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Abstract

Convex programming which includes linear second-order cone programming (LSOCP)
and linear semidefinite programming (LSDP) has extensively been studied in the last
decade, because of many important applications and desirable theoretical properties.
For solving those convex programming problems, efficient interior point algorithms have
been proposed and the software implementing those algorithms has been developed. On
the other hand, The study of nonlinear second-order cone programming (NSOCP) and
nonlinear semidefinite programming (NSDP), which are natural extensions of LSOCP
and LSDP, respectively, are much more recent and still in its preliminary phase. How-
ever, NSOCP and NSDP are important research subjects, since NSOCP includes an
application in the robust optimization of nonlinear programming and NSDP includes
an application in the robust control design. In this paper, we propose an SQP algo-
rithm for NSOCP. At every iteration, the algorithm solves a convex second-order cone
programming subproblem in which the constraints are linear approximations of the
constraints of the original problem and the objective function is a convex quadratic
function. The subproblem can be transformed into an LSOCP problem which can be
solved by interior point methods. To ensure global convergence, the algorithm employs
line search that uses the [;-penalty function as a merit function to determine the step
sizes. Furthermore, we show that our algorithm has a fast local convergence property
under some assumptions. We present numerical results to demonstrate the effectiveness

of the algorithm.
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1 Introduction

Linear second-order cone programming (LSOCP) [1, 10] and linear semidefinite pro-
gramming (LSDP) [18, 15] have extensively been studied in the last decade, since
they have desirable theoretical properties as well as many important applications. For
solving those problems, efficient interior point algorithms have been proposed and
the software implementing those algorithms has been developed. On the other hand,
nonlinear programming (NLP) has long been studied and a number of effective meth-
ods such as sequential quadratic programming methods (SQP) [3] and interior point
methods [19] have been proposed. However, the study of nonlinear second-order cone
programming (NSOCP) and nonlinear semidefinite programming (NSDP), which are
natural extensions of LSOCP and LSDP, respectively, are much more recent and still
in its preliminary phase.

Optimality conditions for NSOCP are studied in [5, 4, 6]. Yamashita and Yabe
[20] propose an interior point method for NSOCP with line search using a new merit
function which combines the barrier function with the potential function. Optimality
conditions for NSDP are studied in [14, 4, 6]. Globally convergent algorithms based
on SQP method and sequential linearization method have been developed for solving
NSDP in [7] and [9], respectively.

In this paper, we propose an SQP algorithm for NSOCP. At every iteration, the
algorithm solves a subproblem in which the constraints are linear approximations of
the constraints of the original problem and the objective function is a convex quadratic
function. The subproblem can be transformed into an LSOCP problem, to which the
interior point methods [1, 17] and the simplex method [11] can be applied. To ensure
global convergence, the algorithm employs line search that uses the [;-penalty function
as a merit function to determine step sizes.

The organization of this paper is as follows: In Section 2, we formulate the nonlinear
second-order cone programming problem. In Subsection 3.1, we describe our SQP
algorithm for NSOCP. In Subsection 3.2, we show global convergence of the algorithm.
In Subsection 3.3, we consider the local convergence behavior of the algorithm. In

Section 4, we present some numerical results. In Section 5, we give the concluding



remarks.
The notation used in this paper is as follows: For vector x € "+, x, denotes the

first component and T is the subvector consisting of the remaining components, that

x
is, x = ° |. The second-order cone of dimension n + 1 is defined by K" :=
T

{z € R"* | o > ||Z||}. For simplicity, (z,y”)" is written as (x,y)?. For vector z,

the Euclidean norm is denoted ||z|| := v aTx. Moreover, o(t) is a function satisfying
. o(t)

lim —= = 0.

t—0 ¢

2 Nonlinear Second-Order Cone Program

In this paper, we are interested in the following nonlinear second-order cone program

(NSOCP):

min f(z)
st. g(x)=0 (1)
h(z) € K,

where f: 2" = R, ¢g: R” — R and h: R* — R are twice continuously differentiable
functions, K is the Cartesian product of second-order cones given by K := K& x
K2 x ... x K and | :== l; + -+ + l,. Throughout this paper, we denote h(x) =
(hi(z),- -+, he(x))T and hi(x) = (hio(x), hi(x))T € Rl (i =1,---,5).

The following robust optimization problem is an important application of NSOCP
2].
Example 1 Consider the following problem:

min  p(x)

- T
1. >
s.t wlglfvw q(z) >0,

where p: R — RN, ¢ : R" — N*, and W is the set defined by

W= {wo+ Qr € Rk | r e §Rk,, Ir| <1}



for a given vector wy € R¥ and a given matriz Q € R¥** . It is not difficult to see that
problem (2) is reformulated as
min  p(x)
st woq(e) = [|Qa(@)]| > 0.
This problem is NSOCP (1) with h(z) = (wl'q(x), Qq(x))" and K := K*¥*1.
The Karush-Kuhn-Tucker (KKT) conditions for NSOCP(1) are given by
Vf(x*) —Vg(z*)(* — Vh(z*)n* =0
g9(z") =0 (3)
hi(z*) € K, nf e Kb
hi(z) =0, i=1,---,s,
where ¢* € ™ and nf € Ri(i = 1,---,s) are Lagrange multiplier vectors. The KKT
conditions are necessary optimality conditions under certain constraint qualifications
[4]. We call a vector z* a stationary point of problem (1) if there exist Lagrange

multipliers ((*,n*) satisfying the KKT conditions (3). In this paper, we assume that
there exist a triple (z*, *,n*) satisfying the KKT conditions (3) of problem (1).

3 Sequential Quadratic Programming Algorithm for

NSOCP

3.1 Algorithm

In our sequential quadratic programming (SQP) algorithm, we solve the following

subproblem at every iteration:
min  Vf(z")T Az + 3Az" M, Ax
st g(2®) + Vg Az =0 (4)
h(z*) + Vh(2")TAx € K,

k

where x" is a current iterate and M}, is a symmetric positive definite matrix approximat-

ing the Hessian of Lagrangian function of problem (1) in some sense. The subproblem

3



(4) is a convex programming problem. Therefore, under certain constraint qualifica-
tions, a vector Ax is an optimal solution of (4) if and only if there exist Lagrange

multiplier vectors A and pu satisfying the following KKT conditions for (4).

Vf(zF) + MyAxr — Vg(zF)\ — Vh(zF)p =0
g(a*) + Vg(a*)T Az =0 (5)
hi(z®) + Vhi(2®)T Az € Kb, p; € Kb

(hi(z®) + Vhi(2F)TAz)Tp; =0, i=1,---,s.

Additionally, the subproblem (4) can be transformed into a linear second-order cone
programming problem, for which an efficient interior point method is available [1, 17].
Comparing conditions (3) and (5), we readily obtain the next proposition. The

proof is straightforward and hence is omitted.

Proposition 1 Under certain constraint qualifications, Ax = 0 is an optimal solution

of subproblem (4) if and only if 2* is a stationary point of NSOCP (1) .

This proposition allows us to deduce that the SQP algorithm is globally convergent if
{M,} is bounded and ]}erolo |Az*|| = 0, where Az” is the solution of subproblem (4). A
subproblem (4) may be infeasible, even if the original NSOCP (1) is feasible. In SQP
methods for nonlinear programming problems, some remedies to avoid this difficulty
have been proposed [3]. In this paper, we simply assume that the subproblem (4) is
always feasible and hence has a unique optimal solution Az*.

In our algorithm, we use the exact [; penalty function as a merit function to deter-

mine a step size:
Pula) i= f(2) + a3 )] + 3 max{0, ~(hala) = DD, (6)

where o > 0 is a penalty parameter.

The last part of this subsection is devoted to describing our algorithm.
Algorithm 1

Step 0 Choose z° € ®", o € (0,1), B € (0,1), ag >0, o € (0,1), 7> 0 and set
k:=0.



Step 1 Choose an n xn symmetric positive definite matriz M;,. Find the solution Ax*
and the corresponding Lagrange multipliers (\¥, u*) satisfying the KK'T conditions
(5) of subproblem (4). If |Az*|| =0, then STOP. Otherwise, go to step 2

Step 2 Set the penalty parameter as follows: If cy; > max {1121%)( |A\F, gaiclu;?o}, then
Ssm SIS

. k k
«Q = qy; otherwise, « ;= max{ max |A’|, maxu’,, ar ¢ + T.
k+1 ks » Q41 {1<i<m| il 1§j§lﬂjo, k

Step 3 Compute the smallest nonnegative integer r satisfying
Pak+1(xk) — Pak+1(xk + (B)"Az®) > o (B) A M Az, (7)
and set the step size ty, := (3)".
Step 4 Set 2**! = 2% + 4, Az%, k:=k + 1 and go to Step 1

We may consider this algorithm a generalization of the sequential quadratic program-

ming method for ordinary nonlinear programming problems [8].

3.2 Global Convergence

In this subsection, we show that Algorithm 1 has a global convergence property. For
simplicity, we assume s := 1. The arguments in what follows apply in a similar manner
to the case of s > 1. When s = 1, the KKT conditions (5) of subproblem (4) can be

written

Vf(zF) + MyAxr — Vg(zF)\ — Vh(zF)p =0
g9(a*) + Vg(a*) Az =0 (8)
h(z*) + Vh(z*)TAz € K', pe€ K!

(h(2*) + Vh(z®)TAz) Ty = 0
and the penalty function used as a merit function is given by
Po(z) = f(z) + a(Y_ lgi(x)| + max{0, —(ho(z) — | A(z)I))}), (9)
i=1

where h(z) := (ho(x), h(x))T with hg : R* — R and h : R* — R



To prove global convergence of Algorithm 1, we make the next two assumptions.
(A.1) At every iteration, subproblem (4) has the optimal solution Az* and correspond-
ing Lagrange multiplier vectors (A*, u*).

(A.2) The generated sequence {(z* \¥, u*)} is bounded.

When assumption (A.1) holds, subproblem (4) has a unique optimal solution since
M, is a positive definite matrix. Below, we will show that the optimal solution Az* of
subproblem (4) is a descent direction of the penalty function P,, at z*, provided the
max |AF], ué”}. Hence we can determine the

1<i<m
step size tj in Step 3 and Algorithm 1 is well defined. Assumption (A.2) is standard

penalty parameter oy satisfies ay, > max{

in SQP methods for nonlinear programming.
In what follows, we denote

p(x) == max{0, —(ho(x) — [[A(x)I)}

m

= ; |9:()

The next lemma gives a formula for the directional derivative of .

Lemma 1 The directional derivative ¢'(x; Ax) of ¢ at x along the direction Ax =
(Azg, AZ)T is given by

ho(z) < [|A(z)], h(z) # 0 or,
~Vho(z)T Az + THIMD Az | po(2) = [|A(x)]| # 0 and

A ()]l
Vho(z)T Az < WAJZ

¢'(z; Ax) = ho(z) < ||R(2)]], h(z) = 0 or,
~Vho(z)T Az + | VA(2)T Az ho(x) = h(z) = 0 and
Vho(x)TAz < || Vh(2)T Az
0 (otherwise).

Proof We show this lemma by cases.

(i) If ho(x) < ||h(x)||, then
¢'(z;Ax) = l{l&%(—ho(x +tAz) + [[h(z + tAz)| + ho(z) — [|A(z)]))
= —Vho(z)' Az + lim - (||h(l’+ml’)|| — [IA(z)1))

B { —Vho(z)T Az + (V—h”h-LAx (h(a:) # 0)
—Vho(2)TAz + ||Vh(z)TAz||  (h(z) =0).

6



(ii) If ho(x) = ||h(z)|| = 0, then
S Ar) = Tim % max {0, —(ho(z + tAz) — [h(z + tAD)])}
_ { ~Vho(z)T Az + | Vh(x)T Az (Vho(x)T Az < |[VA(z)T Az|)
0 (Vho(x)" Az > ||Vh(z)"Az])) .

(iil) If ho(z) = ||h(x)|| # 0, then

Pl A0) = iy % max {0, (—holx + tAT) + | Az + tAD)]| + ho() — [h(@)])}

1 - _
~ max {o, ~Vho(a)" Az + lim 7 (o + tA)] - Hh(m)”}

k(= IA ()l

0 (Vho(x)TAa: > MAz) :

{ —Vho(z)T Az + (vﬁ(x)ﬁ)(ﬁﬂ))T Ax (Vho(x)TAx < (Vh@h()" Aa:)
([l

(iv) If ho(x) > ||h(7)]], then ¢'(z; Az) = 0. "
In the next lemma, using the directional derivative ¢'(x; Az) given in Lemma 1, we

derive an inequality that is used to prove global convergence of the algorithm.

Lemma 2 Let Az* be the optimal solution of subproblem (4), and (A\*,u¥) be cor-
responding Lagrange multiplier vectors. If o > uk, then the directional derivative

o' (% Ax®) of v at 2* along the direction Ax* satisfies the inequality
— " h(2F) 4+ a (2F; AzY) < 0.

Proof Using the formula of ¢'(z; Az) given in Lemma 1, we show the desired in-
equality by cases.
(i) If ho(z*) < [|A(2*)||, h(z*) # 0, then we have

— T h(a®) 4+ o (25 Ad) )

(VR |,
)
(VA"
Rl

= — " h(2*) 4+ a(—Vho(aF)T Axk +

< —pPh(2®) + a(ho(2¥) — ||h(z¥) + VA(2®)T Az + Az")

= —1*h(a*) + a(ho(a¥) — || h(2¥) + V(") Azt



>

(2®)T (h(z*) + Vh(2F)T Az*)

— IR

< (a = pg)ho(a") — (= | E* IR (=")]
—(pg = 1A DI (2")]
07

IN

IN

where the first inequality holds by h(z*) + Vh(z¥)TAz* € K! in the KKT conditions
of the subproblem, the second and the third inequalities follow from Cauchy-Schwarz
inequality, and the fourth and the last inequalities follow form a > uf > ||u*|| and
ho(x*) < ||h(z®)||, u* € K, respectively.

(i) If ho(z*) < ||R(2%)]|, h(z*) = 0, then we have

—pFTh(2®) + o (2 Ax®) = —pbTho(2%) + a(=Vho(2")T Az® 4 | VA(2F)T Az"|))
(o = p1g)Po(2%)

S 07

IA

where the first inequality follows from h(z")+Vh(2z*)T Az* € K' and the last inequality
holds by a > k.

(iii) If ho(z*) = 0, h(z*) = 0, then Vho(z¥)TAz* > || VA(2F)T Az*|| implies ho(x*) +
Vho(2®)T AxF > ||h(2*) + Vh(2*)T Ax*||, which in turn implies ¢'(2*; Az*) = 0 by the

formula shown in Lemma (1). Therefore we obtain

— 1" h(2F) + g (F; Ax®) = —pF T h(2F) = 0.

(iv) Suppose ho(z*) = ||h(x*)| # 0. If Vho(z)T Az < WA% then similarly to

case (i), we have
—,ukTh(.iEk) —|—Oz90,($k;A$k) i )
(Vh()h(a")"
[P (F)]]
< =" (@) + a(ho(a*) — |A(a®) + Vh(2")" Az +

= — M h(2*) 4+ a(=Vho(a*)T Axk + Ax®)

(Vh(*)h(a*))"
el

Az")

= 1" h(a®) + alho(e*) = [|A(e*) + Vh(e*)" Ad¥|



BT (") + Vh(*)T Aa¥)

— IR
< (a = pg)ho(2*) — " h(a*) — o[ h(a")|

< (a = pg)ho(a") — (= | E* IR (=")]

—(pg = 1A DI (2")]

<0.

Otherwise, ¢'(z*, Az*) is equal to 0, so it follows from p* € K! and Cauchy-Schwarz
inequality that
— (") + g (% Axb) = =T h(a)
= —ubho(a®) — TG
—(ug = " DA

< 0

IA

(v) If ho(2*) > ||h(z")||, then it follows from u* € K' and Cauchy-Schwarz inequality
that
U TH() +agl (@5 A% = TR
= ubho(a®) — BTG
—(ho(z®) = [IR(=") D IIA"]
0.

IA

IA

]
In the next lemma, we derive an inequality regarding the directional derivative ¢’(x; Ax)

of the function .

Lemma 3 Let Az* be the optimal solution of subproblem (4). Then the directional
derivative ' (z%; Ax¥) of ¢ at 2% along the direction Ax" satisfies the equality

V(2% Ack) = = |gi(a")].
i=1

Proof By the definition of directional derivatives, we have
m

Gt Ak) = Tm 3 (g + e L))

N0

9



wl»—t

(Igz )+ tVgi(x*) Ak + o(t)] — gi(2")])

From the KKT conditions (5), we have Vg;(z*)T Az* = —g;(z¥), and hence

Y (ks Aty = hmz (1—tgz ¥+ ot)] — |g:(=*)])

N0 4

= - Z |9z(33k
i=1

From the above lemmas, we obtain the following lemma.

Lemma 4 Let Az* be the optimal solution of subproblem (4). If & > max {1121%)( I\F| /jg},
then the directional derivative P! (x*; Ax®) of the penalty function P, at z* along the
direction Ax* satisfies the inequality
P! (2% Ax®) < —AxM M Az

Proof By the KKT conditions (5) of the subproblem and Lemma 3, we have
P'(2%; Ax®)

= V(@M TAz" + a(yf (2% Az®) + ¢/ (2, Az?))

= — AT M AZ® + NIV g(a") T Ar® + " V(P Ax® + a(' (2% Az + ¢ (¥, AxF))

= — A" MpAz" — N g(a) — 1FTh(a") + (=D |g(@®)| + ¢/ (2F, AzP)).

i=1

On the other hand, from the inequality o > max {1121%}( IAF| ,ufo}, it follows that
<i<m

—\Tg(a*) OéZIgz < =D (A +a)]gi(=")]
i=1
< 0.
which together with Lemma 2 yields the desired inequality. [

When Az* # 0, by Lemma 4 and the positive definiteness of the matrix M}, we have
P, (z") — Py(a* + tpAx®) — oty Az My Ax®
= —t;, P.(2%; A2®) + o(ty) — ot A My AxF
> (1 — o)ty Az M Az + o(ty,)

>0

10



for any sufficiently small ¢, > 0. This ensures that we can always determine the step
size t in Step 3 of Algorithm 1.

In the last part of this subsection, we establish global convergence of Algorithm 1.

Theorem 1 Suppose that assumptions (A.1) and (A.2) hold. Let {(z*, \*, )} be a
sequence generated by Algorithm 1, and (x*, \*, u*) be any accumulation point. Assume

that there exist some positive scalars v, " such that
Y212 < "Mz <T2)|?, VzeR", Vke{0,1,2,---}.
Then, (x*, X", 1i*) satisfies the KKT conditions (3) of NSOCP (1)

Proof Since {M;} is bounded, we only need to show kh_)ngo |Az*|| = 0 from Propo-
sition 1. First note that, from (A.2) and the way of updating the penalty parameter,
ay stays constant @ eventually for all k sufficiently large. Consequently, {Pq(z*)} is
monotonically nonincreasing for sufficiently large k. Meanwhile, by (7) and the positive

definiteness of M), we have
Py(2%) — Po(a*™Y) > ot AT M Ax* > 0.
Since {P(z*)} is bounded below by (A.2), we have

lim Py(z") — Py(z"™) = 0.

k—o0

Therefore, it holds that
lim t, A" M, Azk = 0.

k—o0

Moreover, it follows from the given assumption that
te AT M Ax® >ty || A2

Hence, we have klim te|Az*||> = 0. It clearly holds that klim |AzF || = 0 for any
subsequence {Axz*'} such that likrln inf ¢;y > 0. Let us consider an arbitrary subsequence

{tx'} such that klim trr = 0. Then, by the Armijo rule in Step 3, we have

P@(xkl) — P@(xkl + fk/Axkl) < ot Az® T My Az”

11



where £ 1= %/ On the other hand, since P.(z*"; Az*") < —Az*T My, Az* by Lemma

4, it follows that
P&(xkl) — Pd(xkl + fk/Axk,) = —l?k/P,(.Tk/; A.Tk/) + O(fk/) Z {k/Axkle/A.Tk/ + O(Ek/).

Combining the above inequalities yields £ Az* My Az + o(ty) < otp Ax® My Ax¥

and hence
0> (1 — O')l?k/A.Tk,Mk/Axkl + O(fk/) > (1 — U)fk/’}/||Al'kl||2 + O(Ek/).

Thus we obtain

/ {/
(1 opylaa* P+ 20 o
k/

which yields limsup||Az*|| < 0. Consequently, we have klim |AZF|| = 0. m
k! —o0 —00

3.3 Local Convergence

In this subsection, we consider local behavior of a sequence generated by Algorithm 1.
For that purpose, we make use of the results for generalized equations [13].

First note that the KKT conditions of NSOCP (1) can be rewritten as the gener-
alized equation

0 € F(y) + ddc(y), (10)

where F'is a vector valued function and ddc(y) is the normal cone of a closed convex

set C' at y, which is defined by

0 it y¢C

aéc(y) =
{w|wl(c—y)<0 VeeC} if yeC.

Indeed, by defining the Lagrangian of the NSOCP (1) by

L(Z‘, CJ 77) = f(‘r) - g<x)T< - h(x>T777
the KKT conditions (3) are represented as
0 € VoL(z,(,n) + 00pn ()

0 € V¢L(x,¢,n) 4 0dpn(C)
0€ V,L(z,¢,n) + 9dx-(n),

12



where K* := {n € R | nT¢ > 0,V€ € K} is the dual cone of K. Since Odgn(z) =
{0}, 00pm (¢) = {0} and K* = K, we can rewrite the KKT conditions (3) as the
generalized equation (10) with C':= R" x £ x K and

VIL(x7 C? n)
F(y) == | VcL(z,¢,n) (11)
VUL(xu C? 7])
where y := (z,(,n)T.
On the other hand, if we choose M}, := V2 _L(z* \*, 1i*), we can express the KKT

conditions of subproblem (4) as

0€ V,L(z" X\ p) + V2 L2 \F, 1iF) Az + 00 ()
0 € VeL(x®, N\, p) + V2, L(2", N, 1lF) Az + 00pm (N)
0 € VyL(z" X p) + Vi, L(a", N, 1) Az + 80k (1),

which is equivalent to the generalized equation
0€ F(Z) + F'(2") (2 — 2F) + 06¢(2), (12)

where 2% = (2% \*, pu¥), 2 = (2% + Az, A\, u) and F is defined by (11). This can be
regarded as the application of Newton’s method for the generalized equation (10).
Thus, a sequence {z*} generated by (12) is expected to converge fast to a solution of

(11). To be more precise, we use the notion of a regular solution [13].

Definition 1 Let y* be a solution of the generalized equation (10) and F be Fréchet
differentiable at y*. Define the set-valued mapping T by T(y) = F(y*) + F'(y*)(y —
y*) + 00c(y). If there exist neighborhoods U of 0 and V' of y* such that the mapping
TNV is single-valued and Lipschitzian on U, then y* is called a reqular solution of

the generalized equation (10).

We suppose that F'is Fréchet differentiable with Lipschitz constant L and the gener-
alized equation (12) at k =0

0€ F(2°) + F'(2")(z — 2°) + 06c(2)

13



has a regular solution with Lipschitz constant A. Then (12) has a regular solution at
every iteration k and the following inequality holds for a sequence {z*} generated by
(12) if 2% is sufficiently close to a regular solution y* of the generalized equation (10)
(see [13]):

ly” — ¥ < @ AL) T 2ALY| - M),

which means that the sequence {z*} converges R-quadratically to y*.
Next we consider the relation between the regularity of a solution and the second-
order optimality conditions for NSOCP (1). We recall the notion of nondegeneracy in

second-order cone programming [5].

Definition 2 For given vectors w; € K'(i = 1,---, ), define the functions ¢;(z)(i =
1,---,8) as follows:
(i) if w; = 0, then ¢; : Rl — Rl and ¢;(w;) == wy;
(ii) if Wi > |[s]], then ¢; : Rl — RO and ¢s(w;) = 0;
(1) if wig = [[wil| # 0, then ¢; : R — R and ¢;(wi) = [|@i| — wio.
Let x be a feasible solution of NSOCP (1). If the matrix

(Vg(x), Vhy(2)V (b (x)), - - -, Vho(2)Vs(hs()))

has full column rank, then x is said to be nondegenerate. Here, Vh;(x)V¢;(h;(x)) =
Vhi() if hi(x) = 0, Vhi()Vi(hi(x)) = —Vhio(w)+ 4 i g () = || s(w)]] # 0,
and Vhi(x)V¢;(hi(z)) is vacuous if hio(x) > ||hs(z)|].

It is showed in [5] that when a local optimal solution z* of NSOCP(1) is nondegenerate,
(x*,C*,n*) is a regular solution of the generalized equation representing the KKT con-

ditions (3) of NSOCP (1) if and only if (z*,(*,n*) satisfies the following second-order

optimality condition:

d"V2, L(x*, ¢ 0" )d+d" " Hy(x*, (%, nf)d > 0, Vd # 0,d € Co(z*)NCrer (2)N- - -NClcs (),
i=1
(13)

where

Co(x*) = {deR"|Vg(z*)'d=0}

14



and fori=1,--- s

Vhi(a*)Td =0 if gy > 77t

Vhi(x)Td es an{Ry;n;} iftny = |0/ 0,hi(z*)=0
Oy — e ] VT € span{ Ry ity = 971 £ 0.hu(e") =0

d"Vhi(z*)nf =0 if mip = |97 | # 0, hio(z*) = [|hi(x*)[| # 0

no condition otherwise

— oV hi(a*) Ry, Vhi(a*)T if hag(a*) = |[hy(2*)]| # 0
Hi(2™, ¢"\nf) = 0 ot

otherwise

OT
with R;, = . Summarizing the above arguments, we have the next
0 _Ili—l

theorem about the local behavior of a sequence {(x*, ¥, n*)} generated by Algorithm 1.

Theorem 2 Suppose M, = V2 _L(x* (* n*) and step size t; is equal to 1 for all k > k,
where k is a positive integer. If, for some k > k, (2%, (¥, nF) is sufficiently close to a
nondegenerate stationary point (x*,(*,n*) of NSOCP (1) satisfying the second-order
condition (13), then a sequence {(z*, (% n*)} generated by Algorithm 1 converges R-

quadratically to (x*,C*,n*). In particular, {x*} converges R-quadratically to x*.

4 Numerical Experiments

We implemented Algorithm 1 in MATLAB (Version 6.5) using the SDPT3-Solver (Ver-
sion 3.0) [16] to solve the subproblems. The detail of transformation of a subproblem
into an LSOCP problem is given in Appendix A.

We set the parameters in Algorithm 1 as follows:
a=1 7=0.01, o0c=0.2 [=0.95

The stopping criterion of Algorithm 1 is given by ||Axz*|| < 107
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Experiment 1. First, we consider the following problem:

min 27 Cx 4+ (dix} + fiz:)

=1

ap(e™ —1) )
1
as(e” — 1) (14)
s.t _ + EK =Kh x. - xKb,
bs
ap(e™ —1)
where a;,d;, fi(i = 1,---,n) are scalars, b; (j = 1, - -, s) are [;-dimensional vectors, and

C is an n X n symmetric positive semidefinite matrix. Note that n =1:=10; +---+
in this problem. We generate ten problem instances for each of n = 10,30,50. We
determine the constants as follows: a;,d;, and f; (¢ = 1,---,n) are randomly chosen
from the intervals [0,2], [0,2], and [—1, 1], respectively, and C' is given by C := Z7Z,
where Z is an n x n matrix whose elements are randomly chosen from the interval [0,1].
Vectors b; € R (j = 1,---, ) are determined as bjp = 1,b; = 0. Then, problem (14)
is always feasible, since = 0 is satisfies the constraints. It may be worth noticing
that problem (14) is not necessarily a convex programming problem despite the fact
that the objective function and the constraint functions are convex, since the feasible
region is not a convex set.

Each problem instance is solved by Algorithm 1 using an initial iterate whose ele-
ments are randomly generated from the interval [—1,1]. The following two updating
formulas for matrices M, are tested.

Modified Newton formula. At iteration k, if the Hessian V2 L(x*, u*~1) of the
Lagrangian is a positive definite matrix, then set My = V2 _L(z*, u*1); otherwise,
set My = V2 L(z% 1) + (|&] + 0.1)1, where &, is the minimum eigenvalue of
V2, L(z", u*~1). At the first iteration, My is set to be the identity matrix I.

Quasi-Newton formula. The initial matrix M, is set to be the identity matrix.

Subsequently, M, is updated by

Moo M, uFubT
vkT Mok vk Tk’

where vF = 2Ft — oF WP = YV, L(2* N uF) — VL L(2%, Ne p), o = Gpw® + (1 —

My = My, —
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) Myv*, and 0, is determined by

1 if V*Tw > 0.20%T Myo*

0.8v*T Mok
oFT (M, vF —wk)

O =

otherwise.

This is a modified BFGS update suggested in the SQP method for NLP [3].

Both update formulas ensure the positive definiteness of M, for all k. Therefore, if
the subproblem is feasible at every iteration, then the sequence generated by Algorithm
1 will converge to a stationary point of NSOCP (1). In our numerical experiments,
when a subproblem becomes infeasible at some iteration, we choose a new initial point
and solve the problem again.

In our experiments with the modified Newton formula, we observed that, when the
sequence generated by Algorithm 1 converged to a stationary point of NSOCP (1), My
was chosen to be V2 _L(x*, y*~1) and the step size was equal to 1 in the final stage of
the iteration. In the case of the quasi-Newton formula, the step size was also equal to 1
in the final stage of the iteration. Tables 1 and 2 show the average k,,, the minimum
Epmin, and the maximum k,,,, numbers of iterations for ten runs, along with the problem

size and the Cartesian structure of the second-order cone K of each test problem. We

Table 1: Computational results with the modified Newton formula for problem (14)
n K kave kmm kmam

10 K’ x K° 13.06 10 19
30 K° x K° x K% 17.32 11 29
50 K5 x K°x K2 x K* 1956 10 30

Table 2: Computational results with the quasi-Newton formula for problem (14)
n K kave kmzn kmam

10 K’ x K° 2339 14 36
30 K° x K° x K% 56.24 26 98
50 K5 x K°x K? x K* 67.56 37 91

find that, for problem (14), the modified Newton formula results in faster convergence
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than the quasi-Newton formula. This suggests that the convexity of the objective and
the constraint functions can be better exploited in the modified Newton formula, since
it uses the Hessian matrices of those functions in a direct manner.

Experiment 2. Next, we consider the following problem:

min 27Cx 4+ (diz} + e;a} + fix;)
=1

a(e™ —1) 171% )
. 1 15)
as(e*? — 1 A2Tox (
ot | ‘ . U 4 e K = Kb ox XK
bs
an(e* —1) pTn Ty

where the constants are similar to those in the previous test problem, except that C
is an n X n indefinite matrix. Note that n =1 := [; + --- + [, in this problem. We

generate ten problem instances for each of n = 10,30, 50. We determine the constants

as follows: a;,a;,e;, f; (i =1,---,n) and the elements of C' are randomly chosen from
the interval [—1,1], and d;(i = 1,---,n) are randomly chosen from the interval [0, 1].
Vectors b; € RY(j =1, -+, s) are determined as bjo = 1, l;j = (0 similarly to the case of

problem (14). Then, problem (15) is always feasible. Note that the objective function
and the constraint functions are in general nonconvex unlike problem (14).

As in the previous experiment, each problem instance is solved by Algorithm 1
using an initial iterate whose elements are randomly generated from the interval [—1, 1].
When a subproblem becomes infeasible at some iteration, we choose a new initial point
and solve the problem again. We test the two formulas for updating matrices M, the
modified Newton formula and the quasi-Newton formula. The results are shown in
Tables 3 and 4.

Because of the lack of convexity in the objective and constraint functions, the
Hessian V2 _L(x*, u*~1) of the Lagrangian is not likely to be positive definite even if
2¥ is close to a stationary point of the problem. Thus, the matrices Mj, determined by
the modified Newton formula may substantially differ from V2, L(z"*, *~1). We have
observed that the algorithm with the modified Newton formula performs somewhat
inefficiently compared with the previous experiment, although it exhibits fast local

convergence, when V2 L(z*, y*~1) becomes positive definite near a solution. In fact,
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the comparison of Table 3 and 4 suggests that the quasi-Newton formula works more

effectively especially when V2, L(z"*, u*~1) is indefinite.

Table 3: Computational results with the modified Newton formula for problem (15)
n K kave kmm kmam

10 K’ x K° 2431 11 116
30 K° x K° x K% 59.44 19 183
50 K5 x K°x K2 x K* 68.64 20 180

Table 4: Computational results with the quasi-Newton formula for problem (15)
n K kwe — kmin  Kmaz
10 K® x K° 2496 12 56
30 K° x K% x K% 39.75 25 91

50 K°x K°x K* x K 5022 31 97

5 Concluding remarks

In this paper, we have proposed a sequential quadratic programming method for non-
linear second-order programming problems. We have proved global convergence of the
algorithm, and examined its local convergence behavior by reformulating the KKT
conditions of NSOCP into the generalized equation. Through numerical experiments,
we have confirmed the effectiveness of the algorithm for nonconvex NSOCP. The al-
gorithm presented in this paper is a prototype and it may be further improved in
terms of implementation, for example by incorporating a device to deal with infeasible

subproblems.
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A Transformation of Subproblem

In this subsection, we transform subproblem (4) to a linear second-order cone program
(LSOCP).
We use SDPT3 solver (version 3.0) [16] to solve subproblems in our numerical

experiments. This software can solve LSOCPs of the form

Ngq
. T
min Zc;]» rf + ATt
i=1
Ngq
T
s.t. ZA;I- ] + AT =
i=1
q qj s !
r; € KPP i=1,---,ng x>0,

where ¢/, 2! are ¢;-dimensional vectors, ¢!, ! are n;-dimensional vectors, and A, Al are
¢; X m, x m matrices, respectively. To transform subproblem (4) to an LSOCP of this

form, we first introduce an auxiliary variable u > 0 and rewrite the problem as

min  Vf(2*)T Az +u
st. g(z®) +Vg(z") Az =0
u > %Aa:TMkAx

h(z®) + Vh(z*)TAz € K, u >0,
which can further be rewritten as

min  Vf(z")"Az +u
st. g(z") + Vg(a")TAr =0
(u+1)2 > (u— 1) + 2| M2 Az

h(z*) + Vh(z*)TAz € K, u>0.
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Next, by introducing auxiliary variables y, z, and putting Az = Ax; — Azy with

Azxry > 0 and Axy > 0, we rewrite the problem as

min V[ (2" (Az; — Azy) +u
st. g(@®) + Vg(z") T (Axy — Azy) =0
u+1
z= u—1
\/iMké (Azy — Axy)
y = h(2"®) + Vh(2")T (Az; — Axzy)

yeK, zeK" w>0, Az >0, Azy>0,

which is essentially of the standard form LSOCP for the SDPT3 solver. In the numerical
experiments, we add the term ee’ (Az; + Axy) to the objective function to force the
condition Az? Azy = 0 to hold, where e = (1,---,1)T and ¢ is a sufficiently small

positive number.
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