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Abstract

Recently engineers in many fields have faced solving complicated optimization problems.
The objective functions of such problems are often nondifferentiable, or even if differentiable,
their derivatives may not be calculated explicitly. Moreover, the problems are nonconvex in
general, and hence, it is difficult to find the global optima. In order to overcome such difficulties,
Hansen proposed the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), which is
an evolutionary algorithm generating a number of search points by using normal distribution.
CMA-ES finds a global (or better local) minimum without using derivatives of the objective
functions. However it is applicable only to the unconstrained problem.

In this paper we propose three CMA-ES type methods for the constrained optimization
problem. These methods are based on the l1-penalty method, and the differences of the methods
are generating mechanism of search points. The first method generates search points by standard
normal distribution. We note that the method is unapplicable to the problems whose objective
functions are not defined out of the feasible region since the method sometimes generates a
infeasible points. The second method generates search points by using lognormal distribution
and the third method uses the projection onto the feasible region. Therefore the second and
third methods always generate search points in the feasible region.

We compared these three methods by solving standard test problems. According to the
results, the method based on the normal distribution is superior to the other methods for most
problems. On the other hand, the method based on the projection showed better performance
when many inequality constraints are active at a solution.
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1 Introduction

In this paper, we consider the constrained optimization problem of the form

min f(x)

(P) s.t. hj(x) = 0 j = 1, . . . ,m

xi ≥ 0 i ∈ S

where f : ℜn → ℜ, hj : ℜn → ℜ (j = 1, . . . ,m) and S is a subset of {1, . . . , n}. We assume
that neither continuity nor differentiability of f and hj . Since a general nonlinear inequality
constraints g(x) ≤ 0 can be transformed into xn+1 ≥ 0 and g(x)+xn+1 = 0 with a slack variable
xn+1, (P) does not lose any generality. In this paper we propose evolutional strategy algorithms
for this problem (P) by using only function values of f and hj .

Recently the engineers in many fields have faced solving optimization problems derived from
complex systems. When the problem can be formulated with differentiable objective and con-
straint functions, we can apply efficient methods such as Newton-type methods, interior point
methods and SQP method. In order to formulate such differentiable problems highly mathe-
matical knowledge of modeling is required of users. Moreover in highly complicated systems, it
is often difficult to construct mathematical models explicitly. For example, when some status
of systems are evaluated by simulation, functions f or hj of the status cannot be expressed in
an explicit manner. For such a situation, we usually formulate approximate models to possess
differentiability. However these approximate models may not reflect the original systems suf-
ficiently and local minima of the models are sometimes far from local minima of the original
models. Therefore we want algorithms that use only objective function values.

For such algorithms, Nelder-Mead method [8], pattern search method, Derivative Free Op-
timization (DFO) [2] have been proposed.

Since these methods use a local search technique, they usually converge rapidly. However
these are not the method searching for a global minimum. Recently Metaheuristics [5, 7, 12]
and Evolution Strategy with Covariance Matrix Adaptation(CMA-ES, [1, 3, 4]) have been much
attention as global optimization methods. Metaheuristics, which include the Genetic Algorithm
(GA) [7] and Particle Swarm Optimization (PSO), are the computation technique which searches
near-optimal solutions in a practical time, instead of finding exact optimal solutions in very long
time. The GA is based on the evolutionary mechanisms, and consists of combination and
selection. The PSO imitates the swarm behavior of fish and bird, in which each particle shares
certain information with other particle, and decides the next movement by the information.

The CMA-ES generates sets of search points according to the multivariate normal distribu-
tion, and finds the optimal solution by updating its mean and covariance matrix to displace the
distribution.

It is a population based approach instead of point-to-point approach. Basically, the CMA-ES
is similar to a usual local search, since it searches neighborhood of the current point and moves
to the next point with minimum object function value. However, the CMA-ES has a potential
to find a global minimum because of the mechanism of randomized search (like mutation in
metaheuristics). The usual local search algorithms, such as Nelder-Mead method and the pattern
search method, do not possess such mechanism. Moreover, since the covariance matrices updated
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in the CMA-ES can be regarded as the inverse of the Hessian of the objective function, the
CMA-ES takes into account quadratic information of objective function approximately. It is
also reported in [11] that CMA-ES can find higher accuracy solution with fewer evaluations of
objective values compared with GA and PSO.

Basically the CMA-ES has been considered for unconstrained optimization problem, and is
not supposed applying to constrained optimization problems. In this paper we propose three
CMA-ES based algorithms for solving constrained optimization problem efficiently. These meth-
ods based on the penalty method. The differences are generating mechanism of search points.
The first method generates search points according to the normal distribution. The second one
generates them with the lognormal distribution instead of normal distribution. The last one
projects search points generated by using normal distribution onto the nonnegative orthant so
that all search points are in the feasible region.

This paper is organized as follows. In Section 2 we describe the CMA-ES algorithm for
unconstrained optimization problems. In Section 3 we propose three CMA-ES type algorithms
for constrained optimization problems. In Section 4 we show the numerical results and discuss
about them. In Section 5, we give the concluding remarks.

2 The Covariance Matrix Adaptation Evolution Strategy for
Unconstrained Optimization Problems

In this section, we explain the CMA-ES for unconstrained optimization problem which is one
of Evolution Strategy (ES [10, 6, 9]). Evolution Strategy is a search algorithm based on ideas
of adaptation and evolution and was first proposed by Bienetk, Rechenberg and Schwefel. It
can be classified into (1 + 1)-ES, (µ, λ)-ES and (µ + λ)-ES. In (1 + 1)-ES, one point moves to
another point in each iteration. On the other hand, in (µ, λ)-ES and (µ + λ)-ES, one set moves
to another set. In particular (µ + λ)-ES chooses µ best points from the union of the original
µ points and generated λ points, and (µ, λ)-ES chooses µ points from the generated λ points
only. The CMA-ES belongs to (µ, λ)-ES type Evolution Strategy. The CMA-ES first generates
the set of search points by exploiting a multivariate normal distribution, and then selects search
points by objective function value.

Outline of the CMA-ES is written as follows:'

&

$

%

Step 0. Generate the set of search points x
(g+1)
1 , · · · , x

(g+1)
λ on iteration so that

x
(g+1)
k ∼ N

(
m(g), (σ(g))2C(g)

)
for k = 1, · · · , λ by using mean value m(g), covariance

matrix C(g) and stepsize σ(g),
Step 1. Select the best µ search points among x

(g+1)
1 , · · · , x

(g+1)
λ according to

their objective function value.
Step 2. Calculate m(g+1), C(g+1) and σ(g+1) from the selected µ points. Set
g:=g+1, and return to Step 1.

Here,

x
(g+1)
k ∼ N

(
m(g), (σ(g))2C(g)

)
(1)

denotes that x
(g+1)
k is chosen from the multivariate normal distribution with mean m(g) and

covariance matrix (σ(g))2C(g).
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Figure 1: Outline on generation (g)

In CMA-ES, we generate set of search points {x(g+1)
i }(i = 1, . . . , λ), mean m(g+1), covariance

matrix C(g+1) and stepsize σ(g+1) for each iteration(Figure 1).
As a beginning of iteration g, population of new λ search points x

(g+1)
1 , · · · , x

(g+1)
λ is gener-

ated in Step 0. Then in Step 1, best µ (< λ) points are selected from this population. At last,
we update m(g+1), C(g+1), σ(g+1) from selected µ points in Step 2. We repeat above steps until
the optimal solution is found.

How to update m(g+1), C(g+1) and σ(g+1) has much influence to algorithm performance. A
lot of update formula is proposed, but we would like to introduce [4].

At first, we describe update formula of mean value m(g+1). Here, we assume that λ search
points x

(g+1)
1 , · · · , x

(g+1)
λ is ranked as f(x(g+1)

1 ) ≤ f(x(g+1)
2 ) ≤ . . . f(x(g+1)

λ ). We use a weighted
average with weight parameter ωi The update formula of m(g+1) is given by

m(g+1) =
µ∑

i=1

ωix
(g+1)
i (2)

where ωi ∈ ℜ+, i = 1, . . . , µ is weight coefficients satisfying

µ∑
i=1

ωi = 1, ω1 ≥ ω2 ≥ · · · ≥ ωµ ≥ 0. (3)

Next, the update formula of the covariance matrix C(g+1) is described. We estimate weighted
C(g+1) from sampled population x

(g+1)
1 , · · · , x

(g+1)
µ , weight coefficient ωi and weighted average

m(g) as follows:

C(g+1) = (1 − ν)C(g) + ν

(
1 − 1

ξ

) µ∑
i=1

ωi

(
x

(g+1)
i − m(g)

σ(g)

)(
x

(g+1)
i − m(g)

σ(g)

)T

(4)

+
ν

ξ
p(g+1)

c p(g+1)T

c
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where 0 < ν ≤ 1 is the parameter called learning ratio, and by the ratio (1 − ν) : ν, we use
the information of the previous and current iterations. ξ is a choosing ratio of second term and
third term.

The second term is the rank max(µ, n), and which has the covariance matrix information
from rank max(µ, n) elements. This term exists for calculating more reliable covariance matrices
by using as much information as possible. If µ is too large, we can get not only more reliable
information but also the drawback as taking great deal of time for calculating. In this formula,
the reason why we use not m(g+1) but m(g) for the update is given below. The covariance become
smaller than m(g) if we use m(g+1) [3]. For the wide range searching we should adopt m(g) and
make covariance matrix larger than previous iterations.

The third term p
(g+1)
c p

(g+1)T

c is rank one, and hence it has the information of covariance by
rank one element. This term is available if µ is small. The reliable information from the rank
one p

(g+1)
c is given as below. From p

(g+1)
c , the information of mean trajectory in each iteration

is available as a correlated information for update [3, 4]. p
(g+1)
c is given as follows:

p(g+1)
c = (1 − cc)p(g)

c + ζ
m(g+1) − m(g)

σ(g)
(5)

where cc ≤ 1, and ζ is a constant selected as p
(g+1)
c ∼ N(0, C) [4, 3]. By using this correlated

information, we can update covariance matrix reliably if population size λ is small.
Finally, we describe the update formula of stepsize σ(g). To control σ(g) we use correlation

of mean trajectory by p
(g)
σ given as below. p

(g)
σ has similar structure to (4) and is described as

p(g+1)
σ = (1 − cσ)p(g)

σ + ηC(g)−1/2 m(g+1) − m(g)

σ(g)
(6)

where cσ < 1 and η is selected as pσ(g+1) ∼ N(0, I). By using this, update formula of σ(g) is
proposed as

σ(g+1) = σ(g) exp

(
cσ

(
∥ p

(g+1)
σ ∥√

n
− 1

))
. (7)

The larger mean trajectory m(g+1) −m(g) and p
(g+1)
σ are, the larger σ(g+1) is. The smaller mean

trajectory m(g+1) − m(g) and p
(g+1)
σ are, the smaller σ(g+1) is. In conclusion stepsize σ(g+1)

increase and decrease by mean trajectory correlation. Therefore stepsize σ(g+1) is large at first,
and become small after method begin to converge.

From above update formulae, the CMA-ES algorithm can be described as follows:
CMA-ES Algorithm
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Step 0.Parameters setting
Input c(0),m(0). Set parameters λ, µ, ωi=1...µ, cσ, dσ, cc, µcov and ccov to their default
values.
Step 1.Initialization
Set p

(0)
σ = 0, pc (0) = 0. Choose step size σ(0) ∈ ℜ+.

Step 2.Termination criterion If termination criterion met, then stop:
Step 3. New population sampling
x

(g+1)
k ∼ N

(
m(g), (σ(g))2C(g)

)
for k = 1, · · · , λ

Step 4.Update Update mean value m(g+1) by (2) and (3).
Update stepsize σ(g+1) by (6) and (7).
Update Covariance matrix by (4) and (5).
Go to Step 2.

An advantage of the CMA-ES is that this can be applied to nondifferentiable problems.
Hence, a CMA-ES can solve problems that the steepest descent method or the quasi Newton
method can not be applied to. Another advantage is that the CMA-ES shows the better per-
formance than metaheuristics like GA, PSO, etc., since the CMA-ES can take second order
derivative into account approximately by using covariance matrix.

The disadvantage is that if we apply the CMA-ES to easy problems solved immediately
by Newton type method, then the CMA-ES takes higher cost for calculating. Compared with
Newton method which can obtain search direction by derivative, to obtain search direction, the
CMA-ES have to generate search points and evaluate them for all problems. In addition, as
the dimension become larger, the CMA-ES takes larger time for estimating n × n covariance
matrix C. The covariance matrix estimation is most influential on performance of a CMA-ES.
Therefore applying CMA-ES to large dimension problem shows poor performance.

We note that the CMA-ES shows poor performance for the problem whose optimal solution
is on the boundary of constraints. To observe this disadvantage, we applied the CMA-ES to
following two problems, and showed results in Table 1.

Problem A

f(x) = x2
1 + x2

2

Problem B

f(x) =


x2

1 + x2
2 x1 ≥ 0, x2 ≥ 0

x2
1 + |x2| x1 ≥ 0, x2 < 0

|x1| + x2
2 x1 < 0, x2 ≥ 0

|x1| + |x2| x1 < 0, x2 < 0

In Problem A, function f is smooth at the origin, while in Problem B f is nonsmooth.

Table 1: Evaluation on Problem A & Problem B
Problem A Problem B

Average number of function evaluation 287.4 504.6

It can be seen from the Table 1 that Problem B needs larger average number of function
evaluation than Problem A. The reason of above result is that generating mean of search points
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Figure 2: Search points and their averages on non-smooth function

makes bias if the optimal solution exists on the nonsmooth point. For example we describe this
with x2 = 0.

Figure 2 shows that CMA-ES generated 7 search points from mean m(g), and selected lower
4 points by objective function value. In this case, the optimal solution is x1 = 0. Therefore
the mean value m(g+1) should approach optimal solution x1 = 0 nearer than m(g). Nevertheless
generated m(g+1) moves away from x1 = 0 actually. As a result, the method converges slower
than the CMA-ES for smooth function.

3 Covariance Matrix Adaptation Evolution Strategy for Con-
strained Problem

Originally, CMA-ES is proposed for unconstrained optimization problem. In this section, we
extend the CMA-ES for constrained optimization problem by using the penalty method. We
propose the normal distribution method, the lognormal distribution method and the projection
method.

3.1 Normal distribution method

We define the extended function P1(x; ρ) obtained by using l1-penalty function to problem (P)
as follows:

P1(x; ρ) = f(x) + ρ


m∑

j=1

|hj(x)| +
n∑

i=1

max(0,−xi)

 (8)

where ρ is a positive penalty parameter. The extended function P (·, ρ) is identical with the
objective function f in feasible region because the penalty term of extended function becomes
0 in feasible region. We note that the extended function P1(·, ρ) is nondifferentiable function.
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An unconstrained optimization problem P1(ρ) using the extended function P (x; ρ) is formu-
lated as follows:

P1(ρ) min P1(x; ρ) (9)

s.t. x ∈ Rn

If ρk is sufficiently large, the optimal solution of P1(ρk) is identical with the optimal solution
of (P). The penalty method is to generate an approximate solution of P1(ρk) sequentially, as
changes penalty parameter as ρk → ∞. For finding an approximate solution of P1(ρk), we apply
the normally CMA-ES with normal distribution.

The normal distribution method
Step 0. Select penalty parameter ρ0 ∈ (0,∞). Set mean m(0) ∈ ℜn, covariance
matrix C(0) ∈ ℜn×n and stepsize σ(0) ∈ ℜ.
Step 1. Find an (approximate) optimal solution x̄(k) of the subproblem P1(ρk)
by applying the CMA-ES with m(k) and C(k)

Step 2. If termination criterion is satisfied by x̄(k), then stop.
Step 3. Select ρ(k+1) ∈ (ρ(k),∞). Update m(k+1) = x̄(k) and C(k+1), set k = k+1,
and go to Step 1.

By setting m(k+1) = x̄(k) we obtain search points from the optimal solution of last iteration.
And in Step 3 we use C(g) as C(k+1). Here, C(g) is obtained by last iteration of Step 1 in the
CMA-ES. As a result we expect faster convergence, since the CMA-ES can generate good search
points by using the information of previous distribution’s shape.

We can not apply this method to the problem whose objective function is not defined in
xi < 0, i ∈ S since the CMA-ES may generate search points in the infeasible region.

3.2 Lognormal distribution method

Since the points of xi < 0 are generated in the CMA-ES, the normal distribution method can be
applied to problems whose objective function is not defined in xi < 0 with i ∈ S. Therefore we
propose generating search points by lognormal distribution instead of the normal distribution
in the CMA-ES. We call this method CMA-ES with lognormal distribution. The figure of
the probability density function of lognormal distribution is represented as Figure 3. On this
distribution, the probability in negative region is 0.

For the simplicity of explanation we set S = {1, . . . , n} and describe the proposed method
in detail. The CMA-ES with lognormal distribution generates search points x(g),1, . . . , x(g),λ as

x(g),j ∼ NL(µL, CL) j = 1, . . . , λ (10)

where NL(µL, CL) is lognormal distribution with mean µL, covariance matrix CL.
Lognormal distribution has two advantages. The first one is that generated search points

always satisfy nonnegative constraints. There are practical problems whose object function is
not defined in negative region, but this method can also apply to these problems. The second
one is that generated points become dense between the mean point and boundary of negative
region (Figure 4). As a result, this method can search around boundary in detail, and we can
expect this method converges faster.
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Figure 3: Shape of the probability density function of lognormal distribution

Figure 4: Generating search points by normal distribution and lognormal distribution

It is difficult to update the mean µL and the covariance matrix CL of lognormal distri-
bution from the set of search points. We apply variable transformation to search points and
use the update formula of mean value (2) and covariance matrix (4) in normal distribution.
For example, we describe variable transformation in the case n = 2 (Figure 5). If we set
zj = (log(x(g),j

1 ), log(x(g),j
2 )), then zj is normally distributed. Adversely, we assume that zj is

generated by normal distribution and x(g),j = (ez1 , ez2) is given by zj . Then, it can be considered
that x(g),j obtained by zj is generated by lognormal distribution. Finally we update the mean
value of normal distribution and covariance matrix of zj by using (2) and (4).

By the using the above variable transformation, we can describe the algorithm with lognormal
distribution. We set xi = ezi and use the function P̂ (z; ρ) defined by

P̂ (z; ρ) = P1(ez1 , . . . , ezn ; ρ). (11)

Then, problem P1(ρ) can reformulated as the following unconstrained minimization problem

PLN(ρ) min P̂ (z; ρ) (12)

s.t. z ∈ Rn.

The proposed method is to find an optimal solution of PLN(ρ) sequentially as ρ → ∞.
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Figure 5: Generating points of lognormal distribution by variable transformation

The method based on lognormal distribution

Step 0.　 Select penalty parameter ρ0 ∈ (0,∞). Set mean m(0) ∈ ℜn, covariance
matrix C(0) ∈ ℜn×n and stepsize σ(0) ∈ ℜ.
Step 1. Find an (approximate) optimal solution x̄(k) of subproblem PLN(ρk) by
applying the CMA-ES to with m(k) and C(k).
Step 2. If termization criterion is satisfied by x(k) = exp(z̄(k)), then stop.
Step 3. Select ρ(k+1) ∈ (ρ(k),∞). Update m(k+1) = z̄(k), C(k+1), set k = k + 1,
and go to Step 1.

Similarly, in the algorithm of normal distribution method, we use C(g) as C(k+1) in Step 3. Here,
C(g) is generated from the last iteration of Step 1 in the CMA-ES.

3.3 Projection method

In the CMA-ES we generate search points by the normal distribution. Here, the generated search
point is projected onto the feasible region (Figure 6). Therefore, they are always in nonnegative
orthant as lognormal distribution method.

By using projection, generated search point are always in nonnegative region. Therefore,
search points always generated in positive region as lognormal distribution method.

We call the CMA-ES in which Step 3 is exchanged for the following Step 3’ as CMA-ES with
projection.

CMA-ES with projection
Step 3’ New population sampling with projection

x̂
(g+1)
k ∼ N

(
m(g), (σ(g))2C(g)

)
for k = 1, · · · , λ

x
(g+1)
i =

{
max{0, x̂i

(g+1)} i ∈ S

x
(g+1)
i otherwise

Note that the projection onto nonnegative region takes little calculation time.
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Figure 6: Selecting search points by CMA-ES by projection

In the followings we describe the method using CMA-ES with projection.
Projection method

Step 0. Select penalty parameter ρ0 ∈ (0,∞). Set mean m(0) ∈ ℜn, covariance
matrix C(0) ∈ ℜn×n and stepsize σ(0) ∈ ℜ.
Step 1. Find an (approximate) optimal solution x̄(k) of by applying the CMA-ES
to subproblem with m(k), C(k).
Step 2. If the termination criterion is satisfied by x(k) = exp(z̄(k)), then stop.
Step 3. Select ρ(k+1) ∈ (ρ(k),∞). Update m(k+1) = z̄(k) and C(k+1), set k = k+1,
and go to Step 1.

Similarly, in previous normal distribution method, we use C(g) as C(k+1) in Step 3. Here,
C(g) is obtained by the last iteration of Step 1 in the CMA-ES.

In CMA-ES with projection, we consider the projection only onto the nonnegative constraints
since it is easy to calculate. If the objective function or equality constraints are complicated,
projection method may show poor performance. On the contrary, if it is more expensive to
calculate the value of objective function than the projection onto more complicated constraints,
we can expect that the total calculating time decreases. As a result, how to project is important
for the performance of this method. For instance, we can consider the projection not only onto
nonnegative constraints but also onto the feasible set involving equality constraints. We can
also consider the projection measured by the norm other than Euclidean norm. If we consider
the projection with the norm ∥ x ∥ C(g) defined by xT C(g)x, then the projected points will be
influenced by projected points will be influenced by the shape of function.
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4 Numerical Experiments

In this section we compare three proposed algorithms by means of numerical experiments. Test
problems are chosen from CUTEr, GAMS, and [5]. Each method is coded by MATLAB 6.5 and
run on a machine with 2.80GHz CPU and 1G memory.

We set initial parameters as C(0) = I and σ(0) = 0.5. If the initial mean value m(0) are given
by the test problem, we use it. If the initial mean value m(0) are not given by the test problem,
we choose m(0) from the constant distribution (0, 1).

In Step 3 of each method we use C(g) as C(k+1), where C(g) is obtained by the last iteration
of Step 1 in the CMA-ES. Penalty parameter is updated as

ρ(k+1) = 10ρ(k).

In the projection method, we calculate the projection onto the nonnegative orthant

x
(g),i
j := max{0, x

(g),i
j }, j ∈ S, i = 1, . . . , λ.

The termination criterion of the main loop and the inner loop of the CMA-ES are given as
follows. We use the following termination criterion for the inner loop of the CMA-ES∣∣∣∣P k(x(g),1) − min

j=1,...,k−1
P (x(g),1

i )
∣∣∣∣ < 10−5 (13)

where P k(x) is replaced by P1(x; ρk) in (8). That is, we consider the differential between the
extended function value at x(k) and that at the best point which was obtained by the previous
iteration. If this differential becomes nearly 0, we consider that the method has converged. If the
minimum of the extended function meets constraints, then it must solve the original problem.
Therefore, stop condition of main loop is set as follows:

∑
i∈S

max(0,−x
(k)
i ) +

m∑
j=1

|h(x(k)
j )| < 10−8 (14)

The test problems and their properties are shown in Table 2. Here, ackley is originally
unconstrained problem, but we added constraints xi ≥ 0 (i = 1, . . . , 20) in this experiments.
The values of n,m, and l in Table 2 represents the rank of x, the number of inequality constraints,
the number of equality contraints, respectively, and Act is the number of inequality constraints
which are active on the global minimum.

The test problems are classified as A, B, C.

Group A All inequality constraints are inactive on the global minimum.

Group B There are some active inequality constraints on the global minimum, but not all
inequality constraints are active.

Group C All inequality constraints are active on global minimum.

Each problem was solved ten times and their results are shown in Tables 3, 4, and 5.
In these tables, “#S” represents the number of trials in which we obtain the global optima

and “#F” represents average number of function evaluations, when the methods stop. Here let
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Table 2: Problem groups

Problem group Function name (n,m, l) Act
A hatflda (4,0,4) 0

hs001 (2,1,0) 0
supersim (2,1,2) 0
logros (2,2,0) 0
tame (2,2,1) 0
try-b (2,2,1) 0

B extrasim (2,1,1) 1
bt13 (5,1,1) 1
harker (25,6,7) 8
lotschd (12,12,7) 5

C ackley (20,20,0) 20
griewank (10,10,0) 10

Table 3: Results for problems in Group A

Normal Lognormal Projection

Problem #S Best Worst #F #S Best Worst #F #S Best Worst #F

hatflda 10 1.29e-8 3.35e-6 668 9 3.74e-9 1.87e-1 867.2 10 7.99e-9 1.89e-4 684.8

hs001 10 2.48e-9 7.82e-8 795.0 10 3.52e-9 6.96e-8 796.5 10 9.54e-10 4.35e-8 805.0

supersim 10 6.67e-1 6.67e-1 592.8 10 6.67e-1 6.67e-1 598.8 10 6.67e-1 6.67e-1 582

logros 10 2.24e-9 2.04e-6 940.8 0 6.93e-1 6.93e-1 47.5 2 1.07e-8 6.93e-1 527.4

tame 10 2.93e-9 6.05e-4 884.4 5 2.45e-55 1.09e-2 4359.6 10 2.83e-9 7.16e-5 939.6

try-b 0 5.21e-2 8.53e-1 4002.0 0 4.66e-67 1.0 1339.2 0 5.83e-2 1.0 3415.8

x̂ be the optimal solution found by the algorithm and x∗ be the global optimum. Then, if the
inequality

f(x̂) − f(x∗)
max{1, f(x∗)}

≤ 0.01 (15)

is satisfied, we consider that x̂ converges to x∗. “Best” shows the minimum value of the objective
function among ten trials and “Worst” shows the maximum value.

From Table 3, lognormal distribution shows a little poorer performance. On the contrary
normal distribution method and projection method show better performance on most of prob-
lems in Group A. We can interpret this result as follows. Projection method is identical with
normal distribution method near optimal solution, since the inequality constraints are not active
on the optimal solution. In the result of the lognormal distribution method, the global minima
are obtained only a few times for logros problem, try-b problem and tame problem. Actually,
these problems have local minimum near the global minima. For logros and try-b, number of
function evaluation is fewer than the other methods to find (local) minimum. This is because
most of inequality constraints are active on local minimum on these problems.

From Table 4 we obtain the following result on Group B. In most of problems, the normal
distribution method is superior to the lognormal distribution method and projection method. In
extrasim problem, the lognormal distribution method is inferior to other two methods, because

12



Table 4: Results for problems in Group B

Normal Lognormal Projection

Problem #S Best Worst #F #S Best Worst #F #S Best Worst #F

extrasim 10 1 1 1578.6 1 1 1.66 3745.8 10 1 1 1575.0

bt13 8 2.68e-3 1.78e-2 10093.6 0 1.37e-2 6.73 25000.0 4 0 3.97 18711

harker 1 -9.86e+2 -9.77e+2 64179.6 0 -9.85e+2 -1.03e-14 90595.8 0 -9.83e+2 -8.58e+2 93013

lotschd 9 2.23e+3 2.34e+3 16613.3 5 2.23e+3 2.80e+3 95679.5 9 2.23e+3 2.76e+3 28225

Table 5: Results for problems in Group C

Normal Lognormal Projection

Problem #S Best Worst #F #S Best Worst #F #S Best Worst #F

ackley 3 7.55e-4 2.17 6567.6 10 3.45e-5 1.31e-4 524.4 10 8.45e-8 1.42 2304

griewank 10 1.86e-7 1.86e-5 2310.0 10 1.61e-12 3.25e-7 264 10 7.37e-9 3.45e-5 630

this method tends to converge to local minima. In bt13, harker, and lotschd, projection function
need more a function evaluation than normal distribution method. Since these problems have
the complicated equalities, if the search points approximately satisfy the equality constraints,
then the projected points often violate the equality constraints. As a result, the projected
search points are seldom selected and evaluations of these points become futile. From this
reason, projection method (projected to nonnegative constraints) is not suitable method to the
problems whose equality constraints are complicated.

Finally we discuss the result of Group C (Table 5). The lognormal distribution method and
projection method are superior to normal distribution method. Particularly in ackley function
the lognormal distribution method and projection method always find a global minimum in
spite of existance of several local minima. Judging from this fact, we can consider those two
methods tend to find a solutions where many inequality constraints become active. Therefore, if
the problem’s optimal solution is on the boundary of the feasible set (e.g. the concave objective
function), it is expected that lognormal distribution method and projection method show great
performance to these problems.

From the above numerical results, we give the flowchart which indicates the choice of three
methods (Figure 7).

5 Concluding remarks

For solving constrained optimization problems, we have proposed three CMA-ES based methods,
normal distribution method, lognormal distribution method, and projection method. Moreover
by applying these methods to several test problems, we have revealed the numerical properties
of each method.

As future issues, it would be interesting to consider update rules for stepsize or covariance
matrices corresponding to each proposed method. Particularly, the numerical results obtained
by lognormal distribution methods were not so good as we have expected. This may be due to
the fact that, in updating the covariance matrices, we have employed the variable transformation
zi = log(xi) to reduce the computational cost, and have not used genuine covariant matrices
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Figure 7: Flowchart for the choice of three methods.

inherent in lognormal distribution. For the projection method, we considered only the projection
onto the nonnegative orthant. However the projection has a room for improvement. For example
it is also possible to consider the projection onto the constraint region itself, or to define it by
using a norm measured by covariance matrices. If such a projection is introduced, then the
number of function evaluation may decrease, while the computational cost for the projection
will be more expensive.
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