
large, it becomes the fatal weakness of this kind of method.

In this paper, inspired by Hibiki [12], we consider an alternative approach for
portfolio optimization problems. For a broader decision space than the traditional
simulation path-based approach, we allow different decisions to be made for differ-
ent bundles of sample paths, where sample paths, exhibiting similar performance
characteristics, are bundled together for some standard measure. Sample paths are
bundled to avoid violation of non-anticipativity ! and, at the same time, to dramat-
ically limit the number of decision variables. The dimension of the problem thus
increases linearly with respect to the number of bundles and the number of time
periods. This is an improvement over the exponential growth of problem size in the
stochastic programming approach.

The idea of using decision variables independently of scenarios is not new. Fi-
nancial models based on string (linear) scenario trees instead of event trees have
been suggested by Hiller and Eckstein [13] and Zenios [29].

The main contribution of this paper is that we extend this approach with two new
ideas: (1) To ensure the stability and robustness of the optimal solution, two different
types of risk chance constraints are integrated into our model without destroying
the convexity, which means any local optimal solution will be a global optimal
one. (2) We combine our model with a new risk management technique, called
Conditional Value-at-Risk (CVaR), see Rockafellar and Uryasev [21]. Optimization
is then performed directly using a set of simulated sample paths, thereby eliminating
the need to construct a scenario tree, which often leads to significant methodological
and computational difficulties.

Although, as a current standard in finance industry, Value-at-Risk (VaR) is a
popular measure of risk, because of its non-convexity and some other undesirable
features, we use Conditional Value-at-Risk (CVaR) in our model as the measure of
risk instead. Fundamental properties of CVaR are derived from the loss distribution
in finance that can involve discreteness. Such a distribution is of particular impor-
tance in realistic applications because of the prevalence of models based on scenarios
and finite samplings. CVaR is able to quantify dangers beyond VaR, and moreover

Lnon-anticipativity: In each stage, decisions must be made without knowledge of the realizations

of random variables in future stages.



it is convex and coherent. (The coherency of CVaR was first proved by Pflug [20];
also see Acerbi and Tasche [1] and Rockefeller and Uryasev [21]). It provides opti-
mization shortcuts which, through linear programming techniques, make practical
many large-scale calculations that could otherwise be out of reach. We use the fact
that incorporating CVaR constraints does not destroy the convexity of our model,
an important feature as a risk measure in optimization settings.

In the framework of our model, clustering analysis plays an important role to
classify simulated sample paths into several bundles at each decision making point
along the planning horizon so as to generate a decision tree, which we call it a
simulation tree in order to distinguish it from a well-known scenario tree. Cluster-
ing is a hierarchical agglomeration method for identifying groups of samples in a
multivariate data set and remains the most popular classification technique today.
However, an important issue is that the results may change drastically if one selects
different joining rules. Choice of distance measure can also have an effect, though
usually not as drastic as the joining rules. Thus, we have to consider the stability
or the robustness of the optimal solution and the optimal value obtained from the
model based on the clustering analysis method: The procedure should be robust in
the sense that small perturbations of the inputs, i.e., of the chosen bundles, of the
sample paths and of the number of simulated paths, should impair the outcome only
slightly so that the obtained results remain close to the unperturbed ones and that
somewhat large perturbations do not cause a catastrophe. For this propose, we in-
troduce two types of risk chance constraints into our model, which can be converted
into Second-Order Cone (SOC) constraints. For the consideration of stability, our
results show that it is a worthwhile job. Moreover, through empirical experiments,
the optimal solutions obtained from our model show a convergence behavior for a
specific joining rule when increasing the number of simulated paths, which indicates
that we can control the size of the optimization problem by taking advantage of
such characteristics.

The optimization is conducted by formulating the model as a Second-Order Cone
Programming (SOCP) problem, which is a special type of convex optimization prob-
lem. For the last decade, SOCP has been under intensive study and many important
problems like LP, QP, and SDP can be formulated as SOCPs. By the fact that SOCP
problems can be solved in polynomial time by interior point methods, many efficient
software packages have been well developed. In this paper, we carried out our nu-
merical experiments by using SeDuMi [24], a popular interior point solver for convex
minimization problems on a self-dual cone.

The rest of this paper is organized as follows. In the next two sections, we
illustrate some modelling aspects of our proposed hybrid simulation tree model and
introduce their mathematical formulations. In Section 4, we discuss two possible
risk chance constraints which can be converted into SOCs. Section 5 is devoted to
the Conditional Value-at-Risk (CVaR), which we integrate in our model. Numerical
experiments are carried out in Section 6. Finally, in Section 7, we give a brief
conclusion of this paper.



2 Model Description

So far, various approximation schemes have been proposed to describe the dynam-
ics and underlying uncertainties in stochastic programming problems, modelled via
explicitly spelling out random parameters. The Monte Carlo approach has proved
to be a valuable and flexible computational tool in the modern financial industry.
It is easy to get a set of simulation paths representing possible future outcomes of
the underlying uncertainty, provided its process is explicitly expressed by a stochas-
tic differential equation or a time series model. Technical aspects of Monte Carlo
approach are beyond the scope of this paper, see [14, 5] for references.

The most typical decision rule is the fixed-proportion strategy. Since the prod-
ucts of decision variables emerge in the formulation, this rule leads to a non-convex
optimization problem, which indicates a global optimal solution can hardly be ob-
tained. Hence, such a method is not recommended for realistic problems.

An alternative way is to convert a set of simulated sample paths into a scenario
tree so that conditional decisions can be made with respect to each node of the
scenario tree, without violating the non-anticipativity condition. Since such con-
version lets us use the well-developed stochastic optimization methodology to find
an optimal solution, this approach is widely accepted and many successful appli-
cations have been reported. However, for a multi-period model involving multiple
asset categories, converting sample paths into a scenario tree may lead to significant
methodological and computational difficulties. The overwhelming problem is that
the size of the problem will grow exponentially as the number of child nodes and/or
periods increases. On the other hand, for the propose of limiting the size of the prob-
lem, one has to reduce the number of scenarios, which in turn severely limits the
precision of describing the future possible outcomes of the underlying uncertainties.

With a set of simulated paths, ideally one would like to make different decisions
for every path at every time t = 1,...,T — 1, but this would lead to undesired
violation of non-anticipativity condition in the model. This is caused by the fact
that, once we start following a specific path, we have full knowledge of the future
until time 7". The simplest way to avoid anticipativity is to make one single decision
at each time t for all paths, that is, to use a path-independent strategy, which means
that the decision variables are independent of all path realizations at a given time.
This is the basis of current sample path-based approaches.

Even though a linear programming model can be formulated by using the fixed-
quantity rule instead of the fixed-proportion rule and can be solved efficiently by
any mathematical programming software, such an approach is also inadequate for
the multi-period portfolio problem since it lacks flexibility in decision making and
cannot reflect the conditional decision making process properly in practice. Some
other sample path based approaches have also been considered, i.e., a simulation tree
approach by Hibiki [11] and a Grid-Net Scheme ?. The main idea is to find a proper

2At time ¢, sample paths are grouped in several bundles. Paths that are in two different groups
at time ¢t can pass through the same group at either earlier or later time (or both). Also, paths
that pass through one node at time ¢ do not necessarily pass through the same node at any other



Decision node Bt

Figure 1: Simulation tree based on simulated sample paths

way to arrange sample paths so that the non-anticipativity condition holds. In our
paper, taking into account a tree-like expanding decision space and the capability
of making conditional decisions as in scenario tree models, we extend the approach
by Hibiki [11, 12] to our portfolio optimization problem.

Moreover, we will show below that by treating risky and riskless assets separately,
we can eliminate the decision variables of the riskless assets (i.e., cash) from our
compact reformulation model (see Appendix A for compact reformulation details).
That indicates not only the simplicity but also the improvement of complexity of
our model, which in turn reduces the computation time needed. Thus we will focus
our attention mainly on risk assets in our paper from now on.

2.1 Construction of a Simulation Tree

We consider a T-period model where time ranges from ¢ = 0 to ¢ = T, and
conditional decisions are taken at each time t = 0,...,7 — 1. One riskless as-
set (cash) and J risky assets are available for portfolio selection. We let v; and
P, = (Py,...,Py),t =0,...,T, denote the interest rate and risky asset prices
vector, respectively, where prime means transposition. Clearly they are the only
uncertainties in our model.

The possible future outcomes of interest rates and asset prices (r, P),t =
0,...,T, are revealed as [ simulated sample paths

(i)
(8 G- () o
Py) \ P pY

time. Figure (11) in Appendix B illustrates this setup




starting from the same initial state (rq P,)" and traversing the entire planning hori-
zon from ¢t = 0 till t = T. At the beginning of the planning horizon, we assume
that the initial state (rq )’ is known with certainty. At each time ¢ along the
planning horizon, all the sample paths bundled together at the previous period are
further divided into some smaller bundles containing sample paths that exhibit sim-
ilar characteristics, and different decisions are allowed to be made with respect to
each bundle of sample paths. We repeat such process fort =1,...,7 —1 and finally
get a tree-like structure, which we call a simulation tree to distinguish it from a
scenario tree. ‘

The dissimilarity between two state points, corresponding to price vectors Pt(“)
and Pt(m, is evaluated using Minkowski Distance Metric:

dist (P, p™)) = > |pt(j?1) _ Pt(;?)|k}1/k’

where k is a positive integer. In the case of £ = 2, this metric gives the Euclidean
distance. Clearly, the smaller this metric is, the more similar these two state points
are to each other, indicating they could be bundled together and be applied with
the same decision.

Then the simulation tree may be generated using a hierarchical clustering method.
In fact, many different clustering methods have been proposed in the literature,
such as the Nearest Neighbor method, Furthest Neighbor method, Group Average
method, Ward method and so forth. Among these methods, we employ the Ward
method, which is widely used and is believed to be superior to other methods for
practice use; see [4, 19] for cluster analysis methods.

2.2 Identification of the Kernel of Each Bundle

Let B; denote the set of all decision nodes at time ¢ in a simulation tree, and €);
denote the whole possible state space at future time ¢t. Let 3; € B; be one of decision
nodes at time ¢ and V(8;) be the set of sample paths bundled together within the
same decision node 8, i.e., we use ¢, € V(8;) to mean that both sample path i and
sample path 7, which are similar to one another, go through the same decision node
B3;.

Also, for each 8;, we define Q(8;) C Q, as the sub-state space (or area) covering
those scattered state points Pt(i) grouped in 8;, where i € V(8;). Clearly, at each
time t, we have

U vy ={1,...,1}, (1)

BteBt
U Q@) = Q. (2)
BreBt
Then the kernel Q¥ (8,) of a node B, is defined as a subset of Q(8;), i.e., QX (B;) C

Q(B8;) C €, which represents the area where most of the state points {Pt(i), ieV(B)}
are concentrated; for example, more than 95% of the state points in V' (8;). Denote



by VE(B;) the set of those most concentrated state points. Then the kernel may be
determined as follows:

QF (8,) = {P*(8,) + Hul || u[[< v} € Q(B,) (3)

where PX(8,) = - DieVE (8, P%_ M is the number of state points within the kernel
and H is a symmetric positive definite matrix. The kernel Q% (8;) is an ellipse
centered at P (B;), whose size is determined by 7.

Of course, one can also specify another percentile arbitrarily in his/her own
definition of a kernel. To accomplish the definition of a kernel, we get two jobs
to do: (i) First, identify the set of most concentrated state points according to
the percentile specified; (ii) Then determine a proper matrix H so that the ellipse
defined to be the kernel covers those most concentrated state points with as small
volume (or area) as possible.

We use again the clustering method to choose the most concentrated state points
within node ;. Then we determine the matrix H by H = (X% (8,))"/2, where 5 (8,)
is the covariance matrix of those state points selected. Finally, we adjust the value
of v so that the ellipse contains the specified percentile of state points in ;.

An alternative method to determine H is to solve the following convex optimiza-
tion problem:

Min  —logdet(X) (4)
st. (PO = PEB)TX(PY — PK(B)) <1, i € VE(B,) (5)
X >0, Xe8/, (6)

where X > 0 means X is positive semidefinite and S”*7 denotes the set of J x .J
symmetric matrices. The objective function —logdet(X) represents the volume
of the ellipse {P € R"|/PTXP < 1}, which is proved to be a convex function;
see Fukushima [10]. Constraints (5) imply that all the state points in the kernel,
{(P}i € VE(8,)}, should be covered by this ellipse.

From our empirical experiments, we observe that for a randomly generated sam-
ple data set, the kernel defined by X% (8;),

QN (B) = {PX(B) + (S"(8)*ul | w [ < 7} (7)
is similar to the kernel defined by the optimal solution X* of (4)-(6),
QI (B,) = {P*(8,) + (X7)7ul || u |I< 1} (8)

for some proper choice of ~.

In addition to a geometrical figure of the most concentrated state points, useful
information about the covariance (or correlation) of those state points can be ob-
tained as well. We give a visual illustration of determining a kernel using both an
optimal solution X* of (4)-(6) and covariance matrix 2% (8;) with different value
of 7 in Figure 2. This figure shows 300 simulated future possible outcomes of

10
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Figure 2: Two methods of construction a Kernel

return rate (r1,7) and two different definitions of kernel, where r; is the return
rate of asset ¢ with expected return (7,7) = (—0.087 0.848), standard deviation
(01,02) = (0.78 5.571), and correlation p;3 = —0.101. The inner ellipses correspond
to the kernels defined by S(K®) with v = 1,1.5,2, see (8); While the outmost one
corresponds to the kernel defined by X* with v = 1, see (9).

2.3 Modelling Procedure

In summary, the whole process of constructing a simulation tree and identifying a
kernel of each node is stated as follows:

e Step 1: At time t = 1, a clustering method is implemented by using Minkowski
Distance Metric with £ = 2 as a dissimilarity measure between simulated sam-
ple paths and Ward Linkage® as a joining rule. We have some fixed-decision
nodes whose number is predetermined. Different decisions are allowed to be
applied to different decision nodes at time ¢ = 1.

3Ward Linkage uses the incremental sum of squares; that is, the increase in the total within-
group sum of squares as a result of joining groups r and s. It is given by

NyNs o

d(r,s) = T

T8
where d%s is the distance between cluster r and cluster s, n,, and ng are the numbers of objects in

cluster r and s, respectively. The within-group sum of squares of a cluster is defined as the sum of
the squares of the distance between all objects in the cluster and the centroid of the cluster.

11



e Step 2: Identify the kernel of each decision node generated at Step 1 using the
method introduced in Section 2.2. Here we recommend Centroid Linkage? as
a joining rule so that information about all of the sampled state points in each
group could be used to define the joining.

e Step 3: Likewise, at time ¢t = 2,...,T — 1, all sample paths that stem from
the same decision node at time ¢t — 1 are further bundled together into some
predetermined decision nodes using a clustering method. Also different deci-
sions can be applied to different decision nodes at time t¢.

e Step 4: Repeat Step 2 and Step 3 until reaching time 7'— 1. There is no need
to cluster sampled paths at time T since no more decisions will be made at
the end of the planning horizon.

3 Mathematical Formulations

Here we develop a T-period model, in which J risky assets and one riskless asset
(such as cash) are available for the investment. Moreover, cash loan is not permitted
in our model. At time ¢, decisions are made with respect to individual bundles of
sample paths exhibiting similar characteristics.

3.1 Parameters

First, we define some parameters.
T Number of periods;

J: Number of risky assets available for investment;

I: Number of simulation paths;

By: Set of bundles at time ¢t € {0,1,...,T}.

8;: Bundle in By, i.e., 8; € By;

V(B;): Set of sample paths through bundle 8; at time ¢;

Py = (Poi1,- .., Fos): Initial market price vector of risky assets, known with
certainty;
P = ( AU ,Pt(}))’ : Price vector of risky assets at time ¢t along sample path

4Centroid Linkage uses the distance between the centroids of the two groups,
d(r,s) = d(T,, Ts),

where Z, = nL Z?;l Zr; and T4 is defined similarly; z,; is the ith object in cluster r.

12
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Figure 3: Example of constructing a 2-node simulation tree

ro: Interest rate of cash (riskless asset) during the first period,;

¢ Interest rate of cash during period [t,t +1],t =1,...,T — 1;
Wy: Total wealth at the beginning of the planning horizon;

We: Target wealth at the end of the planning horizon;

Wg: Required expected wealth at the end of the planning horizon.

3.2 Decision Variables

Next, we define decision variables for each time stage.

Variables at ¢t =0

At the beginning of the planning horizon, all information is assumed to be known
with certainty.

2(Bo) = (z21(80), ..., 25(Bo))": Investment vector to risky
assets for bundle B;
vo:  Amount invested in the riskless asset.

13



Variables at t =1,...,T — 1:

2(By) = (z1(8y), ..., 25(8;)): Investment vector to risky

assets for bundle 83;;
v; 7. Cash investment along path i;

¢9:  Shortfall below the target wealth W

at the end of the planning horizon along path i.

3.3 Objective Function and Model Formulation

The objective is to minimize the expectation shortfall, subject to budget constraints
and safety constraints. In fact, because of the flexibility of the simulation model,
many other regulation constraints (such as lower and/or upper bound constraints,
full risk investment policy, transaction cost constraints, etc.) can also be incorpo-
rated in the formulation easily, even for each simulation path. Therefore the model
can correspondingly be extended so as to be suitable for realistic problems. The
problem is then formulated as a large-scale linear programming problem with a
sparse coefficient matrix:

Min

(Po)'2(8Bo) + vo;

(PO)2(B1) + i = (PP 2(Bo) + (1 +70)vg

(1€ V(B1),B1 € By);

(PY2(8:) + v = (PO) 2(Bior) + (1 + 1120,
(t=2,....,T—1;i € V(By),Bx € Bg, k=t —1,1);
(
(

PRY2(Br) + (1475l op)

i€ V(Br_1),Br_1 € Br_1;);

W ¢ >We (i=1,...,1);

L i)

7 ;WT > Whg;

z(By) > 0;

2(B) >0 (B, e Bt=1,...,T —1);
vg > 0;

(t=1,....T—=1;i=1,...,1);

(9)

(10)
(11)

(12)
(13)

(14)
15

16
17
1
19
20

oo
— — Y ~— — ~—

(
(
(
(
(
(

Although this formulation is easy to understand, a compromise still has to be
made between describing the precision of the underlying uncertainty and making
conditional decisions with relatively high flexibility. Taking a closer look at the

14



constraints of the formulation, we find that the number of decision variables z(8;)
that represent the investment vector depends only on the number of bundles in
the decision tree, while the number of decision variables vt that represent the
investment quantities in riskless assets depends on both the number of simulated
sample paths and the number of periods. Therefore, by treating risk and riskless
assets separately, the number of decision variables can be decreased substantially,
thereby the problem size and the computational time can also be reduced. Another
reason for treating the risky assets and riskless assets separately is that their totally
different instinct properties. That is, the return rate for a riskless asset is already
determined at the beginning of each period; while the return rate for a risky asset
(such as stock, bond, etc.) remains unknown until the end of that period.

The equality constraints (10)-(13) in the above formulation may be rewritten
as inequality constraints by eliminating the cash variables. However, this does not
mean that the cash variables are excluded from the asset allocation decision. Instead,
cash variables emerge implicitly in the resulting compact formulation and can be
calculated using risk asset variables. After elimination of the cash variables, the
original formulation can be rewritten as follows:

Min %iq(i) (21)
st (Py)2(80) < Wi (22)
(PPY2(By) — (" % Py)'2(Bo) < (1 4 10) Wy (23)

(1 € V(B1),81 € By);
(PY2(8,) — (" % PO 2(Bim1) — (L + ) (02 = PE,) 2(Bi_s) —

t—1 t—1

~ 1A+ Py 2(8o) < TI (1 +r)Wo (24)

GeVB).--(\VB),Bk € B, k=0,....t:t =2,...,T — 1);
—¢ — <n§f>*PT”1> <ﬁT 1) - <1+r“> ><n¥%*P¥b>’z<ﬁT?2>—

—Hu+ﬁ> D % Py)z BO<H + Wy — We (25)
k=1
(iEV(ﬁk),BkEBk,k—o,...,T—l),
14 ;
; S > Wy (26)
=1
q<i>20(z‘:1,...,1), (28)

where * denotes the array multiplication operator, or Hadamard product® of two

°For z = (w1,...,2,) and y = (y1,...,¥n)’, the Hadamard product of 2 and y is defined as
TxY = (‘rlylv oo 7$nyn)/'

15



(i)

i; is the return rate of asset j during period [t — 1,#] along

vectors. Assuming p

sample path i, we interpret 79 = (0P . pY as the net profit rates given b
p p ) p 771‘, 77151 ) ) ntJ p g y
n = p — Qe
= (I+ ,Uz(t;'))Pz@lj —(1+ ng?l)pgljlj
= () —r20py G=1,....0). (29)

Although the problem size will grow quickly if we increase the number of sim-
ulation paths in order to obtain a detailed description of the underlying uncer-
tainty, the coefficient matrix of the problem remains sparse (see Figure 4). Many
advanced mathematical programming software packages such as SeDuMi [25] can
handle large-scale optimization problems efficiently by exploiting sparsity of the co-
efficient matrix. Moreover, from the experimental results as illustrated in Figure 5,
the original formulation tends to require much more computational time than the
compact formulation as the number of sample paths increases.

4 Risk Chance Constraints

Taking into account the stability of the optimal solutions as well as the shortfall risk
at each period, two types of risk chance constraints will be discussed in this section.

The common belief that high risk leads to high return is the very motivation
driving people to invest in risky assets instead of saving their fortune in a bank.
Thus we will reflect this widely held option in our model as well.

At the beginning of period [t — 1,t], the current and the previous market infor-
mation and investment history are supposed to be known with certainty. The only
uncertainty is the market price at time ¢, which determines the return corresponding
to the decisions made at time ¢t — 1. We require that at the end time ¢ of this period,
for most cases the investor who takes the risk and aggressively invests in risky assets
will get much more profit than a conservative investor who just saves his money in
a bank to hedge risk at the beginning of the period; for instance, during the period
[t — 1,t], we require that

v =Wy — (1+r._1)W;_1 > a with high probability, (30)

for some constant a > 0, where W, is the total wealth at time ¢ and r;_; is the
interest rate during period [t — 1,¢]. Note that (1 4 r,_1)W;_; represents the total
wealth obtained by a conservative investor. We call constraint (30) a Risk Chance
Constraint. The choice of a in our model reflects the investor’s attitude toward the
compromise between risk and profit. Since

Wy =Plzg+v,=Plzg1+ (1 +r_1)v1, (31)
¥ in (30) can be simplified as follows:

¥ = Wt - (1 + Tt—l)Wt—l
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= P+ Q+r)v_1— (1 +r-1)(P_1z-1+vi_1)
= (B—(1+r1)P) 2z (32)

Two different discrete versions of Risk Chance Constraints are proposed in our
paper. The notable distinction between them is that the target objects to which
Risk Chance Constraints will be applied are different. In the first case, Risk Chance
Constraint is imposed to the kernel Q% (8;) of node 8;, while in second case, Risk
Chance Constraint is imposed directly to the set V(8;) of all sample paths going
through node 8;.

4.1 Risk Chance Constraint (I)

Let w(B;) denote the parent node of 8;. Then Risk Chance Constraint (30) can be
formulated as follows: For each decision node 8; € B;,t = 1,...,T, and constant
a > 0, we have

9 = (P(By) — (14 F(w(B))) P(w(B))) 2(w(By)) > a, (33)

where ?(w(ﬁt)) = ﬁzz'ev(w(ﬁt)) Téi)l,?(u)(ﬁt)) = % Ziev(w(ﬁt)) Pt(i)la and M is the
number of sample paths passing through w(8;).
For any market risky asset price vector P(8;) within the kernel of decision node
Bt, Z..e.,
P(8;) € Q" (B,) = {P"(B,) + Hul || u [[< 7}, (34)

we require the value of ¥ be greater than a, which reads as follows:

(P(By) — (1 +7(w(By)))P(w(B))) z(w(B;)) > a for all P(B,) € Q% (8B,). (35)

We can show that such a constraint can be cast as an SOC constraint. In fact, since
min {(P(8;) —

min {(P*(8;) + Hu —

- (
= (PX(8) — (1+7(w(5)
= (PR(B) — (1+7(w(8)))

(1+7(w(8:)P(w(By))) 2(w(B)) | P(Br) € Q% (8)}  (36)
+T(w(B))P(w(B))) 2(wB)] [ w[[< v} (37)
w(B)))2(w(B)) + minyu <, (Hu) 2(w(B:)) (38)

(1)) 2 (w( (39)

(w(B:))) )
(W(B:))) 2(w(Be)) = [| Hz(w(B)) |,

/

P
P 39

(35) is equivalent to the inequality

Y I Hz(w(B)) 1< (P (8) — (1 +7(w(B))) Pw(B:))) 2(w(B)) —a.  (40)

This is an SOC constraint.

4.2 Risk Chance Constraint (II)

Assuming that the asset prices or the return rates have a jointly Gaussian distribu-
tion, we may consider an alternative risk chance constraint in our model.
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At decision making time point ¢ — 1, except the price vector P;, the price vectors
Py =A{F,...,P,—1} and decision variable vectors 2y = {20, ..., 21} at the previ-
ous periods are supposed to be known with certainty. For period [t — 1,¢], the risk
chance constraint can also be expressed by

Pr{d > a| Py, 2} = Pr{(P(8:) — (1 + T(w(B:))) P(w(B:))) 2(w(Be)) = a| Py, 210} = 5,(41)

or equivalently,

Pr{(P(8;) — (1 + 7(w(8,)) P(w(B)) 2(w(B:)) < alPy, 29} < 1 - 5. (42)

We will show that such a probability constraint can also be cast as an SOC con-
straint.

Letting X (B;) = (P(8;) — (1+7(w(B;))) P(w(B;))) z(w(B:)), the mean and variance
of X (8) can be obtained as follow:

X(B) = EX(B)) = (P(B) = (1+7(w(B))) P(w(B))) z(w(Br)), (43)
o*(B) = V(X(B) =V{(P(B) — (1 +T(wB)))Pw(B:)))2(w(®B))}
= V{(P(8))2(w(B)} = (2(w(Br))" 2(B,)2(w(By)). (44)

Here, P(8;) and (B;) are the mean price vector and the covariance matrix of all
state points belonging to the decision node ;.
Therefore, the previous constraint can be converted as follows:

(>
ST
|
>
>
IN
9
g
|
=
R
>

(
(1= 5) | (Z(8))"22(w(B0) |, (46)

where

is the CDF of a zero mean unit variance Gaussian random variable. Now, provided
that 8> 1/2, i.e., ®71(1 — ) < 0, constraint (46) is a SOC constraint.

However, as pointed out by Boyd et al. [16], in practice the observed returns
are seldom Gaussian. They often are skewed, or have fat tails, i.e., resemble a
Gaussian distribution in the central area but have higher probability mass for high
deviations. Nevertheless, a shortfall probability approach can be effective if used in
an informed manner. Alternatively, one can use the Chebyshev bound to limit the
shortfall probability, as suggested by Roy [22]. In this case, the factor ®~1(1 — 3)
in the formulas above is replaced by (3)~'/2.
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5 An Alternative Risk Measurement: CVaR

So far, we have been using the first-order lower partial moment (LPM;)®, a downside
risk measure, of the terminal wealth as the risk measure. It is of great importance
for those people who intend to work in the finance field to know such downside risk
measures by the following reasons: (i) Since individuals typically are loss averse and
not gain averse, an asymmetric risk measure is always preferred; and (ii) Regulation
authorities recommend the use of a downside risk measure Value-at-Risk (VaR).
However, a key missing property of VaR is convexity, which means many local
optimum may occur and a global optimal solution is hardly computable. Hence,
such a risk measure is not appropriate for practical portfolio optimization problems.

Here we will extend our model and combine it with a new risk management
technique using Conditional Value-at-Risk (CVaR), see Rockafellar and Uryasev
[21]. The CVaR is one of downside risk measures as well and it turns out to be very
powerful and economically sound for portfolio optimization problems because of its
convexity that the crucial property VaR lacks, even though it was first defined as
the weighted average of VaR and the loss exceeding VaR.

Other reasons for our choice of CVaR are listed as follows:

e CVaR is a subadditive measure of risk (see Pflug [20] and Rockafellar and
Uryasev [21]), implying diversification of a portfolio reduces CVaR.

e CVaR is a coherent measure of risk in the sense of Artzner et al. [2], and
Acerbi and Tasche [1].

e CVaR does not destroy the convexity structure of our model and can be easily
dealt with numerically by means of the Monte Carlo simulation method.

e CVaR can be obtained easily without involving expensive calculation of VaR
(see [27] for details).

We say we have a loss along a sample path ¢ at the end of the planning horizon
if W}Z) is less than W¢. To prevent terminal wealth shortfall risk and to improve
the performance, we introduce the concept of CVaR into our model and replace
constraints (14) and (20) with the following one:

Wr(zm) > We with high probability (confidence level) a, (47)

which indicates that terminal wealth of 100a% of the sample path set should be
equal or greater than W. It sounds much more reasonable for a portfolio manager
or an investor.

As a measure of loss, we use the difference between the terminal wealth Wp(z7))
and the postulated target wealth W:

h(Z[T}) = WG — WT(Z[T]).

SLPM; = %Zle |W7(f) — Wgl|®, where k is a positive integer, Wq(f) is the terminal wealth of
each path i, Wg is the target wealth predetermined at the beginning of the planning horizon, and
|- |- denotes min{-,0}.
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Thus constraint (47) can be restated as
h(zry) < 0 with high probability (confidence level) a. (48)

Let @ be the joint probability measure of Py = {F, ..., Pr_1}, and denote by
®(&) the cumulative probability distribution of the loss h(z7)):

(&) = Prih(zm) <€) = [ Q(dR), (49)
h(zp1)<¢

which by definition is the probability that the loss h(z(7)) does not exceed a threshold

value €. Then constraint (48) can further be restated as follows::

£, <0, where &, = min{¢ € R|®(£) > a}. (50)

The value of £, is called a-Value at Risk (a-VaR) and (50) means that the loss in at
least 100a% of outcomes must be below or equal to 0. (Note that, in general, this
threshold level may be chosen to be different from 0.) Because of several notable
drawbacks of VaR, we proceed to discuss Conditional Value-at-Risk (CVaR), which
has much better theoretical properties as mentioned earlier. See Figure 12 in the
Appendix C for illustration.

There are several definitions of CVaR in the literature. For a better under-
standing of this important risk measure as well as its applications in our model, we
will just briefly introduce two general definitions below; for other definitions and
applications in finance field, see Vanini and Vignola [27], and Uryasev [26].

e The first definition:
CV&Ra = E[h(Z[T}Nh(Z[T]) Z fa].

This means that, given the value of ¢, determined by (49) and (50), CVaR,,
is the conditional expectation of loss exceeding &,.

e The second definition (a discrete version of CVaR,):

CVaRa = fa + m :

)

[A(z(p) — &al*

1 I
=1

where, h(z[(})]) is the loss along path i,
h(z) = Wo — Wr(23)
(T] G T[T

and []* = max{-,0}.

It is clear that CVaR always exceeds or equals VaR, i.e., VaR, < CVaR,, see
[26]. In our model, we replace (48) by the CVaR constraint

¢a = (CVaR, < T, (51)
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where 7 can be chosen appropriately. When 7 = 0, we have a risk constraint that
dominates, i.e., is stronger than, the a-VaR constraint (48). Using a negative 7
would tighten the constraint further, while a positive one would relax it.

For the simulation-based method, as is shown by Rockafellar and Uryasev [21],
constraint (51) can be replaced by linear constraints:

Z g% (52)

WG_WT goz <q 2 (53>
¢ >0 i=1,...,1,

o +

1—a

where ¢ i = 1,..., I are dummy variables. If constraint (52) is active at an optimal
solution, the corresponding optimal value of £, if it is unique, will be equal to VaR.
If there are many optimal values of £, then VaR is the left endpoint of the optimal
interval. The left-hand side of (52) will be equal to CVaR.

The optimization problem incorporated with CVaR is presented as

1 I
Max - S Wi (54)
=1
I &
R S )< 7 55
s 5—'—(1—@)];(] ST (55)
We — Wi — €, < q'; (56)
¢D>0i=1,...,I
and (22),(23),(24),(27), (57)
or
L &
Mi S i
in &+ (1_a)];q (58)
1 &)
st o S W > W (59)
We — Wi — €, < ¢ (60)
¢V >0i=1,....1;
and (22),(23),(24),(27), (61)

in which the number of decision variables is increased by 1.

Since the additional CVaR constraints do not destroy the linear structure of the
problem, the solution set is still a convex polyhedron, which is amenable to the
computation of a global optimal solution. More specifically, the final problem is a
large-scale LP problem and can be solved using any efficient LP algorithm.

In summary, we can integrate the original proposed hybrid simulation method
with risk chance constraints or CVaR to prevent the shortfall risk as much as possible
while keeping the tractability of the problem at the same time.
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Furthermore we can apply both of these two ideas, risk chance constraints and

CVaR, to obtain the following integrated formulation:

1 &

Mi JU R — (@)

vt
st. Pyz(Bo) < Wo;

(PY2(81) — (B % Py)'2(Bo) < (1 + 1) Wo
(1€ V(B1),B: € By);

<P§”>'< > w“ « PO Y 2(8y) — (1 +n_ V(B % P, 2(Bis) —

—IIl+r O % Py) 2 %)g{ﬂ1+ﬁ%m%
k=0

(t:2,...,T—1;iEV(Bk),BkEBk,k':O,...,t

—ZWT > Wg;

We — Wi — ¢, <q? (i=1,...,1);

v Hz(w(B)) |< (P*(8) — (P+N (B)))P(w(B:))) 2(w(B)) — a
(t_o,..., —1;8;, € By);

¢ >0 (i=1,...1I);

m)ZO@GBh_Q”wT—U
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6 Numerical Experiments

We test our proposed model using a 3-period portfolio selection problem. It consists
of 1000 sample paths. Even though theoretically the model can handle quite a large
number of financial asset categories, here to simplify interpretation of the results,
we have mostly limited ourselves to only four asset categories: cash, stock, bond
and CB. Furthermore, without loss of generality, initial prices of stock, bond and
CB are assumed to be 1.

To focus mainly on evaluating the performance of CVaR and Risk Chance
Constraints, we only incorporated some basic budget constraints, CVaR and Risk
Chance Constraints (I) in our numerical experiments. For realistic application, other
kinds of constraints, i.e., full investment constraints, transaction cost constraints,
special regulation constraints can also be added in our model easily.

6.1 Data and Computational Resource

The data set of sample paths was generated using statistic data provided by Nikko
Inc., see Table 1.

Table 1: Experimental Data’

Correlation Cash Stock Bond CB
Matrix 1 2 3 1 2 3 1 2 3 1 2 3
1 1 -.091 .073 -.101 0 -.030 -.238 .008 .09 -.146 -.044 -.052
Cash 2 -.091 1 -.092 .045 -.094 -.007 -.183 -.237 .011 -.012 -.144 -.047
3 .073 -.092 1 .016 .042 -.091 -.166 -.188 -.221 -.062 -.017 -.138
1 -.101 .045 .016 1 .022 -.031 145 -.173 -.096 761 .042 -.045
Stock 2 0 -.094 .042 .022 1 .018 .085 .144 -.17 .019 .76 .041
3 -.032 -.007 -.091 -.031 .018 1 .077 .085 141 .011 .019 .76
1 -.238 -.183 -.166 .145 .085 077 1 .13 -.108 .327 .202 .065
Bond 2 .008 -.237 -.188 -.173 144 .085 .13 1 .137 -.114 .327 .204
3 .090 .011 -.221 -.096 -.17 .141 -.108 .137 1 -.18 -.109 .321
1 -.146 -.012 -.062 761 .019 .011 .327 -.114 -.18 1 .092 -.068
CB 2 -.044 -.144 -.017 .042 .76 .019 .202 .327 -.109 .092 1 .093
3 -.052 -.047 -.138 -.045 .041 .76 .065 .204 .321 -.068 .093 1
Expected -.087 -.081 -.089 .848 .867 .843 .625 .623 .645 .786 .78 .786
Return
Standard .78 784 778 5.571 5.582 5.595 1.372 1.372 1.353 3.543 3.541 3.538
Deviation

(4)

The return rate p 1 is calculated as follows:

J
W =y ropel) j=0, 0 t=1,...,T 71
:ujt_ujt—i_o—]tgjta]_ yer Yy — Lyeeendy ( )
where [i;; and o are expected return and standard deviation, respectively, and
sg»? (j =0,...,J;t =1,...,T) are random numbers of multi-variate standardized

normal distribution such that .
ef) ~ N(0,%), (72)

where 3 is the (J 4+ 1)T x (J + 1)T correlation matrix given by Table 1.
Clearly, from the formulation of our model, we can see that the problem size will
grow linearly as the number of sample paths increases. On the other hand, in order

"These are the Nikko Stock performance index (TSE1), Nikko bond performance index, Nikko
CB performance index and call rate, provided by Nikko Cordial Securities Inc. Also they have
been used in Hibiki [12].
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to keep a sufficiently high approximation accuracy, the number of sample paths
required is determined mainly by the quality of random numbers 55?. In other
words, using high quality random numbers with low-discrepancy, such as quasi-
random numbers, will help us control the problem size. Thus, in our numerical
experiments, we use random numbers generated by NtRand ® to simulate the set
of sample paths. To achieve convergence, various moment matching methods have
been adopted in NtRand. It is said that NtRand is a very efficient and speedy
tool for generating random numbers, especially multi-variate random numbers with
complex correlations. Therefore, it has been widely used since late 1990s in both
academic research fields and real business practices. It only took NtRand about 1
second to generate 12,000 random numbers for our experiments.

Interest rate rf) of each period can be obtained by

D= rex (4 ), (73)
r = (4 ), (74)

|

where 7y = 0.404% is the initial interest rate.
A full list of default parameters is as follows:
Investment period: T = 3;

Number of asset categories: J = 4;

Number of sample paths: I = 1000;

Initial wealth: Wy = 10000;

Initial interest rate, ro = 0.404%;

Terminal target wealth for each sample path: W = W, = 10000;
Percentage used to defined kernel: 85%;

Constant a, used to define Risk Chance Constraints: a = 0;

Confidence level «, used to define CVaR: a = 0.9.

We implement our model (63)-(72) using Matlab R13 on the platform of Windows
XP with 512MB of RAM. The computation time needed for problems with 1000
sample paths, 4-node simulation tree is about 260 seconds.

6.2 Computational Results

The efficient frontier in Figure 6 shows that an investor will have to take much
more risk if he/she prefers a higher expectation of terminal wealth return Wyg. This
numerical result is consistent with the widely held option among the real practice
field: high risk leads to high return.

8NtRand (Numerical Technologies Random Generator for Excel) is a free add-in EXCEL pro-
gram developed by Numerical Technologies, Inc. NtRand and its manual can be downloaded from
http://www.numtech.co.jp/NtRand/.
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Figure 6: Efficient frontier of Expected Terminal Wealth Return Wy vs. CVaR

For an investor trying to find a sequence of optimal investment solutions by
solving a multi-period optimal problem like ours, what he/she cares most is the
question: What should I do now? Since the real world is often different from what
we can only roughly predict in advance, there is no need at all for an investor
to do exactly according to the optimal solution obtained by obsolete information.
He/She can solve the problem again with new available information so as to achieve
a much more suitable new sequence of optimal investment solutions. Thus, the
initial investment portfolio is of the greatest importance to our model users.

Figure 7 illustrates initial investment compositions for different expected ter-
minal wealth return Wx. When an investor has a relatively moderate expectation
for terminal wealth return, such as Wr < 1.0128 x Wy, more than 87% of initial
wealth is invested in cash, the safest asset among all available assets, and no invest-
ment is made to high risk assets (stock, CB) at all. As the expectation of terminal
wealth return continues to grow up, he/she has to decrease his/her investment in
safe asset (cash) and invest more money to relatively high risk assets to accom-
plish his/her ambitious desire. Finally, as the expectation of terminal wealth return
reaches Wy = 1.0482 x Wy, he/she has to invest all his/her wealth in risk assets
completely from the very beginning of the planning horizon.

We also examined our model performance when the number of child nodes stem-
ming from the same parent node changes. Consistent with the case of scenario tree
model, in Figure 8, our results show that for a specific terminal wealth expectation,
the more the number of child nodes is, the less the risk will be. The reason for
this phenomenon is that an investor can have more flexibility of conditional decision
making and therefore can choose whether to invest more money into high risk assets
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Figure 7: Initial portfolio compositions for different cases.

or not, according to the changes of asset prices.

As illustrated in Figure 9, optimal values obtained using either Ward clustering
method or Average clustering method, two often used clustering methods, show a
convergence behavior when the number of simulated sample paths increases. Even
though they did not converge upon the same risk value due to different simulation
tree structures they lead to, our model users can still take advantage of such a
convergence property so as to limit the problem size and obtain a sequence of optimal
solutions quickly.

Beyond that, we observe that different percentages used to define the kernel of
a bundle cause different convergence speed when the number of simulated sample
paths increases, see Figure 10.

7 Conclusion

In this paper, we have proposed a new approach for the multi-period portfolio opti-
mization problem using simulated sample paths directly and examined the efficacy
of our proposed model through some numerical experiments. Since there is no need
to convert a set of simulated sample paths into a scenario tree, which often leads
to significant methodological and computational difficulties, it has become possi-
ble to obtain optimal solutions quickly through our proposed model. We combine
two different types of risk chance constraints and CVaR risk management with a
new framework of optimal decisions. Using CVaR risk measurement, the model can
be solved with linear programming techniques. The stability of the optimal solu-
tions may be improved by imposing additional risk chance constraints which can be
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converted into SOCs.

Our approach adds flexibility to the decisions while using only a sample path
representation of uncertainties, allowing us to avoid the explosion of the problem size
required by a traditional stochastic programming approach. The flexibility comes
from grouping at each decision making time a set of sample paths that exhibit
similar characteristics, and from restricting decisions to vary among different groups
of sample paths. We obtain truly dynamic decisions at moderate computational
expense, while allowing for extensive uncertainty through the use of paths.

Clearly, the choice of grouping method of simulated sample paths will affects
the obtained optimal solution. Our experiments indicate that due to the additional
risk chance constraints, two commonly used grouping methods tend to yield almost
the same optimal value when the number of sample paths increases. From the
computational point of view, taking advantage of such a property, we can reduce
the problem size and required computational time. But further research should still
have to be done to verify such a property when applying other grouping methods,
especially a specific user designed grouping method.
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Appendix

A Compact Formulation

Although the original formulation is easy to understand, a compromise still has to
be made between describing the precision of the underlying uncertainty and making
conditional decisions with relatively high flexibility. Taking a closer look at the
constraints of the formulation, we find that the number of decision variables z(8;)
represent to the investment vector depends only on the number of bundles in the
decision tree, while the number of decision variables vt(z) represent to the investment
quantities in riskless assets depends on both the number of simulated sample paths
and the number of periods. Therefore, by treating risk and riskless assets separately,
the number of decision variables can be decreased substantially, thereby the problem
size and the computational time can also be reduced. Another reason for treating
the risky assets and riskless assets separately is that their totally different instinct
properties. That is, the return rate for a riskless asset is already determined at the
beginning of each period; while the return rate for a risk asset (such as stock, bond,
etc.), remains unknown until the end of that period.

The equality constraints (10)-(13) in the formulation may be rewritten as in-
equality constraints by eliminating the cash variables. However, this does not mean
that the cash variables are excluded from the asset allocation decision. Instead,
cash variables emerge implicitly in the resulting compact formulation and can be
calculated using risk asset variables.

A.1 Elimination of Cash Variable v, at the Beginning of the
Planning Horizon

We can rewrite the cash variable vy as follows:
Vo = —P(;Z(Bo) + Wg, (75)

and derive the following inequality constraint using the non-negative condition of
Vo,

A.2 Elimination of Cash Variable v\” along a Sample Path
1 at Time ¢

Along a path i at time ¢ = 1, the cash variable U%i) can be represented as follows:

v = (P 2(B1) + (P 2(Bo) + (1 + ro)vg (77)
= —(P")2(81) + (P) 2(Bo) + (1 +10)(Wo — Ph2(8o)
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= —(PY2(By) + (P — (14 10)Ry)'2(Bo) + (1 4 70) Wy
= (P 2(B1) + (0 % Po)'2(Bo) + (1 4 10) W,

and can be transformed to an equivalent inequality constraint as well by using the
non-negative condition,

(PY2(B1) — (nf” = Po)'2(Bo) < (1 + o) Wo. (78)
In general,v,gi) can be reformulated as:
v’ = —(POY2(8) + ("« PO 2(Bicy) + (1+ ) (02 % P 2(Bio)
t—1 ] t—1
+ o+ [T+ Y0« Ry 2(B0) + T (1 + r)We,
k=1 k=0
(79)

and its equivalent inequality constraint is straightforward,

@W%J—(W*P)ﬁu)ﬂ+WXWﬁRﬁ(&ﬂ

_ ...—H<1+r,§i>)(n§i>*po> (8o) <H (1+ 7" Wo,

k=0
(80)
where
ny = P — @+
= (L4 )Pl — (2Pl
= () =Dy (81)

Assuming ,ug-?_l as the return rate of unit asset j, we interpret 77](-?_1 as the

net (surplus) profit of asset j, compared to the interest rate r;_;, because of the
investment activity at the beginning of the period [t — 1,¢].
Evidently, v\ is the fraction left after investment on risky assets (Pt ) z(B)

from the total wealth wt . Meanwhile, wt ) of path ¢ at time t consists of two parts:
(1) the cumulative amount of the initial Wealth wp from the beginning point of the

planning horizon till time ¢, TT,_{,(1 + rk )WO, (2) sum of cumulative amount of
risky investment profits generated at the end of each period until ¢, i.e., [T, (1 +

r,(f))(ny) x Py) z(Bp) is the cumulative amount of first-period risky investment profit
until time ¢.

A.3 Terminal Wealth W." of Sample Path (i)

From the explanation above, the terminal wealth W}i) of sample path ¢ can be
rewritten as follows:

W = 0 % P Y 2(Bra) + (1478 ) (0 % PY,) 2(Br_s)
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T—1 ) ) T-1 .
ot [T+ Y0« P 2(Be) + JT (1 + )W
k=1 k=0

(82)

A.4 Compact Formulation

After elimination the cash variables, the original formulation can be represented as

follows:

Min

s.t.

%iqm (83)
P(;;(ﬁo) < Wo; (84)
(PIY2(By) — (" % Po)'2(Bo) < (1 4 10) W, (85)

(1€ V(B1),81 € By);
(PY2(8) — (" % B2y ) 2(By) — u+é®@h*ﬂg 2(Bi_s) —

t—1

—Ha+#wwumwmﬂgnu+wmw (86)

k=1 k=0

(zeV(ﬁl)ﬂﬂV ﬁk ﬁkeBk,k:O,...,t;tZQ,...,T—1);
—¢”—<¢9*Pﬁly<&~o <1+r@ x%ﬁl*ﬂﬂa%a%4>—

—Hrwkm*m msnuwﬂm—m% (87)
k=0

(izl,...,I,ZEV(Bk)7BkGBk,kZO,...,T—l);

1

;ZWP > W; (88)
=1

2(B;) >0,(t=0,..., T —1;s € Sy); (89)
¢ >0,(i= .,I).

Although the problem size will grow quickly if we increase the number of simu-
lation paths in order to obtain a detailed description of the underlying uncertainty,
the coefficient matrix of the problem remains to be sparse (see Figure 4). Many
advanced mathematical programming software packages such as SeDuMi [25] can
handle large-scale optimization problem efficiently by exploiting sparsity of the co-
efficient matrix.
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For each bundle the same decision is taken.

Figure 11: Grid-Net Modelling Description

B Gird-Net Modelling Description

At time ¢, sample paths are grouped in several bundles, t = 1,...,7 — 1. Paths
that are in two different groups at time ¢ can pass through the same group at either
earlier or later time(or both). Also, paths that pass through one node at time ¢ do
not necessarily pass through the same node at any other time. See figure (11) for
the setup of Gird-Net.
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Figure 12: VaR and CVaR

C Illustration of VaR and CVaR
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