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Abstract

We consider a fractional programming problem that minimizes the ratio of two indefinite
quadratic functions subject to two quadratic constraints. The main difficulty with this problem
is its noncovexity. Utilizing the relationship between fractional programming and parametric
programming, we transform the original problem into a univariate nonlinear equation.

To evaluate the function in the univariate equation, we need to solve a problem of minimizing
a nonconvex quadratic function subject to two quadratic constraints. This problem is commonly
called a CDT subproblem, which arises in some trust region algorithms for equality constrained
optimization. The properties of CDT subproblems have been studied by many researchers. For
example, it was proved by Yuan that, if the Hessian of the Lagrangian is positive definite at the
maximum of the dual problem, then the corresponding primal variable is the global optimum of
the original CDT subproblem.

In this paper, we provide an algorithm for solving quadratic fractional programming problems
with two quadratic constraints. In the outer iterations, we employ Newton’s method, which is
expected to improve upon the bisection method used in the existing approaches. In the inner
iterations, we apply Yuan’s theorem to obtain the global optima of the CDT subproblems. We
also show some numerical results to examine the efficiency of the algorithm.
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1 Introduction

In various applications of nonlinear programming, one often encounters the problem in which the
ratio of given two functions is to be maximized or minimized. Such optimization problems are
commonly called fractional programming problems. One of the earliest fractional programming
problems is an equilibrium model for an expanding economy introduced by Von Neumann [18]
in 1937. However, besides a few isolated papers, a systematic study of fractional programming
began much later. In 1962, Charnes and Cooper [6] published their classical paper in which
they showed that a linear fractional programming problem with one ratio can be reduced to
a linear programming problem using a nonlinear variable transformation. Also they suggested
the term ‘fractional functionals programming problem’ which is now abbreviated to ‘fractional
programming problem’. In 1967, the nonlinear model of fractional programming problems was
studied by Dinkelbach [12], who showed an interesting and useful relationship between fractional
and parametric programming problems.

Fractional programming problems have been studied extensively by many researchers [3, 4,
11, 13]. For example, motivated by the so-called regularized total least squares problem, Beck,
Ben-Tal, and Teboulle [1] considered the problem in which the ratio of two indefinite quadratic
functions is minimized subject to a quadratic form constraint. They have given an algorithm for
the problem, and proved that a global optimal solution to the problem can be found by solving
a sequence of convex minimization problems parameterized by a single parameter.

In this paper, we consider a problem which has the same objective function as in [1], but
contains two quadratic constraints. Specifically the problem is stated as follows:

Minimize
f1(x)
f2(x)

subject to x ∈ F , (1.1)

where

fi(x) := xTAix− 2bT
i x + ci, (i = 1, 2) (1.2)

F :=
{
x

∣∣∣ ‖x‖ ≤ ∆, ‖PTx + q‖ ≤ ξ
}

(1.3)

with A1,A2 ∈ Rn×n, b1,b2 ∈ Rn, c1,c2 ∈ R, P ∈ Rn×m, q ∈ Rm, ∆ > 0 and ξ ≥ 0. We assume
that Ai is symmetric and f2(x) is positive and bounded away from zero on the feasible region
F , but do not assume the positive semi-definiteness of Ai. Without loss of generality, the sphere
constraint ‖x‖ ≤ ∆ in F can be replaced by any ellipsoidal constraint with an arbitrary center.
Such a problem can be easily reformulated to (1.1) by using an appropriate linear transformation.

Utilizing the relationship between fractional and parametric programming problems, we can
reformulate the above problem into the following univariate equation

F (α) = 0, (1.4)

where the function F : R→ R is defined by

F (α) := min
x∈F

{
f1(x)− αf2(x)

}
. (1.5)
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In order to calculate the value of function F , we need to solve the subproblem of the form:

Minimize xTAx− 2bTx + c

subject to x ∈ F . (1.6)

The problems of the form (1.6) are originally studied as a subproblem of some trust region
algorithms [10] for nonlinear programming problems with equality constraints. Since Celis,
Dennis and Tapia [5] first studied this problem, it is often called a CDT subproblem. Let f(x)
and h(x) = (h1(x), · · · , hm(x))T = 0 denote the objective function and the equality constraints
respectively for the original nonlinear programming problem. Then, at the kth iteration, the
well-known sequential quadratic programming method tries to find a search direction dk by
solving the following problem:

Minimize ∇fT
k d +

1
2
dTBkd

subject to hk +∇hT
k d = 0,

where ∇fk, hk and ∇hk denote ∇f(xk), h(xk) and ∇h(xk), respectively, and B is an approx-
imation of the matrix ∇2f(xk). In a trust region method for unconstrained optimization we
usually add the trust region {d | ‖d‖ ≤ ∆k} with bound ∆k > 0 to the kth subproblem. In
constrained optimization, however, if we add such a trust region constraint, then the subprob-
lem may become infeasible. To overcome this difficulty, Celis, Dennis and Tapia [5] proposed to
replace the equality constraint by the inequality constraint ‖hk +∇hT

k d‖ ≤ ξk. Then, the step
dk is calculated by solving the following problem:

Minimize ∇fT
k d +

1
2
dTBkd

subject to ‖d‖ ≤ ∆k, ‖hk +∇hT
k d‖ ≤ ξk.

Powell and Yuan [17] showed that a certain algorithm with such trust regions is globally and
superlinearly convergent under certain conditions.

The properties and algorithms for the CDT subproblems have been studied by many re-
searchers. For example, Yuan [20] proved that the Hessian of the Lagrangian has at most one
negative eigenvalue at the global optimum of the CDT subproblem. He also proved that, if the
Hessian of the Lagrangian is positive semidefinite at some KKT (Karush-Kuhn-Tucker) point,
then it must be the global optimum. This implies that, if the Hessian of the Lagrangian is
positive definite at the maximum of the dual problem, then the corresponding primal variable
is the global optimum. Yuan [21] proposed an algorithm for the CDT subproblem (1.6) with
positive definite A. Zhang [22] also proposed a different algorithm for the same type of CDT
subproblems. On the other hand, Li and Yuan [15] proposed an algorithm for the general
CDT subproblem (1.6) with indefinite A. Other studies on CDT subproblems are found in
[2, 7, 8, 9, 16, 19]

In our algorithm, we employ the generalized Newton method in the outer iterations for
solving the univariate equation (1.4). We expect that the generalized Newton method improves
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upon the bisection method which is often used in the existing approaches. Then, the CDT
subproblems of the form (1.6) are solved by an algorithm that combines the generalized Newton
method with the steepest ascent method. The algorithm is similar to the one proposed in [15],
both of which are based on Yuan’s theorem [20, Theorem 2.5].

The paper is organized as follows. In the next section, we review preliminary results on
fractional programming, and prove some properties of the function F (α) defined by (1.5). In
section 3, we consider the CDT subproblem and give some theoretical background. In section
4, we present two algorithms for fractional programming problems, where a CDT subproblem is
solved in each iteration. In section 5, we give some numerical results to examine the efficiency
of the algorithms. In section 6, we conclude the paper with some remarks.

2 Preliminaries

In this section, we review some preliminary results on fractional programming. We first study the
relationship between fractional programming and parametric programming. Then, we discuss
some properties on function F defined by (1.5). We note that all the statements in this section
hold for any continuous functions f1, f2 and compact set F ⊂ Rn.

Throughout the paper, we assume that the denominator f2(x) is positive and bounded away
from zero on the feasible region F .

Assumption 1 There exists N > 0 such that f2(x) ≥ N for all x ∈ F .

This assumption is essential for general fractional programming problems, since we have infx∈F
[f1(x)/f2(x)] = −∞ if f2(x) = 0 for some x ∈ F . If f2(x) is negative and bounded away from
zero on F , then we can set fi(x) := −fi(x) for i = 1, 2 so that Assumption 1 holds.

We are interested in the relationship between the original fractional programming problem
(1.1) and the following parametric programming problem:

Minimize f1(x)− αf2(x)

subject to x ∈ F , (2.1)

where α ∈ R is a scalar parameter. The above problems (1.1) and (2.1) are solvable since the
feasible region F is compact, functions f1 and f2 are continuous in F , and minx∈F f2(x) > 0.

2.1 Parametric approach

From the studies by Jagannathan [14] and Dinkelbach [12], we can see that problems (1.1) and
(2.1) have the following relationship.

Proposition 2.1 The following two statements are equivalent:

(a) min
x∈F

f1(x)
f2(x)

= α,

(b) min
x∈F

{
f1(x)− αf2(x)

}
= 0.
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Proof. We first show (a)⇒(b). Let x0 be a solution of problem (1.1). Then we have

α =
f1(x0)
f2(x0)

≤ f1(x)
f2(x)

,

which implies

f1(x)− αf2(x) ≥ 0 ∀x ∈ F , (2.2)

f1(x0)− αf2(x0) = 0 (2.3)

since f2(x) > 0 for any x ∈ F . From (2.2) and (2.3) we have minx∈F {f1(x)− αf2(x)} = 0 and
the minimum is attained at x0.

We next show (b)⇒(a). Let x0 be a solution of problem (2.1). Then we have

0 = f1(x0)− αf2(x0) ≤ f1(x)− αf2(x)

for any x ∈ F . Dividing the above inequality by f2(x) > 0, we obtain

f1(x)
f2(x)

≥ α ∀x ∈ F , and
f1(x0)
f2(x0)

= α.

Hence we have minx∈F [f1(x)/f2(x)] = α and the minimum is attained at x0. This completes
the proof.

We can expect that the parametric programming problem (2.1) is easier than the fractional
programming problem (1.1) due to its simpler structure of the objective function. Moreover,
Proposition 2.1 claims that, if we can find a parameter α such that the optimal value of (2.1) is
0, then an optimal solution of (2.1) is also an optimal solution of (1.1). Thus we consider the
parametric programming problem (2.1) instead of the original fractional programming problem
(1.1).

2.2 Properties of the univariate function F (α)

In the previous subsection, we have seen that the optimal solution of the fractional programming
problem can be obtained by solving the parametric programming problem with its optimal value
being zero. This implies that the univariate equation F (α) = 0, where F is defined by (1.5), is
essentially equivalent to the original fractional programming problem (1.1). In this subsection,
we give some properties of the univariate function F .

We first give the following theorem.

Theorem 2.1 Let F : R→ R be defined by (1.5). Then, the following statements hold.

(a) F is concave over R.

(b) F is continuous at any α ∈ R.

(c) F is is strictly decreasing.

(d) F (α) = 0 has a unique solution.
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Proof. (a) Let real numbers α1 and α2 be arbitrarily chosen so that α1 6= α2, and xi be
defined by xi ∈ argminx∈F{f1(x)− αif2(x)} for i = 1, 2. Then, for any β ∈ (0, 1), we have

βF (α1) + (1− β)F (α2)

= β
{

f1(x1)− α1f2(x1)
}

+ (1− β)
{

f1(x2)− α2f2(x2)
}

≤ β
{

f1(x1)− α1f2(x1)
}

+ (1− β)
{

f1(x1)− α2f2(x1)
}

= f1(x1)− (βα1 + (1− β)α2)f2(x1)

≤ F (βα1 + (1− β)α2),

where the inequalities follow from the definition of F . Then we can see that F is concave.
(b) Since F is a concave mapping from R to R, we can easily see the continuity.
(c) Let α1 > α2 be chosen arbitrarily and x2 ∈ argminx∈F{f1(x)− α2f2(x)}. Then we have

F (α2) = min
x∈F

{
f1(x)− α2f2(x)

}

= f1(x2)− α2f2(x2)

> f1(x2)− α1f2(x2)

≥ min
x∈F

{
f1(x)− α1f2(x)

}

= F (α1),

where the strict inequality follows from α1 > α2 and f2(x2) ≥ N > 0. Thus F is strictly
decreasing.

(d) Since f1 and f2 are continuous and F is compact, there exist real scalars L1, U1 and U2

such that L1 ≤ f1(x) ≤ U1 and 0 < N ≤ f2(x) ≤ U2 for any x ∈ F , where N is a positive
number given in Assumption 1. Hence, for any α ∈ R, we have

F (α) = min
x∈F

{f1(x)− αf2(x)}
= f1(xα)− αf2(xα)

≤ U1 −Nα (2.4)

and

F (α) = min
x∈F

{f1(x)− αf2(x)}
= f1(xα)− αf2(xα)

≥ L1 − U2α, (2.5)

where xα ∈ argminx∈F{f1(x) − αf2(x)}. Since 0 < N ≤ U2, we can see limα→+∞ F (α) = −∞
from (2.4) and limα→−∞ F (α) = +∞ from (2.5). These together with (b) and (c) yield the
unique solvability of F (α) = 0.

For convenience, we define a convex function g : R→ R by

g(α) := −F (α) = max
x∈F

{−f1(x) + αf2(x)}. (2.6)

From Theorem 2.1, we can easily derive the following corollary.
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Corollary 2.1 Let g : R→ R be defined by (2.6). Then, the following statements hold.

(a) g is convex over R.

(b) g is continuous at any α ∈ R.

(c) g is is strictly increasing.

(d) g(α) = 0 has a unique solution.

Since g is defined by using a maximum operator, it is nondifferentiable in general. However,
its subgradient can be obtained in an explicit manner. In the following, we give an explicit
expression of the subgradient of function g.

Theorem 2.2 For any α ∈ R, let xα be defined by xα ∈ argmaxx∈F{−f1(x) + αf2(x)}. Then,
a subgradient of g at α is given by f2(xα), i.e.,

f2(xα) ∈ ∂g(α)

where ∂g denotes the Clarke subdifferential of g.

Proof. Let α ∈ R be arbitrarily fixed. Then, for any α′ ∈ R , we have

g(α′)− g(α) = max
x∈F

{
−f1(x) + α′f2(x)

}
−max

x∈F

{
−f1(x) + αf2(x)

}

=
{
−f1(xα′) + α′f2(xα′)

}
−

{
−f1(xα) + αf2(xα)

}

≥
{
−f1(xα) + α′f2(xα)

}
−

{
−f1(xα) + αf2(xα)

}

= (α′ − α)f2(xα).

This implies that f2(xα) is a subgradient of the convex function g at α.

Considering these properties, we construct two kinds of methods for solving F (α) = 0: the
generalized Newton method and the bisection method. Details of the algorithms will be discussed
later.

To solve the fractional programming problem (1.1), we still need to consider how to solve
the parametric subproblem (2.1) for each α. Using the notations

A = A1 − αA2,

b = b1 − αb2,

c = c1 − αc2,

the subproblem (2.1) with (1.2) and (1.3) reduces to

Minimize Φ(x) = xTAx− 2bTx + c

subject to ‖x‖ ≤ ∆ (2.7)

‖PTx + q‖ ≤ ξ.

As we have mentioned in the previous section, this subproblem is also called a CDT subproblem,
and its properties have been studied by many researchers. In the next section we will discuss
the properties of this subproblem.
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3 CDT subproblems

In this section, we introduce some theoretical background on the CDT subproblems. We first give
necessary conditions and sufficient conditions for the global optimality of the CDT subproblem,
both of which were proved by Yuan [20] in 1990. Then, we consider the dual problem to see that,
if the Hessian of the Lagrangian is positive definite at a dual maximum, then the corresponding
primal variable is a global optimum.

3.1 Conditions for the global optimality

We first introduce two theorems given by Yuan [20] which characterize a global optimum of
problem (2.7).

Theorem 3.1 [20, Theorem 2.1] Let x∗ ∈ Rn be a global optimum of the CDT subproblem
(2.7). Then, there exist two nonnegative numbers λ∗, µ∗ ≥ 0 such that

(2A + λ∗I + µ∗PPT )x∗ = −(−2b + µ∗Pq), (3.1)

λ∗(∆− ‖x∗‖) = 0, (3.2)

µ∗(ξ − ‖PTx∗ + q‖) = 0. (3.3)

Furthermore, the matrix
H = 2A + λ∗I + µ∗PPT (3.4)

has at most one negative eigenvalue if the multipliers λ∗ and µ∗ are unique.

Note that (3.2) and (3.3) implies the complementarity conditions, and H is the Hessian of the
Lagrangian, that is, H = ∇2

xxL(x, λ, µ) with

L(x, λ, µ) := Φ(x) +
λ

2
(‖x‖2 −∆2) +

µ

2
(‖PTx + q‖2 − ξ2).

Yuan [20] also gave sufficient conditions for the global optimality of the CDT subproblem (2.7).

Theorem 3.2 [20, Theorem 2.5] Suppose that a feasible point x∗ satisfies (3.1)–(3.3) for some
λ∗, µ∗ ≥ 0. Then, if matrix H defined by (3.4) is positive semidefinite, x∗ is a global optimum
for the CDT subproblem (2.7).

If λ∗ and µ∗ are arbitrarily fixed, then x∗ satisfying (3.1) is uniquely determined under the
nonsingularity of H. Hence, the problem to find (x∗, λ∗, µ∗) reduces to a certain equivalent
problem with two variables λ and µ, which is actually the Lagrangian dual problem of the
original CDT subproblem (2.7).

3.2 Dual problem

Next we introduce the dual problem for the CDT subproblem (2.7), and discuss the relation
between the optimality of the CDT subproblem and that of its dual problem. Let H : R2 → Rn×n
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and x : R2 → Rn be defined by

H(λ, µ) := 2A + λI + µPPT , (3.5)

x(λ, µ) := −H(λ, µ)†(−2b + µPq), (3.6)

where H(λ, µ)† denotes the Moore-Penrose pseudo inverse of H(λ, µ). For a general matrix
K ∈ Rm×n, the Moore-Penrose pseudo inverse K† ∈ Rn×m is defined as a matrix satisfying

(a) KK†K = K

(b) K†KK† = K†

(c) KK† and K†K are both symmetric.

The Moore-Penrose pseudo inverse is determined uniquely, and K† = K−1 if m = n and K is
nonsingular.

Then we can define the Lagrangian dual function Ψ : R2 → R ∪ {−∞} as follows:

Ψ(λ, µ) :=




−∞, if H(λ, µ)x(λ, µ) 6= −(−2b + µPq),

Φ(x(λ, µ)) +
λ

2
(‖x(λ, µ)‖2 −∆2) +

µ

2
(‖PTx(λ, µ) + q‖2 − ξ2), otherwise,

where Φ is defined in (2.7). Note that Ψ(λ, µ) is finite when H(λ, µ) is nonsingular. Moreover,
even if H(λ, µ) is singular, Ψ(λ, µ) is also finite when minx∈Rn ‖H(λ, µ)x + (−2b + µPq)‖ = 0.
In such a case, there exist an infinite number of minimizers, and the point nearest to the origin
among them is x(λ, µ).

Using the above definitions, we introduce the dual problem for the CDT subproblem (2.7):

Maximize Ψ(λ, µ)

subject to λ ≥ 0, µ ≥ 0. (3.7)

Since

∇Ψ(λ, µ) =
1
2

(
‖x(λ, µ)‖2 −∆2

‖PTx(λ, µ) + q‖2 − ξ2

)
,

the KKT conditions for (3.7) are given by

λ ≥ 0, ∆2 − ‖x(λ, µ)‖2 ≥ 0, λ
(
∆2 − ‖x(λ, µ)‖2

)
= 0,

µ ≥ 0, ξ2 − ‖PTx(λ, µ) + q‖2 ≥ 0, µ
(
ξ2 − ‖PTx(λ, µ) + q‖2

)
= 0.

(3.8)

Hence, one can easily see that a KKT point (λ∗, µ∗) of the dual problem (3.7) satisfies (3.2) and
(3.3), and that x(λ∗, µ∗) satisfies (3.1).

Combining these arguments with Theorem 3.2, we have the following theorem.

Theorem 3.3 Let (λ∗, µ∗) be a KKT point of the dual problem (3.7). Then, x(λ∗, µ∗) defined
by (3.6) is a global optimum of the CDT subproblem (2.7), provided that either of the following
conditions holds:
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(a) H(λ∗, µ∗) is positive definite.

(b) H(λ∗, µ∗) is positive semidefinite, and H(λ∗, µ∗)x(λ∗, µ∗) = −(−2b + µ∗Pq).

Due to this theorem, if one can obtain a KKT point of the dual problem (3.7) such that the
Hessian of the Lagrangian is positive semidefinite, then the CDT subproblem (2.7) is solved and
its global optimality is guaranteed. However, as Theorem 3.1 claims, H(λ∗, µ∗) may have one
negative eigenvalue. In such a case, as long as we know, there is no effective way to guarantee
the global optimality. In the last part of the next section, we give a procedure to solve the CDT
subproblem (2.7), which first tries to solve the dual problem (3.7) with the additional constraint
H(λ, µ) º 0, and then tries to find a KKT point of the original CDT subproblem.

4 Algorithm

In this section, we give some algorithms for solving the fractional programming problem (1.1).
As we have mentioned in the previous sections, we need to solve the parametric programming
problem (2.1) for each value of parameter α, and to find the zero point for the univariate function
F defined by (1.5). In the outer part of the algorithm, we employ the bisection method and
the generalized Newton method for solving the univariate equation (1.4). In the inner part, we
solve the parametric programming problem (2.1) by the CDT algorithm based on Theorem 3.3.

First we study the bisection method with referring to the existing work [1]. As the initial
parameters, we need l0 and u0 such that

l0 ≤ min
x∈F

f1(x)
f2(x)

≤ u0. (4.1)

Then, the sequence {αk} ⊂ R is defined by αk := (lk +uk)/2 with lk and uk such that F (lk) > 0,
F (uk) ≤ 0, and limk→∞(uk − lk) = 0. The initial parameters l0 and u0 satisfying (4.1) can be
easily found as follows. By using the positive number N defined in Assumption 1, we have for
any x ∈ F

∣∣∣∣
f1(x)
f2(x)

∣∣∣∣ =
∣∣∣∣
xTA1x− 2bT

1 x + c1

xTA2x− 2bT
2 x + c2

∣∣∣∣

≤ 1
N

∣∣∣xTA1x− 2bT
1 x + c1

∣∣∣

≤ 1
N

(
|xTA1x|+ 2‖b1‖‖x‖+ |c1|

)

≤ 1
N

(
ρ(A1)∆2 + 2‖b1‖∆ + |c1|

)
,

where ρ(A1) denotes the spectral radius of A1, and the last inequality is due to |xTA1x| ≤
ρ(A1)‖x‖2 and ‖x‖ ≤ ∆. So we can choose l0 and u0 as

u0 :=
1
N

(
ρ(A1)∆2 + 2‖b1‖∆ + |c1|

)
, l0 := −u0. (4.2)

Also, the positive number N can be obtained by solving the following CDT type problem:

Minimize xTA2x− 2bT
2 x + c2

subject to x ∈ F .
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The overview of the bisection method is given as follows.

Bisection method¶ ³

Step 0: Choose l0 and u0 such that (4.1) holds. Set k := 1.

Step 1: Let

αk :=
lk−1 + uk−1

2
.

Then, calculate F (αk) by solving the following minimization problem:

Minimize f1(x)− αkf2(x)

subject to x ∈ F . (4.3)

Step 2: If |F (αk)| ≤ ε, then terminate. Otherwise, update lk and uk as follows:
{

lk := lk−1

uk := αk

if F (αk) ≤ 0,

{
lk := αk

uk := uk−1

if F (αk) > 0.

Step 3: Let k := k + 1. Return to Step 1.
µ ´

The sequence generated by the bisection method always converges to the solution if the
global optimality for the subproblem (4.3) is guaranteed. Moreover, the error in the solution
can be estimated since the interval is halved in each iteration. However, it has a disadvantage
that the convergence is rather slow. Moreover, once the non-global minimum is obtained in
Step 1 and the sign of F (αk) is incorrectly evaluated, then the termination criterion may never
be satisfied. To overcome such shortcomings, we next consider the generalized Newton method,
which is expected to be superlinearly convergent and robust to the incorrect evaluation of F (αk).

Newton’s method usually requires the derivative of the target function. However, the function
F defined by (1.5) can be nondifferentiable since it is defined by using the minimum operator.
We therefore apply the generalized Newton method, in which a subgradient is used instead
of the derivative. By (2.6) and Theorem 2.2, a subgradient of F is given by −f2(xk) with
xk ∈ argminx∈F [f1(x)− αkf2(x)]. Hence, the generalized Newton iteration is obtained by

αk+1 := αk − F (αk)
−f2(xk)

= αk − f1(xk)− αkf2(xk)
−f2(xk)

=
f1(xk)
f2(xk)

.

The outline of the generalized Newton method is described as follows.
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Generalized Newton method¶ ³

Step 0: Choose α1 ∈ R. Set k := 1.

Step 1: Solve the following minimization problem to obtain a global optimum
xk and its optimal value F (αk):

Minimize f1(x)− αkf2(x)

subject to x ∈ F . (4.4)

Step 2: If |F (αk)| ≤ ε, then terminate. Otherwise, let

αk+1 :=
f1(xk)
f2(xk)

.

Let k := k + 1 and return to Step 1.
µ ´

We already know that F is concave and the equation F (α) = 0 is uniquely solvable from Theorem
2.1. Hence, the global convergence of the generalized Newton method is guaranteed without any
safeguard scheme, provided that a global optimum is always obtained in Step 1. Moreover,
even if a global optimum is not obtained at some iteration k′, i.e., xk′ and F (αk′) are incorrectly
evaluated, the sequence {αk} still converges to the solution of (1.4) if xk and F (αk) are correctly
evaluated for k ≥ k′ + 1. Indeed, a global optimum of (4.4) is obtained in most cases, and its
optimality is guaranteed by Theorem 3.3.

Finally, we explain how to solve the subproblems (4.3) and (4.4). Since the subproblems
take the form of the CDT subproblem (2.7), we give a procedure for solving (2.7).

Procedure for solving CDT subproblem¶ ³

Step 1: Solve the following problem to find a local maximum (λ+, µ+).

Maximize Ψ(λ, µ)

subject to λ ≥ 0, µ ≥ 0, H(λ, µ) º 0. (4.5)

Step 2: If (λ+, µ+) satisfies the KKT conditions (3.8), then output x∗ =
−H(λ+, µ+)†(−2b + µ+Pq) as a global optimum of (2.7). If (λ+, µ+)
does not satisfy (3.8), then go to Step 3.

Step 3: Solve the CDT subproblem (2.7) directly by some general-purpose
method.

µ ´

For solving (4.5), we employ the steepest ascent method and Newton’s method with keeping the
iteration points in the feasible region. In each iteration, we first try the Newton direction. If the
Newton direction is unacceptable, then we apply the steepest ascent direction. In most cases,
we can find a (λ+, µ+) such that H(λ+, µ+) Â 0 and (λ+, µ+) is a global or local maximum. If
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(λ+, µ+) is a local maximum and H(λ+, µ+) Â 0, then (λ+, µ+) satisfies the KKT conditions
(3.8) and hence the global optimality for the original CDT subproblem (2.7) is guaranteed.
However, if H(λ+, µ+) is singular, then the KKT conditions (3.8) may not hold. In such a
case, as Theorem 3.1 indicates, H(λ, µ) may have one negative eigenvalue at a global optimum
of (2.7), and we therefore need to solve (2.7) by another method. Unfortunately, there is no
algorithm that always finds a global optimum of (2.7), as long as we know.

5 Numerical experiments

In this section, we conduct some numerical experiments to examine the efficiency of the algo-
rithms.

5.1 How to generate test problems

Since there may be no standard benchmarks for the fractional programming problems of the
form (1.1)–(1.3), we generate the test problems as follows.

First we determine the feasible region. We choose matrix P ∈ Rn×m and vector q ∈ Rm

so that their components are randomly chosen from the interval [−1, 1]. Also, we randomly
choose ∆ ∈ R and ξ ∈ R from the intervals [0,

√
n ] and [0,

√
m ], respectively. To make sure the

nonemptiness of the feasible region {x | ‖x‖ ≤ ∆, ‖PTx + q‖ ≤ ξ}, we first solve the following
unconstrained optimization problem:

Minimize ‖PTx + q‖.

If ‖PTx′ + q‖ > 0.9 ξ for the optimum x′, then we re-generate {P,q, ∆, ξ}. Otherwise, we next
solve the following constrained optimization problem:

Minimize ‖x‖
subject to ‖PTx + q‖ ≤ ξ.

If ‖x′′‖ > 0.9∆ for the optimum x′′, then we re-generate {P,q, ∆, ξ}. By performing this
procedure, we can obtain a nonempty and bounded feasible region.

Next we generate the objective function. We first generate matrices Ã1, Ã2 ∈ Rn×n, vectors
b1, b2 ∈ Rn and scalars c1, c̃2 ∈ R so that every component is randomly chosen from the interval
[−1, 1]. Then, we define symmetric matrices Ai by Ai = (Ãi + ÃT

i )/2 for i = 1, 2. We also need
to define c2 so that Assumption 1 holds. To this end, we solve

Minimize xTA2x− 2bT
2 x + c̃2

subject to ‖x‖ ≤ ∆, ‖PTx + q‖ ≤ ξ

by the CDT algorithm. If the optimal value of the above problem is γ, then we set c2 :=
c̃2 + max(0,−2γ) + 0.01. As a result, Assumption 1 holds with N = |γ|+ 0.01.
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5.2 Numerical results

We solve the generated test problems by the bisection method and the generalized Newton
method. For the bisection method, the initial parameters u0 and l0 are set to be u0 :=
1.01N−1(ρ(A1)∆2 + 2‖b1‖∆‖ + |c1|) and l0 := −u0 in consideration of (4.2). Here, the value
of N is calculated as in Subsection 5.1. For the generalized Newton method, the initial point is
set to be α0 := u0. Also, we choose ε := 10−6 as the tolerance of the optimality for both algo-
rithms. For solving CDT subproblems, we first solve the dual problem (4.5) by combining the
steepest ascent method with Newton’s method, with keeping the iteration points in the feasible
region. If the termination criterion in Step 2 is satisfied, then we output the solution x∗ which
is guaranteed to be a global optimum. Otherwise, we need to go to Step 3, in which we solve
the original CDT subproblem (2.7) by the optimization tool box installed in MATLAB. In this
case, the global optimality for the obtained solution is not guaranteed. All of our algorithms
are implemented in MATLAB 7.4.0 and run on a machine with Intel(R) Core(TM)2 Duo CPU
E6850 3.00GHz and RAM 3.20GB.

Experiment 1

In the first experiment, we change the size of problems as n = 10, 20, . . . , 100, and generate 100
test problems for each n. The number of columns of matrix P ∈ Rn×m is set to be m = 0.8n.
Then, we solve each subproblem by the bisection method and the generalized Newton method,
and compare the number of iterations and the CPU time. The detailed results are shown in
Tables 1 and 2, in which “min”, “max”, and “mean” denote the minimum, the maximum and
the mean value of the data for each n. Moreover, “]con.” denotes the number of times the
algorithm converges within 50 outer iterations, and “]gua.” denotes the number of times the
obtained solution is guaranteed to be a global optimum, that is, the outer iteration terminates
within 50 iterations and, at the last iteration, the termination criterion of the CDT subproblem
is satisfied at Step 2. We note that the values of “min”, “max”, and “mean” are calculated only
from the outputs whose global optimality is guaranteed by both the bisection method and the
generalized Newton method.

From Table 2, we can see that the CPU time increases with the growth of the size of problems
n. However, Table 1 shows that the number of iterations is not affected by the size of problems
so much. This implies that the computational cost for each iteration mainly depends on the size
of problems. We can also see that the generalized Newton method is obviously faster than the
bisection method from the viewpoints of the CPU time and the numbers of iterations.

Unfortunately, for some problems, the optimality of a computed solution is not guaranteed,
i.e., ]gua.< 100 since the global optimality for the subproblems are not always guaranteed.
However, the generalized Newton method converges within 50 iterations in most cases, whereas
the bisection sometimes fails to converge. This is supposed to be from the following reason.
For the bisection method, once the sign of F (αk) is incorrectly evaluated, then the termination
criterion may never be satisfied. On the other hand, the generalized Newton method is robust
to the incorrect evaluation of F (αk) since the value of αk+1 depends only on that of the previous
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iteration point αk. Also, we note that the generalized Newton method could find global optima
for some special problems that cannot be solved by the bisection method correctly.

Experiment 2

In the second experiment, we fix the size of problems to n = 50, and change the number of
columns as m = 10, 20, . . . , 100. This also implies that the rank of matrix PPT is changed from
10 to 50. We solve 100 problems for each m by the bisection method and the generalized Newton
method. The obtained results are shown in Tables 3 and 4, in which the values of “min”, “max”,
“mean”, “]con.” and “]gua.” are defined in a way analogous to Experiment 1.

As the tables show, the generalized Newton method also converges faster than the bisection
method, and derives the global optimum in most cases. The CPU time for the bisection method
grows monotonically as the value of m becomes larger, whereas that for the generalized Newton
method seems to be a little disordered.

6 Concluding remarks

In this paper, we have studied the quadratic fractional programming problems with two quadratic
constraints. Such a problem can be transformed into the univariate equation system, which is
defined as the optimal value of the equivalent parametric programming problem. For solving the
univariate equation system, we have applied the bisection method and the generalized Newton
method to the outer part of the algorithm. For solving inner subproblems (parametric program-
ming problems), we have employed the dual reformulation approach for solving so-called CDT
subproblems. By means of numerical experiments, we have seen the efficiency of the algorithms.
Particularly, we have confirmed that the generalized Newton method is much faster and more
robust to the erroneous evaluation for the univariate functions.

Table 1: Number of iterations for various choices of n

Bisection Generalized Newton
n

min max mean ]con. ]gua. min max mean ]con. ]gua.

10 15 26 23.11 95 94 4 9 5.35 100 94
20 18 28 24.14 94 92 4 7 5.22 100 94
30 17 28 24.65 95 94 5 6 5.32 99 97
40 17 29 25.48 93 93 5 6 5.40 100 95
50 17 29 25.74 94 94 5 8 5.50 100 98
60 17 29 26.15 95 95 5 7 5.52 100 99
70 16 30 26.22 88 88 5 12 5.55 99 96
80 19 30 26.64 90 90 5 7 5.62 99 95
90 19 36 27.10 90 90 5 8 5.68 98 95
100 20 31 27.51 88 88 5 9 5.61 97 93
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Table 2: CPU time for various choices of n

Bisection Generalized Newton
n

min max mean min max mean

10 0.02 1.63 0.09 0.00 0.64 0.03
20 0.04 3.45 0.18 0.01 0.67 0.05
30 0.07 1.37 0.23 0.02 1.28 0.10
40 0.10 1.42 0.36 0.02 1.92 0.14
50 0.14 3.52 0.63 0.04 1.42 0.20
60 0.14 3.66 0.92 0.05 2.28 0.31
70 0.16 7.35 1.36 0.06 5.97 0.45
80 0.32 11.09 2.06 0.07 3.47 0.58
90 0.42 7.86 2.65 0.14 4.93 0.74
100 0.48 18.98 3.85 0.15 7.71 1.16

Table 3: Number of iterations for various choices of m

Bisection Generalized Newton
m

min max mean ]con. ]gua. min max mean ]con. ]gua.

10 18 29 25.78 95 95 5 6 5.34 98 98
20 15 30 25.73 93 93 5 6 5.40 96 95
30 19 29 25.96 97 97 4 8 5.53 100 97
40 20 29 25.88 94 94 5 8 5.48 100 96
50 17 29 26.02 89 89 5 8 5.57 100 95
60 20 30 26.10 93 93 5 7 5.49 100 95
70 15 29 25.52 94 94 5 6 5.40 100 99
80 20 29 25.78 93 93 5 8 5.59 100 100
90 17 29 25.29 89 89 5 6 5.56 99 97
100 20 29 25.87 90 89 5 8 5.63 99 95
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Table 4: CPU time for various choices of m

Bisection Generalized Newton
m

min max mean min max mean

10 0.06 2.31 0.43 0.02 1.00 0.10
20 0.11 1.97 0.42 0.02 0.95 0.10
30 0.15 2.12 0.52 0.04 2.67 0.18
40 0.14 14.45 0.68 0.03 3.19 0.20
50 0.12 1.77 0.63 0.03 3.19 0.29
60 0.14 14.78 0.71 0.03 2.03 0.17
70 0.15 11.35 0.67 0.04 1.91 0.17
80 0.15 11.97 0.85 0.04 2.54 0.33
90 0.11 16.39 1.06 0.04 2.69 0.26
100 0.17 16.43 1.54 0.05 5.35 0.44
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