
A Derivative-Free Trust-Region Algorithm for

Unconstrained Optimization with Controllable Error

Guidance

Associate Professor Nobuo YAMASHITA

Jun TAKAKI

2006 Graduate Course

in

Department of Applied Mathematics and Physics

Graduate School of Informatics

Kyoto University

K
Y

O
TO

UNIVERSITY

F
O

UN DED 1 8 9 7KYOTO JAPAN

February 2008

Abstract

In this paper, we consider the unconstrained optimization problem under the following situation:
(S1) The objective function is evaluated with a certain amount of error, (S2) the error is controllable,
that is, the objective function can be evaluated in any desirable accuracy, and (S3) the evaluation
with higher accuracy requires more computation time. This situation arises in many fields such as
engineering and financial problems, where the objective function value results from a huge amount of
numerical calculation or simulation.

Under (S1)—(S3), algorithms using derivatives of the objective function are not applicable. To
date, there exist several algorithms which use the objective function values only. Conn et al. proposed
the Derivative-Free Optimization method (DFO) as such an algorithm. The DFO generates a sequence
of minimizers of quadratic model functions derived from sample points and their objective function
values. Moreover, it adopts a trust-region framework for global convergence. Conn et al. shows its
global convergence when the objective values at sample points are evaluated accurately. To apply DFO
for the problem under (S1) and (S2), the objective function should be calculated with high accuracy
in the whole step of DFO. However, computations with high accuracy require a large amount of
computation time under (S3). Therefore the DFO algorithm cannot be applied directly to such a
problem that requires a large number of function evaluations to find a solution.

Under (S2) and (S3), it would be reasonable to set the accuracy of the evaluation to be low at a
point far from a solution, and to set it to be high at a point in the neighborhood of a solution. In
this paper, we propose a derivative-free trust-region algorithm based on this idea. For this purpose,
we consider (i) how to construct a quadratic model function by exploiting pointwise errors and (ii)
how to control the accuracy of function evaluations to reduce the total computation time of the
algorithm. For (i), we propose a method based on support vector regression. For (ii), we give some
updating formula of the accuracy that is related to the trust-region radius. We present numerical
experiments with the proposed algorithm for several test problems taken from CUTEr as well as a
financial problem which estimates implied volatilities from some option prices. The results show
that the proposed algorithm not only works much faster than the DFO with high-accuracy function
evaluations at all time, but also finds some accurate solutions. In particular, for relatively easy small-
scale problems, the proposed algorithm can obtain optimal solutions with computational costs which
amount to those required for several times evaluations of an accurate function value.

Contents

1 Introduction 1

2 Preliminary 3
2.1 Quadratic Model Function from Sample Points . 3

2.1.1 Construction of a quadratic model function from sample points 3
2.1.2 Quality of the quadratic model function . 4

2.2 Derivative-Free Trust-Region methods without error 5
2.3 Support Vector Regression . 8

3 Derivative-Free Optimization with Controllable Error 10
3.1 Construction of a Quadratic Model from Sample Points with Pointwise Errors by SVR 11
3.2 Control of Errors . 12
3.3 Derivative-Free Trust-Region algorithm with Controlling Errors 13

4 Numerical Experiences 16
4.1 Numerical Results for CUTEr . 16

4.1.1 Experiment on the influence of the computation time of function evaluation g(ε) 17
4.1.2 Experiment on the influence of the algorithmic parameters 18
4.1.3 Experiment on the comparison with constant accuracy 21

4.2 Numerical Results for Implied Valatility Estimation 22

5 Concluding Remarks 24

A Error bound for the gradient 27

B Estimation of option premium and its estimation error 28
B.1 Estimation of the Option Premium via Monte Carlo Simulation 28
B.2 Relation between the accuracy and the trial number of Monte Carlo simulation 29

1 Introduction

In this paper, we consider the unconstrained minimization problem

minimize
x∈Rn

f(x), (1.1)

where f is a nonlinear function from Rn into R．When the function values and the derivatives of f

can be exactly computed, we can solve the problem (1.1) by Newton’s method, quasi-Newton method
and others. However, there exist many practical problems where objective function values cannot be
accurately computed. In this paper, we suppose the following situation, in which the function value
f(x) can be evaluated for all x ∈ Rn with an arbitrary accuracy.

(S1) Evaluated objective function value f̂(x) contains a certain amount of error e,

f̂(x) = f(x) + e,

(S2) the error e is controllable, that is, we can compute f̂ such that |e| ≤ ε for any accuracy ε, and

(S3) to obtain the more highly accurate f̂ , the more computation time is required.

This situation (S1)—(S3) often arises in engineering [2, 16], bilevel programming [3] and financical
problems [23]. Typically, such problems arises when one needs to minimize a function measured
by some numerical calculate, or some experiment or by a complicated simulation. Therefore, the
evaluated objective function value contains some error (S1). On the other hand, the accuracy of the
evaluated objective value in such a problem is set arbitrarily (S2). Moreover, to evaluate the function
with the higher accuracy, the more computation time is required in general (S3). For instance, consider
the case where the objective function contains the integration and it is calculated by a Monte Carlo
method. It is known that the computation time O(1/ε2) is required to guarantee that the error of
the integration is less than ε [23].

Under (S1), not only the derivative of f can not be computed, but also the finite difference
approximation based on the function evaluations is unreliable. Therefore, the optimization algorithms
using derivative of the objective function cannot be applied for such a problem. To date, several
computational methods using the objective function value only have been proposed. Especially,
direct search methods, Meta heuristics and model-based methods are studied well.

The direct search methods are classical and one of the most popular minimization technique in
practice. The simplex reflection algorithm of Nelder and Mead [18], or its modern variants such as
the Parallel Direct Search algorithm of Dennis and Torczon [14, 24] are its typical methods. These
methods are easy to be implemented so that they are used by many practitioners. However, they do
not exploit the information of the objective function well, and thus, its computation time becomes
relatively larger than that of model-based methods. A good introduction to these techniques can be
found in the book [17].

The Meta heuristics are the methods which have high possibility of finding a global minimum.
The Genetic algorithm, the Particle Swarm Optimization algorithm and the Ant Colony Optimization
algorithm are well studied. These techniques suffer, in general, from the following two drawbacks.
Termination criteria is unclear and the larger number of function evaluations for finding a local
optimal solution than that of direct search methods or model-based methods.

The model-based methods successively construct a surrogate model function from sample points
and its objective function values, and minimize the model function to find a local solution of the

1

problem. This idea of model-based methods is used in Design of Experiments [15] for a long time.
Winfield [25, 26] proposed a model-based algorithm built in the idea of trust-region methods for global
convergence. We will call derivative-free trust-region algorithms the model-based algorithms of this
type. In [25], the quadratic model function was constructed by solving the system of linear equations
of composed of N := 1

2(n+1)(n+2) sample points. However, he did not give the concrete method for
generating sample points. Then, Powell [22] proposed a generation method of sample points and the
construction of the model were based on Lagrange interpolation function for improving the quality of
the model function as an approximation of the objective function. However, constructing Lagrange
interpolation function required a large amount of computation time so that his algorithm can not be
applied to relatively large problems. For the purpose of reducing computation time, Conn et al. [5]
proposed to use Newton fundamental polynomial function for constructing the model. Furthermore,
Conn et al. [8] established global convergence for the derivative-free trust-region algorithms under
some assumptions for the first time. In [7], he discussed on an algorithm, in which the quadratic
model function was constructed by Support Vector Regression (SVR), for a case where the objective
function values are evaluated with uniformly random errors.

On the studies described above, the function is evaluated exactly, or even if an error in the
evaluation exists, it is assumed to be very small. Thus, to apply these algorithms under (S1) and
(S2), the function must be evaluated with high accuracy. However, since the function evaluation with
high accuracy needs a large amount of computation time under (S3) so that these algorithms cannot
be applied to problems which require the large number of function evaluations for finding a solution.
Under (S3) where the function evaluation time and its accuracy are in the relation of trade-off, it
would be reasonble to set the accuracy to be low at point far from a solution, and to set it to be high
at a point in the neighborhood of a solution. In this paper, we propose a derivative-free trust-region
algorithm based on this idea, which is a kind of the model-based algorithm proposed by Winfield.

For this purpose, we have to consider how to construct a quadratic model function exploiting
pointwise errors and how to control the accuracies of the function evaluations for reducing total
computation time of the algorithm. For the first, we develop a constructing method of a quadratic
model function which is suitable under (S1)—(S3). The method is based on SVR. SVR is a technique
for obtaining the regression curve that enters width ε̂ or less from the sample. Conn et al. have
already discussed on the model-based algorithm using SVR in [7]. However, in [7], ε̂ is treated as a
certain constant without any relation to sample points xi, i = 1, . . . , l. In this paper, we consider that
width ε̂ corresponds to pointwise accuracy of function evaluation. Then, we can construct a quadratic
model function exploiting pointwise accuracy from sample points. Furthermore, we propose update
formulae of function evaluation accuracy for reducing the total computation time to find a solution.

The paper is organized as follows. In the next section, we introduce basic concepts for constructing
a quadratic model function from sample points, and the result on the quality of the quadratic model
function. We also present the derivative-free trust-region algorithm, which is base of our algorithm,
and a general SVR. In Section 3, we present our derivative-free trust-region algorithm. In Section 4,
we give some numerical results for a numerical test set CUTEr and financial problem. Finally, Section
5 concludes the paper.

We use the following notations throughout the paper. For a vector x ∈ Rn, ‖x‖ denotes the
Euclidean norm defined by ‖x‖ :=

√
x>x. For a symmetric matrix H ∈ Rn×n, λmin(H) denotes the

minimum eigenvalue of H, similarly λmax(H) denotes the maximum eigenvalue of H. Furthermore,
‖H‖ denotes the `2 norm of H defined by ‖H‖ := λmax(H). For a set X, |X| denotes the number of
the elements of X.

2

2 Preliminary

In this section, we introduce basic concepts for constructing a quadratic model function from sample
points. We also present results on the quality of the constructed quadratic model function as an
approximation of the objective function in some region. Moreover, we explain the derivative-free
trust-region algorithm proposed by Winfield and a support vector regression, which are key tools for
constructing our algorithm proposed in the next section.

In the following subsection, X := {x1, . . . ,xl} ⊆ Rn denotes the sample point set, and yi =
f(xi), i = 1, . . . , l. We denote the sample set composed of them by

Ŝ := {(x1, y1), . . . , (xl, yl)} . (2.1)

2.1 Quadratic Model Function from Sample Points

2.1.1 Construction of a quadratic model function from sample points

We consider constructing a quadratic model function of f : Rn → R from the sample set Ŝ by
interpolation or regression. First, note that any quadratic function m : Rn → R is written in the form

m(x) := w>φ(x),

where w ∈ RN is a coeffient vector with N := 1
2(n+1)(n+2), and φ : Rn → RN is a mapping defined

by

φ(x) :=
(
1, x1, . . . , xn, x2

1, x1x2, . . . , xn−1xn, x2
n

)> ∈ RN . (2.2)

For constructing a reasonable function m from the sample set Ŝ, we require w ∈ RN to satisfy the
following condition.




m(x1)
...

m(xl)


 = Φ(X)w = y (2.3)

where

Φ(X) :=




φ(x1)>
...

φ(xl)>


 ∈ Rl×N , (2.4)

y := (y1, . . . , yl)> ∈ Rl.

In the case of interpolation, the number l of sample points equals to N in general. Then, the
matrix Φ(X) becomes square. Moreover, if Φ(X) is nonsingular, then there exists a unique w that
satisfies (2.3). Hence, we can construct the quadratic model function m by solving the system of
linear equations (2.3) with respect to w. In addition, we can construct the model instead of solving
(2.3) by using Lagrange polynomial interpolation [21] or Newton polynomial interpolation [8].

In the case of regression, l ≥ N in general. Thus there may not exist w satisfying the condition
(2.3). Then, least squares regression is usually used to obtain a reasonable function m. Least squares
regression solves the following problem.

minimize
w,‰

l∑

i=1

ξ2
i , (2.5)

subject to Φ(X)w = y + ξ.

3

where ξ = (ξ1, . . . , ξl)> ∈ Rl. If rectangular matrix Φ(X) ∈ Rl×N is full column rank, there exists a
unique solution of the problem (2.5). When Φ(X) is not full column rank, Ridge regression is useful.
Ridge regression solves the following problem whose objective function is composed of that of least
squares regression and the regularized term.

minimize
w,‰

λ‖w‖2 +
l∑

i=1

ξ2
i , (2.6)

subject to Φ(X)w = y + ξ,

where λ > 0 is a regularized parameter. There exists a unique solution of the problem (2.6) regardless
of the condition of Φ(X).

2.1.2 Quality of the quadratic model function

Now we introduce the results in [9, 10] for the quality of the quadratic model function, which is
constructed by interpolation or least squares regression.

Let ∆ denote the radius of the smallest enclosing hypersphere containing all sample points xi ∈ X.
In the following discussion, we assume that the hypersphere is centered at origin without loss of
generality, and we denote the hypersphere by B(∆) ⊆ Rn. Furthermore, let X̂ denote the normalized
sample points set by the radius ∆, that is,

X̂ = {x1/∆, . . . ,xl/∆}.

The following theorem shows the error bound between the objective function f and the quadratic
model function m constructed by interpolation．

Theorem 2.1 [9, Theorem 4.2.] Assume that f is twice continuously differentiable in an open do-
main Ω containing B(∆) and that ∇2f is Lipschitz continuous in Ω with constant Lf > 0.

Then, for all points x ∈ B(∆), we have that

|f(x)−m(x)| ≤
(

6 + 9
√

2
4

Lf

√
N − 1‖Φ(X̂)−1‖+

1
6
Lf

)
∆3. (2.7)

Theorem 2.1 shows that the quality of the quadratic model function constructed by interpolation
depends on the radius ∆ and the singular values of the matrix Φ(X̂).

Next, we introduce a similar result for least squares regression. The discussion for least squares
regression is complex a little more than that for interpolation, because Φ(X̂) is not necessarily a
square matrix. As in the case of interpolation, X̂ denotes the normalized sample points set by ∆.
The rectangular matrix Φ(X̂) ∈ Rl×N forms the following reduced singular value decomposition.

Φ(X̂) = UΣV >,

where Σ ∈ RN×N is a diagonal matrix formed by the singular values, and U ∈ Rl×N and V ∈ Rl×l

are the corresponding orthonormal matrices. Then, the following result is known.

Theorem 2.2 [10, Theorem 3.2.] Assume that f is twice continuously differentiable in an open
domain Ω containing B(∆) and that ∇2f is Lipschitz continuous in Ω with constant Lf > 0.

4

Then, for all points x ∈ B(∆), we have that

|f(x)−m(x)| ≤
(

6 + 9
√

2
2

LfN
√

l ‖Σ−1‖+
1
6
Lf

)
∆3. (2.8)

Theorem 2.2 shows that the quality of the quadratic model function constructed by least squares
regression also depends on the radius ∆ and the singular values of Φ(X̂). Note that the singular
value matrix Σ is nonsingular if the rectangular matrix Φ(X̂) is full column rank.

From Theorem 2.1, 2.2, we see that, since ∆ and the singular values of Φ(X̂) depend on the
position of sample points X, it is important to generate a adequate sample points for the quality of
the model. For instance, if sample points are generated on a line or on a quadratic curve, then the
matrix Φ(X̂) is singular, and hence, the quadratic model function constructed from the sample points
is unreliable.

2.2 Derivative-Free Trust-Region methods without error

The derivative-free trust-region algorithm proposed by Winfield is built in the idea of the trust-region
methods [4]. The outline of the algorithm is as follows.
¶ ³

Outline of derivative-free trust-region algorithms

Step 0 : Initialization for the sample set Ŝ ⊆ Rn+1, initial iterate x0 and trust-region radius
∆0.

Step 1 : Construction of the quadratic model mk : Rn → R from the sample set Ŝ.

Step 2 : Obtain the minimum x+
k of the model mk within the trust region {x | ‖xk−x‖ ≤ ∆k}.

Step 3 : Evaluation of the quality of the current model mk at x+
k .

Step 4 : Update of the trust-region radius ∆k based on the evaluation in step 3 and on the
property of the matrix Φ(X̂).

Step 5 : Update of the sample set Ŝ.

Step 6 : Update of the current iterate xk, and go to Step 1.
µ ´
The algorithm described above is different from general derivative-based trust-region methods at Step
1 in which a quadratic model function is constructed, at Step 4 in which the trust-region radius is
updated, and at Step 5 in which the sample set is updated. Notice that Step 5 in the algorithm
does not exist in ordinary derivative-based trust-region algorithms. Here we explain derivative-free
trust-region algorithm while comparing with the derivative-based trust-region algorithm.

In Step 1, derivative-based trust-region algorithm constructs a quadratic model function mk from
the information of f at the current point xk only, that is, mk is given by

mk(xk + p) = f(xk) + g>k p + p>Hkp

where gk = ∇f(xk) ∈ Rn, Hk = ∇2f(xk) ∈ Rn×n. However, when the derivatives of the objective
function are not available, the model function must be constructed only from the information of the

5

objective function values. Then, model-based algorithm constructs a quadratic model function mk

from the sample set Ŝ by using some techniques explained in Section 2.1.

The operations in Steps 2 and 3 are found in the derivative-base trust-region algorithms. So we
give a brief description for them.

In Step 2, the minimum x+
k of the quadratic model function mk is obtained within the region Bk

where the model is regarded as an adequate representation of the objective function, i.e.,

x+
k = arg min

x∈Bk

mk(x), (2.9)

and

Bk = {x ∈ Rn | ‖x− xk‖ ≤ ∆k}.

The hypersphere Bk is called the trust region, and ∆k > 0 is the trust-region radius. For solving
(2.9) there exist approximate methods such as the dogleg method, two-dimensional subspace method
and Steihaug’s approach, and the exact method [4, Algorithm 4.4]. In the followings, we denote the
objective function value at x+

k by y+
k := f(x+

k).
In Step 3, the algorithm calculate the ratio

ρk :=
yk − y+

k

mk(xk)−mk(x+
k)

=
acutual reduction

predicted reduction

to evaluate the quality of the model function. We note that the denominator of ρk, namely, the
predicted reduction, is always nonnegative since the point x+

k is the minimizer of the model over a
region that includes the point xk. In fact, we can evaluate the quality of the model function using
ρk . For instance, when the ratio ρk is negative, or positive but close to zero, we may consider the
quality of the model is worse.

Recall that the mapping Φ and the set X̂ are defined in Section 2.1, and we assume that the
quadratic model function is constructed by some interpolation method1.

In Step 4, the trust-region radius ∆k is adjusted according to the ratio ρk and the regularity of
the matrix Φ(X̂). In derivative-based trust-region algorithms, since Taylor’s theorem indicates that
the quadratic model function better fits f(·) in a smaller neighborhood of xk. Hence, the quality of
the model can be improved by reducing the trust-region radius. However, in the case of interpolation,
Theorem 2.1 indicates that the quality of the model depends on not only the ∆, which is the radius
of the hypersphere containing all sample points, but also ‖Φ(X̂)−1‖. Thus, the quality of the model
can not be improved only by reducing the trust-region radius ∆k without updating the sample set.
Therefore, the trust-region radius is updated in consideration of ρk and ‖Φ(X̂)−1‖ as follows. Let η0

and η1 be constants such that 0 < η0 < η1 < 1.

• ρk ≥ η1: Expand the trust-region radius ∆k.

• ρk < η0 and ‖Φ(X̂)−1‖ is sufficiently small: Reduce the trust-region radius ∆k.

• ρk ≤ η0 and Φ(X̂) is close to singular: Improve the quality of the model by updating the sample
set to reduce the value of ‖Φ(X̂)−1‖ in Step 5.

1To our knowledge, there is no concrete discussion on model-based algorithm via a regression technique.

6

In Step 5, the sample set is updated. First of all, the trial point x+
k , solution of trust-region

subproblem (2.9), is added to the sample set Ŝ if one of the following three statements holds.

• The number |Ŝ| of sample points is less than an upper bound of the number of sample points2.

• The reduction of the objective function is sufficient, that is, ρk ≥ η0.

• ρk < η0 but ‖Φ(X̂)−1‖ becomes small by adding the trial point x+
k .

Next, the sample set is updated to improve the quality of the model as follows:

• ρk < η0 and the matrix Φ(X̂) is close to singular: Update the sample set Ŝ for reducing the
value ‖Φ(X̂)−1‖ by some suitable method (see [5] for details).

• ρk < η0 and ‖Φ(X̂)−1‖ is sufficiently small: In this case the trust region is shrinked in Step 4.
If some sample point are too far away from the current point xk, remove them and create new
sample points in the trust region by suitable method.

Now, we give a concrete derivative-free trust-region algorithm as follows.

a derivative-free trust-region model-based algorithm

Step0: Initialization.
Set the trust-region parameters η0, η1, γdec, γinc such as

0 < η0 ≤ η1 < 1, and 0 < γdec < 1 ≤ γinc,

Choose a starting point xs. Choose an initial sample set Ŝ containing xs. Determine x0 ∈ X

such that f(x0) = minxi∈X f(xi). Choose an initial trust-region radius ∆0 > 0. Set k = 0.

Step 1: Model building.
Using the sample set Ŝ, build the model mk.

Step 2: Minimization of the model within the trust-region.
Compute the point x+

k such that

mk(x+
k) = min

x∈Bk

mk(x).

Compute y+
k := f(x+

k).

Step 3: Evaluation of the quality of the current model Compute the ratio

ρk :=
yk − y+

k

mk(xk)−mk(x+
k)

.

Step 4: Update the trust-region radius.

- Successful step: If ρk ≥ η1, then set ∆k+1 = γinc∆k.
2In the case of quadratic interpolation, the number of sample set must be equals to or less than the number of the

coefficients of a quadratic function 1
2
(n + 1)(n + 2)

7

- Unsuccessful step: If ρk < η0 and ‖Φ(X̂)−1‖ is small enough, then set ∆k+1 = γdec∆k.

- Otherwise, set ∆k+1 = ∆k.

Step 5: Update the sample set.
If ρk ≥ η1, then insert (x+

k , y+
k) in Ŝ, and drop one of the existing sample points if |Ŝ| = N .

If ρk < η1 and Φ(X̂) is nearly singular, improve the model mk by updating sample points in Ŝ.

Step 6: Update the current iterate.
Determine x̂k such that

x̂k = arg min
xi∈X,xi 6=xk

f(xi).

Then, calculate the ratio

ρ̂k :=
f(xk)− f(x̂k)

mk(xk)−mk(x+
k)

.

- Successful step: If ρ̂k ≥ η0, then set xk+1 = x̂k.

- Unsuccessful step: Otherwise, set xk+1 = xk.

Increment k by one, and go to Step 1.

End of algorithm

Conn et al. established global convergence of the algorithm described in [8] under suitable assump-
tions, in which he assumed that the objective function f was bounded below and twice continuously
differentiable and others. In the proof, ‖∇f(xk)‖ converges to zero as long as the trust-region radius
∆k converges to zero. Due to the fact, ∆k ≤ ε∆ with a small positive constant ε∆ is employed as the
termination criterion.

Conn and Toint claim that the model-based algorithm is robust for small errors in objective
function from numerical results in [5, 7], in which the errors was generated in uniformly random
number. However, to our knowledge, there exists no algorithm that controls the accuracy of function
evaluation in the culculation.

2.3 Support Vector Regression

In this subsection, we introduce Support Vector Regression (SVR) that is one of the methods con-
structing a quadratic model function of f from sample sets. We assume that the sample set Ŝ is
given as (2.1), which is composed of sample points X and corresponding objective function values
{y1, . . . , yl}.

We consider linear ε-insensitive loss function as follows:

|y −m(x)|ε := max(0, |y −m(x)| − ε). (2.10)

As in Figure 1, the linear ε-insensitive loss function linearly penalizes the residual between the model
function value m(x) and true function value y by more than ε. As in Section 2.1, a quadratic model
function can be written as m(x) = w>φ(x) where w ∈ RN is a coefficient vector and φ is defined

8

Figure 1: Linear ε-insensitive loss function

by (2.2). Then, the problem of finding the model function m which minimize the sum of linear
ε-insensitive loss function values at all sample points can be formulated as

minimize
w∈RN

1
2
‖w‖2 + C

l∑

i=1

|w>φ(xi)− yi|ε, (2.11)

where ε and C are positive parameters decided respectively according to the character of sample points
and regression purpose (See Figure 2). The method obtaining a regression function m by solving

Figure 2: Image of SVR

the minimization problem (2.11) is called Support Vector Regression (SVR). By introducing the
artificial variables ξ+, ξ− ∈ Rl, the problem (2.11) can be reformulated into the following quadratic
programming problem.

9

¶ ³

minimize
w,‰+,‰−

1
2
‖w‖2 + C

l∑

i=1

(ξ+
i + ξ−i),

subject to yi −w>φ(xi) ≤ ε + ξ+
i , (2.12)

w>φ(xi)− yi ≤ ε + ξ−i ,

ξ+
i , ξ−i ≥ 0, i = 1, . . . , l.

µ ´
Moreover, the dual problem of (2.12) is written as follows [13]．
¶ ³

minimize
¸+,¸−

1
2

(
α+

α−

)>(
K −K
−K K

)(
α+

α−

)
+

(
ε1− y
ε1 + y

)>(
α+

α−

)
, (2.13)

subject to 0 ≤ α+,α− ≤ C1,

µ ´
where, y := (y1, . . . , yl)> ∈ Rl, 1 = (1, . . . , 1)> ∈ Rl, K = PP>, and

P :=




φ(x1)>
...

φ(xl)>


 ∈ Rl×N .

Since the dual problem (2.13) is also quadratic programming, it can be solved by some existing
solver. Let α̂+, α̂− be the solution of the problem (2.13), then the coefficients of the quadratic model
function m is given as w∗ = P>(α̂+ − α̂−) [13].

At end of this subsection, we note the relation among SVR, least squares regression, and ridge
regression. There also exists quadratic SVR that minimizes the sum of the quadratic ε-insensitive
loss function, 1

2‖w‖2 +C
∑l

i=1{(ξ+
i)2 +(ξ−i)2}, at all sample points. When ε = 0, the quadratic SVR

is equivalent to ridge regression. Furthermore, when C = ∞, it reduced to least squares regression.

3 Derivative-Free Optimization with Controllable Error

In this section, we propose a derivative-free trust-region algorithm for the problem (1.1) in the situ-
ation of (S1)—(S3).

To express the situation of (S1) and (S2) mathematically, we assume that for given a point x ∈ Rn

and an accuracy ε of the function evaluation, we can obtain estimation value fε(x) of the objective
value such that

f(x)− ε ≤ fε(x) ≤ f(x) + ε. (3.1)

Under (S3), the time and the accuracy of function evaluation are in the relation of the trade-off. In
that case, it would be reasonable to set the accuracy to be low at a point far from a solution, and
to set it to be high at a point in the neighborhood of a solution. Based on this idea, we propose a
derivative-free trust-region algorithm that updates the accuracy of objective function evaluation at
each iteration. For this purpose, the following two techniques must be developed.

1. Construction of the model function exploiting the pointwise accuracies.

10

2. Control of the accuracy of the evaluated objective function value.

In the following two subsections, we consider the two issues.

3.1 Construction of a Quadratic Model from Sample Points with Pointwise Errors
by SVR

In order to exploit different accuracies of each sample points, we construct a quadratic model function
by the SVR.

(a) Evaluation of function values (b) Support Vector Regression with various errors

Figure 3: Image of PSVR

Now, the sample points set X = {x1, . . . ,xl} is given. Moreover, we assume that the evaluated
objective values fεi(xi) are calculated with the accuracy εi for all xi ∈ X (Figure 3 (a)).

f(xi)− εi ≤ fεi(xi) ≤ f(xi) + εi, i = 1, . . . , l, (3.2)

Since the inequalities (3.2) can be written as

fεi(xi)− εi ≤ f(xi) ≤ fεi(xi) + εi, i = 1, . . . , l, (3.3)

we may see that the true objective values f(xi) lie in [fεi(xi)− εi, fεi(xi)+ εi]. Therefore, we impose
the condition (3.3) on the model function m, that is,

fεi(xi)− εi ≤ m(xi) ≤ fεi(xi) + εi, i = 1, . . . , l. (3.4)

As the idea of SVR (2.11), we consider the regression problem which minimizes the linear εi-insensitive
loss function for each sample xi. The problem is formulated as follows.

minimize
w∈RN

1
2
‖w‖2 +

l∑

i=1

Ci|w>φ(xi)− yi|εi ,

where | · |ε is the linear ε-insensitive loss function defined by (2.10), and yi := fεi(xi), i = 1, . . . , l.
Note that the Ci and εi are distinct for each i = 1, . . . , l while C and ε are same for i in the original
SVR (2.11)

11

As the discussion in section 2.3, this problem can be reformulated as follows.¶ ³

minimize
w,‰+,‰−

1
2
‖w‖2 +

l∑

i=1

Ci(ξ+
i + ξ−i),

subject to yi −w>φ(xi) ≤ εi + ξ+
i , (3.5)

w>φ(xi)− yi ≤ εi + ξ−i ,

ξ+
i , ξ−i ≥ 0, i = 1, . . . , l.

µ ´
Here Ci ≥ 0, i = 1, . . . , l are the penalty parameters corresponding to the constraints (3.4) of sample
points. For some index i, the bigger penalty parameter Ci makes the constraints (3.4) for i the more
satisfied. Thus, by adjusting the values of Ci, we can weight a high-accuracy sample more than
low-accuracy sample in the problem (3.5). Furthermore, we may also weight samples that lie in the
trust region more than ones which lies outside it. One of concrete settings for Ci is given in Section
3.3.

As the discussion in Section 2.3, the dual problem of (3.5) is written as follows.
¶ ³

minimize
¸+,¸−

1
2

(
α+

α−

)>(
K −K
−K K

)(
α+

α−

)
+

(
ε− y
ε + y

)>(
α+

α−

)
, (3.6)

subject to 0 ≤ α+,α− ≤ C,

µ ´
where C := (C1, . . . , Cl)> ∈ Rl and ε := (ε1, . . . , εl)> ∈ Rl, K = PP>, and

P =




φ(x1)>
...

φ(xl)>


 ∈ Rl×N .

Since the dual problem (3.6) is a quadratic programming, we can obtain its solution (α̂+, α̂−) by
using some existing solver. With this solution, the quadratic model function of the objective function
is determined as follows:

w∗ = P>(α̂+ − α̂−),

m(x) = (w∗)>φ(x)

From the above discussion, we see that not only (xi, yi), i = 1, . . . , l but also the accuracy εi and
the penalty parameters Ci, i = 1, . . . , l are important to construct the quadratic model function m.
Hence, the sample set S used in the proposed algorithm is composed of four factors: “ sample point
”, “ objective value ”, “ accuracy ” and “ penalty parameter”.

S := {(x1, y1, ε1, C1), . . . , (xl, yl, εl, Cl)} .

3.2 Control of Errors

In this subsection, we consider how to control the accuracy for reducing the total computation time
of the algorithm. As mentioned in introduction, we want the accuracy to be low for a point far from

12

a solution and to be high for a point near the solution. Since the derivative of f is not available,
we cannot measure the distance between a point x and a solution by ‖∇f(x)‖. Conn et al. showed
that ‖∇f(x)‖ → 0 and ∆k → 0 as k →∞ when xk is generated by their derivative-free trust-region
algorithm with exact function evaluations. This fact indicates that we may use the trust-region radius
∆k for the measure. So we control εk → 0 as ∆k → 0. However, how fast do we make εk reduced
when ∆k goes to zero?

Now, we give the answer. Let x0 denote the solution of the trust-region subproblem (2.9). Suppose
that x0 is a stationary point of the model m, that is, ∇m(x0) = 0, and that there exist n + 1 sample
points x0,x1, . . . ,xn in the trust region with radius ∆k. Let ε denote the largest accuracies of the
samples in the trust region, i.e., ε = maxi∈{0,...,n} εi. Then, under some assumptions Theorem A.1 in
Appendix A shows that there exist constants M1 > 0, M2 > 0 such that

‖∇f(x0)‖ ≤ M1∆k + M2(ε/∆k). (3.7)

Suppose that ε is large enough compared to ∆k. Then, (3.7) does not guarantee that x0 is a stationary
point, even if ∆k → 0. Contrary, suppose that ε = o(∆k). Then, if ∆k is small enough, then ‖∇f(x0)‖
is also small enough from (3.7). Hence, we may suppose that x0 is a stationary point when ∆k is
small. From the above discussion, we recommend that εk is set to be o(∆k). We consider concrete
control method of εk by numerical experiments in Section 4.

3.3 Derivative-Free Trust-Region algorithm with Controlling Errors

We propose the following algorithm DFTR-CE.

Algorithm DFTR-CE

Step 0: Initialization.
Set the trust-region parameters η0, η1, γdec, γinc such that

0 < η0 ≤ η1 < 1, and 0 < γdec < 1 ≤ γinc.

Set an initial accuracy ε0 and an initial penalty parameter C0. Set an upper bound Nu for
the number of sample set. Choose an initial sample set S and sample point set X. Determine
x0 ∈ X such that x0 = arg minxi∈X fε0(xi). Choose an initial trust-region radius ∆0 > 0. Set
k = 0.

Step 1: Construction of the quadratic model with pointwise errors by SVR.
Using the sample set S, build the model mk by solving the dual problem (3.6). If

max
{‖∇mk(xk)‖,−λmin(∇2mk(xk))

}
< εm, (3.8)

then set ρk = −1 and go to step 5.

Step 2: Minimization of the model within the trust-region.
Compute the point xk∗ such that

xk∗ = arg min
xk∈Bk

mk(x).

Evaluate yk∗ := fεk∗ (xk∗) with accuracy εk∗ := εk.

13

Step 3: Evaluation of the quality of the current model.
Compute the ratio

ρk :=
yk − yk∗

mk(xk)−mk(xk∗)
.

Step 4: Update of the trust-region radius.

- Successful step: If ρk ≥ η1, then set ∆k+1 = γinc∆k.

- Unsuccessful step: If ρk < η0, then set ∆k+1 = γdec∆k.

- Otherwise, set ∆k+1 = ∆k.

Step 5: Adjustment of the accuracy εk and the penalty parameter Ck.
Update the parameters εk and Ck by

εk+1 = o(∆k),

Ck+1 = C0/εk+1.

Step 6: Update of the current iterate.
Set the next iterate xk+1 = x̃, where ̃ = arg minj∈{1,...,l}∪{k∗}(yj + εj).

Step7: Update of the sample set.

• If |S| < Nu, then insert (xk∗ , yk∗ , εk∗ , Ck) in S, otherwise if yı̃ + εı̃ ≥ yk∗ + εk, insert the
sample of xk∗ and remove the ı̃ th sample, where ı̃ := argi∈{1,...,l}\{k}max(yi + εi).

• If the the number of sample points in the new trust region is less than n + 1, remove the
sample point which is the farest from the current point xk+1 and generate new sample in
the new trust region until there are at least n + 1 points in the trust region.

• Set the penalty patameters Ci corresponding to the points xi such that ‖xi−xk+1‖ > ∆k+1

to,

Ci = 10−
‖xi−xk‖

∆k C0.

Increment k by one and go to step 1.

End of algorithm.

We explain the details of the algorithm DFTR-CE.
In Step 1, if (3.8) hold, then the current model function is almost a constant function. When the

model function is constant for all x ∈ Rn, its gradient equals zero. In that case, if ∆k is sufficiently
small, then the current iterate xk can be considered to be a solution of the problem. Otherwise the
trust-region radius is reduced and the sample set is reconstructed in the resulted trust region.

In Step 5, the penalty parameter Ck is set to be C0/εk so that penalty parameter becomes the
larger for the higher accurate sample. As a result, the constraint (3.4) of SVR tends to be satisfied
for a high accurate sample. Of course, we may use another update method of setting Ck.

14

In Step 6, the current point is updated taking into account both estimation yi and accuracy εi.

Note that after the current iterate and the trust-region radius is updated, the sample set is updated
in Step 7.

The first update in Step 7 is insertion of the solution xk∗ of the trust-region subproblem to the
sample set. In the case of interpolation, the number of the sample set l must be equal to the number
N of the coefficients of the quadratic model function. On the other hand, in the case that the model
function is constructed via regression, l may be larger than N . Therefore, if possible, we add xk∗ to
the sample set S in order to use the information on the objective function obtained by the algorithm.
However, the more the number of the elements of S increases, the larger dual problem (3.6) becomes.
Then, it becomes harder to solve the problem (3.6). From the viewpoint of applications, it is natural
to set some upper bound for the number of the sample set. According to this, we set the bound Nu

depending on the dimension n of the variable. We add the trial sample (xk∗ , yk∗ , εk, Ck) to the sample
set S when the number of the sample l is less than Nu. When l = Nu, a bad point in the sample set
S is removed and the trial sample is added to S. For example, in Step 7, the sample with the largest
evaluation value

ı̃ := argi∈{1,...,l}\{k}max(yi + εi),

is removed if its value yı̃ + εı̃ is larger than that of the trial point yk∗ + εk. In addition, we replace
the sample which is the furthest from xk+1 with the trial sample. Of course, it may be effective to
replace them using the property of the matrix Φ(X̂) defined in Section 2.1 in order to improve the
quality of the model function, which is not included in Algorithm DFTR-CE.

The second update in Step 7 is done for improving the quality of the model function at next
iteration. When the trust-region radius is reduced, some sample points may lie outside the new trust
region. It indicates that the number of the samples within the neighborhood of xk+1 becomes small.
Then, the quality of the model function around xk+1 might deteriorate. For this reason, the sample
set is updated so that there exist at least n + 1 sample points in the new trust region. If there does
not exist at least n + 1 sample points in the trust region updated in Step 4, a new sample point is
created in the trust region, and the function value at the point is evaluated with the accuracy εk+1.
After this operation, the number of the sample set may becomes larger than Nu. Then, the sample
which is the furthest from xk+1 is removed. We repeat these operations until n + 1 sample points
exist in the new trust region.

When the number of the sample is larger than N , the samples which are far away from xk+1 may
deteriorate the quality of the model function within the trust region. Thus, we consider reducing the
penalty parameters of the sample points which are outside of the trust region to reduce the weight of
the samples. In third update of Step 7, we reduce Ci for a sample point xi outside of the trust region
as follows:

Ci := 10−
‖xi−xk+1‖

∆k C0.

Of course, a variety of update types can be thought additionally.

In this paper, we concentrate on the unconstrained optimization problem (1.1). We note that the
proposed algorithm DFTR-CE can be applied to the easy constrained problem such as box-constrained

15

optimization problem.

minimize f(x),

subject to x ∈ F ⊆ Rn,

where F := {x ∈ Rn | li ≤ xi ≤ ui, i = 1, . . . , n} with li < ui, i = 1, . . . , n. For this problem, as in
[6], we can construct an algorithm just replacing the trust-region subproblem in Step 2 by

xk∗ = arg min
xk∈Bk∩F

mk(x).

4 Numerical Experiences

In this section, we show some numerical experiences with the algorithm DFTR-CE. The algorithm
is coded by MATLAB 7.0 and run on a machine with 3.20GHz CPU and 2G memory. First, the
influences of the settings of the parameters in the algorithm were examined with several problems
chosen from CUTEr [1]. Furthermore, we examined the performance of the algorithm into the financial
problem in which the implied volatility was estimated.

In the following, we explain the details of the algorithm DFTR-CE we implemented.

Settings for trust-region method We set the trust-region parameters as

η0 = 0.1, η1 = 0.75, γdec = 0.5, γinc = 2.0, ∆0 = 1.0.

Since we suppose that an objective function evaluation is very costly, we adapt the exact method (see
[19], pp. 81, Algorithm. 4.4) for solving the trust-region subproblem (2.9).

How to create the initial sample set As for the creation of initial sample set in Step 0, we
generated n samples randomly within the initial trust-region centered at initial point x0, and we set
these sample points as an initial sample set.

Improvement of the sample set for the next iterate In Step 7, we have to generate a new
sample point in the trust region. In the experiments, we randomly generated a point in the trust
region.

4.1 Numerical Results for CUTEr

We assume the situation of (S1)—(S3). However, in fact, it takes a great amount of time to test the
performance of the algorithm into such problems. From this reason, first, we examined the algorithm
into several problems from CUTEr collection. In the problems of CUTEr, an objective function value
f(x) is accurately calculated at every point x ∈ Rn. Therefore, for given accuracy ε, generating the
uniformly random number e in [−ε, ε] or the Gaussian random number e with N(0, ε/1.96), we added
it to the true function value f(x) in order to simulate inaccurate evaluation of fε(x) = f(x) + e.
Note that the probability that the Gaussian random number with N(0, ε/1.96) falls in [−ε, ε] is 95
%. Since we use random number for generating some sample points, we report the average results
taken over 10 runs.

16

The time of evaluation of objective functions in CUTEr is extent that can be almost disregarded.
To suppose the situation of (S3), we assume that the time of the objective function evaluation guar-
anteeing the accuracy ε is g(ε). For instance, g(ε) = O(1/ε2) in the Monte Carlo simulation. The time
required to evaluate an objective value is much larger than that of other operation of the algorithm
for the problem we consider. Hence, we define the following “Total time os Function Evaluations
(TFE)” as the evaluation scale of the algorithm of the total computation time.

TFE :=
N∑

i=1

g(εi),

where N is the total number of the function evaluations the algorithm performed, and εi, i = 1, . . . ,N
are the accuracies for each function evaluation.

Table 1 lists the CUTEr problems used in the numerical experiments. For the reference of the
problems of CUTEr and its characters, we also give the numerical results examined by Conn et al.
[6, 7] in Table 1. Note that in [6, 7] the error is always given by the uniformly random error in
[−10−3, 10−3].

Table 1: Numerical results in [6, 7]

Problem # N f. val.
name var. DFO[6] SVM[7] DFO SVM
SISSER 2 27 32 7.33e-04 -5.48e-04
CLIFF 2 38 77 2.00e-01 1.99e-01
ROSENBR 2 95 99 -6.19e-04 3.49e-03
HAIRY 2 53 46 1.99e+01 1.99e+01
GROWTHLS 3 155 35 1.23e+01 2.93e+03
GULF 3 52 33 6.81e+00 6.76e+00
PFIT1LS 3 210 98 4.47e-03 6.12e-02
BROWNDEN 4 113 87 8.57e+04 8.59e+04
HART6 6 134 60 -3.32e+00 -3.14e+00
MANCINO 10 211 104 -5.19e-04 2.54e-03
POWER 10 251 179 2.27e-02 6.91e-03
MOREBV 10 167 34 1.34e-02 1.57e-02
BRYBND 10 394 156 3.53e-03 1.52e-02

4.1.1 Experiment on the influence of the computation time of function evaluation g(ε)

We examine the relation between the total computation time of the proposed algorithm and the time
of the function evaluations g(ε). We consider the following three cases.

(i) g(ε) = 1/
√

ε: The increase rate at computation time is calm as the accuracy is raised.

(ii) g(ε) = 1/ε: The computation time is in inverse proportion to the height of the accuracy (corre-
sponding to a quasi-Monte Carlo method).

(iii) g(ε) = 1/ε2: The computation time is in inverse proportion to the square fo the height of
accuracy (corresponding to a Monte Carlo method).

17

We updated the accuracy by εk = 0.5∆2
k. The upper bound of the number of the sample is set

to Nu = 2N , where N is the number of the coefficients of n-dimensional quadratic function. The
termination criterion is given as ∆k < 10−3. Table 2 reports the TFE required for each (i)—(iii).

Table 2: Numerical results for various g with uniform random error

PROBLEM TFE
name g(ε) = 1/

√
ε g(ε) = 1/ε g(ε) = 1/ε2 N f. val.

SISSER 2.46e+04 (19.2) 1.62e+07 (9.9) 1.81e+13 (6.7) 133 2.22e-06
CLIFF 3.08e+03 (4.0) 1.15e+06 (2.0) 4.07e+11 (1.2) 36 2.02e-01
ROSENBR 5.50e+04 (76.0) 1.64e+07 (31.3) 3.23e+12 (11.7) 315 2.69e-01
HAIRY 7.35e+03 (8.4) 3.22e+06 (4.2) 1.42e+12 (2.4) 54 2.00e+01
GROWTHLS 5.44e+03 (6.9) 2.97e+06 (4.8) 1.58e+12 (4.1) 39 1.45e+03
GULF 1.04e+04 (14.4) 5.82e+06 (11.1) 2.60e+12 (9.5) 47 6.56e+00
PFIT1LS 7.35e+03 (10.4) 4.12e+06 (8.2) 1.84e+12 (7.3) 49 6.87e-01
BROWNDEN 1.81e+04 (14.9) 7.34e+06 (5.0) 7.28e+12 (3.3) 620 8.60e+04
HART6 1.98e+04 (27.3) 9.83e+06 (18.7) 4.32e+12 (15.7) 153 -3.32e+00
MANCINO 2.66e+04 (36.7) 7.48e+06 (14.3) 1.93e+12 (7.0) 255 5.42e-01
POWER 1.08e+05 (97.8) 6.89e+07 (56.5) 5.45e+13 (36.6) 468 4.71e-05
MOREBV 1.38e+05 (190.2) 7.57e+07 (144.4) 3.31e+13 (120.3) 373 4.94e-03
BRYBND 6.59e+04 (91.0) 3.13e+07 (59.7) 1.22e+13 (44.4) 336 1.65e-01

Numbers in the brackets shows TFE/g(ε∗), where ε∗ is the highest accuracy of all accuracies of the
function evaluations the algorithm performed. That is, TFE/g(ε∗) corresponds to the number of the
function evaluations with the highest accuracy ε∗. “f. val.” in the table denotes the minimum values
obtained by the algorithm. N gives the total number of the function evaluations of the algorithm.

Table 2 shows that TFE increases as the time of a function evaluation increases. On the other
hand, TFE/g(ε∗) does not change so much. This is because it hardly takes time at the early stage of
the algorithm and because it takes much time to evaluate highly accurate function value around the
neighborhood of a solution. We also see that the proposed algorithm is equally effective for (i)–(iii)
from the view point of TFE/g(ε∗). Thus, TFE was evaluated with g(ε) = 1/ε only in the following
experiments to CUTEr.

4.1.2 Experiment on the influence of the algorithmic parameters

The performance of the algorithm DFTR-CE depends on the following two matters:

• An upper bound of the number of the sample Nu

• Update of the accuracy

We seek suitable settings for these two things via experiments for CUTEr.

Experiments on upper bound Nu First, we examined in the three settings of Nu as N, 2N, 3N .
The termination criterion was set to ∆k < 10−3. The accuracy was updated as εk = min(0.5∆2

k, 0.1).
Tables 3 and 4 report the results for the uniformly random number and the Gaussian random number
respectively. “f. val.” of these tables gives the minimum values obtained by the algorithm. The

18

shadowed number *.**e+** means “f. val.” is relatively large compared with those of other settings.

Table 3: Numerical results for various Nu with uniform random errror

Nu = N Nu = 2N Nu = 3N
PROBLEM N TFE f. val. N TFE f. val. N TFE f. val.
SISSER 53 4.92e+06 6.54e-06 64 8.15e+06 -5.75e-08 60 7.66e+06 4.78e-06
CLIFF 34 2.92e+06 2.01e-01 32 3.33e+06 2.01e-01 33 3.12e+06 2.01e-01
ROSENBR 306 3.84e+07 1.49e-01 268 3.10e+07 1.40e-01 250 3.67e+07 5.76e-01
HAIRY 82 7.68e+06 6.82e+01 56 5.37e+06 2.00e+01 91 7.42e+06 2.00e+01
GROWTHLS 52 6.24e+06 1.71e+03 48 8.32e+06 1.35e+03 50 5.99e+06 1.69e+03
GULF 52 7.46e+06 6.56e+00 49 7.16e+06 5.93e+00 50 6.54e+06 6.56e+00
PFIT1LS 44 5.56e+06 7.92e-01 47 7.69e+06 3.86e-01 44 4.22e+06 2.65e-01
BROWNDEN 517 5.85e+06 8.62e+04 509 6.78e+06 8.64e+04 552 6.63e+06 8.62e+04
HART6 146 1.50e+07 -3.30e+00 126 9.47e+06 -3.32e+00 118 8.30e+06 -3.32e+00
MANCINO 201 3.44e+07 2.88e-01 296 3.67e+07 4.97e-02 225 3.29e+07 3.88e-01
POWER 444 5.31e+07 2.92e-05 415 4.61e+07 4.20e-05 457 5.69e+07 4.14e-05
MOREBV 329 5.61e+07 4.51e-03 340 5.96e+07 4.83e-03 339 5.83e+07 4.75e-03
BRYBND 383 5.12e+07 1.88e-01 534 8.16e+07 6.93e-02 394 4.55e+07 1.84e-01

Table 4: Numerical results for various Nu with normal distribution error

Nu = N Nu = 2N Nu = 3N
PROBLEM N TFE f. val. N TFE f. val. N TFE f. val.
SISSER 43 3.98e+06 -1.71e-02 52 4.58e+06 -9.82e-05 45 3.50e+06 -2.06e-02
CLIFF 36 4.04e+06 2.01e-01 32 3.64e+06 2.01e-01 35 4.38e+06 2.01e-01
ROSENBR 269 4.19e+07 1.25e+00 230 3.44e+07 1.52e-01 244 4.07e+07 6.08e-01
HAIRY 121 7.77e+06 2.00e+01 118 7.34e+06 2.00e+01 78 4.52e+06 2.00e+01
GROWTHLS 50 5.50e+06 2.13e+03 48 5.11e+06 1.41e+03 54 9.70e+06 1.96e+03
GULF 62 1.09e+07 6.59e+00 90 2.22e+07 6.28e+00 50 1.02e+07 6.55e+00
PFIT1LS 72 2.23e+07 7.94e-01 48 6.38e+06 4.59e-01 50 7.28e+06 1.11e+00
BROWNDEN 532 5.75e+06 8.62e+04 519 5.44e+06 8.63e+04 536 6.09e+06 8.63e+04
HART6 125 1.18e+07 -3.32e+00 135 1.46e+07 -3.32e+00 172 1.83e+07 -3.25e+00
MANCINO 224 2.76e+07 4.13e-01 264 5.65e+07 6.38e-02 236 3.15e+07 2.65e-01
POWER 354 2.50e+07 8.78e-04 400 4.54e+07 3.63e-05 387 3.94e+07 -1.02e-03
MOREBV 325 5.40e+07 5.30e-03 286 3.52e+07 6.00e-03 318 4.95e+07 -9.91e-04
BRYBND 436 6.84e+07 1.61e-01 380 7.56e+07 4.50e-02 452 8.00e+07 1.85e-01

Tables 3 and 4 show that there is no big difference on the number of the function evaluations
N and the time evaluation scale TFE. Therefore, we focus on “f. val.”. The setting Nu = N is
not so good in the 4 problems HAIRY and MANCINO in Table 3, and ROSENBR, MANCINO in
Table 4. This is because N samples is too few to construct the objective function well for the ill-
conditioned problems. Similarly, the setting Nu = 3N is not so good in 5 problems. This is because
there exist many samples outside of the trust region so that they negatively affect the quality of the
model function in the trust region. On the other hand, the setting Nu = 2N never greatly compares
unfavorably in all problems compared with others. This numerical experiment recommends that the

19

upper bound Nu should be set to 2N .

Experiment on the control εk Next, it experimented concerning the adjusting of accuracy εk of
the function evaluation in each iteration. The termination criterion was set to ∆k < 10−3. The upper
bound of the number of the sample was set to Nu = 2N . We examined in the following 3 cases as
adjusting methods satisfying εk = o(∆k):

(Update 1) εk = min(∆2
k, 0.1)

(Update 2) εk = min(0.5∆2
k, 0.1)

(Update 3) εk = min(∆1.1
k , 0.1)

Tables 5 and 6 report the results for the uniformly random number and the Gaussian random number
respectively.

Table 5: Numerical results for various updating of εk with uniform random error

εk = min(∆2
k, 0.1) εk = min(0.5∆2

k, 0.1) εk = min(∆1.1
k , 0.1)

PROBLEM N TFE f. val. N TFE f. val. N TFE f. val.
SISSER 44 1.85e+06 2.24e-05 50 5.40e+06 7.60e-06 31 6.84e+03 1.96e-03
CLIFF 36 1.80e+06 2.01e-01 35 5.10e+06 2.01e-01 32 5.76e+03 2.00e-01
ROSENBR 250 2.35e+07 9.97e-01 204 1.79e+07 6.17e-01 136 3.29e+04 2.31e+00
HAIRY 83 4.02e+06 2.00e+01 120 1.02e+07 2.00e+01 85 1.51e+04 2.00e+01
GROWTHLS 52 2.63e+06 1.52e+03 54 4.56e+06 2.00e+03 79 1.91e+04 1.74e+03
GULF 66 7.42e+06 6.61e+00 56 8.13e+06 6.59e+00 40 6.90e+03 6.65e+00
PFIT1LS 65 4.69e+06 1.48e+00 51 1.05e+07 3.03e-01 43 7.82e+03 5.25e-01
BROWNDEN 492 3.27e+06 8.93e+04 454 5.84e+06 8.64e+04 586 3.99e+04 8.58e+04
HART6 151 5.65e+06 -3.32e+00 121 8.79e+06 -3.32e+00 124 1.91e+04 -3.06e+00
MANCINO 240 2.25e+07 1.96e-01 206 2.42e+07 1.54e-01 239 6.77e+04 1.36e-01
POWER 423 2.31e+07 1.01e-04 405 5.35e+07 2.78e-05 231 3.65e+04 4.46e-02
MOREBV 350 2.77e+07 4.97e-03 259 3.63e+07 5.82e-03 79 1.33e+04 1.20e-02
BRYBND 432 3.10e+07 1.46e-01 405 7.38e+07 1.18e-01 441 1.31e+05 7.35e-02

20

Table 6: Numerical results for various updating of εk with normal distribution error

εk = min(∆2
k, 0.1) εk = min(0.5∆2

k, 0.1) εk = min(∆1.1
k , 0.1)

PROBLEM N TFE f. val. N TFE f. val. N TFE f. val.
SISSER 54 2.62e+06 -2.49e-02 50 3.62e+06 -7.37e-05 33 7.29e+03 -2.43e-03
CLIFF 34 1.67e+06 2.01e-01 32 2.75e+06 2.01e-01 36 6.59e+03 1.99e-01
ROSENBR 228 1.57e+07 6.25e-01 229 2.94e+07 1.29e-01 172 3.52e+04 1.18e+00
HAIRY 80 2.63e+06 2.00e+01 73 8.10e+06 2.00e+01 100 2.18e+04 2.34e+01
GROWTHLS 44 3.00e+06 2.09e+03 53 7.79e+06 2.11e+03 68 1.90e+04 1.83e+03
GULF 64 8.71e+06 6.58e+00 68 1.24e+07 6.57e+00 38 9.65e+03 6.61e+00
PFIT1LS 43 2.35e+06 1.04e+00 47 6.07e+06 3.93e-01 47 1.22e+04 9.50e+01
BROWNDEN 543 3.16e+06 8.61e+04 477 7.53e+06 8.65e+04 647 5.76e+04 8.58e+04
HART6 133 5.49e+06 -3.32e+00 124 9.15e+06 -3.31e+00 121 1.66e+04 -3.30e+00
MANCINO 228 2.07e+07 4.18e-01 231 3.06e+07 1.96e-01 230 6.64e+04 2.70e-01
POWER 360 1.54e+07 5.64e-04 372 3.91e+07 4.35e-04 236 2.83e+04 4.56e-02
MOREBV 317 2.87e+07 3.49e-04 308 4.71e+07 -4.74e-03 89 1.51e+04 -1.22e-03
BRYBND 402 2.35e+07 1.53e-01 426 6.11e+07 1.22e-01 485 1.62e+05 6.29e-02

From the tables, we see that Update 2 is better than Update 1 in the accuracy of the optimal
value, while there is not much difference between Update 1 and Update 2 in TFE. Update 3 is worse
than the others in the accuracy of the optimal value, while it is much faster than the others from the
view point of TFE. If the computation time is valued more than the accuracy of the optimal value,
it might be good to use Update 3. In contrast, if the accuracy of the optimal value is important, it
might be good to use Update 2.

4.1.3 Experiment on the comparison with constant accuracy

We examined the algorithmic performance by Update 2, comparing with the case in which the function
evaluation accuracy εk was fixed to a small value, that is, εk = 10−6 for all k. Note that this fixed
case corresponds to using existing derivative-free trust-region algorithms.

In the following, we set g as g(ε) = 10−6/ε in order to set g(10−1) = 1 for the fixed high accuracy.
The termination criterion was set to ∆k < 10−3. The upper bound of the number of the sample was
set to Nu = 2N . We give the result in Table 7

Table 7 shows that the proposed algorithm with updating εk takes smaller time to obtain the
same accuracy solution of the fixed version. In addition, TFE of the update version is 2 to 5 times of
the number of the problem’s variables for some problems such as SISSER, CLIFF, HAIRY, HART6
and BRYBND. For instance, in the problem CLIFF, TFE = 5.96 ≈ 3n = 6. This indicates that the
algorithm can obtain the solution of the problem by the time required for only 6 times evaluations of
the objective function with the accuracy 10−6.

21

Table 7: Numerical results for updating εk vs. fixed εk = 10−6 with uniform random error

εk =1e-06 εk = 0.5∆2
k

PROBLEM var. N TFE f. val. N TFE f. val.
SISSER 2 31 31.7 -5.69e-07 56 10.1 3.54e-06
CLIFF 2 30 30.9 2.01e-01 34 5.9 2.01e-01
ROSENBR 2 341 341.0 1.11e-01 273 37.8 3.24e-02
HAIRY 2 58 58.8 2.00e+01 155 7.5 2.00e+01
GROWTHLS 3 45 45.1 1.77e+03 41 5.8 1.41e+03
GULF 3 60 60.0 6.45e+00 306 14.7 5.70e+00
PFIT1LS 3 44 44.7 6.58e-01 59 7.5 2.79e-01
BROWNDEN 4 227 226.9 8.59e+04 461 13.3 8.61e+04
HART6 6 161 161.1 -3.32e+00 134 14.1 -3.32e+00
MANCINO 10 220 220.4 9.67e-02 188 18.5 1.12e-01
POWER 10 329 329.4 2.60e-06 420 79.9 6.12e-05
MOREBV 10 265 264.8 6.18e-03 298 64.2 3.36e-03
BRYBND 10 463 463.2 1.49e-01 262 28.3 1.09e-02

4.2 Numerical Results for Implied Valatility Estimation

In this subsection, we consider options traded in financial markets [12]. A put (call) option is the
contract right to sell (buy) a specified amount of asset (real or financial) at a fixed price on or before
a fixed date. The price of the option is called the option premium. The date on which the contract
expires is called the maturity. We aim to estimate the volatility of an asset and the risk-free rate
from the option price.

In option trading, it is important to estimate the volatility from the premium for measurement of
the validity of the premium. We formulate the estimation problem as the unconstrained minimization
problem (1.1). Let c : R2 → R and p : R2 → R denote the call and put option premium of the volatility
σ and the risk-free r rate, respectivery. Suppose that the call option premium c∗ and the put option
premium p∗ are given. Then, the problem that estimates the volatility and the risk-free rate from the
premium can be formulate as

minimize
σ∈R,r∈R

f(σ, r) := {c(σ, r)− c∗}2 + {p(σ, r)− p∗}2 ,

which is the least squared problem (1.1).
In numerical experiments, we consider the look-back option and the Asian option. A look-back

option is a path dependent option where the option owner has the right to buy (sell) the underlying
instrument at its lowest (highest) price over some preceding period. The Asian option is an option
where the payoff is not determined by the underlying price at maturity but by the average underlying
price over some pre-set period of time. However, it is impossible to calculate the premiums of the
look-back option and the Asian option in closed-form. In general, these premiums c(σ, r), p(σ, r) are
often evaluated via a Monte Carlo simulation. The Monte Carlo simulation determines the option
premium for a set of randomly generated economic scenarios [23]. The resulting sample set yields an
expectation value for the option. In Appendix B.1, we give the detail of the evaluation method of
these option premiums via the Monte Carlo simulation.

22

We consider a certain asset whose price process follows the geometric Brownian motion (B.1). We
suppose that the current price S(0) of the asset is 62 and the period T is 1/12.

Problem 1 For the underlying asset, the strike price Kc and the premium c∗B of the look-back
type maximum call option are given as 60 and 4.7085 respectively. Similarly, the strike price Kp and
the premium p∗B of the look-back type minimum put option are given as 64 and 4.1276 respectively.
Determine the volatility σ and risk-free rate r of the asset from the premiums. (The solution (r, σ)
of this problem is (0.1, 0.2).)

Problelm 2 For the underlying asset, the strike price Kc and the premium c∗B of the Asian type
call option are given as 60 and 2.3710 respectively. Similarly, the strike price Kp and the premium
p∗B of the Asian type put option are given as 64 and 1.9602 respectively. Determine the volatility σ

and risk-free rate r of the asset from the premiums. (The solution (r, σ) of this problem is (0.1, 0.2).)

Numerical results for Problems 1 and 2 We update the accuracy by εk = 0.5∆2
k and set the

accuracy of the option premium as (B.9). The upper bound of the number of the sample is set to
Nu = 2N . The termination criterion is given as ∆k < 10−3. Tables 8 and 9 report the numerical
results for Problems 1 and 2, respectively. In these tables, “NQ” denotes the total number of the
economic scenarios generated by the Monte Carlo simulation.

Table 8: Numerical result of problem 1.

algorithm r |σ| N Time [s] NQ [times] f. val.
proposed (εk = 0.5∆2

k) 0.0980 0.1999 40 3.99e+03 4.07e+08 6.20e-05
fixed (εk = 10−6) 0.1005 0.2004 28 6.24e+04 6.00e+09 5.58e-05

Table 8 shows that the proposed algorithm can solve the problem almost 15 times faster than the
fixed case. For Problem 1, the trial number of the Monte Carlo simulation required to evaluate an
objective value with the high accuracy: 1.00× 10−6, is (6.00× 109)/28 = 2.14× 108. Note that NQ
of the proposed algorithm is 4.07× 108, and (4.07× 108)/(2.14× 108) ≈ 1.9. This indicates that the
proposed algorithm find a solution in the time required for 1.9 times evaluation of an objective value
with the high accuracy 1.00× 10−6.

Table 9: Numerical result of problem 2.

algorithm r |σ| N Time [s] NQ [times] f. val.
proposed (εk = 0.5∆2

k) 0.1017 0.1968 40 2.41e+03 2.61e+08 2.02e-04
fixed (εk = 10−6) 0.0982 0.1983 32 4.00e+04 4.35e+09 5.20e-05

Table 9 shows that the proposed algorithm can solve the problem almost 16 times faster than the
fixed case. For Problem 2, the trial number of the Monte Carlo simulation required to evaluate an
objective value with the high accuracy: 1.00× 10−6, is (4.35× 109)/32 = 1.36× 108. Note that NQ
of the proposed algorithm is 2.61 × 108, and (2.61 × 108)/(1.36 × 108) ≈ 2. This indicates that the

23

proposed algorithm find a solution in the time required for 2 times evaluation of an objective value
with the high accuracy 1.00× 10−6.

5 Concluding Remarks

In this paper, we proposed the derivative-free trust-region algorithm for the problems with controllable
error in the objective function evaluation. To this end, we developed the method to construct the
model function by applying a SVR, and the control method of the accuracy. In Section 4, we have
applied the proposed algorithm to the several problems taken from CUTEr collection and the financial
problems estimating the implied volatility. The numerical experiments showed that the proposed
algorithm could find a reasonable solution much faster than the algorithm, in which the accuracy of
the function evaluation was maintained in high. In particular, for relatively easy small-scale problems,
the proposed algorithm can obtain optimal solutions with computational costs which amount to those
required for several times evaluations of an accurate function value.

This work has focused on development of the practical algorithm. It is certainly important to
describe a class of algorithms which has the global convergence property for the problem with con-
trollable error. We hope that this work contributes to future development of efficient algorithms and
establishment of the global convergence for the problem we consider.

Acknowledgements

The author wishes to express his sincerest thanks and appreciation to Associate Professor Nobuo
Yamashita for his kind guidance and direction in this study, invaluable discussions, constructive
criticisms in the writing of the manuscripts, extreme patience, and encouragement throughout the
course of this work. The author wishes to tender his acknowledgments to Professor Masao Fukushima
for his constructive comments and kind guidance. The author also wishes to express his thanks to
Assistant Professor Shunsuke Hayashi for his invaluable advice. The author greatly appreciates the
help of all members of System Optimization Laboratory. Finally, but not the least, precious thanks
are due to his family, for their strong support and an ectionate encouragement throughout the course
of this study.

References

[1] Bongartz, I., Conn, A. R., Gould, N. I. M. and Toint, Ph. L., CUTE: Constrained
and unconstrained testing environment, ACM Transactions on Mathematical Software, 21 pp.
123–160, 1995.

[2] Booker, A. J., Dennis, J. E., Frank, P. D., Serafini, D. B., Torczon, V., Trosset,

M. W., A rigorous framework for optimization of expensive functions by surrogates, Structural
and Multidisciplinary Optimization, 17 pp. 1–13, 1999.

[3] Colson, B, Marcotte, P and Savard, G., Bilevel programming: A survey, 4OR: A Quar-
terly Journal of Operations Research, 3 pp. 87–107, 2005.

[4] Conn, A. R., Gould, N. I. M., Toint, Ph. L., Trust-Region Methods, SIAM, Philadelphia,
2000.

24

[5] Conn, A. R., Toint, Ph. L., An algorithm using quadratic interpolation for unconstrained
derivative free optimization, Nonlinear Optimization and Applications, Plenum Publishing, pp.
27–47, New York, 1996.

[6] Conn, A. R., Scheinberg, K., and Toint, Ph. L., A derivative free optimization algorithm
in practice, the American Institute of Aeronautics and Astronautics Conference, St Louis, 1998.

[7] Conn, A. R., Scheinberg, K., and Toint, Ph. L., A derivative free optimization method
via support vector machines, 1999.
www.cas.mcmaster.ca/~oplab/seminar/conn/conn_deriv_free.ps

[8] Conn, A. R., Scheinberg, K., and Toint, Ph. L., On the convergence of derivative-free
methods for unconstrained optimization. Approximation Theory and Optimization, pp. 83–108,
Cambridge University Press, Cambridge, UK, 1997.

[9] Conn, A. R., Scheinberg, K., and Vicente, L. N., Geometry of interpolation sets in
derivative free optimization, Mathematical Programming, 111, pp. 141–172, 2008.

[10] Conn, A. R., Scheinberg, K., and Vicente, L. N., Geometry of sample sets in derivative
free optimization. part II: Polynomial regression and underdetermined interpolation, Preprint
05-15, Department of Mathematics, University of Coimbra, Portugal, 2005.

[11] Conn, A. R., Scheinberg, K., and Vicente, L. N., Global convergence of general derivative-
free trust-region algorithms to first and second order critical points, Preprint 06-49, Department
of Mathematics, University of Coimbra, 2006.

[12] Cox, C. and Rubinstein, M., Option Markets, Prentice-Hall, 1985.

[13] Cristianini, N. and Shawe-Taylor, J., An introduction to support vector machines and other
kernel-based methods, Cambridge University Press, Cambridge, UK, 2000.

[14] Dennis, J. E. and Torczon, V., Direct search methods on parallel machines, SIAM Journal
on Optimization, 1 pp. 448–474, 1991.

[15] Fisher, R. A., The Design of Experiments, Oliver and Boyd Ltd., 1951.

[16] Karasözen, B., Survey of trust-region derivative free optimization methods, Journal of Indus-
trial and Management Optimization, 3, pp. 321–334, 2007.

[17] Kolda, T. G., Lewis, R. M., Torzcon, V., Optimization by direct search: new perspectives
of some classical and modern methods, SIAM Review, 45 pp. 385–482, 2003.

[18] Nelder, J. A. and Mead, R., A simplex method for function minimization, Computer Journal,
7 pp. 308–313, 1965.

[19] Nocedal, J. and Wright, S. J., Numerical Optimization, Springer-Verlag, New York, USA,
1999.

[20] Powell, M. J. D., A direct search optimization method that models the objective and
constraint functions by linear interpolation, Advances in optimization and numerical analysis,
Kluwer Academic Publishers, 1994.

25

[21] Powell, M. J. D., Trust region methods that employ quadratic interpolation to the objective
function, Presentation at the 5th SIAM Conference on Optimization, 1996.

[22] Powell, M. J. D., UOBYQA: unconstrained optimization by quadratic approximation, Math-
ematical Programming, 92 pp. 555–582, 2002.

[23] Tilley, J. A., Valuing American options in a path simulation model, Transactions of the Society
of Actuaries, 45, pp. 83–104, 1993.

[24] Torczon, V., On the convergence of the multidirectional search algorithm, SIAM Journal on
Optimization, 1 pp. 123–145, 1991.

[25] Winfield, D., Function and functional optimization by interpolation in data tables, PhD thesis,
Harvard University, Cambridge, USA, 1969.

[26] Winfield, D., Functional minimization by interpolation in a data table, Journal of the Institute
of Mathematics and its Applications, 12 pp. 339–347, 1973.

26

A Error bound for the gradient

We give an error bound for the true derivative as follows.

Theorem A.1 Let x1, . . . ,xn ∈ Rn be belong to the ball B = {x ∈ Rn | ‖x − x0‖ ≤ ∆} with given
x0 ∈ Rn and ∆ > 0. Suppose that the following assumptions (i)–(iv) hold.

(i) The objective function f is continuously differentiable and ∇f is Lipschitz continuous with
Lipschitz constant Lf .

(ii) There exist function m and positive constant Λ such that

|f(x)−mk(x)| ≤ Λ(∆2
k + ε), ∀x ∈ B.

(iii) The gradient of the function ∇m is Lipschitz continuous with Lipschitz constant Lm.

(iv) xk∗ is a stationary point of the function m．

∇m(x0) = 0.

ε denotes the largest function evaluation accuracies corresponding to the sample points xi, i = 1, . . . , n

within the trust region.
Then, the following relation hold.

‖∇f(x0)‖ ≤
√

n(2Lf + 2Lm + Λ)‖D̂−1‖∆k +
√

n(3 + Λ)‖D̂−1‖ε/∆k

where D̂ is a matrix defined as

D̂ :=




(x1 − x0)>/∆k
...

(xn − x0)>/∆k


 ∈ Rn×n.

Proof. From the mean-value theorem, we have for all i = 1, . . . , n

|(xi − x0)>∇f(x0)| =
∣∣∣f(xi)− f(x0)−

∫ 1

0

(
∇f

(
x0 + t (xi − x0)

)−∇f(x0)
)>

(xi − x0)dt
∣∣∣

≤ |f(xi)− f(x0)|+ 1
2
Lf‖xi − x0‖2.

Since xi,x0 ∈ B, it then follows that

|(xi − x0)>∇f(x0)| ≤ |f(xi)− f(x0)|+ 2Lf∆2
k

≤ |fεi(xi)− fεk
(x0)|+ 2Lf∆2

k + 2ε.

From Assumption (ii) and (iv), we have that

|(xi − x0)>∇f(x0)| ≤ |mk(xi)−mk(x0)|+ (2Lf + Λ)∆2
k + (3 + Λ)ε

≤
∣∣∣∇mk(x0)>(xi − x0) +

∫ 1

0

(
∇mk

(
x0 + t (xi − x0)

)−∇mk(x0)
)>

(xi − x0)dt
∣∣∣

+ (2Lf + Λ)∆2
k + (3 + Λ)ε

≤ (2Lf + 2Lm + Λ)∆2
k + (3 + Λ)ε.

27

Then, it then follows from easy calculation on the properties of the matrix norms that

‖D̂∇f(x0)‖2 ≤
√

n‖D̂∇f(x0)‖∞
≤ √

n(2Lf + 2Lm + Λ)∆k +
√

n(3 + Λ)ε/∆k,

and hence

‖∇f(x0)‖ ≤
√

n(2Lf + 2Lm + Λ)‖D̂−1‖∆k +
√

n(3 + Λ)‖D̂−1‖ε/∆k,

which is the desired inequarity. 2

B Estimation of option premium and its estimation error

B.1 Estimation of the Option Premium via Monte Carlo Simulation

In finance, the price process of a certain financial asset such as a stock is represented by the stochastic
process. For instance, in the black-scholes model, which is famous in the option pricing theory, the
price process S(t) is supposed to follow the following Geometric Brownian Motion:

dS(t) = rS(t)dt + σS(t)dw(t), (B.1)

where r is the risk-free rate, σ is the implied volatility and dw(t) is the Brownian motion. A Monte
Carlo simulation determines the option premium for a set of randomly generated economic scenarios
following this stochastic process [23]. The resulting sample set yields an expectation value for the
option premium. To evaluate a path dependent option premium, it is necessary to generate data of
the underlying price for the period.

The price process is represented by the stochastic process (B.1), however, it is impossible to
generate continuous data on the computer. Then, we consider the discrete-time approximation of
this process. Let the current time be 0 and the maturity be T . We approximate the process with ν

capitation of the time interval [0, T] as follows:

dt ∼= ∆t = T/ν,

dS(t) ∼= ∆St = St+∆t − St, (B.2)

dz(t) ∼= w
√

∆t,

w ∼ N(0, 1).

Then, the continuous time model (B.1) can be written as

∆St = νSt∆t + σStw
√

∆t

so that using (B.2) we obtain the following recurrence relations:

St+1 = (1 + ν∆t)St + σStw
√

∆t. (B.3)

The approximation accuracy of the expression (B.3) to (B.1) becomes higher as ν is increasing.
However, the cost of the simulation is also increasing as do so. A Monte Carlo simulation generates
the data sequence of the underlying prices {S0, . . . , Sν} according to the recurrence relation (B.3) and
calculate the option premium from the sequence.

28

For instance, because the strike price of Asian option is based on the average of the price process
in the period, the gain of Asian-type call option for the sequence {S0, . . . , Sν} is calculated as

cA(ν, σ) = max

⌊
1

ν + 1

ν∑

t=0

{St} −K, 0

⌋
.

Similarly, the gain of Asian-type put option is calculated as

pA(ν, σ) = max

⌊
K − 1

ν + 1

ν∑

t=0

{St}, 0
⌋

.

In addition, the gains of look-back type call and put options are calculated as

cL(ν, σ) = max
⌊

max
0≤t≤ν

{St} −K, 0
⌋

and

pL(ν, σ) = max
⌊
K − min

0≤t≤ν
{St}, 0

⌋
,

respectively.
The Monte Carlo simulation determines the expected value of the option premium by repeating

the operations described above. The error of the evaluated option premium is dependent on the
number of the trial number q of the Monte Carlo simulation. When the accuracy of the option
premium εo is given, we set the trial number q as follows.

The error eo of the evaluated value by the Monte Carlo simulation follows the Gaussian distribution
N(0, s), and trial number q and the standard deviation s have the relation: s = O(1/

√
q) [23]. From

this fact, when we set s = εo/1.96, the probability that the error eo falls in the interval [−εo, εo]
becomes 95 %. Now, we suppose that the standard deviation s can be represented as s = a/

√
q + b

with some constants a, b ∈ R. Then, the trial number q is written as q = a2/s2 − b. Hence, when the
accuracy εo of the option premium is given, we set the trial number q as follows:

q =
(1.96a)2

ε2o
− b. (B.4)

The constants a and b are estimated by pri-ori numerical experiments. For examples, a, b for Problem
1 and 2 in Section 4.2 are estimated as Table 10.

Table 10: Setting for a and b

OPTION a b

Look back option 159.7067 2.3560
Asian option 50.5936 1.7687

B.2 Relation between the accuracy and the trial number of Monte Carlo simu-
lation

We explain how to set the accuracy εo of the option premium obtained by a Monte Carlo simulation
for given accuracy ε of the objective function evaluation.

29

In numerical experience of section 4.2, we consider the following problem which estimates implied
volatility σ and the risk-free rate r from given option premiums.

f(σ, r) := {c(σ, r)− c∗}2 + {p(σ, r)− p∗}2 ,

Now, let us denote the true call abd put option premiums with (σ, r) by p and c, respectively, and
denote the errors of the evaluated option premiums c(σ, r), p(σ, r) by ec, ep respectively. Then, we
have that

fε(σ, r) = (p(σ, r) + ep − p∗)2 + (c(σ, r) + ec − c∗)2 = (p− p∗)2 + (c− c∗)2 + e2
p + e2

c + ep(p− p∗) + ec(c− c∗)

f(σ, r) + e2
p + e2

c + ep(p− p∗) + ec(c− c∗).

Thus, the error e of the evaluated objective value is

e = e2
p + e2

c + ep(p− p∗) + ec(c− c∗).

In order to satisfy the relation ε ≥ |e|, for given accuracy ε, it is sufficient that

ε/2 ≥ e2
p + ep|p− p∗|, (B.5)

ε/2 ≥ e2
c + ec|c− c∗|, (B.6)

hold. Let εp and εc denote the maximum values of ep and ec satisfying the inequalities (B.5) and
(B.6), respectively. Then, they are

εp =
−|p− p∗|+

√
|p− p∗|2 + 2ε

2
, (B.7)

εc =
−|c− c∗|+

√
|c− c∗|2 + 2ε

2
. (B.8)

The objective value can be evaluated with the accuracy ε by setting εp and εc given by (B.7) and
(B.8), respectively. However, if |c − c∗| or |p − p∗| is large, the accuracies εp and εc of the option
premiums becomes much smaller than ε. Then, the computation time of a Monte Carlo simulation
becomes too large to perform. In that case, in view of that |c−c∗| ≈ 0, |p−p∗| ≈ 0 in the neighborhood
of a solution, it would be reasonable to set εp and εc as

εp = εc =
√

ε

2
(B.9)

30

