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Abstract

In batch-arrival batch-service queueing systems, customers arrive in batches, and customers
in each batch are served simultaneously. Up to now, such a queueing system provides practical
models for performance evaluation in computer and communication systems. In most of the
past studies, finite buffer or no buffer is assumed. In particular, there is no study that considers
the order of services in the system with a buffer of infinite capacity. Note, however, that the
order of services is very influential in the performance of batch-arrival batch-service systems.
For example, under the first-come, first-served (FCFS) discipline, some customers may have
to wait even when there are some idle servers, if the customer at the head of the queue needs
more servers than idle ones. Thus the throughput of the FCFS system goes down. On the
other hand, if customers of a particular class are given priority, the average waiting time of
this priority class is short, whereas that of non-priority classes may be very long. Therefore,
by such a simple control of the order of services, customers are usually served inefficiently or
unfairly.

In this thesis, we deal with a batch-arrival batch-service queueing system with a buffer of
infinite capacity, and we aim to achieve fair and efficient service by controlling the order of
services. To make things tractable, we assume to observe at most α customers from the head
of the queue and determine the customer to be served among those according some policy. By
doing so, this system is formulated as a Markov decision process with a countable state space.
We develop a algorithmic method to compute the average waiting time for a given policy.
Further, through numerical experiments, we find the tendency of optimal policies. Next, based
on this observation, we develop a sequential improvement algorithm to compute a quasi-optimal
policy for large α. Numerical results indicate that the proposed algorithm achieves fair and
efficient service under an appropriate criterion.
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1 Introduction

In batch-arrival batch-service queueing systems, customers arrive in batches, and customers
in each batch are served simultaneously. In this thesis, we deal with the batch-arrival batch-
service queueing system with c (c > 1) servers and a buffer. Because there is a buffer, arriving
batches may wait in the queue when the system is busy. We assume that the capacity of buffer
is infinite.

Up to now, such a queueing system provides practical models for performance evaluation
in computer and communication systems, e.g., multiprogramming computer systems, for which
each program requires the loading of a random number of memory units from a main memory
store; a circuit-switched telecommunication system which supports a variety of traffic type
(e.g., voice, video, etc), each of which having different bandwidth requirements and holding-
time distributions.

Such a batch-arrival batch-service queueing system with a buffer of infinite capacity has
been less well investigated. In most of the past studies, finite buffer or no buffer is assumed.
Kino [1] analyzed the system with infinite buffer with the use of generating functions when
the order of services is on a first-come, first-served (FCFS) basis. But there is no study that
considers the order of services in the system with a buffer of infinite capacity.

In this system, the order of services is very influential in the performance of the system.
For example, under the FCFS discipline, some customers may have to wait even when there
are some idle servers, if the customer at the head of the queue needs more servers than idle
ones. Thus the throughput of the FCFS system goes down. On the other hand, if customers
of a particular class are given priority, the average waiting time of this priority class is short,
whereas that of non-priority classes may be very long. Therefore, by such a simple control of
the order of services, customers are usually served inefficiently or unfairly.

If we want more efficient and fair service, we must take the circumstances of the system into
account and decide which customer to be served. If we could memorize all the class of customers
in the queue and calculate the optimal order of services, we could get high-performance. But
it is difficult to analyze the system when we use the information of all the customers in the
queue. To make things tractable, therefore, we assume to observe at most α customers from
the head of the queue and determine the customer to be served among those according some
policy. By doing so, this system is formulated as a Markov decision process with a countable
state space. We develop an algorithmic method to compute the average waiting time for a
given policy. Further, through numerical experiments, we find the tendency of optimal policies.
Next, based on this observation, we develop a sequential improvement algorithm to compute a
quasi-optimal policy for large α.

The rest of this thesis is divided into six sections. In section 2, we describe the model
considered in this thesis. In section 3, we develop an algorithmic method to compute the
average waiting time for a given policy. In section 4, we show some numerical results to reveal
the tendency of optimal policies. In section 5, we develop a sequential improvement algorithm
to compute a quasi-optimal policy for large α. Finally, the conclusion is given in section 6.
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2 Model Description

Let c denote the number of servers. We can see a batch consisting of n customers as a customer
who uses n servers. Hereafter we introduce the latter view. We assume that a customer who
belongs to class i (i = 1, · · · , k) uses ci (1 ≤ ci ≤ c) servers. For the sake of brevity, we suppose
that min

i
ci = c1 = 1.

Throughout this thesis, we assume that class i customers arrive at the system according to
a Poisson process of rate λi. Service times of class i customers are distributed according to an
exponential distribution with rate µi. We define ρi = λi/µi and λ =

∑c
i=1 λi.

It is very difficult to analyze the system when we use the information of classes of all the
customers in the queue. So we assume to observe at most α customers from the head of the
queue and determine the customer to be served among those according to some policy. We
explain this point in a little more detail in the subsequent chapter.

3 The average waiting time for a given policy

In this section, we develop an algorithmic method to compute the average waiting time for
a given policy. At first, we define the policy which describes the order of services. Next, we
formulate the system as a Markov decision process for a given policy. Finally, we develop an
algorithmic method to compute the steady state probability vector and the average waiting
time of each class.

3.1 Policy and state space

In this subsection, we define the policy which we deal with in this thesis and describe the state
space of the system.

As a precondition, we do not permit the interruption of services. So once a customer begins
to be served, it has served until it departs from the system.

To consider the control of the order of services, we need information about not only cus-
tomers in service but also customers in the queue. If we could use information of all customers
in the queue and find an optimal policy within a reasonable time, it is clear that the opti-
mal policy brings about the best performance. However if we memorize the class of all the
customers in the queue, the number of states explode and it becomes difficult to analyze the
system. Therefore we assume to memorize classes of α (α > 1) customers from the head of
the queue. It is considered that the more α increases, the more optimality of the policy in-
creases. However the more α increases, the more difficulty of the analysis also increases. So it
is an interesting problem to look into the relationship between the degree of the performance
improvement and the degree of the difficulty of the problem when α is varied.

Now we refer to the state of the system. The state of the system is represented by a
vector Y = (N, G1, · · · , Gk, Q1, · · · , Qk), where N is the number of customers in the system,
Gi is the number of class i customers in service, and Qj is the number of class j customers
who are in α customers from the head of the queue. We call the variable N “level” and
(G1, · · · , Gk, Q1, · · · , Qk) “phase”. We denote the set of the possible state by Y. Then, elements
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of the set Y satisfy the following constraints.

1. N ≥ 0,
0 ≤ Gi ≤ b c

ci

c (i = 1, · · · , k),

2.
k
∑

i=1

Gi +
k
∑

j=1

Qj ≤ N,

3.
k
∑

i=1

ciGi ≤ c,

4.
k
∑

j=1

Qj ≤ α.

The constraint 1 is trivial. The constraint 2 represents the condition on the number of
customers in the system. The constraint 3 represents the relation between the number of
servers and the number of customers in service. The constraint 4 represents that we observe
the class of at most α customers in the queue.

In this thesis, we define that a policy is applied just after the state of the system is changed.
Strictly speaking, there are three patterns of the moment when the policy is applied; a customer
arrives, a customer departs from the system, and a customer begins to be served according to
the decision of the policy. At these moments, one customer out of α customers from the head
of the queue or no customer begins to be served according to the decision of the policy. Note
that if a customer begins to be served at a moment, at least one decision is made at the same
time.

In this thesis, we deal with policies which depend on the phase. Namely, which class
customer is served depends only on the phase of the system at that moment, not on the past
history. To adopt these policies, the process which we consider is formulated as a Markov
decision process with a countable state space. Let S = {1, 2, · · · , F} denote the set of phases
of the system. For each phase i ∈ S, the set of actions is given by A(i), where a (6= 0) ∈ A(i)
denotes the class of the customer which begins to be served and a (= 0) ∈ A(i) denotes that no
customer begins to be served. Note that we restrict the customer who can begin to be served to
one customer out of α customers from the head of the queue, so the action a ∈ A(i) is restricted
to the classes which satisfy the condition Qa 6= 0.

We make a policy to choose action a ∈ A(i) for all phase i (i = 1, 2, · · · , F ). The number
of phases is finite, and the number of actions for each phase is also finite. So the number of
policies is also finite.

3.2 Transition rate matrix

Now we consider the transition rate between the states. The transition rate matrix differs from
policy to policy. So we divide a transition into an arrival or departure and decision of the
customers who are served.

At first, we consider the transition when a customer arrives. The arrival process is a
Poisson process, so that at most one customer arrives to the system at a time. Let the state
before the arrival be y = (n, g1, · · · , gk, q1, · · · , qk), and the state after the arrival be y′ =
(n + 1, g′

1, · · · , g
′

k, q
′

1, · · · , q
′

k). Then the transition rate p(y, y′) is given by
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p(y, y′) =



















































λ, gi = g′

i (i = 1, · · · , k),
k
∑

j=1

qj = α and qj = q′j (j = 1, · · · , k),

λa, gi = g′

i (i = 1, · · · , k),
there exits a class a such that qa + 1 = q′a
and qj = q′j (j 6= a, j = 1, · · · , k),

0, otherwise.

Let Ai (i = 0, 1, 2, · · · , c + α) denote transition matrix which corresponds to the transitions
from states with i customers to states with i + 1 customers. Note that the block matrices
corresponding to the transition from c+α+1+i (i ≥ 0) customers are given by the same matrix
A. Since the combination of phases is identical when many customers exist, the transition rate
matrices are identical as well.

Next we consider the transition when a customer departs. Because we suppose expo-
nential service times, at most one customer departs from system at a time. Let the state
before the departure be y = (n, g1, · · · , gk, q1, · · · , qk), the state after the departure be y =
(n−1, g′

1, · · · , g
′

k, q
′

1, · · · , q
′

k). Then the transition rate p(y, y′) is given by

p(y, y′) =











gdµd, there exits a class d such that gd − 1 = g′

d,
gi = g′

i (i 6= d, i = 1, · · · , k) and qj = q′j (j = 1, · · · , k),
0, otherwise.

Let Bi (i = 1, 2, · · · , c+α) denote the transition matrix which corresponds to the transition
from states with i customers to states with i − 1 customers. Note that the block matrices
corresponding to the transition from c + α + 1 + i (i ≥ 0) customers are given by the same
matrix B, because the combination of phases is identical.

Finally, we consider the transition when the policy is applied. We denote the state before the
application of the policy by y = (n, g1, · · · , gk, q1, · · · , qk), and the state after the application of
the policy by y′ = (n, g′

1, · · · , g
′

k, q
′

1, · · · , q
′

k). If the decision of the policy is to serve no customer,
then p(y, y′) is 1 if y = y′ and 0 otherwise. Now we consider the case that the decision of the
policy for the phase (g1, · · · , gk, q1, · · · , qk) is to serve a customer of class s. Then the transition
rate p(y, y′) is given by

p(y, y′) =











































































































1,
k
∑

i=1

gi + qi = n, gs + 1 = g′

s, qs − 1 = q′s,

gi = g′

i (i 6= s, i = 1, · · · , k) and qj = q′j (j 6= s, j = 1, · · · , k),

λs

λ
,

k
∑

i=1

gi + qi < n, gs + 1 = g′

s,

gi = g′

i (i 6= s, i = 1, · · · , k) and qj = q′j (j = 1, · · · , k),

λa

λ
,

k
∑

i=1

gi + qi < n, gs + 1 = g′

s,

gi = g′

i (i 6= s, i = 1, · · · , k),
there exits a class a such that qa + 1 = q′a,
qs − 1 = q′s and qj = q′j (j 6= a, s, j = 1, · · · , k),

0, otherwise.
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Let Mi (i = 0, 1, 2, · · · , c + α) denote the transition matrix which corresponds to the transi-
tion according to one decision of the policy. Now we consider the power of Mi. The matrix of
this product corresponds to the transition by successive decisions of the policy at a moment.
Note that Mi

j converges at most j = c, because up to c customers can be served at the same
time. Let M̄i be the converged matrix, i.e., M̄i = M c

i . The block matrices corresponding to
the transition from c + α + 1 + i (i ≥ 0) customers are given by the same matrix M , because
the combination of phases is identical. Let M̄ be the converged matrix, i.e., M̄ = M c.

Now we denote a state probability vector by z = (z0, z1, z2, · · ·), where zi is a state probability
vector when i customers are in the system. We arrange the states in lexicographic order. Then
the transition rate matrix of the Markov chain is as follows.

Q =



































S̄0 Ū0

D̄1 S̄1 Ū1

D̄2 S̄2 Ū2

. . .
. . .

. . .

D̄c+α S̄c+α Ūc+α

D̄ S̄ Ū
D̄ S̄ Ū

. . .
. . .

. . .



































.

Here, Ūi = AiM̄i+1 (i = 0, 1, · · · , c + α) corresponds to the transition from i customers
to i + 1 customers. D̄i = BiM̄i−1 (i = 1, 2, · · · , c + α) corresponds to the transition from i
customers to i − 1 customers. Note that the block matrices corresponding to the transition
from c + α + 1 + i (i ≥ 0) customers are given by the same matrices Ū = AM̄, D̄ = BM̄ . Since
the combination of phases is identical when many customers exist, the transition rate matrices
are identical as well. S̄i and S̄ are diagonal matrices whose elements are given by

−

(

λ +
k
∑

i=1

giµi

)

,

when it corresponds to the state y = (n, g1, · · · , gk, q1, · · · , qk).

3.3 Computation of the steady state probabilities for a policy

In this subsection, we compute the steady state probability vector with transition rate matrix
Q.

Let e be the column vector where all elements are equal to one. The necessary and sufficient
condition to the stability of the system is that the vector π which is computed from

π(D̄ + S̄ + Ū) = 0,
πe = 1,

satisfies
π D e > π U e .

This means that it is needed for large n that the drift which decreases customers is larger
than that which increases customers.
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For example, the stability condition of the system with c = 2, c1 = 1 and c2 = 2, where
customers are served on a FCFS discipline, is given by

λ1λ2

µ1λ
+

λ1

µ1
+ 2

λ2

µ2
> 2 .

Let x be the steady state probability vector of the Markov chain with transition rate matrix
Q. Then x satisfies

xQ = 0,
xe = 1.

Solving this equation, we get the steady state probability vector.
Now we consider the computation of the steady state probability vector x. At first, we make

the transition probability matrix of the Markov chain. Let θ be the maximum of the absolute
value of diagonal elements of Q, and let P be

P = I +
1

θ
Q =



































S0 U0

D1 S1 U1

D2 S2 U2

. . .
. . .

. . .

Dc+α Sc+α Uc+α

D S U
D S U

. . .
. . .

. . .



































.

Then P satisfies that
xP = x(I + 1

θ
Q)

= x + 1
θ
xQ

= x.

So we can compute the steady state probability x, solving that

xP = x,
xe = 1.

However this is a system of simultaneous equations which have infinite dimension. So we
need to use the structure that the block matrices are identical below a certain row.

Now we consider the fundamental period which starts from the state of n = c+α+1+k (k ≥
0) and ends at the state of n = c + α + k for the first time. Let G be the matrix whose
(i, j) element is the probability that the system starts from state i and ends at state j in the
fundamental period. Then G satisfies the following equation.

G = D + SG + UG2.

Using this G, the transition probability matrix under the condition that the number of
customers is less than c + α + 1 is represented to be

6



T =























S0 U0

D1 S1 U1

D2 S2 U2

. . .
. . .

. . .

Dc+α−1 Sc+α−1 Uc+α−1

Dc+α Sc+α + Uc+αG























.

Using this T , we can compute the steady state probability vector under the condition that
the number of customers is less than c+α+1. We denote the conditional steady state probability
vector by x′ = (x′

0, x
′

1, · · · , x
′

c+α). This vector satisfies the following equation.

x′T = x′,
x′e = 1.

The solution of this equation is obtained as follows. From the last column of T ,

x′

c+α−1Uc+α−1 + x′

c+α(Sc+α + Uc+αG) = x′

c+α.

So we can express that

x′

c+α = x′

c+α−1Rc+α−1, Rc+α−1 = Uc+α−1(I − Sc+α − Uc+αG)−1.

Next, from the last column but one of T ,

x′

c+α−2Uc+α−2 + x′

c+α−1Sc+α−1 + x′

c+αDc+α = x′

c+α−1,
x′

c+α−2Uc+α−2 + x′

c+α−1Sc+α−1 + x′

c+α−1Rc+α−1Dc+α = x′

c+α−1.

So we can express that

x′

c+α−1 = x′

c+α−2Rc+α−2, Rc+α−2 = Uc+α−2(I − Sc+α−1 − Rc+α−1Dc+α)−1.

In the same way, we can express that

x′

i = x′

i−1Ri−1, Ri−1 = Ui−1(I − Si − RiDi+1)
−1 (i = c + α − 1, c + α − 2, · · · , 1).

Letting x′

0 = 1, using x′

i = x′

i−1Ri−1 (i = 1, 2, · · · , c + α), and normalizing them, x′

i

(i = 0, 1, · · · , c + α) are evaluated.
Now we remove the condition on the number of customers. To do so, we consider the cycle

in which the system starts from the state of n = c + α + k (k ≥ 0) and ends at the state of
n = c + α + k for the first time. Let R be the matrix whose (i, j) element is the expectation
number of times of state (c+α+k +1, j) visited on condition that the system starts from state
i in the cycle. Then R satisfies the following equation.

R = U + RS + R2D.

Note that the following equation holds between G and R [4].
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R = U(I − S − UG)−1,
G = (I − S − RD)−1D.

Using this R, we can get
xc+α+k = xc+αR k,

so x′

c+α+1, x′

c+α+2, · · · are computed in order.
Now we got the ratio of x′

i (i = 0, 1, · · ·). Finally normalizing these ratios, we get the steady
state probability vector x. We summarize the procedure as follows.

1. Compute G, R0, · · · , Rc+α−1, R respectively.
2. Let x′

0 = 1.
3. Compute x′

i = x′

i−1Ri−1 (i = 1, 2, · · · , c + α).
4. Compute the normalization factor β by

β =
∞
∑

i=0

x′

ie

=
c+α−1
∑

i=0

x′

ie +
∞
∑

i=c+α

x′

ie

=
c+α−1
∑

i=0

x′

ie +
∞
∑

i=0

x′

c+αRie

=
c+α−1
∑

i=0

x′

ie + x′

c+α(I − R)−1e.

5. Compute xi = x′

i / β (i = 0, 1, · · · , c + α).
6. xi (i ≥ c + α + 1) are computed by xi = xi−1R.

3.4 The average waiting time of each class

Using the steady state probability vector, we can compute the average waiting time. Let
L(i)

n (y) be the expected number of class i customers, when the phase of the system is y =
(g1, · · · , gk, q1, · · · , qk), and the level of the system is n. The number of class i customers in
service is given by gi. The number of class i customers in α customers from the head of the
queue is given by qi. The customer in the rear of the queue is of class i with probability λi/λ,
because the arrival process is a Poisson process. So L(i)

n (y) is given by

L(i)
n (y) = gi + qi + λi

λ
(n −

k
∑

j=1

(gj + qj)).

Let L(i)
n be the vector when we arrange the L(i)

n (y) in lexicographic order of the state. Then
the expected number of class i customers L(i) is as follows.

L(i) =
∞
∑

k=0

xkL
(i)
k

=
c+α−1
∑

k=0

xkL
(i)
k +

∞
∑

k=c+α

xkL
(i)
k

=
c+α−1
∑

k=0

xkL
(i)
k +

∞
∑

k=0

xc+αRkL
(i)
c+α+k.

8



When the number of customers is more than c+α−1, the phases of the system are identical.
So we obtain the following equations.

L
(i)
c+α+k(y) = L

(i)
c+α(y) + k

λi

λ
(k ≥ 0),

L
(i)
c+α+k = L

(i)
c+α + k

λi

λ
e (k ≥ 0).

Substituting this equation, we get
∞
∑

k=0

xc+αRkL
(i)
c+α+k =

∞
∑

k=0

xc+αRk(L
(i)
c+α + k

λi

λ
e)

=
∞
∑

k=0

xc+αRkL
(i)
c+α +

∞
∑

k=0

xc+αRkk
λi

λ
e

= xc+α(I − R)−1 L
(i)
c+α + λi

λ
xc+α

∞
∑

k=0

kRke

= xc+α(I − R)−1 L
(i)
c+α + λi

λ
xc+α(I − R)−1{(I − R)−1 − I} e.

So we obtain the expected number of class i customers.

L(i) =
c+α−1
∑

j=0

xjL
(i)
j + xc+α(I − R)−1 L

(i)
c+α +

λi

λ
xc+α(I − R)−1{(I − R)−1 − I} e.

Let Wi be the average sojourn time of class i customers, and wi be the average waiting time
of class i customers. Using Little’s theorem, we compute these values as follows.

Wi =
L(i)

λi

,

wi = Wi −
1

µi

.

4 The characteristics of optimal policy

In this section, we apply the above-mentioned method to the case of k = 2. Using the method
to all the possible policies, we search the optimal policy. Then we observe the optimal policies
for different parameters and criteria to find the tendency of optimal policies.

When the criterion which evaluates the optimality of the policies with the average waiting
time of each class is given, the optimal policy is found applying the above-mentioned method
to all the policies and calculating the optimality of each policy.

We propose two criteria here; one is the weighed sum of the average waiting times; the other
is the average waiting time of a certain class given that the average waiting time of the other
class is not greater than a certain value (e.g. the average waiting time in FCFS). Here we call
the former criterion 1, the latter criterion 2.

We experiment with two criteria above. After this, we set the parameters as follows; c =
3, k = 2, c1 = 1, c2 = 3, λ1 = λ2 = 0.5 and µ1 = µ2 = 1.

At first we show the figure of the optimal policy for criterion 1. Note that we can depict
any policies as the figures in which the lattice points correspond to the phases. We set the
objective function w1 + 3w2, where wi (i = 1, 2) is the average waiting time of class i.
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Figure 1: The optimal policy (α = 2).
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Figure 2: The optimal policy (α = 3).
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Figure 3: The optimal policy (α = 4).
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Next, we consider the criterion 2; the average waiting time of a certain class on condition
that the average waiting time of the other class is not greater than a certain value. First, we set
the objective function w1 subject to w2 ≤ w2,FCFS, where wi,FCFS is the average waiting time
of class i when the customers are served on a FCFS basis. The optimal policy is as follows.
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Figure 4: The optimal policy (α = 2).
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Figure 5: The optimal policy (α = 3).
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Figure 6: The optimal policy (α = 4).

Next we show the optimal policy when we set the objective function w2 subject to w1 ≤
w1,FCFS.
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Figure 7: The optimal policy (α = 2).

Observing these optimal policies, we can find two tendencies. One is that the optimal
policies are formed of a threshold policy. A threshold policy is the policy in which the class of
a customer to be served is divided by a switching curve which is nondecreasing and passes the
point of the origin. Intuitively, it seems natural that the optimal policy is a threshold policy.

Another tendency of the optimal policies is the relation between the optimal policy for
α = m and α = m + 1. Let Ω∗

m be the optimal policy for α = m (m ≥ 2). Ω∗

m and Ω∗

m+1

are usually resemble each other, but sometimes slightly different. Strictly speaking, in the
triangular region of q1 + q2 ≤ m − 1 the class of a customer to be served in Ω∗

m+1 is the same
class as that in Ω∗

m. We can explain this property as follows. The phases which are included
in the region q1 + q2 ≤ m − 1 correspond to the same states for the system where α = m and
α = m + 1. However the phases over the line q1 + q2 = m correspond to the different states. It
seems natural that the same class customer begins to be served for the same state in optimal
policy even if α is different.

12



0

1

2

3

4

1 2 3 4 0

1

2

3

4

1 2 3 4 0

1

2

3

4

1 2 3 4

class 1 is served

class 2 is served

no customer is served

PSfrag replacements

(G1, G2) = (0, 0) (G1, G2) = (1, 0) (G1, G2) = (2, 0)

Q1Q1Q1

Q2Q2Q2

Figure 8: The optimal policy (α = 3).
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Figure 9: The optimal policy (α = 4).

5 A sequential improvement algorithm

For the large α, the search by computing all possible policies needs a very long computational
time, because the number of elements in the policy set increases exponentially when α increases.
So it is necessary to cut the policies which have no chance of optimality if we want the optimal
policy for large α. We consider the methods to cut the unlikely optimal policies.

In this section, we deal with the system of k = 2. And we narrow the search to the threshold
policies. In addition, we propose a sequential improvement algorithm.

5.1 Threshold policies

At first, we introduce the notation of threshold policies. We denote the number of phase planes
by β. Note that β is determined by c and ci (i = 1, · · · , k), independent of α. For each phase
plane, the switching curve of a threshold policy is expressed as a step function which passes
lattice points. We set the lattice points over the switching curve contained in the region which
includes q2 axis. Then we can express a threshold policy Ωα as β binary α-dimensional vectors
as follows.
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Ωα = (t1, · · · , tβ),
t1 = (t1,1, · · · , t1,α),

...
tβ = (tβ,1, · · · , tβ,α),

where ti (i = 1, · · · , β) represents the switching curve for the phase plane i. In this thesis,
the switching curve starts from the origin, and ti,j’s (i = 1, · · · , β, j = 1, · · · , α) specify the
switching curve as follows.

If ti,1 = 0 (i = 1, · · · , β), the switching curve for the phase plane i connects (q1, q2) = (0, 0)
and (q1, q2) = (0, 1) with a horizontal line. If ti,1 = 1 (i = 1, · · · , β), the switching curve
connects (q1, q2) = (0, 0) and (q1, q2) = (1, 0) with a vertical line. ti,j (i = 1, · · · , β, j ≥ 2) are
defined as follows. When the switching curve for the phase plane i gets to (q1, q2) = (a, b), if
ti,a+b = 0 (i = 1, · · · , β), the switching curve connects (q1, q2) = (a, b) and (q1, q2) = (a, b+1), if
ti,a+b = 1 (i = 1, · · · , β), the switching curve connects (q1, q2) = (a, b) and (q1, q2) = (a + 1, b).
By this means, the threshold policy is expressed by β binary α-dimensional vectors.

5.2 The sequential improvement algorithm

In section 4, we observed the characteristics of the optimal policies. In this subsection, we
utilize these characteristics to search a quasi-optimal policy for large α. First, we confine the
search policies to the threshold policies. Next, when the quasi-optimal policy for α = m is
obtained, we restrict the search policies for α = m + 1 to the policies which have a similar
shape to the quasi-optimal policy for α = m.

It was observed that Ω∗

m+1 (m ≥ 2) is identical with Ω∗

m in the region of q1 + q2 ≤ m − 1
in section 4. We note similarities between Ω∗

m+1 and Ω∗

m. When the optimal policy for α = m
is obtained, we propose that we only search the policies whose regions q1 + q2 ≤ m − 1 of all
phase planes are identical with Ω∗

m to search the optimal policy for α = m + 1. The procedure
is as follows.

1. Set m = 2, and search the optimal policy.
Let Ω∗

2 be the optimal policy and t∗i,j(i = 1, · · · , β, j = 1, 2) be the elements.
2. If α = m, stop, and otherwise m := m + 1.
3. Set ti,j = t∗i,j (i = 1, · · · , β, j = 1, · · · , m − 2).
4. Search the optimal ti,j (i = 1, · · · , β, j = m − 1, m).

Let Ω∗

m be optimal policy and t∗i,j(i = 1, · · · , β, j = 1, · · · , m) be the elements.
Return to step 2.

We call this procedure “a sequential improvement algorithm.” It is considered that this
algorithm has the following advantages. At first this algorithm enables us to search the quasi-
optimal policy for large α, because the number of search policies is independent of α in the step
4. Note that it depends only on β which is determined by c and ci. In addition this algorithm
is expected to keep the optimality because it is based on the common characteristics of optimal
policies.
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6 Numerical results of the sequential improvement algo-

rithm

In this section, we provide some numerical results using the sequential improvement algorithm
for several criteria and parameters. By these numerical results, we consider the properties of
batch-arrival batch-service queueing systems. We observe the change of the objective function
over α when the arrival rates and criterion are changed. Through this section, we set other
parameters as follows; c = 3, k = 2, c1 = 1, c2 = 3 and µ1 = µ2 = 1.

6.1 The results of criterion 1

In this subsection, we adopt the criterion 1 to evaluate the optimality of the policy. Note that
the criterion 1 is a weighed sum of average waiting times. Let the objective function be

min c1w1 + c2w2 = w1 + 3w2.

This function corresponds to the measure of the waiting time per the job which uses one server.
Figure 10 is the graph of the objective functions of optimal policies under the light load

λ1 = λ2 = 0.1. Figure 11 and 12 are also the graphs under the medium load λ1 = λ2 = 0.3
and the heavy load λ1 = λ2 = 0.5, respectively. Note that α = 1 corresponds to the case of
FCFS. Observing these figures, it is clear that the objective functions of the optimal policies
are monotone decreasing and converge as α gets large.

To observe the difference of the improvement factor among the different load, in Figure
13, we show the relative values of objective functions, where the objective function in FCFS
is set to be 1 for each load. We discover the following properties. When the load is light, the
objective function converges rapidly, and there is little room for the improvement factor. In
contrast, when the load is heavy the objective function converges slowly, and there is plenty
of room for the improvement factor. It is worthy of attention that the objective function is
reduced to about 0.4, and it is achieved at most α ≈ 10 under the heavy load.
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Figure 10: Optimal policy as a function of α
(λ1 = λ2 = 0.1).
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Figure 11: Optimal policy as a function of α
(λ1 = λ2 = 0.3).
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Figure 12: Optimal policy as a function of α
(λ1 = λ2 = 0.5).
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Figure 13: Improvement factor.

6.2 The results of criterion 2

In this subsection, we adopt the criterion 2 to evaluate the optimality of the policy. Note that
the criterion 2 is the average waiting time of a certain class on condition that the average
waiting time of the other class is not greater than a certain value. Let w2 be the objective
function. And we consider three constraints w1 < ∞, w1 ≤ w1,FCFS and w1 ≤ w1,Ω∗

2
, where

w1,FCFS is the average waiting time of class 1 in FCFS, and w1,Ω∗

2
is the average waiting time

of class 1 when the optimal policy for α = 2 is applied.
At first, we compare three constraints when λ1 = λ2 = 0.3. Figure 14, 15 and 16 are the

case of w1 < ∞, w1 ≤ w1,FCFS and w1 ≤ w1,Ω∗

2
, respectively. It is observed that the average

waiting time of class 2 is most improved in Figure 14. However the average waiting time of class
1 gets worse compared with in FCFS. To keep the fairness of the system, we consider severer
constraints w1 ≤ w1,FCFS and w1 ≤ w1,Ω∗

2
. In Figure 15 and 16, w1 converges to its constraint

value, and w2 also converges. Note that w2 is not monotonic decreasing. This is caused by the
discreteness of the policies. We deal with the policies which deterministically decide the class
of a customer who begins to be served, so the policies for α = m+1 do not include the policies
for α = m. Hence w2 is not always monotonous.
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Figure 14: Prioritizing class 2 s.t. w1 < ∞.
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Figure 15: Prioritizing class 2 s.t. w1≤w1,FCFS.
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Figure 16: Prioritizing class 2 s.t. w1 ≤ w1,Ω∗

2
.

Next, we compare three constraints when λ1 = λ2 = 0.5. Figure 17, 18 and 19 are the case
of w1 < ∞, w1 ≤ w1,FCFS and w1 ≤ w1,Ω∗

2
, respectively. It is of interest that Figure 17 is the

same as Figure 18. This result is interpreted as follows. In the optimization of the order of
services in batch-arrival batch-service queueing systems, there are two components which reduce
the average waiting time of each class. One is the improvement of the total efficiency by the
optimization of the order of services. In other words, the improvement of throughput leads to
the reduction of the average waiting time for all the classes. The other is the trade-off between
classes 1 and 2. Under the heavy load, it is considered that the effect of the improvement of
throughput has an extraordinary effect compared with the trade-off.
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Figure 17: Prioritizing class 2 s.t. w1 < ∞.
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Figure 18: Prioritizing class 2 s.t. w1≤w1,FCFS.

7 Conclusion

In batch-arrival batch-service queueing systems, the order of services is very influential in
the performance of the system. In particular, under the first-come, first-served discipline,
customers are served very inefficiently and the average waiting time gets very long. In this
thesis, we considered controlling the order of services to reduce the average waiting time fairly
and effectively.
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Figure 19: Prioritizing class 2 s.t. w1 ≤ w1,Ω∗

2
.

At first, we defined the policy which decides the order of services. To make it possible to
analyze the system, we assumed to memorize the classes of at most α (α > 1) customers from
the head of the queue, and deal with the policies which depend only on the phase. These
definitions enable us to formulate the system as a Markov decision process with a countable
state space.

Next, we developed an algorithmic method to compute the steady state probability vector
and the average waiting time for a given policy. The transition rate matrix has such a structure
that it is a tri-block-diagonal-matrix and block matrices are identical below a certain row. This
structure enables us to compute the steady state probability vector and the average waiting
time efficiently.

Using the above method to all the possible policies, we searched the optimal policy for the
case of k = 2. Then we observed two tendencies of optimal policies. One is that the optimal
policies are formed of the threshold policy. The other is that Ω∗

m and Ω∗

m+1 are identical in
the region q1 + q2 ≤ m − 1 (m > 1). Based on these observations, we developed a sequential
improvement algorithm to search a quasi-optimal policy for large α.

Using the sequential improvement algorithm for several parameters and criteria, we inves-
tigated the properties of the system. Consequently we found the following properties. For
a fairly small α, the system performance was drastically improved. When the load is heavy,
there is plenty of room for the improvement factor compared with the case that the load is
light. Further, there are two components which reduce the average waiting time of each class
in batch-arrival batch-service queueing systems. One is the improvement of the total efficiency
by the optimization of the order of services. In other words, the improvement of throughput
leads to the reduction of the average waiting time for all the classes. The other is the trade-off
between class 1 and 2. Under the heavy load, it is considered that the effect of the improvement
of throughput has an extraordinary effect compared with the trade-off.

In this thesis, we aimed to achieve fair and efficient service to control the order of services
in a batch-arrival batch-service queueing system. Numerical results indicate that the proposed
algorithm achieves fair and efficient service under an appropriate criterion.
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