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Abstract

Today network technology is experiencing great growth in peer-to-peer networks. We believe
this growth should make innovative network systems, and users will be able to take information
through networks wherever and whenever they stay. In these networks, a large number of objects,
such as users, sensor devices, cars, and so on, will be connected. We cannot control the whole
network at a centralized server because many objects offer many kinds of contents, and act in
their own way. In other words, these networks must be purely peer-to-peer without centralized
servers, and they highly requires the ability to discover contents matching given query criteria
such as a searched keyword.

An existing broadcast-based discovery mechanism used in Gnutetlla includes the following
two problems. One is that discovery queries impact network traffic heavily. The other is that
query result quality is not guaranteed, namely, a user has to select what he or she needs from a
huge number of received query results containing the futile ones. In this study, we combine the
following two methodologies to solve these issues, making desirable improvements.

First, we adopt the PageRank system, used as one of the most important ranking factor in
the web search engine Google, to rank the value of query results. Because the original PageRank
is used only in centralized systems, we develop a new algorithm, named distributed PageRank,
in order to apply the PageRank system into our distributed environments. We consider this
distributed PageRank algorithm as one of the significant achievement in this study. Our discovery
mechanism using distributed PageRank automatically ranks the value of the contents offered by
network objects.

In the next place, we introduce a learning algorithm using pheromone, which we call keyword
pheromone. In our scheme, based on distributed PageRank, a query originator object selects the
best query result from among all the received query results and returns a reward, which means
to deposit keyword pheromone, only to the reverse route of the forwarding path to that best
query result. By tracing deposited keyword pheromone, network objects are able to forward a
query more likely to lead towards relevant contents.

This paper concludes that our proposed discovery mechanism shows superior performance
through simulations, compared with an existing broadcast-based discovery mechanism in terms
of the above two issues, network efficiency and a guarantee of query result quality.
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1 Introduction

1.1 Contents discovery in peer-to-peer networks

Today network technology is experiencing great growth in peer-to-peer networks and used in
various fields. We believe this growth should make innovative network applications, and then
people will be able to take information through networks wherever and whenever they stay. As
for such a network, the following networks are suggested; Jack-in-the-Net (Ja-Net) [17, 16] and
Bio-net [13, 12] that includes the feature of biological behavior in a computer network.

In these networks, a huge number of objects are connected, such as not only users and
computers but many kinds of devices like sensors, home electric appliances, cars and so on.
These objects offer some contents such as a web page or many kinds of service. We cannot
control the whole network using a centralized server because many objects exist and act in their
own way. In other words, this network must be purely distributed peer-to-peer without any
directory. A commonly needed functionality in such a network is the ability to discover network
objects or contents that match particular query criteria. To develop a discovery mechanism in
such a network, care must be taken of next two issues.

First of all, discovery must not impact network traffic and object resource efficiency. Secondly,
only objects having preferred or good contents out of matching query criteria must be discovered.
It is not useful discovery that users receive a huge number of discovery results including both
good results and poor ones. Therefore, discovery results must be narrowed down to only good
ones.

To mention the existing discovery mechanisms [1] used in such a distributed peer-to-peer
environment, however, there are no discovery mechanisms which satisfy the above both issues.
As a representative example, we discuss a broadcast-based discovery mechanism used in Gnutella
[5], which is widely used in file sharing applications. In Gnutella, a user who initiates discovery
process inputs a keyword(s) to represent contents, offered by network objects, such as music or
movie files which a user wants to search for, and then a network node (i.e., PC) which a user
is logging on broadcasts a query message containing the keyword(s) to neighbor network nodes
(i.e., other user’s PC) which can communicate with the node issuing the query. If neighbor
nodes do not have the contents which the user is searching for, the neighbor nodes broadcast the
query to their neighbor nodes again. A query is forwarded from one network node to another
in this way until it eventually reaches the target network node which has the contents matching
searched keyword, or the query satisfies the condition of discovery termination such as time to
live (TTL) [4]. This broadcast-based mechanism is simple and guarantees high success rate of
discovery of target objects within a limited search area. However, it has some major downsides as
follows. The broadcast-based discovery mechanism is not scalable because it causes heavy traffic.
Forwarding of a large number of query messages, many of which do not contribute to successful
discovery, consume bandwidth of the network [10, 3, 11]. As a matter of fact, scalability is
the most serious issue to be solved in Gnutella. There is another problem about TTL (Time
to Live) value. Usually in broadcast-based discovery mechanism, the same TTL value is set in
every query message, and decremented by 1 whenever a query message is forwarded from one
node to another. TTL restrains the amount of traffic generated by query forwarding by limiting
forwarding hop counts of queries. At the same time, TTL value restricts discovery coverage
area where a query can be forwarded. Because of this trade off relationship between traffic
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and discovery coverage area, it is impossible to find appropriate value of TTL before discovery
originates.

The other severe problem is that this broadcast-based mechanism cannot distinguish the
quality of contents which match the same keywords. In such a network we consider, it is ex-
pected that usefulness or relevancy of contents is considered to be different even if they offer
similar contents represented by the same keyword. Some objects may satisfy query originators
more likely, whereas other objects may disappoint query originators. Under this condition, the
broadcast-based mechanism, not taking the contents relevancy into consideration, usually re-
turns too many results including useless ones for users. Consequently, users need to make an
extra effort to choose useful information from the heap of the results.

The existing discovery mechanism does not fulfill our requirements described in the (i.e.,
network efficiency and a guarantee of query result quality). In this study, we develop a new
discovery mechanism which satisfies our requirements in a peer-to-peer network.

1.2 Organization of this paper

The remainder of this paper is organized as follows. Section 2 describes the general discovery
procedure. In Section 3, we explain our discovery mechanism outline, and develop distributed
PageRank algorithm, which is necessary for our proposed discovery mechanism to be realized.
In the next place, we explain our discovery procedure in detail. Section 4 shows the simulation
model, results and observation. Then we conclude this paper and mention future work in Section
5.

2 Basic discovery mechanisim

2.1 Network model

Objects, each of which is labeled its unique number as an object ID, are distributed in a purely
peer-to-peer network (i.e., no centralized server), and they act at the will of themselves, like
migrating, replicating, or collaborating with other network objects. In this study, we assume
that each object offers some contents and has a keyword describing its contents.

A network object establishes relationship with other network objects, which we call rela-
tionship partners. Relationship has the following three features; First, relationship is a logical
pointer and independent of physical distance between network objects. Secondly, relationship
partners are selected according to the object’s own reasons such that a relationship partner offers
useful contents, similar contents to itself, new contents and so on. In the last place, relationship
is not necessarily in bi-directions. Namely, even if object A has relationship to object B, object
B does not necessarily have relationship to object A.

An object stores such information as relationship partners’ ID and location in its relationship
table. Then, the object is always able to access its relationship partners by using not any
centralized servers but referring its relationship table. Note that a network object cannot access
any other objects except for relationship partners.
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2.2 Discovery procedure

We consider the situation that users are searching for contents offered by network objects. A
user logs on a network object, which originates a query having a unique query ID. A query
contains a searched keyword which represents searched contents.

We develop a discovery mechanism to discover contents matching a searched keyword. Our
discovery mechanism makes use of only relationship, tracing network objects in the next two
phases: query forwarding and query result returning. The query forwarding process begins at
a discovery originator, and queries move through relationships, seeking contents relevant to the
query. The query result returning process gives a discovery originator discovery results.

Upon receiving a query, a network object first examines whether it has already received the
same query by referring to query ID, and if it already has, the query is discarded. The network
object then checks whether it can return the query result for the query or not. When the network
object itself is not relevant to the searched keyword in the query, the network object decides to
which network object to forward the discovery query. This decision is made based on its discovery
policy explained in section 3.4. For example, in the case of broadcasting, a received query is
forwarded to all the relationship partners. The discovery policy in our discovery mechanism is
shown in Section 3.

Query results are returned back to the discovery originator following the reverse route of the
forwarding path to the network object that returned its contents as a query result. In order to
store the back propagation path information, each network object, during the query forwarding
phase, keeps a record of the unique query ID, the network object from which the query is received
in the query forwarding phase (i.e., the network object to which query results should be sent
during query result returning), and the network objects to which the query is forwarded during
the query forwarding phase (i.e., the network objects from which query results are expected to
be received).

3 Proposed discovery mechanism based on PageRank

3.1 Outline

3.1.1 Objective

Our discovery mechanism aims at the following two issues; reducing wasted queries and discov-
ering only good results. In other words, our mechanism overcomes the problem of broadcasting
way, a large number of wasted queries and too many results containing the futile ones.

3.1.2 Approach

We explain our proposed mechanism roughly in this subsection and strictly in the following part.
First, we discuss how to rank contents that a network object offers. The method of using

user preference is already proposed [14]. We think that method may ask a bother, to evaluate
the results and return it to a network, of users, or first user’s preference may have strong affect
till after. Then, we introduce the matter of the web search engine, Google [6], developing the
ranking system of contents objects offer in a distributed environment. We define the value of
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contents an object X offers for a searched keyword A as V alue∗(keywordA, objectX) which is
higher value in the case the query result is better.

In the next place, to reduce wasted queries, we adopt learning algorithm using pheromone
which guides queries more likely towards a network object relevant to that query. Our mechanism
deposit pheromone, named keyword pheromone, in rewarding process our mechanism implements
besides query forwarding process and query result returning process.

In the last place, we develop a new discovery policy (according to which a network object
selects its partner object(s) to forward a query) by making use of it.

3.2 Value of contents

3.2.1 Definition

We consider two concepts to calculate V alue∗(keywordA, objectX).
One is the PageRank value of object X, used in Google [6], which is denoted PR∗(X).

PageRank value of an object means how much other network objects trust that object. We
explain calculation of PR∗(X) and more details in the following subsection. Note that PageRank
value calculated independent of a searched keyword.

The other is the relevance between a searched keyword A and the contents of object X, which
is denoted Fitness∗(keywordA, objectX). Fitness∗(keywordA, objectX) is based on many man-
ners, such as how many times a searched keyword appears in the contents of object X, which
are beyond the scope of this paper. Then, we simply assume that Fitness∗(keywordA, objectX)
indicates the follwoing;

Fitness∗(keywordA, objectX) =

{

1, if the contents of object X has a searched keyword A,
0, otherwise.

Lastly, we define V alue∗(keywordA, objectX) as follows;

V alue∗(keywordA, objectX) = PR∗(X) × Fitness∗(keywordA, objectX). (1)

3.2.2 PageRank overview

We explain the original form of PageRank, and then propose distributed PageRank. L. Page et
al. [9] developed PageRank to measure the PageRank value of web pages. They gave an intuitive
description of PageRank; a page has a high rank if the sum of the ranks of its backlinks is high.
This covers both the cases when a page has many backlinks and when a page has a few highly
ranked backlinks. The PageRank value of a web page i, denoted PR∗(i), is equivalent to the
number of users on page i after infinite steps of a random walk which proceeds at each step as
follows. Users move uniformly at random with probability (1 − d) to one of the pages linked
from the current page, and users jump with probability d to some other page at random without
tracing the linked pages. The value of PageRank is defined recursively according to the equation,

PR∗(i) = d + (1 − d)
∑

j∈M(i)

PR∗(j)

N(j)
, (2)
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where M(i) is a set of the web pages which have a link to web page i, N(j) is the total number
of links originating from page j, and 0 ≤ d < 1. Intuitively, the value of PR∗(i) expresses the
relevancy of the web page i. This ranking is used as one factor of the Google search engine to
determine how to order the pages returned by a web search query [6].

For instance, consider the following environment shown in Figure 1.

Figure 1: Sample environment.

Each square represents an object, and an arrow from object i to object j indicates that
object i has a relationship to object j. We set d = 0 in eq. (2), and apply it to the relationship
structure in Figure 1 for all objects i (i = 1, 2, . . . , 7). Adding the normalization condition
∑7

i=1 PR∗(i) = 1, we get PageRank values as below,
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. (3)

Note that eq. (3) means that PR∗(i) represents the steady state probability of state i in a
Markov chain described in Figure 2 [7].

In the rest of this paper, we define PR∗(i) as the PageRank value of object i setting d = 0
in eq. (2). One caveat of this setting is that link structure graph must be strongly connected,
i.e., any web page can reach all the other web pages by tracing links [9].
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Figure 2: PageRank state chart.

3.2.3 Distributed PageRank

We regard relationship between objects in our scheme as a link between web pages. In our
scheme, relationship from object A to object B implies that object A trusts object B. This
concept is equal to links in web pages. Hence, we regard relationship between objects in our
scheme as a link between web pages, and introduce PageRank to our scheme.

In Google, robots crawl web pages, and then store their information into the database to
calculate the PageRank value. Therefore, Google is considered as a centralized system. To ap-
ply PageRank to our peer-to-peer environment, we develop a new algorithm, named distributed
PageRank, to calculate the PageRank value. Distributed PageRank requires neither any cen-
tralized calculation server nor a crawling robot. The distributed PageRank algorithm does not
require any special messages made only for this calculation. Instead, we utilize discovery queries.
When an object receives a discovery query, it updates its PageRank value without synchronizing
with all the other network objects, forwarding a discovery query put updated PageRank infor-
mation in. In this point, ours is different from other related work, i.e., ours is considered to be
more efficient for network traffic [8].

We assume that each object stores information about PageRank values in its relationship
table. Considering the situation in Figure 2, the relationship table of object 1 stores PageRank
information in its relationship table given in Table 1.

The inlink PageRank column indicates the values from all the objects that have a relationship
to object 1. Elements of the inlink PageRank column are the conveyed value by the latest query
from a corresponding object. Let PR(i, t) denote PageRank value which object i derives as the
PageRank value of itself at time t. PR(1, t) is calculated as the sum of inlink PageRank column
at time t. The values of the outlink PageRank column are equal to the value, PR(1, t), divided
by the number of its relationship partners.

Next, we explain the distributed PageRank, which enables each object i to reach PR∗(i)
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Table 1: PageRank information on relationship table of object 1.

Partner’s ID inlink PageRank value outlink PageRank value
object 2 0.166 0.061
object 3 0.071 0.061
object 4 NA 0.061
object 5 0.045 0.061
object 6 0.023 NA
object 7 NA 0.061

after normalization,
∑

i PR(i, t) = 1, where t is large enough. The procedure is described below.

A1. When object A makes a query,

(1) object A selects one or more object(s) B out of A’s partners (the way to select objects
depends on discovery policy), and then,

(2) marking up the value corresponding to B on A’s outlink PageRank column in a query,
and forwarding it to B (note that no other partner except for B is not informed of
the value on A’s outlink PageRank column).

A2. When an object receives a query from a partner, it performs either case (a) or case (b)
depending on the situations.

(i) If this object offers contents the originating object is searching for, the object performs
the procedure “table update,” which includes the following three procedures: updat-
ing its inlink PageRank column according to the value conveyed by a query from a
partner, calculating its own PageRank based on its inlink PageRank column, and up-
dating its outlink PageRank column. Then, the object finishes the query forwarding
process.

(ii) Otherwise, this object completes “table update,” and forwarding this query to one or
more object(s) with the updated value.

3.2.4 Example of distributed PageRank

To demonstrate the effectiveness of distributed PageRank, we conduct simulation experiments
with the model in Figure 1. The simulation details are as follows:

B1. Each object has an initial PageRank value of 1, making its outlink PageRank column. To
make an initial inlink PageRank column, let each object get the values from corresponding
objects’ outlink PageRank column. After that, each object performs “table update.” These
operations define initial values of each object’s inlink PageRank column, outlink PageRank
columln, and PageRank.

B2. Object 1 starts the first discovery using a single message at time 0. No object can start
the discovery except for case (a). Object 1 chooses object X among its partners, forwarding
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a query with the value corresponding to X in the outlink PageRank column of peer 1. Each
object receiving a query, such as object X, follows either case (a) with probability q, or
case (b) with probability (1 − q).

case (a) Object X offers searched contents and returns a query result. Object X performs
“table update,” and finishes this discovery processing. In the next place, we randomly
choose an object among network objects, which starts the next new discovery in the
same way as the originator object 1 acted in the first discovery.

case (b) Object X does not offer the contents the originator object is searching. The
“table update” procedure is completed. In the next step, object X chooses a peer
from among its partners with equal probability, forwarding a query with the updated
value on the outlink PageRank column of object X.

We performed simulations assuming that time is divided into slots whose lengths are equal
to a unit time which is taken for a query to hop between objects. A typical simulation result
for q = 0.2 is shown in Table 2, and Figures 3 and 4. Table 2 shows PR(i, 515) (i = 1, 2, . . . , 7).
The vertical scale of the Figure 3 expresses the time series normalized PageRank value of object
1. The vertical scale of Figure 4 expresses the time series sum of the PageRank value that all
the network objects have.

Table 2: Pagerank value of each object at time 515.

before normalization after normalization
PR(1, 515) 2.351770 0.303514
PR(2, 515) 1.287284 0.166134
PR(3, 515) 1.089241 0.140575
PR(4, 515) 0.816930 0.105431
PR(5, 515) 1.386306 0.178914
PR(6, 515) 0.346577 0.044728
PR(7, 515) 0.470354 0.060703

From Table 2, we see the PageRank value of each peer converges to the original PageRank
value denoted in (3) after normalization. Figure 3 shows the normalized PageRank value of a
object 1 is heading to the original PageRank value, 0.303514. From Figure 4, we see the sum of
PageRank value is static after each peer’s PageRank value has converged. We confirmed these
features in every performed simulation including the ones performed by setting different initial
values.

3.2.5 Mathematical model of distributed PageRank

We describe simulation scenario mathematically so that we can analyze the simulation result.
We consider the next eight issues in mathematical analysis of the simulation result.

(ASS 1) There are N objects in a network, labeled from 1 to N as object ID.

(ASS 2) Object 1 makes a query at time 0. There still exists a query on object1 at time 0.
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(ASS 3) Objects receiving a query act in the following two ways.

a. They do the next operation with probability d. They return a query result, and do
not forward a query. Query results do not update any PageRank value.

b. They do the next two operations with probability (1 − d). First, they update PageR-
ank value for each partner on their relationship table. Secondly, after they choose a
partner out of their all partners with equal probability, they forward a query to it
and also convey the updated PageRank value.

(ASS 4) An object is randomly chosen out of the all network objects when an object returns
a query result (ASS 3.a). Namely, a unit time after a query result is made by some
object, there exsits a new originated query in a network. This new query acts in the
same way as the first query described in (ASS 2).

(ASS 5) We define A as an N × N matrix that describes the network topology. The (i, j)th
element of A is denoted by aij, which is defined as,

aij = 1, if object i has relationship to object j,
aij = 0, otherwise.

We consider an N × N matrix P . The (i, j)th element of P is denoted by pij, which
is defined as,

pij =
aij

∑N

j=1 aij

.

P expresses the transition matrix from each object to its partner objects. The diagonal
elements of P are 0 because we do not consider relationship from an object to itself.
Assume a matrix P is irreducible.

(ASS 6) We describe PageRank of each object by a 1 × N vector ri (t). We define rij (t), the
ith element of ri, as the PageRank value which object i convey to object j through the
latest query at time t. We define a 1 ×N 2 vector r (t) as,

r (t) = (r1 (t) , r2 (t) , . . . , rn (t)) .

PageRank value of object j is expressed as a sum of PageRank values from all the
objects that have relationship to object j, i.e., PR(j, t) =

∑N

i=1 rij (t). We define the
initial PageRank values as PR(i, 0) = 0 (i = 1, 2, . . . , N), and distribute PageRank
value of each object to its partner based on a matrix P in the following way. For all
i (i = 1, 2, . . . , N) and for all j (j = 1, 2, . . . , N),

rij (0) = PR(i, 0) × pij

= pij ,

(ASS 7) Let P
′ denote an N ×N stochastic matrix used in query forwarding, and described as,

P
′ = (1 − d) P +

d

N
U ,

where U denotes an N ×N matrix, each of whose element is equal to one.
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(ASS 8) We describe PageRank update algorithm, i.e. how to update r (t) below,

rij (t) =















∑N

k=1 rki (t − 1) pij , in the case that there exists a query on object i

at time t− 1 and this query is forwarded to object j

with probability (1 − d),
rij (t− 1) , otherwise.

(4)

3.2.6 Mathematical analysis of distributed PageRank

The simulation result indicates that the PageRank value of each object converges to the original
PageRank value after normalizing the sum of PageRank values from all the objects to be one,
i.e., we can expect the following.

Conjecture 3.2.6
Considering r (t) (t = 1, 2, . . . , N) as the stochastic process, there exists some constant C for
each sample, and r (t) converges to Cπipij with probability 1.

The following three issues are necessary conditions of the above:

1. a. Each element of r (t) is greater than or equal to 0 for all t (t = 0, 1, 2, . . .).

b. PageRank(i, t) is greater than 0 for all i (i = 1, 2, . . . , N) and for all t (t = 0, 1, 2, . . .).

2. {Cπipij | i, j = 1, 2, . . . , N} is a unique fixed point of (4), up to a multiplicative constant C.

3. No element of r (t) diverges with probability 1.

We first prove 1.a.

For all i (i = 1, 2, . . . , N) and for all j (j = 1, 2, . . . , N),
rij (0) = pij (0) is greater than or equal to 0 from (ASS 6).

Assume that each element of r (t) is greater than or equal to 0.
Each element of r (t + 1) is greater than or equal to 0 from (ASS 8), which completes
the proof of 1.a.

In the next place, we prove 1.b.

There exists some positive rij (0) for all j (j = 1, 2, . . . , N) because a matrix P is irre-
ducible from (ASS 5), and r (t) is greater than or equal to 0 from 1.a. Therefore, for all
j (j = 1, 2, . . . , N),

PR (j, 0) =

N
∑

k=1

rkj (0)

> 0 .
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Assume that PR(j, t) is positive for all j (j = 1, 2, . . . , N), i.e. for all j (j = 1, 2, . . . , N),

PR (j, t) =
N

∑

k=1

rkj (t)

> 0 . (5)

We consider object a has a query at time t, and forward it to object b, resulting in the
situation that there is a query on object b at time t + 1.
In this situation, for i = a and j = b,

PR (j, t + 1) =

N
∑

k=1

rkj (t + 1)

=
N

∑

k=1

rkb (t + 1)

≥ rab (t + 1) (from r (t + 1) ≥ 0)

=

N
∑

k=1

rka (t) pab

> 0 ,

where the last inequality follows from eq. (5) and pab > 0. For any other i and j,

PR (j, t + 1) =
N

∑

k=1

rkj (t + 1)

=

N
∑

k=1

rkj (t)

> 0 ,

where the second equality follows from r (t + 1) = r (t) according to (ASS 8), and the
inequality follows from eq. (5), which completes the proof of 1.b.

Next we prove {Cπipij | i, j = 1, 2, . . . , N} is a fixed point of (4) and, in the next place, this
is a unique fix point of (4), up to a multiplicative constant C.

Assume for all i (i = 1, 2, . . . , N) and for all j (j = 1, 2, . . . , N),

rij (t) = Cπipij . (6)

We consider object a has a query at time t, and forward it to object b, resulting in the
situation that there is a query on object b at time t + 1.

12



In this situation, for i = a and j = b,

rij (t + 1) =
N

∑

k=1

rki (t)pij

=
N

∑

k=1

Cπkpkipij (from eq. (6))

=

N
∑

k=1

Cπipij

= rij (t) . (7)

For any other i and j,

rij (t + 1) = rij (t) . (8)

Iterating (7) and (8), r (s) = r (t) for any integers s > t.
That is to say, we proved that {Cπipij | i, j = 1, 2, . . . , N} is a fixed point of eq. (4).

Let rij denote a fixed point of eq. (4) for all i (i = 1, 2, . . . , N) and for all j (j = 1, 2, . . . , N).
For all i (i = 1, 2, . . . , N) and all j (j = 1, 2, . . . , N),

rij =

N
∑

k=1

rkipij . (9)

Taking the sum of both sides of eq. (9) with respect to i, we have

N
∑

i=1

rij =
N

∑

i=1

N
∑

k=1

rkipij . (10)

Define gj as
∑N

i=1 rij for all j (j = 1, 2, . . . , N). We see from (1.b.) that gj is positive
for all j (j = 1, 2, . . . , N). From eq. (10),

gj =
N

∑

i=1

gipij . (11)

This implies that gj is unique up to a multiplicative constant because a steady state
probability vector is unique for an irreducible stochastic matrix [15]. Consequently,
from eq. (9), rij is also unique for all i (i = 1, 2, . . . , N) and for all j (j = 1, 2, . . . , N).

The above discussion completes the proof of 2.

As for 3, we cannot prove it yet, but we believe 3 holds in our environment from simulation
results. We think 1, 2, and 3 are the strong reason why conjecture 3.2.6 can be true.

13



3.3 Keyword pheromone

We introduce keyword pheromone, deposited at the route which returned good results, into
our scheme so that it can be reflected on discovery policy. Here we reconsider the value of
contents to evaluate returned query results since object i does not know PR∗(i) used in eq.
(1). Let V alue(keywordA, objectX, t) be the value of a query result which object X returned
for a searched keywrod A at time t. An originator object uses V alue(keywordA, objectX, t)
calculated as below instead of V alue∗(keywordA, objectX),

V alue(keywordA, objectX, t) = PR(X, t) × Fitness∗(keywordA, objectX).

Keyword pheromone evaporates with rate ρ (0 < ρ < 1) per unit time to adapt the change
of networks.

Keyword pheromone is different between searched keywords, and each object stores keyword
pheromone information for its relationship partners in its relationship table. Table 3 shows an
example of keyword pheromone an object i stores.

Table 3: Keyword pheromone on a relationship table of an object i.

Partner’s ID Keyword A Keyword B · · ·
object j Xij(A) Xij(B) · · ·

...
...

...
...

object k Xik(A) Xik(B) · · ·

To deposit keyword pheromone, we build a new process, rewarding process, in our mechanism
besides query forwarding process and query result returning process. Rewarding process is
performed after query returning process. To be more precise, a query originator evaluates query
results based on V alue(keyword, object, t), and returns a reward propagated through the good
query returning path (i.e. the one returned the highest value of V alue(keyword, object, t)). This
procedure is illustrated in Figure 5, where object A is a query originator, object E returned the
best result, and object D returned a worse result. Note that a query originator does not return
any reward to the query returning route which does not return the best result.

When an intermediate object on the path receives a reward, it adds a reward to keyword
pheromone in its relationship table. A reward, the increased amount of keyword pheromone in
the rewarding process, is set to be value(object, keyword, t) in this study.

3.4 Discovery policy

We propose a discovery policy using keyword pheromone aiming at reducing wasted queries and
discovering only good results.

Each object forwards a query according to our proposed discovery policy described in the
following;

When object i originates or forwards a query including searched keyword A,

step 1 object i selects one partner randomly with probability p (0 < p < 1), and using key-
word pheromone with probability (1 − p). Letting Xij(A) and forward(i, A) be keyword

14



Figure 5: Rewarding process.

pheromone object i has for its partner object j as for keyword A and the partner object
that object i selects in forwarding a query containing a searched keyword A, respectively,

Pr(forward(i, A) = j) = p ×
1

N(i)
+ (1 − p) ×

Xik(A)
∑

j∈M(i) Xij(A)
,

where M(i) is a set of object i’s partner object ID, and N(i) is the number of object i’s
partners.

step 2 Object i repeats step 1 independently N(i) times. Note that bobject i is allowed to
select the same object as already selected.

step 3 Object i forwards a query to all the partner objects selected. object i forwards only
one query even if the same object is selected more than once.

4 Simulation

4.1 Model

We conduct simulation experiments of our discovery mechanism to examine its behavior. In
addition, we also conduct simulation experiments of broadcast-based mechanism under the same
assumption for the purpose of performance comparison. We adopt a broadcast-based mechanism
in Gnutella, where queries are broadcasted within limited hop counts defined by TTL (time
to live) value and an object having contents matching a keyword returns a query result which
backtracks the path which the query is forwarded on. TTL is set to 5 all simulation experiments.

We deploy 1000 objects whose ID are labeled from 1 to 1000 in a peer-to-peer network.
Object i has relationship with object (i + 1) so that network objects in simulation environment
can be strongly connected. An object has relationship with 8.3 partner objects on average (See
Figure 6). Recall that relationship is not necessarily in bi-directions. Each object has a keyword
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representing its offering contents from 30 keywords, keyword 1, keyword 2, . . . , keyword 30.
Figure 7 shows the frequency distribution of keywords existing in the simulation network.

One discovery trial consists of the following; An object is chosen as a query originator ran-
domly. That originator object originates a discovery query containing single searched keyword
selected from 30 keywords with equal probability. The originator object receives all the query
results for the issued query, and then returns a reward along the path leading towards the object
that returned the best query result, as explained Section 3.3.

We assume that only one discovery is underway at any time, i.e., after one discovery trial
is done, the next starts. Queries are assumed to take a unit time to move from an object to
another object at any discovery trials.

4.2 Results

This section explains the simulation results. We conducted simulation experiments setting p =
0.05 and ρ = 0.001.

We first investigate whether our mechanism equipped with distributed PageRank can cal-
culate the original PageRank value, PR∗(object). Let S(n) denote the absolute error between
PR(object, time) and PR∗(object),

S(n) =

1000
∑

i=1

|PR∗(i) − PR(i, T (n))| ,

where n denotes the number of discovery trials, and T (n) denotes the time instant when the nth
discovery trial completes.

Figure 8 and Figure 9 show S(n) and PR(1, T (n)), respectively, as a function of n. These
Figures show that there exists n = n∗ such that S(n) is zero, and PR(1, T (n)) is stable at
PR∗(1) = 0.001045994, for all n > n∗. This observation concludes that our discovery mechanism
derives PR∗(object).

Next we compare our discovery mechanism with a broadcast-based discovery mechanism in
the same situation. Concretely, we take samples of the discovery trials in which a searched
keyword is set to be keyword 1.

Table 4: Top 5 of objects offering contents represented by keyword 1.
ranking object ID value

1 828 0.002371179
2 480 0.001861129
3 524 0.001556443
4 677 0.001555417
5 52 0.001350562

Figure 10 and Figure 11 show the maximum value of received query results in our mechanism
and the broadcast-based mechanism, respectively, as functions of the number of trials. At every
discovery trial for keyword 1, our mechanism discovers the contents of object 828 whose value
is 0.002371179, the maximum value for keyword 1 existing in a network as shown in Table 4.
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On the other hand, the broadcast-based mechanism does not always discover the best contents
in the network. This may come from the fact that the TTL value is fixed to five, which is too
small for some originator objects.

Figure 12 and Figure 13 plot the average value of all the received query results in our
mechanism and the broadcast-based mechanism, respectively. Figure 12 indicates that our
discovery mechanism guarantees the quality of received query results. Namely, our discovery
mechanism learns to discover results with higher value on average than the broadcast-based
mechanism, illustrated in Figure 13, as discovery trials are repeated.

Figure 14 and Figure 15 plot the number of the received query results in our mechanism
and a broadcast-based mechanism, respectively. Figure 14 implies that our mechanism learns
the path to relevant contents, resulting in less received results. The broadcast-based mechanism
always returns many results, both good ones and poor ones, to originators. This is the reason
why our mechanism shows the higher average value in received queries although the maximum
value is the almost same as the broadcast-based mechanism.

Figure 16 and Figure 17 plot the number of messages, i.e., query packets, query result packets,
and reward packets, used in our mechanism and the broadcast-based mechanism, respectively.
The number of overhead is getting smaller in our mechanism as the number of discovery trials
increases, but the broadcast-based mechanism does not reduce overhead. This feature in our
mechanism assures network efficiency.

5 Conclusion

From simulation results, we conclude that our proposed discovery mechanism shows superior
performance, compared with an existing broadcast-based discovery mechanism in terms of net-
work efficiency and a guarantee of query result quality. In addition, this paper is the first official
literature of our proposed distributed PageRank, which is expected to be applied into various
fields, such as a reputation model in a peer-to-peer [2]. Our future work is to prove Conjecture
3.2.6 and to examine the adaptability of our discovery mechanism to network changing.
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Figure 10: Maximum value of received query results in our proposed discovery mechanism.
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Figure 11: Maximum value of received query results in a broadcast mechanism.
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Figure 12: Average value of received query results in our proposed discovery mechanism.
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Figure 13: Average value of received query results in a broadcast mechanism.
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Figure 14: Number of received query results in our proposed discovery mechanism.
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Figure 15: Number of received query results in a broadcast mechanism.
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