
Sequential Quadratic Programming Method

for Nonlinear Second-Order Cone Programming

Problems

Guidance

Professor Masao FUKUSHIMA

Hirokazu KATO

2004 Graduate Course

in

Department of Applied Mathematics and Physics

Graduate School of Informatics

Kyoto University

K
Y

O
TO

UNIVERSITY

F
O

UN DED 1 8 9 7KYOTO JAPAN

February 2006

2

Abstract

Convex programming which includes linear second-order cone programming (LSOCP)

and linear semidefinite programming (LSDP) has extensively been studied in the last

decade, because of many important applications and desirable theoretical properties.

For solving those convex programming problems, efficient interior point algorithms have

been proposed and the software implementing those algorithms has been developed. On

the other hand, The study of nonlinear second-order cone programming (NSOCP) and

nonlinear semidefinite programming (NSDP), which are natural extensions of LSOCP

and LSDP, respectively, are much more recent and still in its preliminary phase. How-

ever, NSOCP and NSDP are important research subjects, since NSOCP includes an

application in the robust optimization of nonlinear programming and NSDP includes

an application in the robust control design. In this paper, we propose an SQP algo-

rithm for NSOCP. At every iteration, the algorithm solves a convex second-order cone

programming subproblem in which the constraints are linear approximations of the

constraints of the original problem and the objective function is a convex quadratic

function. The subproblem can be transformed into an LSOCP problem which can be

solved by interior point methods. To ensure global convergence, the algorithm employs

line search that uses the l1-penalty function as a merit function to determine the step

sizes. Furthermore, we show that our algorithm has a fast local convergence property

under some assumptions. We present numerical results to demonstrate the effectiveness

of the algorithm.

Contents

1 Introduction 1

2 Nonlinear Second-Order Cone Program 2

3 Sequential Quadratic Programming Algorithm for NSOCP 3

3.1 Algorithm . 3

3.2 Global Convergence . 5

3.3 Local Convergence . 12

4 Numerical Experiments 15

5 Concluding remarks 19

A Transformation of Subproblem 20

1 Introduction

Linear second-order cone programming (LSOCP) [1, 10] and linear semidefinite pro-

gramming (LSDP) [18, 15] have extensively been studied in the last decade, since

they have desirable theoretical properties as well as many important applications. For

solving those problems, efficient interior point algorithms have been proposed and

the software implementing those algorithms has been developed. On the other hand,

nonlinear programming (NLP) has long been studied and a number of effective meth-

ods such as sequential quadratic programming methods (SQP) [3] and interior point

methods [19] have been proposed. However, the study of nonlinear second-order cone

programming (NSOCP) and nonlinear semidefinite programming (NSDP), which are

natural extensions of LSOCP and LSDP, respectively, are much more recent and still

in its preliminary phase.

Optimality conditions for NSOCP are studied in [5, 4, 6]. Yamashita and Yabe

[20] propose an interior point method for NSOCP with line search using a new merit

function which combines the barrier function with the potential function. Optimality

conditions for NSDP are studied in [14, 4, 6]. Globally convergent algorithms based

on SQP method and sequential linearization method have been developed for solving

NSDP in [7] and [9], respectively.

In this paper, we propose an SQP algorithm for NSOCP. At every iteration, the

algorithm solves a subproblem in which the constraints are linear approximations of

the constraints of the original problem and the objective function is a convex quadratic

function. The subproblem can be transformed into an LSOCP problem, to which the

interior point methods [1, 17] and the simplex method [11] can be applied. To ensure

global convergence, the algorithm employs line search that uses the l1-penalty function

as a merit function to determine step sizes.

The organization of this paper is as follows: In Section 2, we formulate the nonlinear

second-order cone programming problem. In Subsection 3.1, we describe our SQP

algorithm for NSOCP. In Subsection 3.2, we show global convergence of the algorithm.

In Subsection 3.3, we consider the local convergence behavior of the algorithm. In

Section 4, we present some numerical results. In Section 5, we give the concluding

1

remarks.

The notation used in this paper is as follows: For vector x ∈ <n+1, x0 denotes the

first component and x̄ is the subvector consisting of the remaining components, that

is, x =



x0

x̄


. The second-order cone of dimension n + 1 is defined by Kn+1 :=

{x ∈ <n+1 | x0 ≥ ‖x̄‖}. For simplicity, (xT , yT)T is written as (x, y)T . For vector x,

the Euclidean norm is denoted ‖x‖ :=
√
xTx. Moreover, o(t) is a function satisfying

lim
t→0

o(t)

t
= 0.

2 Nonlinear Second-Order Cone Program

In this paper, we are interested in the following nonlinear second-order cone program

(NSOCP):

min f(x)

s.t. g(x) = 0 (1)

h(x) ∈ K,

where f : <n → <，g : <n → <m and h : <n → <l are twice continuously differentiable

functions, K is the Cartesian product of second-order cones given by K := K l1 ×
K l2 × · · · × K ls , and l := l1 + · · · + ls. Throughout this paper, we denote h(x) =

(h1(x), · · · , hs(x))T and hi(x) = (hi0(x), h̄i(x))T ∈ <li (i = 1, · · · , s).
The following robust optimization problem is an important application of NSOCP

[2].

Example 1 Consider the following problem:

min p(x)

s.t. inf
ω∈W

ωT q(x) ≥ 0,
(2)

where p : <n → <, q : <n → <k, and W is the set defined by

W := {ω0 +Qr ∈ <k | r ∈ <k′, ‖r‖ ≤ 1}

2

for a given vector ω0 ∈ <k and a given matrix Q ∈ <k×k′. It is not difficult to see that

problem (2) is reformulated as

min p(x)

s.t. ωT0 q(x)− ‖Qq(x)‖ ≥ 0.

This problem is NSOCP (1) with h(x) := (ωT0 q(x), Qq(x))T and K := Kk′+1.

The Karush-Kuhn-Tucker (KKT) conditions for NSOCP(1) are given by

∇f(x∗)−∇g(x∗)ζ∗ −∇h(x∗)η∗ = 0

g(x∗) = 0 (3)

hi(x
∗) ∈ K li , η∗i ∈ K li

hi(x
∗)Tη∗i = 0, i = 1, · · · , s,

where ζ∗ ∈ <m and η∗i ∈ <li(i = 1, · · · , s) are Lagrange multiplier vectors. The KKT

conditions are necessary optimality conditions under certain constraint qualifications

[4]. We call a vector x∗ a stationary point of problem (1) if there exist Lagrange

multipliers (ζ∗, η∗) satisfying the KKT conditions (3). In this paper, we assume that

there exist a triple (x∗, ζ∗, η∗) satisfying the KKT conditions (3) of problem (1).

3 Sequential Quadratic Programming Algorithm for

NSOCP

3.1 Algorithm

In our sequential quadratic programming (SQP) algorithm, we solve the following

subproblem at every iteration:

min ∇f(xk)T∆x + 1
2
∆xTMk∆x

s.t. g(xk) +∇g(xk)T∆x = 0 (4)

h(xk) +∇h(xk)T∆x ∈ K,

where xk is a current iterate and Mk is a symmetric positive definite matrix approximat-

ing the Hessian of Lagrangian function of problem (1) in some sense. The subproblem

3

(4) is a convex programming problem. Therefore, under certain constraint qualifica-

tions, a vector ∆x is an optimal solution of (4) if and only if there exist Lagrange

multiplier vectors λ and µ satisfying the following KKT conditions for (4).

∇f(xk) +Mk∆x−∇g(xk)λ−∇h(xk)µ = 0

g(xk) +∇g(xk)T∆x = 0 (5)

hi(x
k) +∇hi(xk)T∆x ∈ K li , µi ∈ K li

(hi(x
k) +∇hi(xk)T∆x)Tµi = 0, i = 1, · · · , s.

Additionally, the subproblem (4) can be transformed into a linear second-order cone

programming problem, for which an efficient interior point method is available [1, 17].

Comparing conditions (3) and (5), we readily obtain the next proposition. The

proof is straightforward and hence is omitted.

Proposition 1 Under certain constraint qualifications, ∆x = 0 is an optimal solution

of subproblem (4) if and only if xk is a stationary point of NSOCP (1) .

This proposition allows us to deduce that the SQP algorithm is globally convergent if

{Mk} is bounded and lim
k→∞
‖∆xk‖ = 0, where ∆xk is the solution of subproblem (4). A

subproblem (4) may be infeasible, even if the original NSOCP (1) is feasible. In SQP

methods for nonlinear programming problems, some remedies to avoid this difficulty

have been proposed [3]. In this paper, we simply assume that the subproblem (4) is

always feasible and hence has a unique optimal solution ∆xk.

In our algorithm, we use the exact l1 penalty function as a merit function to deter-

mine a step size:

Pα(x) := f(x) + α(
m∑

i=1

|gi(x)|+
s∑

j=1

max{0,−(hj0(x)− ‖h̄j(x)‖)}), (6)

where α > 0 is a penalty parameter.

The last part of this subsection is devoted to describing our algorithm.

Algorithm 1

Step 0 Choose x0 ∈ <n, σ ∈ (0, 1)，β ∈ (0, 1)，α0 > 0，σ ∈ (0, 1)，τ > 0 and set

k := 0.

4

Step 1 Choose an n×n symmetric positive definite matrix Mk. Find the solution ∆xk

and the corresponding Lagrange multipliers (λk, µk) satisfying the KKT conditions

(5) of subproblem (4). If ‖∆xk‖ = 0, then STOP．Otherwise, go to step 2

Step 2 Set the penalty parameter as follows: If αk ≥ max
{

max
1≤i≤m

|λki |, max
1≤j≤l

µkj0

}
, then

αk+1 := αk; otherwise, αk+1 := max
{

max
1≤i≤m

|λki |, max
1≤j≤l

µkj0, αk

}
+ τ.

Step 3 Compute the smallest nonnegative integer r satisfying

Pαk+1
(xk)− Pαk+1

(xk + (β)r∆xk) ≥ σ(β)r∆xkTMk∆x
k, (7)

and set the step size tk := (β)r.

Step 4 Set xk+1 := xk + tk∆x
k, k := k + 1 and go to Step 1

We may consider this algorithm a generalization of the sequential quadratic program-

ming method for ordinary nonlinear programming problems [8].

3.2 Global Convergence

In this subsection, we show that Algorithm 1 has a global convergence property. For

simplicity, we assume s := 1. The arguments in what follows apply in a similar manner

to the case of s > 1. When s = 1, the KKT conditions (5) of subproblem (4) can be

written

∇f(xk) +Mk∆x−∇g(xk)λ−∇h(xk)µ = 0

g(xk) +∇g(xk)T∆x = 0 (8)

h(xk) +∇h(xk)T∆x ∈ K l, µ ∈ K l

(h(xk) +∇h(xk)T∆x)Tµ = 0

and the penalty function used as a merit function is given by

Pα(x) = f(x) + α(
m∑

i=1

|gi(x)|+ max{0,−(h0(x)− ‖h̄(x)‖)}), (9)

where h(x) := (h0(x), h̄(x))T with h0 : <n → < and h̄ : <n → <l−1.

5

To prove global convergence of Algorithm 1, we make the next two assumptions.

(A.1) At every iteration, subproblem (4) has the optimal solution ∆xk and correspond-

ing Lagrange multiplier vectors (λk, µk).

(A.2) The generated sequence {(xk, λk, µk)} is bounded.

When assumption (A.1) holds, subproblem (4) has a unique optimal solution since

Mk is a positive definite matrix. Below, we will show that the optimal solution ∆xk of

subproblem (4) is a descent direction of the penalty function Pαk at xk, provided the

penalty parameter αk satisfies αk ≥ max
{

max
1≤i≤m

|λki |, µk0
}

. Hence we can determine the

step size tk in Step 3 and Algorithm 1 is well defined. Assumption (A.2) is standard

in SQP methods for nonlinear programming.

In what follows, we denote

ϕ(x) := max{0,−(h0(x)− ‖h̄(x)‖)}

ψ(x) :=
m∑

i=1

|gi(x)|.

The next lemma gives a formula for the directional derivative of ϕ.

Lemma 1 The directional derivative ϕ′(x; ∆x) of ϕ at x along the direction ∆x =

(∆x0,∆x̄)T is given by

ϕ′(x; ∆x) =





−∇h0(x)T∆x + (∇h̄(x)h̄(x))T

‖h̄(x)‖ ∆x




h0(x) < ‖h̄(x)‖, h̄(x) 6= 0 or,

h0(x) = ‖h̄(x)‖ 6= 0 and

∇h0(x)T∆x < (∇h̄(x)h̄(x))T

‖h̄(x)‖ ∆x




−∇h0(x)T∆x + ‖∇h̄(x)T∆x‖




h0(x) < ‖h̄(x)‖, h̄(x) = 0 or,

h0(x) = h̄(x) = 0 and

∇h0(x)T∆x < ‖∇h̄(x)T∆x‖




0 (otherwise).

Proof We show this lemma by cases.

(i) If h0(x) < ‖h̄(x)‖, then

ϕ′(x; ∆x) = lim
t↘0

1

t
(−h0(x+ t∆x) + ‖h̄(x + t∆x)‖ + h0(x)− ‖h̄(x)‖)

= −∇h0(x)T∆x + lim
t↘0

1

t
(‖h̄(x + t∆x)‖ − ‖h̄(x)‖)

=




−∇h0(x)T∆x + (∇h̄(x)h̄(x))T

‖h̄(x)‖ ∆x
(
h̄(x) 6= 0

)

−∇h0(x)T∆x + ‖∇h̄(x)T∆x‖
(
h̄(x) = 0

)
.

6

(ii) If h0(x) = ‖h̄(x)‖ = 0, then

ϕ′(x; ∆x) = lim
t↘0

1

t
max

{
0,−(h0(x+ t∆x)− ‖h̄(x+ t∆x)‖)

}

=




−∇h0(x)T∆x + ‖∇h̄(x)T∆x‖

(
∇h0(x)T∆x < ‖∇h̄(x)T∆x‖

)

0
(
∇h0(x)T∆x ≥ ‖∇h̄(x)T∆x‖

)
.

(iii) If h0(x) = ‖h̄(x)‖ 6= 0, then

ϕ′(x; ∆x) = lim
t↘0

1

t
max

{
0, (−h0(x+ t∆x) + ‖h̄(x + t∆x)‖+ h0(x)− ‖h̄(x)‖)

}

= max
{

0,−∇h0(x)T∆x + lim
t↘0

1

t
(‖h̄(x + t∆x)‖ − ‖h̄(x)‖

}

=




−∇h0(x)T∆x + (∇h̄(x)h̄(x))T

‖h̄(x)‖ ∆x
(
∇h0(x)T∆x < (∇h̄(x)h̄(x))T

‖h̄(x)‖ ∆x
)

0
(
∇h0(x)T∆x ≥ (∇h̄(x)h̄(x))T

‖h̄(x)‖ ∆x
)
.

(iv) If h0(x) > ‖h̄(x)‖, then ϕ′(x; ∆x) = 0.

In the next lemma, using the directional derivative ϕ′(x; ∆x) given in Lemma 1, we

derive an inequality that is used to prove global convergence of the algorithm.

Lemma 2 Let ∆xk be the optimal solution of subproblem (4), and (λk, µk) be cor-

responding Lagrange multiplier vectors. If α ≥ µk0, then the directional derivative

ϕ′(xk; ∆xk) of ϕ at xk along the direction ∆xk satisfies the inequality

−µkTh(xk) + αϕ′(xk; ∆xk) ≤ 0.

Proof Using the formula of ϕ′(x; ∆x) given in Lemma 1, we show the desired in-

equality by cases.

(i) If h0(xk) < ‖h̄(xk)‖, h̄(xk) 6= 0, then we have

−µkTh(xk) + αϕ′(xk; ∆xk)

= −µkTh(xk) + α(−∇h0(xk)T∆xk +
(∇h̄(xk)h̄(xk))T

‖h̄(xk)‖ ∆xk)

≤ −µkh(xk) + α(h0(xk)− ‖h̄(xk) +∇h̄(xk)T∆xk‖+
(∇h̄(xk)h̄(xk))T

‖h̄(xk)‖ ∆xk)

= −µkh(xk) + α(h0(xk)− ‖h̄(xk) +∇h̄(xk)T∆xk‖

7

+
h̄(xk)T (h̄(xk) +∇h̄(xk)T∆xk)

‖h̄(xk)‖ − ‖h̄(xk)‖)

≤ (α− µk0)h0(xk)− µ̄kT h̄(xk)− α‖h̄(xk)‖

≤ (α− µk0)h0(xk)− (α− ‖µ̄k‖)‖h̄(xk)‖

≤ −(µk0 − ‖µ̄k‖)‖h̄(xk)‖

≤ 0,

where the first inequality holds by h(xk) +∇h(xk)T∆xk ∈ K l in the KKT conditions

of the subproblem, the second and the third inequalities follow from Cauchy-Schwarz

inequality, and the fourth and the last inequalities follow form α ≥ µk0 ≥ ‖µ̄k‖ and

h0(xk) < ‖h̄(xk)‖, µk ∈ K l, respectively.

(ii) If h0(xk) < ‖h̄(xk)‖, h̄(xk) = 0, then we have

−µkTh(xk) + αϕ′(xk; ∆xk) = −µkT0 h0(xk) + α(−∇h0(xk)T∆xk + ‖∇h̄(xk)T∆xk‖)

≤ (α− µk0)h0(xk)

≤ 0,

where the first inequality follows from h(xk)+∇h(xk)T∆xk ∈ K l and the last inequality

holds by α ≥ µk0.

(iii) If h0(xk) = 0, h̄(xk) = 0, then ∇h0(xk)T∆xk ≥ ‖∇h̄(xk)T∆xk‖ implies h0(xk) +

∇h0(xk)T∆xk ≥ ‖h̄(xk) +∇h̄(xk)T∆xk‖, which in turn implies ϕ′(xk; ∆xk) = 0 by the

formula shown in Lemma (1). Therefore we obtain

−µkTh(xk) + αϕ′(xk; ∆xk) = −µkTh(xk) = 0.

(iv) Suppose h0(xk) = ‖h̄(xk)‖ 6= 0. If ∇h0(x)T∆x < (∇h̄(x)h̄(x))T

‖h̄(x)‖ ∆x, then similarly to

case (i), we have

−µkTh(xk) + αϕ′(xk; ∆xk)

= −µkTh(xk) + α(−∇h0(xk)T∆xk +
(∇h̄(xk)h̄(xk))T

‖h̄(xk)‖ ∆xk)

≤ −µkh(xk) + α(h0(xk)− ‖h̄(xk) +∇h̄(xk)T∆xk‖+
(∇h̄(xk)h̄(xk))T

‖h̄(xk)‖ ∆xk)

= −µkh(xk) + α(h0(xk)− ‖h̄(xk) +∇h̄(xk)T∆xk‖

8

+
h̄(xk)T (h̄(xk) +∇h̄(xk)T∆xk)

‖h̄(xk)‖ − ‖h̄(xk)‖)

≤ (α− µk0)h0(xk)− µ̄kT h̄(xk)− α‖h̄(xk)‖

≤ (α− µk0)h0(xk)− (α− ‖µ̄k‖)‖h̄(xk)‖

= −(µk0 − ‖µ̄k‖)‖h̄(xk)‖

≤ 0.

Otherwise, ϕ′(xk,∆xk) is equal to 0, so it follows from µk ∈ K l and Cauchy-Schwarz

inequality that

−µkTh(xk) + αϕ′(xk; ∆xk) = −µkTh(xk)

= −µk0h0(xk)− µ̄kT h̄(xk)

≤ −(µk0 − ‖µ̄k‖)‖h̄(xk)‖

≤ 0.

(v) If h0(xk) > ‖h̄(xk)‖, then it follows from µk ∈ K l and Cauchy-Schwarz inequality

that

−µkTh(xk) + αϕ′(xk; ∆xk) = −µkTh(xk)

= −µk0h0(xk)− µ̄kT h̄(xk)

≤ −(h0(xk)− ‖h̄(xk)‖)‖µ̄k‖

≤ 0.

In the next lemma, we derive an inequality regarding the directional derivative ψ ′(x; ∆x)

of the function ψ.

Lemma 3 Let ∆xk be the optimal solution of subproblem (4). Then the directional

derivative ψ′(xk; ∆xk) of ψ at xk along the direction ∆xk satisfies the equality

ψ′(xk; ∆xk) = −
m∑

i=1

|gi(xk)|.

Proof By the definition of directional derivatives, we have

ψ′(xk; ∆xk) = lim
t↘0

m∑

i=1

1

t

(
|gi(xk + t∆xk)| − |gi(xk)|

)

9

= lim
t↘0

m∑

i=1

1

t

(
|gi(xk) + t∇gi(xk)T∆xk + o(t)| − |gi(xk)|

)
.

From the KKT conditions (5), we have ∇gi(xk)T∆xk = −gi(xk), and hence

ψ′(xk; ∆xk) = lim
t↘0

m∑

i=1

1

t

(
|(1− t)gi(xk) + o(t)| − |gi(xk)|

)

= −
m∑

i=1

|gi(xk)|.

From the above lemmas, we obtain the following lemma.

Lemma 4 Let ∆xk be the optimal solution of subproblem (4). If α ≥ max
{

max
1≤i≤m

|λki |, µk0
}

,

then the directional derivative P ′α(xk; ∆xk) of the penalty function Pα at xk along the

direction ∆xk satisfies the inequality

P ′α(xk; ∆xk) ≤ −∆xkTMk∆x
k.

Proof By the KKT conditions (5) of the subproblem and Lemma 3, we have

P ′(xk; ∆xk)

= ∇f(xk)T∆xk + α(ψ′(xk; ∆xk) + ϕ′(xk,∆xk))

= −∆xkTMk∆x
k + λkT∇g(xk)T∆xk + µkT∇h(xk)T∆xk + α(ψ′(xk; ∆xk) + ϕ′(xk,∆xk))

= −∆xkTMk∆x
k − λkTg(xk)− µkTh(xk) + α(−

m∑

i=1

|g(xk)|+ ϕ′(xk,∆xk)).

On the other hand, from the inequality α ≥ max
{

max
1≤i≤m

|λki |, µki0
}

, it follows that

−λkTg(xk)− α
m∑

i=1

|gi(xk)| ≤ −
m∑

i=1

(λki + α)|gi(xk)|

≤ 0.

which together with Lemma 2 yields the desired inequality.

When ∆xk 6= 0, by Lemma 4 and the positive definiteness of the matrix Mk, we have

Pα(xk)− Pα(xk + tk∆x
k)− σtk∆xkTMk∆x

k

= −tkP ′α(xk; ∆xk) + o(tk)− σtk∆xkTMk∆x
k

≥ (1− σ)tk∆x
kTMk∆x

k + o(tk)

> 0

10

for any sufficiently small tk > 0. This ensures that we can always determine the step

size tk in Step 3 of Algorithm 1.

In the last part of this subsection, we establish global convergence of Algorithm 1.

Theorem 1 Suppose that assumptions (A.1) and (A.2) hold. Let {(xk, λk, µk)} be a

sequence generated by Algorithm 1, and (x∗, λ∗, µ∗) be any accumulation point. Assume

that there exist some positive scalars γ,Γ such that

γ‖z‖2 ≤ zTMkz ≤ Γ‖z‖2, ∀z ∈ <n, ∀k ∈ {0, 1, 2, · · ·}.

Then, (x∗, λ∗, µ∗) satisfies the KKT conditions (3) of NSOCP (1)

Proof Since {Mk} is bounded, we only need to show lim
k→∞
‖∆xk‖ = 0 from Propo-

sition 1. First note that, from (A.2) and the way of updating the penalty parameter,

αk stays constant ᾱ eventually for all k sufficiently large. Consequently, {Pᾱ(xk)} is

monotonically nonincreasing for sufficiently large k. Meanwhile, by (7) and the positive

definiteness of Mk, we have

Pᾱ(xk)− Pᾱ(xk+1) ≥ σtk∆x
kTMk∆x

k > 0.

Since {Pᾱ(xk)} is bounded below by (A.2), we have

lim
k→∞

Pᾱ(xk)− Pᾱ(xk+1) = 0.

Therefore, it holds that

lim
k→∞

tk∆x
kTMk∆x

k = 0.

Moreover, it follows from the given assumption that

tk∆x
kTMk∆x

k ≥ tkγ‖∆xk‖2.

Hence, we have lim
k→∞

tk‖∆xk‖2 = 0. It clearly holds that lim
k′→∞

‖∆xk′‖ = 0 for any

subsequence {∆xk′} such that lim inf
k′→∞

tk′ > 0. Let us consider an arbitrary subsequence

{tk′} such that lim
k′→∞

tk′ = 0. Then, by the Armijo rule in Step 3, we have

Pᾱ(xk
′
)− Pᾱ(xk

′
+ t̄k′∆x

k′) < σt̄k′∆x
k′TMk′∆x

k′ ,

11

where t̄k′ := tk′
β

. On the other hand, since P ′ᾱ(xk
′
; ∆xk

′
) ≤ −∆xk

′TMk′∆x
k′ by Lemma

4, it follows that

Pᾱ(xk
′
)− Pᾱ(xk

′
+ t̄k′∆x

k′) = −t̄k′P ′(xk
′
; ∆xk

′
) + o(t̄k′) ≥ t̄k′∆x

k′Mk′∆x
k′ + o(t̄k′).

Combining the above inequalities yields t̄k′∆x
k′Mk′∆x

k′ + o(t̄k′) < σt̄k′∆x
k′Mk′∆x

k′,

and hence

0 > (1− σ)t̄k′∆x
k′Mk′∆x

k′ + o(t̄k′) > (1− σ)t̄k′γ‖∆xk
′‖2 + o(t̄k′).

Thus we obtain

(1− σ)γ‖∆xk′‖2 +
o(t̄k′)

t̄k′
< 0,

which yields lim sup
k′→∞

‖∆xk′‖ ≤ 0. Consequently, we have lim
k→∞
‖∆xk‖ = 0.

3.3 Local Convergence

In this subsection, we consider local behavior of a sequence generated by Algorithm 1.

For that purpose, we make use of the results for generalized equations [13].

First note that the KKT conditions of NSOCP (1) can be rewritten as the gener-

alized equation

0 ∈ F (y) + ∂δC(y), (10)

where F is a vector valued function and ∂δC(y) is the normal cone of a closed convex

set C at y, which is defined by

∂δC(y) :=




∅ if y /∈ C
{w | wT (c− y) ≤ 0 ∀c ∈ C} if y ∈ C.

Indeed, by defining the Lagrangian of the NSOCP (1) by

L(x, ζ, η) := f(x)− g(x)T ζ − h(x)Tη,

the KKT conditions (3) are represented as

0 ∈ ∇xL(x, ζ, η) + ∂δ<n(x)

0 ∈ ∇ζL(x, ζ, η) + ∂δ<m(ζ)

0 ∈ ∇ηL(x, ζ, η) + ∂δK∗(η),

12

where K∗ := {η ∈ <l | ηT ξ ≥ 0, ∀ξ ∈ K} is the dual cone of K. Since ∂δ<n(x) =

{0}, ∂δ<m(ζ) = {0} and K∗ = K, we can rewrite the KKT conditions (3) as the

generalized equation (10) with C := <n × <m ×K and

F (y) :=




∇xL(x, ζ, η)

∇ζL(x, ζ, η)

∇ηL(x, ζ, η)




(11)

where y := (x, ζ, η)T .

On the other hand, if we choose Mk := ∇2
xxL(xk, λk, µk), we can express the KKT

conditions of subproblem (4) as

0 ∈ ∇xL(xk, λ, µ) +∇2
xxL(xk, λk, µk)∆x + ∂δ<n(x)

0 ∈ ∇ζL(xk, λ, µ) +∇2
ζxL(xk, λk, µk)∆x + ∂δ<m(λ)

0 ∈ ∇ηL(xk, λ, µ) +∇2
ηxL(xk, λk, µk)∆x+ ∂δK(µ),

which is equivalent to the generalized equation

0 ∈ F (zk) + F ′(zk)(z − zk) + ∂δC(z), (12)

where zk = (xk, λk, µk), z = (xk + ∆x, λ, µ) and F is defined by (11). This can be

regarded as the application of Newton’s method for the generalized equation (10).

Thus, a sequence {zk} generated by (12) is expected to converge fast to a solution of

(11). To be more precise, we use the notion of a regular solution [13].

Definition 1 Let y∗ be a solution of the generalized equation (10) and F be Fréchet

differentiable at y∗. Define the set-valued mapping T by T (y) := F (y∗) + F ′(y∗)(y −
y∗) + ∂δC(y). If there exist neighborhoods U of 0 and V of y∗ such that the mapping

T−1 ∩ V is single-valued and Lipschitzian on U , then y∗ is called a regular solution of

the generalized equation (10).

We suppose that F is Fréchet differentiable with Lipschitz constant L and the gener-

alized equation (12) at k = 0

0 ∈ F (z0) + F ′(z0)(z − z0) + ∂δC(z)

13

has a regular solution with Lipschitz constant Λ. Then (12) has a regular solution at

every iteration k and the following inequality holds for a sequence {zk} generated by

(12) if z0 is sufficiently close to a regular solution y∗ of the generalized equation (10)

(see [13]):

‖y∗ − zk‖ ≤ (2(l+n+m)ΛL)−1(2ΛL‖z0 − z1‖)(2k),

which means that the sequence {zk} converges R-quadratically to y∗.

Next we consider the relation between the regularity of a solution and the second-

order optimality conditions for NSOCP (1). We recall the notion of nondegeneracy in

second-order cone programming [5].

Definition 2 For given vectors ŵi ∈ K li(i = 1, · · · , s), define the functions φi(x)(i =

1, · · · , s) as follows:

(i) if ŵi = 0, then φi : <li → <li and φi(wi) := wi;

(ii) if ŵi0 > ‖ ¯̂wi‖, then φi : <li → <0 and φi(wi) := 0;

(iii) if ŵi0 = ‖ ¯̂wi‖ 6= 0, then φi : <li → <1 and φi(wi) := ‖w̄i‖ − wi0.

Let x be a feasible solution of NSOCP (1). If the matrix

(∇g(x),∇h1(x)∇φ1(h1(x)), · · · ,∇hs(x)∇φs(hs(x)))

has full column rank, then x is said to be nondegenerate. Here, ∇hi(x)∇φi(hi(x)) =

∇hi(x) if hi(x) = 0, ∇hi(x)∇φi(hi(x)) = −∇hi0(x)+∇h̄i(x)h̄i(x)
‖h̄i(x)‖ if hi0(x) = ‖h̄i(x)‖ 6= 0,

and ∇hi(x)∇φi(hi(x)) is vacuous if hi0(x) > ‖h̄i(x)‖.

It is showed in [5] that when a local optimal solution x∗ of NSOCP(1) is nondegenerate,

(x∗, ζ∗, η∗) is a regular solution of the generalized equation representing the KKT con-

ditions (3) of NSOCP (1) if and only if (x∗, ζ∗, η∗) satisfies the following second-order

optimality condition:

dT∇2
xxL(x∗, ζ∗, η∗)d+dT

s∑

i=1

Hi(x
∗, ζ∗, η∗i)d > 0, ∀d 6= 0, d ∈ C0(x∗)∩CK1(x∗)∩· · ·∩CKs(x∗),

(13)

where

C0(x∗) = {d ∈ <n | ∇g(x∗)Td = 0}

14

and for i = 1, · · · , s

CKi(x∗) =





d ∈ <n

∇hi(x∗)Td = 0 if η∗i0 > η̄∗i

∇hi(x∗)Td ∈ span{Rliη∗i } if η∗i0 = ‖η̄∗i ‖ 6= 0, hi(x
∗) = 0

dT∇hi(x∗)η∗i = 0 if η∗i0 = ‖η̄∗i ‖ 6= 0, hi0(x∗) = ‖h̄i(x∗)‖ 6= 0

no condition otherwise





,

Hi(x
∗, ζ∗, η∗i) =




− η∗i0
hi0(x∗)∇hi(x∗)Rli∇hi(x∗)T if hi0(x∗) = ‖h̄i(x∗)‖ 6= 0

0 otherwise

with Rli :=




1 0T

0 −Ili−1


. Summarizing the above arguments, we have the next

theorem about the local behavior of a sequence {(xk, ζk, ηk)} generated by Algorithm 1.

Theorem 2 Suppose Mk = ∇2
xxL(xk, ζk, ηk) and step size tk is equal to 1 for all k > k̄,

where k̄ is a positive integer. If, for some k > k̄, (xk, ζk, ηk) is sufficiently close to a

nondegenerate stationary point (x∗, ζ∗, η∗) of NSOCP (1) satisfying the second-order

condition (13), then a sequence {(xk, ζk, ηk)} generated by Algorithm 1 converges R-

quadratically to (x∗, ζ∗, η∗). In particular, {xk} converges R-quadratically to x∗.

4 Numerical Experiments

We implemented Algorithm 1 in MATLAB (Version 6.5) using the SDPT3-Solver (Ver-

sion 3.0) [16] to solve the subproblems. The detail of transformation of a subproblem

into an LSOCP problem is given in Appendix A.

We set the parameters in Algorithm 1 as follows:

α0 = 1, τ = 0.01, σ = 0.2, β = 0.95.

The stopping criterion of Algorithm 1 is given by ‖∆xk‖ < 10−4.

15

Experiment 1. First, we consider the following problem:

min xTCx+
n∑

i=1

(dix
4
i + fixi)

s.t.




a1(ex1 − 1)

a2(ex2 − 1)
...

an(exn − 1)




+




b1

...

bs



∈ K := K l1 × · · · ,×K ls ,

(14)

where ai, di, fi(i = 1, · · · , n) are scalars, bj (j = 1, · · · , s) are lj-dimensional vectors, and

C is an n× n symmetric positive semidefinite matrix. Note that n = l := l1 + · · ·+ ls

in this problem. We generate ten problem instances for each of n = 10, 30, 50. We

determine the constants as follows: ai, di, and fi (i = 1, · · · , n) are randomly chosen

from the intervals [0,2], [0,2], and [−1, 1], respectively, and C is given by C := ZTZ,

where Z is an n×n matrix whose elements are randomly chosen from the interval [0,1].

Vectors bj ∈ <lj (j = 1, · · · , s) are determined as bj0 = 1, b̄j = 0. Then, problem (14)

is always feasible, since x = 0 is satisfies the constraints. It may be worth noticing

that problem (14) is not necessarily a convex programming problem despite the fact

that the objective function and the constraint functions are convex, since the feasible

region is not a convex set.

Each problem instance is solved by Algorithm 1 using an initial iterate whose ele-

ments are randomly generated from the interval [−1, 1]. The following two updating

formulas for matrices Mk are tested.

Modified Newton formula. At iteration k, if the Hessian ∇2
xxL(xk, µk−1) of the

Lagrangian is a positive definite matrix, then set Mk = ∇2
xxL(xk, µk−1); otherwise,

set Mk = ∇2
xxL(xk, µk−1) + (|ξk| + 0.1)I, where ξk is the minimum eigenvalue of

∇2
xxL(xk, µk−1). At the first iteration, M0 is set to be the identity matrix I.

Quasi-Newton formula. The initial matrix M0 is set to be the identity matrix.

Subsequently, Mk is updated by

Mk+1 = Mk −
Mkv

kvkTMk

vkTMkvk
+
ukukT

vkTuk
,

where vk = xk+1 − xk, wk = ∇xL(xk+1, λk, µk) − ∇xL(xk, λk, µk), uk = θkw
k + (1 −

16

θk)Mkv
k, and θk is determined by

θk =





1 if vkTwk ≥ 0.2vkTMkv
k

0.8vkTMkv
k

vkT (Mkvk−wk)
otherwise.

This is a modified BFGS update suggested in the SQP method for NLP [3].

Both update formulas ensure the positive definiteness of Mk for all k. Therefore, if

the subproblem is feasible at every iteration, then the sequence generated by Algorithm

1 will converge to a stationary point of NSOCP (1). In our numerical experiments,

when a subproblem becomes infeasible at some iteration, we choose a new initial point

and solve the problem again.

In our experiments with the modified Newton formula, we observed that, when the

sequence generated by Algorithm 1 converged to a stationary point of NSOCP (1), Mk

was chosen to be ∇2
xxL(xk, µk−1) and the step size was equal to 1 in the final stage of

the iteration. In the case of the quasi-Newton formula, the step size was also equal to 1

in the final stage of the iteration. Tables 1 and 2 show the average kave, the minimum

kmin, and the maximum kmax numbers of iterations for ten runs, along with the problem

size and the Cartesian structure of the second-order cone K of each test problem. We

Table 1: Computational results with the modified Newton formula for problem (14)

n K kave kmin kmax

10 K5 ×K5 13.05 10 19

30 K5 ×K5 ×K20 17.32 11 29

50 K5 ×K5 ×K20 ×K20 19.56 10 30

Table 2: Computational results with the quasi-Newton formula for problem (14)

n K kave kmin kmax

10 K5 ×K5 23.39 14 36

30 K5 ×K5 ×K20 56.24 26 98

50 K5 ×K5 ×K20 ×K20 67.56 37 91

find that, for problem (14), the modified Newton formula results in faster convergence

17

than the quasi-Newton formula. This suggests that the convexity of the objective and

the constraint functions can be better exploited in the modified Newton formula, since

it uses the Hessian matrices of those functions in a direct manner.

Experiment 2. Next, we consider the following problem:

min xTCx +
n∑

i=1

(dix
4
i + eix

3
i + fixi)

s.t.




a1(ex1 − 1)

a2(ex2 − 1)
...

an(exn − 1)




+




â1x1x2

â2x2x3

...

ânxnx1




+




b1

...

bs



∈ K := K l1 × · · · ,×K ls ,

(15)

where the constants are similar to those in the previous test problem, except that C

is an n × n indefinite matrix. Note that n = l := l1 + · · · + ls in this problem. We

generate ten problem instances for each of n = 10, 30, 50. We determine the constants

as follows: ai, âi, ei, fi (i = 1, · · · , n) and the elements of C are randomly chosen from

the interval [−1, 1], and di(i = 1, · · · , n) are randomly chosen from the interval [0, 1].

Vectors bj ∈ <lj(j = 1, · · · , s) are determined as bj0 = 1, b̄j = 0 similarly to the case of

problem (14). Then, problem (15) is always feasible. Note that the objective function

and the constraint functions are in general nonconvex unlike problem (14).

As in the previous experiment, each problem instance is solved by Algorithm 1

using an initial iterate whose elements are randomly generated from the interval [−1, 1].

When a subproblem becomes infeasible at some iteration, we choose a new initial point

and solve the problem again. We test the two formulas for updating matrices Mk, the

modified Newton formula and the quasi-Newton formula. The results are shown in

Tables 3 and 4.

Because of the lack of convexity in the objective and constraint functions, the

Hessian ∇2
xxL(xk, µk−1) of the Lagrangian is not likely to be positive definite even if

xk is close to a stationary point of the problem. Thus, the matrices Mk determined by

the modified Newton formula may substantially differ from ∇2
xxL(xk, µk−1). We have

observed that the algorithm with the modified Newton formula performs somewhat

inefficiently compared with the previous experiment, although it exhibits fast local

convergence, when ∇2
xxL(xk, µk−1) becomes positive definite near a solution. In fact,

18

the comparison of Table 3 and 4 suggests that the quasi-Newton formula works more

effectively especially when ∇2
xxL(xk, µk−1) is indefinite.

Table 3: Computational results with the modified Newton formula for problem (15)

n K kave kmin kmax

10 K5 ×K5 24.31 11 116

30 K5 ×K5 ×K20 59.44 19 183

50 K5 ×K5 ×K20 ×K20 68.64 20 180

Table 4: Computational results with the quasi-Newton formula for problem (15)

n K kave kmin kmax

10 K5 ×K5 24.96 12 56

30 K5 ×K5 ×K20 39.75 25 91

50 K5 ×K5 ×K20 ×K20 50.22 31 97

5 Concluding remarks

In this paper, we have proposed a sequential quadratic programming method for non-

linear second-order programming problems. We have proved global convergence of the

algorithm, and examined its local convergence behavior by reformulating the KKT

conditions of NSOCP into the generalized equation. Through numerical experiments,

we have confirmed the effectiveness of the algorithm for nonconvex NSOCP. The al-

gorithm presented in this paper is a prototype and it may be further improved in

terms of implementation, for example by incorporating a device to deal with infeasible

subproblems.

Acknowledgment

First of all, I would like to express my sincere thanks and appreciation to Professor

Masao Fukushima. Although I often troubled him due to my greenness, he kindly

19

looked after me and gave me plenty of precise advice. I would also like to tender

my acknowledgments to Associate Professor Nobuo Yamashita. He gave me a lot of

comment for my research. Finally, I would like to thank all the members in Fukushima’s

Laboratory.

A Transformation of Subproblem

In this subsection, we transform subproblem (4) to a linear second-order cone program

(LSOCP).

We use SDPT3 solver (version 3.0) [16] to solve subproblems in our numerical

experiments. This software can solve LSOCPs of the form

min
nq∑

i=1

cqTj x
q
j + clTxl

s.t.
nq∑

i=1

AqTj x
q
j + AlTxl = b

xqi ∈ Kqj
q i = 1, · · · , nq, xl ≥ 0,

where cqi , x
q
i are qi-dimensional vectors, cl, xl are nl-dimensional vectors, and Aq

i , A
l are

qi×m, l×m matrices, respectively. To transform subproblem (4) to an LSOCP of this

form, we first introduce an auxiliary variable u ≥ 0 and rewrite the problem as

min ∇f(xk)T∆x + u

s.t. g(xk) +∇g(xk)T∆x = 0

u ≥ 1

2
∆xTMk∆x

h(xk) +∇h(xk)T∆x ∈ K, u ≥ 0,

which can further be rewritten as

min ∇f(xk)T∆x + u

s.t. g(xk) +∇g(xk)T∆x = 0

(u+ 1)2 ≥ (u− 1)2 + 2‖M
1
2
k ∆x‖2

h(xk) +∇h(xk)T∆x ∈ K, u ≥ 0.

20

Next, by introducing auxiliary variables y, z, and putting ∆x = ∆x1 − ∆x2 with

∆x1 ≥ 0 and ∆x2 ≥ 0, we rewrite the problem as

min ∇f(xk)T (∆x1 −∆x2) + u

s.t. g(xk) +∇g(xk)T (∆x1 −∆x2) = 0

z =




u+ 1

u− 1
√

2M
1
2
k (∆x1 −∆x2)




y = h(xk) +∇h(xk)T (∆x1 −∆x2)

y ∈ K, z ∈ Kn+2, u ≥ 0, ∆x1 ≥ 0, ∆x2 ≥ 0,

which is essentially of the standard form LSOCP for the SDPT3 solver. In the numerical

experiments, we add the term εeT (∆x1 + ∆x2) to the objective function to force the

condition ∆xT1 ∆x2 = 0 to hold, where e = (1, · · · , 1)T and ε is a sufficiently small

positive number.

References

[1] F. Alizadeh and D. Goldfarb: Second-order cone programming. Mathematical

Programming, Vol. 95, 2003, pp. 3-51.

[2] A. Ben-Tal and A. Nemirovski: Robust convex optimization. Mathematics of

Operations Research, Vol. 23, 1998, pp. 769-805.

[3] P. T. Boggs and J. W. Tolle: Sequential quadratic programming. Acta Numerica.

4, 1995, pp. 1-51.

[4] J. F. Bonnans, R. Cominetti and A. Shapiro: Second order optimality conditions

based on parabolic second order tangent sets. SIAM Journal on Optimization,

Vol. 9, 1999, pp. 466-492.

[5] J. F. Bonnans and H. Ramirez: Perturbation analysis of second-order-cone pro-

gramming problems. Technical Report, INRIA, Le Chesnay Cedex France, August

2004.

21

[6] J. F. Bonnans and A. Shapiro: Perturbation Analysis of Optimization Problems.

Springer-Verlag, New York, 2000.

[7] R. Correa and H. Ramirez: A global algorithm for nonlinear semidefinite program-

ming. Research Report 4672, INRIA, Le Chesnay Cedex France, 2002.

[8] S. P. Han: A globally convergent method for nonlinear programming. Journal of

Optimization Theory and Applications, Vol. 22, 1977, pp. 297-309.

[9] C. Kanzow, C. Nagel, H. Kato and M. Fukushima: Successive linearization meth-

ods for nonlinear semidefinite programs. Computational Optimization and Appli-

cations Vol. 31, 2005, pp. 251-273.

[10] M. S. Lobo, L. Vandenberghe, S. Boyd and H. Lebret: Applications of second-

order cone programming. Linear Algebra and Its Applications, Vol. 284, 1998,

pp. 193-228.

[11] M. Muramatsu: A pivoting procedure for a class of second-order programming.

Manuscript, The University of Electro-Communications, Tokyo, 2004.

[12] S. M. Robinson: Strongly regular generalized equations. Mathematical Program-

ming Study, Vol. 5, 1980, pp. 43-62.

[13] S. M. Robinson: Generalized equations. in A. Bachem et al. (eds.) Mathematical

Programming: The State of the Art, Springer-Verlag, Berlin, 1983, pp. 346-367.

[14] A. Shapiro: First and second order analysis of nonlinear semidefinite programs.

Mathematical Programming, Vol. 77, 1999, pp. 301-320.

[15] M. J. Todd: Semidefinite optimization. Acta Numerica, Vol. 10, 2001, pp. 515-560.

[16] K. C. Toh, R. H. Tütüncü and M. J. Todd: SDPT3 version 3.02 - a MATLAB soft-

ware for semidefinite-quadratic-linear programming. updated in December 2002,

http://www.math.nus.edu.sg/ mattohkc/sdpt3.html

[17] R. H. Tütüncü, K. C. Toh and M. J. Todd: Solving semidefinite-quadratic-linear

programs using SDPT3. Mathematical Programming Vol. 95, 2003, pp. 189-217.

22

[18] L. Vandenberghe and S. Boyd: Semidefinite programming. SIAM Review Vol. 38,

1996, pp. 49-95.

[19] H. Yamashita: A globally convergent primal-dual interior method for constrained

optimization. Optimization Methods and Software, Vol. 10, 1998, pp. 443-469.

[20] H. Yamashita and H. Yabe: A primal-dual interior point method for nonlinear

optimization over second order cones. Manuscript, Mathematical Systems, Inc.,

Tokyo, 2005.

23

