
A Semidefinite Programming Relaxation Approach

for the Pooling Problem

Guidance

Associate Professor Nobuo YAMASHITA

Takahiro NISHI

Department of Applied Mathematics and Physics

Graduate School of Informatics

Kyoto University

K
Y

O
T

O
UNIVER

S
IT

Y

F
O

U
N

DED
1

8

9
7

KYOTO JAPAN

February 2010

A Semidefinite Programming Relaxation Approach

for the Pooling Problem

Takahiro NISHI

Abstract

The pooling problem is to determine a scheduling of flows among several tanks in refinery
processes of raw materials, such as crude oil and fuel gas. The refinery company first imports raw
materials, and then produces final products by refining or mixing the materials in intermediate
tanks, and finally send them to their consumers. The consumers require a certain level of quality
of the final product. The pooling problem is regarded as a kind of the network flow problem.
However, it has two difficulties as compared to the usual linear network flow problem. One is
an existence of pipeline constraints, which is formulated by using binary variables. The other is
that the process of mixing materials are formulated as nonlinear equations. Thus, the pooling
problem is a mixed-integer nonlinear programming. Moreover, even if the binary variables are
fixed, the problem is nonconvex, and hence still very difficult. Therefore, we cannot apply the
general-purpose solvers for the mixed-integer linear programming or the mixed-integer nonlinear
programming.

In this paper, we apply semidefinite programming (SDP) relaxations for the polynomial
optimization problem (POP) equivalent to the pooling problem. A solution of the SDP relaxation
to the POP is known to be a reasonable solution. However, the size of the SDP tends to be
very large and its solution is not necessarily feasible for the original POP. Therefore, we first
propose a formulation of the pooling problem without the binary variables in order to reduce
the problem size. Then, to tighten the relaxation, we consider to add some valid inequalities.
The valid inequality is a redundant constraint of the original problem. However, it may reduce
the volume of the feasible region of the SDP, and hence we can expect to get a better solution.
Finally, in order to get a feasible solution of the original pooling problem, we formulate a
mixed-integer linear problem whose solution is feasible. Since the formulated problem includes
information of the solution of the SDP relaxation, its solution is expected to be a reasonable
feasible solution. We present some results of numerical experiments to show the validity of the
proposed approach.

Contents

1 Introduction 1

2 The Pooling Problem 3

3 Semidefinite Programming Relaxation Approach 8
3.1 Reformulation of the pooling problem to POP . 8
3.2 Removal of u from (12) . 9
3.3 Valid inequalities of (13) . 10
3.4 Fixing variables after solving the SDP relaxation problem 12
3.5 Finding a feasible solution . 13
3.6 Summary of the proposed approach . 14

4 Numerical Experiments 15

5 Concluding Remarks 21

A Problem Data for Numerical Experiments 23

1 Introduction

The scheduling problem is one of the main problems in operations research, and arises in vari-
ous fields, for example, resource allocation, job-shop scheduling, and process scheduling which
includes batch processing, oil refinery and chemical processing. For some scheduling problems,
efficient algorithms have been developed [3, 14]. In particular, problems formulated as the mixed
integer problem (MIP) can be solved by the state-of-the-art MIP solvers. In this paper, we con-
sider the pooling problem, which is one of the process scheduling problems formulated as the
mixed-integer nonlinear problem.

The pooling problem is to determine a scheduling of flows among several tanks in refinery
processes, such as crude oil and fuel gas [1, 2, 9]. A gas corporation or an oil company imports
raw materials, produces final products by refining or mixing the materials, and send them to
their consumers, such as industrial plants and households. A large amount of materials is
imported at one time, and they usually have different qualities depending on their location of
origin. The quality represents the value per unit amount, for example, a sulfur composition and
an octane number for crude oil and a heating (calorific) value for fuel gas. The customers buy
a small amount of the final product in a long period, and require a certain level of its quality.
If the requirement is not satisfied, then the company has to charge off the loss, such as costs for
adding some expensive high quality materials in order to fill a deficit. Thus, the company puts
the intermediate tanks where he stores materials temporarily and mixes materials to generate
the final products. In this paper, we assume that there exist three types of components: the
places where raw materials are imported (Source), the intermediate tanks which store materials
temporarily and mix them (BlendTank), and customers who consume the final products are
(Plant). In addition to these components, the problem has pipelines (Pipeline) which connect
the components.

Since Sources, BlendTanks and Plants are regarded as nodes and Pipelines are regarded as
edges, the pooling problem is to determine flows of materials in the network. Thus, the pooling
problem can be regarded as a kind of network flow problem. However, it has two difficulties
as compared to the usual linear network flow problems. The first difficulty appears in the
constraints associated with Pipelines. When we use a pipeline, the amount of the material a

that flows in the pipeline must be more than the lower capacity L and be less than the upper
capacity U , i.e., L ≤ a ≤ U . On the other hand, when we do not use the pipeline, the amount
of the material must be zero, which is inconsistent with L ≤ a. To overcome the inconsistency,
we may employ the following binary variable which represents the use of the pipeline, i.e.,

u =

{
1 (the pipeline is used)

0 (otherwise).

By using the binary variable, we can represent the constraints of flow a in the pipeline as follows:

uL ≤ a ≤ uU.

Each component, especially BlendTank, is connected with several pipelines. Those pipelines
cannot be used at the same time in order to prevent a back-flow and so on for safety. Thus we
use at most one pipeline in each time period. The requirement is represented by the constraints
that the sum of binary variables corresponding to the pipelines connected with the component
should not exceed one at each time. Second, the process of mixing materials are formulated

1

as nonlinear equations, and hence the pooling problem has nonlinear equality constraints. We
explain the constraints. Consider two materials 1 and 2 to be mixed into the new material 3.
Suppose that the materials 1, 2 and 3 have the amounts p1, p2 and p3 and qualities (which are
values per unit amount) q1, q2 and q3, respectively. Then, the following two equalities express
proportional blending:

p3 = p1 + p2

p3q3 = p1q1 + p2q2.

The first equation represents the mass balance and it is linear. The second equation means
that the quality of the new material is calculated by the weighted average, and it is nonlinear.
Thus, the pooling problem can be written as a mixed-integer nonlinear programming problem.
Moreover, even if the binary variables are fixed, the problem is a nonconvex problem. Therefore,
we cannot expect to compute a global optimal solution for practical scale pooling problems, and
hence we consider to obtain a reasonable solution within practical time.

A lot of methods have been proposed to solve general mixed-integer nonlinear programming
problems. For instance, the outer-approximation method [5] and the generalized Benders de-
composition method [8] are well studied. Both methods can obtain a local optimal solution by
solving continuous linear subproblems repeatedly if the problem obtained by fixing the integer
part is convex. However, since the pooling problem is nonconvex as mentioned above, these
method are not guaranteed to obtain a global optimal solution. Several methods tailored to
the pooling problem have been proposed, including the combined method of graph theory and
linear programming, and the genetic algorithm [4]. The former method first calculates a lower
bound of the pooling problem by solving a continuous linear subproblem without some difficult
constraints, and then obtains a feasible solution by solving a minimum cost flow problem. The
latter one solves a combinatorial problem of the binary variables as an upper level problem,
and continuous subproblems with the binary variables fixed are solved for each gene. Since
both methods ignore nonlinear constraints to generate a trial point, they cannot well treat the
nonlinear functions.

In this paper, we propose to apply the semidefinite programming relaxation for the pooling
problem. As mentioned above, the pooling problem is formulated as a mixed-integer nonlinear
problem. As shown in Section 3, the pooling problem can be written as a continuous polynomial
optimization problem (POP). The POP is a nonlinear programming problem whose objective
function and constraint functions are polynomial. Finding a global solution of POP is also
difficult in general because a polynomial function might be nonconvex. In recent years, as
a promising approach to solve the POP, the semidefinite programming relaxation has been
attracted much attention [6, 11, 10, 13, 15]. A problem in which all the monomials included
in the POP are linearized is formulated as a semidefinite programming problem (SDP), and it
is a relaxation of the original POP. The SDP can be solved by the primal-dual interior point
method. We can get its solution efficiently. In addition, Kojima et al. [7, 17] proposed a method
to reduce the size of the SDP by using the sparsity of polynomials. As a result, an approximate
solution is expected to be obtained within a reasonable computational time.

The main problem of applying the SDP relaxation is that the size of the SDP becomes very
large and the solution of the SDP is not necessarily feasible for the original problem. For example,
when we consider scheduling with 10 discrete time horizon, 10 components and 50 pipelines, the
pooling problem is formulated as a POP with 1200 variables, and its SDP relaxation problem

2

has at least a 1200×1200 matrix. In order to reduce the problem size, we propose a formulation
that does not include the binary variables of the pooling problem. However, the removal causes
excessive relaxation of the feasible region of the original problem. To tighten the region, we use
valid inequalities. The valid inequality is known to be effective for the SDP relaxation approach.
It is a redundant constraint of the original POP, but it reduces the feasible region of the SDP,
and hence we can expect to get a better solution. Moreover, we also consider to fix some of
the variables after we solve the SDP relaxation problem. Then, we repeatedly solve the SDP
relaxation problem with some variables fixed until we need not fix the variables. Finally, in
order to get a feasible solution of the pooling problem, we propose to solve a mixed-integer
linear programming problem by exploiting the information of the solution obtained by solving
the final relaxation problem. The problem can be solved more easily than the original pooling
problem.

The remainder of the present paper is organized as follows. Section 2 describes the formula-
tion of the pooling problem. The semidefinite programming relaxation approach for the pooling
problem is proposed in Section 3. Numerical results are presented and discussed in Section 4.
Finally, we make some concluding remarks in Section 5.

Throughout the paper, we use the following notations. For matrix X ∈ Rn×n, X ≽ 0 means
X is positive semidefinite, i.e., vT Xv ≥ 0 for all v ∈ Rn. For x ∈ Rn, ∥x∥1 =

∑n
i=1 |xi|. In

addition, for a set A, |A| represents the number of elements in A.

2 The Pooling Problem

In this section, we give a concrete formulation of the pooling problem, and discuss its difficulties.
The purpose of the pooling problem is to determine schedules of flows of materials, from

importing raw materials (e.g., crude oil and fuel gas) to sending final products to consumers.
We consider a system that has three types of components, Source, BlendTank and Plant, and
pipelines that connect the components. Source imports the raw materials at specific times.
BlendTank stores and blends (mixes) the materials, and generates the final products. Plant
consumes (buys) the final products. The situation is shown in Fig.1.

Each material has its own quality. The quality is the value per unit amount, for example,
an octane number of gasoline and a heating (calorific) value of fuel gas. Here, high quality
implies good material. The raw materials imported to Source have a variety of quantity and
quality. However, Plant requires a certain amount of quantity and a certain level of quality of
the final products at each time. If that requirement is not satisfied, then the insufficiency of the
requirement cause some additional cost. Therefore, intermediate tanks (BlendTank) are placed
in the system for the reason not only to store the materials but also to mix them in order to
satisfy the requirement of the quality. There are types of two costs in the pooling problem.
First, we transport the materials from one tank to another tank by electric power. This cost is
called the “transportation cost”. Second, when the requirement of the quality is not satisfied,
the company must pay extra money as mentioned above. We call this cost the “compensation
cost”. We aim to minimize the sum of the total transportation costs and the total compensation
costs.

The system in the pooling problem has a graph geometry where each component is regarded
as a node, and each pipeline as an edge. Here, we denote the numbers of Sources, BlendTanks,
Plants as MS , MB and MP , respectively. The number of all nodes MV is defined to be MV =

3

Figure 1: Overview of the pooling problem

MS + MB + MP . Additionally, we denote the set of Sources by VS , the set of BlendTanks by
VB and the set of Plants by VP .

VS = {1, . . . , MS},
VB = {MS + 1, . . . , MS + MB},
VP = {MS + MB + 1, . . . , MS + MB + MP }.

Let the set of all components be V . If there exists a pipeline that originates from node i and
is destined for node j, we denote this pipeline as edge (i, j). The set of all edges is denoted as
A. Here, we note that a pipeline has a direction, that is, we cannot transport from node j to
node i by pipeline (i, j). For each node i ∈ V , we denote the set of nodes that have the edge
destined for node i and the set of nodes that have the edge originating from node i by I(i) and
E(i), respectively. Namely I(i) and E(i) are given as

I(i) ≡ {j ∈ V | (j, i) ∈ A},
E(i) ≡ {k ∈ V | (i, k) ∈ A}.

We formulate the problem with a uniform discretization of time in the given scheduling
horizon. Let the final time of the horizon be MT , and let the set of discretized times be
T = {t | 1, . . . , MT }. In the following, we use indices i, j, and k for nodes and t for time period.
The notations for the graph and indexes are summarized in Table 1.

Next, we list given constants and decision variables of the pooling problem.

(a) Initial conditions for Source (constants)

4

Table 1: Notation of parameter of graph and indices

Parameter of graph
MS : Cardinality of Source．
MB: Cardinality of BlendTank．
MP : Cardinality of Plant．
MV : The number of all nodes．
MT : The number of discretization of time horizon．
VS : Set of Source．
VB: Set of BlendTank．
VP : Set of Plant．
V : Set of all nodes．
A: Set of all edges that represent pipeline ．

I(i): Set of node which has an edge into node i．
E(i): Set of node which has an edge from node i．

T : Set of discretized time．
Indices

i, j, k: Indices for each node.
t: Index for time period．

(i, j): Index for each edge．

p0
i : Initial amount of materials in source i ∈ VS．

q0
i : Initial quality of materials in source i ∈ VS．

SAt
i: The amount of raw materials filled in source i ∈ VS at time t ∈ T．

SQt
i: The quality of raw materials filled in source i ∈ VS at time t ∈ T．

(b) Initial conditions for BlendTank (constants)
p0

i : Initial amount of materials in BlendTank i ∈ VB．
q0
i : Initial quality of materials in BlendTank i ∈ VB．

pmin
i : Minimum capacity of BlendTank i ∈ VB．

pmax
i : Maximum capacity of BlendTank i ∈ VB．

(c) Constants for Plant
DCt

i : The requirement of quantity in Plant i ∈ VP at time t ∈ T．
DQt

i: The requirement of quality in Plant i ∈ VP at time t ∈ T．
CQi: Compensation cost per unit insufficiency of quality in Plant i ∈ VP．

(d) Initial conditions for pipeline
Lij : Lower bound on flow in edge (i, j) ．
Uij : Upper bound on flow in edge (i, j) ．

CAij : Cost per unit material flow of edge (i, j)．

(e) Decision variables for Source, BlendTank and Plant
pt

i: The amount of materials in node i ∈ V at time t ∈ T .
qt
i : The quality of materials in node i ∈ V at time t ∈ T .

(f) Decision variables for pipeline

5

at
ij : The flow of edge (i, j) ∈ A at time t ∈ T .

ut
ij : binary variable indicating the usage of edge (i, j).

We denote the vector (p1
i , . . . , p

MT
i)⊤ as pi and the vector (p1, . . . ,pMV

)⊤ as p. Similarly,
we denote other vector variables as q, a, u.

We formulate the pooling problem as a mixed-integer programming problem. The objective
of this problem is to minimize the sum of transportation costs and compensation costs. The
compensation cost is proportional to the product of the quality insufficiency and the amount of
the final product. The concrete objective function of the problem can therefore be written as∑

t∈T

∑
(i,j)∈A

CAijaij +
∑
t∈T

∑
i∈VP

CQiDCt
i max{0, DQt

i − qt
i}. (1)

We note that the compensation cost is higher than the transportation cost in general. If we need
to satisfy the requirement of the quality, we set CQ := ∞, which means that we add qt

i ≥ DQt
i

as constraints.
Next we describe the constraints. First, we note that when two materials are mixed, the

newly generated material must have the same total amount and the same total value of the
materials. As mentioned in Introduction, when we mix two materials 1 and 2 with quantity p1, p2

and quality q1, q2 into the new material 3 with quantity p3 and quality q3, the following two
equalities express proportional blending.

p3 = p1 + p2 (2)

p3q3 = p1q1 + p2q2 (3)

The first equation (2) represents the material quantity balance, and it is linear. We call this
equation the “quantity conservation law”. The second equation (3) represents the material
quality balance, and it is nonlinear. This equation is called the “value conservation law”.

Now we give the whole constraints of the pooling problem.

Source constraints
The quantity conservation law (2) and the value conservation law (3) must be satisfied at
all times, and the new raw material with the amount SAt

i and quality SQt
i is added in

time t ∈ T .

pt+1
i = pt

i + SAt
i −

∑
k∈E(i)

at
ik,

pt+1
i qt+1

i = pt
iq

t
i + SAt

iSQt
i −

∑
k∈E(i)

at
ikq

t
i .

(4)

Additionally, the amount of material of each Source i ∈ VS must be nonnegative at all
times t ∈ T .

pt
i ≥ 0. (5)

BlendTank constraints
The quantity conservation law (2) and the value conservation law (3) must be satisfied at

6

all times.

pt+1
i = pt

i +
∑

j∈I(i)

at
ji −

∑
k∈E(i)

at
ik,

pt+1
i qt+1

i = pt
iq

t
i +

∑
j∈I(i)

at
jiq

t
j −

∑
k∈E(i)

at
ikq

t
i .

(6)

A BlendTank i ∈ VB cannot be filled to more than its capacity and must keep the amount
no less than its minimum volume.

pmin
i ≤ pt

i ≤ pmax
i . (7)

Plant constraints
In plant i ∈ VP , the required amount of the final products is given by DCt

i in each time
t ∈ T , and the total value is

∑
j∈I(i) at

jiq
t
j . Thus the quality qt+1

i is written as

qt+1
i =

∑
j∈I(i) at

jiq
t
j

DCt
i

. (8)

Pipeline constraints
For each pipeline (i, j) ∈ A, if there exists flow in time t ∈ T , we set binary variable
ut

ij = 1, otherwise we set ut
ij = 0. Thus flow at

ij must satisfy

ut
ijLij ≤ at

ij ≤ ut
ijUij . (9)

In each node i ∈ V , we can use at most one pipeline connected to node i. This requirement
can be formulated as ∑

j∈I(i)

ut
ji +

∑
k∈E(i)

ut
ik ≤ 1. (10)

Summarizing the above arguments from (1) to (10)，we give the concrete pooling problem as
follows.

(P) minimize
a,u,p,q

∑
t∈T

∑
(i,j)∈A

CAijaij +
∑
t∈T

∑
i∈VP

CQiDCt
i max{0, DQt

i − qt
i}

subject to ut
ijLij ≤ at

ij ≤ ut
ijUij (∀(i, j) ∈ A, ∀t ∈ T)∑

j∈I(i)

ut
ji +

∑
k∈E(i)

ut
ik ≤ 1 (∀i ∈ V, ∀t ∈ T)

ut
ij ∈ {0, 1} (∀(i, j) ∈ A, ∀t ∈ T)

(a,p, q) ∈ Ω̄,

(11)

where
Ω̄ = {(a, p, q) | (4), (5), (6), (7), and (8)}.

Since the pooling problem has binary variables u = (ut
ij), it is very difficult to solve. Another

difficult aspect is that it includes nonlinear functions in the constraints, i.e., the value conserva-
tion law (3). Since the value conservation law (3) is a nonlinear equation (not inequality), the
pooling problem cannot be a convex problem even if we fix the binary variables u. A mixed-
integer nonlinear programming problem can be solved by some algorithms, such as generalized
Benders decomposition method [8] and outer approximation method [5]. However, as mentioned

7

in Introduction, because they need the convexity of the subproblems obtained by fixing the in-
teger part, they cannot be applied to the pooling problem. Moreover, even if we fix the binary
variables, we cannot easily obtain a global solution, because many nonconvex constraints still
remain. In addition to this difficulty, the number of binary variables is MT × |A|. When the
scale of the problem becomes large, the combination of binary variables u grows exponentially.
Thus, it is difficult to apply the state-of-the-art method for combinational problems, such as
Branch and Bound algorithms, to the pooling problem. Therefore, we must develop methods
that are tailored to the pooling problem.

3 Semidefinite Programming Relaxation Approach

In this section, we propose a framework for solving the pooling problem (11) using the semidef-
inite programming (SDP) relaxation approach. For applying the approach, we first reformulate
the pooling problem as a polynomial optimization problem (POP). The POP is a nonlinear
programming problem whose objective and constraint functions are polynomial. The standard
form of POP is

(POP) minimize f0(x)

subject to fi(x) ≥ 0 (i = 1, . . . ,m),

where all functions fi : Rn → R (i = 0, . . . ,m) are polynomial. Note that equality constraints
g(x) = 0 can be formulated as two inequalities of g(x) ≥ 0 and −g(x) ≥ 0．

By linearizing all monomials included in the POP, the POP is transfered into the linear
SDP [11]. The SDP relaxation problem SDRr(POP) of the POP can be written as

SDRr(POP) minimize F0(y)

subject to Fi(y) ≽ O (i = 1, . . . ,m)

Mr(y) ≽ O,

where r is the relaxation order, each Fi is a linearized function of fi, and Mr is a symmetric
matrix called a moment matrix (see [11] for details). The moment matrix Mr plays an important
role in the tightness of the relaxation, because it guarantees that a solution of the problem
SDRr(POP) coincides with a solution of the problem POP when relaxation order r is sufficiently
large [11]. However, since the size of Mr is n+rCr ×n+r Cr, the size of the problem SDRr(POP)
increases exponentially as r and n, and hence it is very difficult to solve. Since the pooling
problem (11) has at most quadratic functions, we can choose any relaxation order r ≥ 1. While
the SDR1(POP) has an (n + 1) × (n + 1) matrix as its decision variables, and the SDR2(POP)
has an n(n+1)

2 × n(n+1)
2 matrix. Thus when n = 100, the largest matrix size of SDR1(POP) is

10, 201, while SDR2(POP) is 25, 502, 500. Since the pooling problem usually has hundreds of
variables, we have to choose r = 1. However, note that a solution of the problem SDRr(POP)
with lower r is not always feasible for the POP.

3.1 Reformulation of the pooling problem to POP

Here we give a POP formulation equivalent to the pooling problem (11). The pooling prob-
lem (11) includes max functions and binary valuables, and thus it is not a POP. First note that
ut

ij ∈ {0, 1} can be written as the polynomial constraint ut
ij(u

t
ij−1) = 0, (∀ (i, j) ∈ A,∀ t ∈ T).

8

Thus, using the auxiliary variables vt
i (i ∈ VP , t ∈ T) for the max functions, the pooling prob-

lem (11) is written as

(P-POP) minimize
a,u,p,q,v

∑
t∈T

∑
(i,j)∈A

CAija
t
ij +

∑
t∈T

∑
i∈VP

CQiDCt
iv

t
i

subject to ut
ijLij ≤ at

ij ≤ ut
ijUij (∀(i, j) ∈ A,∀t ∈ T)∑

j∈I(i)

ut
ji +

∑
k∈E(i)

ut
ik ≤ 1 (∀i ∈ V, ∀t ∈ T)

ut
ij(u

t
ij − 1) = 0 (∀(i, j) ∈ A,∀t ∈ T)

ut
ij ∈ R (∀(i, j) ∈ A,∀t ∈ T)

(a, p, q, v) ∈ Ω,

(12)

where
Ω = {(a,p, q,v) | (a, p, q) ∈ Ω̄, vt

i ≥ DQt
i − qt

i , vt
i ≥ 0}.

We try to get an approximate solution of the problem (12) by the SDP relaxation approach.
We denote the SDP relaxation problem of the problem (12) with relaxation order r as SDR
r(P-POP)．By solving the problem SDRr(P-POP), we can obtain an approximate solution
(ā, ū, p̄, q̄, v̄) of the original problem (12)．If the approximate solution (ā, ū, p̄, q̄, v̄) is feasible
for the original problem (12), then (ā, ū, p̄, q̄, v̄) is an optimal solution of the original prob-
lem (12). However, the approximate solution (ā, ū, p̄, q̄, v̄) is not necessarily feasible for the
original problem (12)．To obtain an optimal solution of (12), we must set the relaxation order r

to be large enough. However, SDRr(P-POP) becomes huge for a large r. For example, consider
a scheduling problem with 10 discrete time horizon, 10 components and 30 pipelines. Then
the total number of variables is about 800, the size of the largest matrix in SDR1(P-POP) is
about 800×800, and the size of the largest matrix in SDR2(P-POP) is about 320, 000×320, 000.
Therefore, it is practically impossible to solve the SDP relaxation with relaxation order r ≥ 2.
We consider to obtain a reasonable approximate solution from SDR1(P-POP).

Even if r = 1, the problem SDR1(P-POP) is still large. In Subsection 3.2, we first propose
a formulation without ut

ij in order to reduce the problem size. The relaxation order r = 1 may
imply that the relaxation is very loose. Thus, in Subsection 3.3, we consider to add appropriate
valid inequalities to the problem in order to obtain a better approximate solution. In Subsection
3.4, we propose a procedure to fix some of flow variables at

ij at zero after we solve the SDP
relaxation problem, which reduces the size of the problem. The reduced SDP relaxation may
provide a tight relaxation. Finally, in Subsection 3.5, in order to get a feasible solution of
the original pooling problem, we formulate a mixed-integer linear programming problem whose
solution is feasible for the pooling problem. Since the formulated problem includes information
of the solution of the SDP relaxation problem, its solution is expected to be a reasonable feasible
solution.

3.2 Removal of u from (12)

When we reduce the number of variables in (12), we can reduce the size of the SDP relaxation
problem drastically, because the size of the SDP relaxation problem is usually the square of
that of the original problem. Thus, we consider to remove u since they are artificial variables.
However, the deletion causes the following problem. We cannot represent the constraint (10)

9

that means we can use at most one pipeline connected to the same node at the same time, and
the constraint (9) that represents for each pipeline (i, j) ∈ A, if flow exists in time t ∈ T , flow
at

ij satisfies Lij ≤ at
ij ≤ Uij , otherwise at

ij = 0.
To represent the constraint (10), we propose to add the following complementarity conditions.

at
jia

t
ki = 0 (j, k ∈ I(i), j ̸= k), at

ija
t
ik = 0 (j, k ∈ E(i), j ̸= k), at

jia
t
ik = 0 (j ∈ I(i), k ∈ E(i)).

Moreover, since at
ij ≥ 0 (∀(i, j) ∈ A,∀t ∈ T), these constraints are equal to following constraint.∑
j,k∈I(i),j ̸=k

at
jia

t
ki +

∑
j,k∈E(i),j ̸=k

at
ija

t
ik +

∑
j∈I(i),k∈E(i)

at
jia

t
ik = 0.

Next, to represent (9), we relax the constraint Lij ≤ at
ij when flow exists. That is, we replace

the constraint (9) by the following constraint.

0 ≤ at
ij ≤ Uij .

Now we get the following relaxed problem of (12).

(P-POP) minimize
a,u,p,q,v

∑
t∈T

∑
(i,j)∈A

CAija
t
ij +

∑
t∈T

∑
i∈VP

CQiDCt
iv

t
i

subject to
∑

j,k∈I(i),j ̸=k

at
jia

t
ki +

∑
j,k∈E(i),j ̸=k

at
ija

t
ik +

∑
j∈I(i),k∈E(i)

at
jia

t
ik = 0 (∀i ∈ V, ∀t ∈ T)

0 ≤ at
ij ≤ Uij (∀(i, j) ∈ A,∀t ∈ T)

(a, p, q, v) ∈ Ω.

(13)
The number of variables of the problem (13) is MT ×|A| fewer than those of the original problem
(12). On the other hand, the number of the constraints of the problem (13) is the same as that
of the original problem (12).

3.3 Valid inequalities of (13)

A valid inequality is known to be effective for the SDP relaxation approach. Although the valid
inequality is a redundant constraint for the original POP, it tightens the feasible region of SDP,
and hence we can expect to get a better solution. Especially, since the difficulty of the pooling
problem comes from the value conservation law (3), it is effective to add valid inequalities related
to the quality and pipeline constraints. We denote the problem (P-POP) with valid inequalities
as (P-POPv).

Trivial upper and lower bounds of each variable: Each variable has trivial upper and lower
bounds. For example, the quality variable qt

i has an upper (lower) bound which is
given by the largest (smallest) quality value of the given constants. Specifically, we set
qmax = maxi,t{q0

i , SQt
i} and qmin = mini,t{q0

i , SQt
i}. In this case, qt

i has the following
valid inequalities.

qmin ≤ qt
i ≤ qmax. (14)

Note that it is time invariant. Since the quality of the final product must be greater than
the worst case quality qmin, the compensation variable vt

i must satisfy

vt
i ≤ DQt

i − qmin. (15)

10

Upper and lower bounds of monomials with degree 2: For monomial xy with 0 ≤ Lx ≤ x ≤ Ux

and 0 ≤ Ly ≤ y ≤ Uy，the following inequalities hold [12].

xy ≤ Uyx + Lxy − LxUy, xy ≤ Lyx + Uxy − UxLy,

xy ≥ Uyx + Uxy − UxUy, xy ≥ Lyx + Lxy − LxLy.

Using these relations, pmin
i ≤ pt

i ≤ pmax
i and qmin ≤ qt

i ≤ qmax give the following valid
inequalities.

pt
iq

t
i ≤ qmaxpt

i + pmin
i qt

i − pmin
i qmax, pt

iq
t
i ≤ qminpt

i + pmax
i qt

i − pmax
i qmin, (16)

pt
iq

t
i ≥ qmaxpt

i + pmax
i qt

i − pmax
i qmax, pt

iq
t
i ≥ qminpt

i + pmin
i qt

i − pmin
i qmin, (17)

(qt
i)

2 ≤ (qmin + qmax)qt
i − qminqmax, (18)

(qt
i)

2 ≥ 2qmaxqt
i − (qmax)2, (qt

i)
2 ≥ 2qminqt

i − (qmin)2. (19)

The monomials at
ijq

t
i , (pt

i)
2, (at

i)
2 have similar valid inequalities. From the property of

the pooling problem, the counterparts of the quality qt
i and its square (qt

i)
2 in the SDP

relaxation problem tend to become as large as possible. Thus we use (17) and (18) in the
numerical experiments.

Implicit upper and lower bounds of variables: As mentioned before, pt
i and qt

i have the
trivial time invariant upper and lower bounds. However, there exist implicit time de-
pendent bounds due to the other constraints. For example, p1

i must satisfy p1
i ≤ p0

i +
maxj∈I(i){Uij}. Though estimating these bounds requires some additional calculations,
the time variant implicit bounds may provide tight valid inequalities of (16)-(19), in par-
ticular in earlier stages of the time period.

Now we give a naive algorithm to estimate the implicit bounds for pt
i and qt

i .

Bounds of pt
i: We denote the estimated upper and lower bounds of pt

i at time t as pt
i

and pt
i
, respectively. We can easily get an upper bound pt

i by solving the following
problem.

minimize
a,u,p

−pt
i

subject to {
pt+1

i = pt
i + SAt

i −
∑

k∈E(i) at
ik

pt
i ≥ 0

(∀i ∈ VS ,∀t ∈ T)

pt+1

i = pt
i +

∑
j∈I(i)

at
ji −

∑
k∈E(i)

at
ik

pmin
i ≤ pt

i ≤ pmax
i

(∀i ∈ VB,∀t ∈ T)

{
DCt

i =
∑

j∈I(i)

at
ji (∀i ∈ VP ,∀t ∈ T)

ut
ijLij ≤ at

ij ≤ ut
ijUij (∀(i, j) ∈ A,∀t ∈ T)∑

j∈I(i)

ut
ji +

∑
k∈E(i)

ut
ik ≤ 1 (∀i ∈ V, ∀t ∈ T)

at
ij ∈ R, ut

ij ∈ {0, 1} (∀(i, j) ∈ A,∀t ∈ T)
pt

i ∈ R (∀i ∈ V, ∀t ∈ T),

(20)

11

which is to maximize pt
i subject to the same constraints as those of the pooling

problem (11) expect for the nonlinear constraints (3). Similarly, the estimated lower
bound pt

i
is given by an optimal value of problem (20) with the objective function

pt
i instead of −pt

i. Because the problem (20) is a mixed-integer linear programming
problem, we get the optimal value more easily than the original problem (12). Note
that, if we need to obtain all bounds of quantity variables pt

i, we have to solve MILPs
2 × MV × MT times.

Bounds of qt
i : In the following, we assume that pt

i and pt
i

have already been obtained.
Let qt

i and qt
i
be the estimated time variant upper and lower bounds. For estimating

qt+1
i ，we first check the quality qt

j of j ∈ I(i) at t. If qt
i ≥ qt

j holds for all j ∈ I(i),
then we set qt+1

i = qt
i．Otherwise, we set the quality qt+1

i to the maximum quality
calculated as follows. We assume that the quantity pt

i of component i is the minimum
quantity pt

i
, and the quantity pt

j of component j ∈ I(i) is its maximum pt
j . First,

we calculate the maximum flow eij from component j into component i. Note that
component i can receive at most pmax

i − pt
i
, the flow upper bound of pipeline (i, j)

is Uij and component j can send at most pt
j − pmin

j . Thus the maximum flow eij is
given by

eij = min{pmax
i − pt

i
, Uij , pt

j − pmin
j }.

Using eij , we calculate the maximum quality value qt+1
i as follows:

qt+1
i = max

j

{
pt

i
qt
i + eijq

t
j

pt
i
+ eij

∣∣ j ∈ I(i), qt
i < qt

j

}
.

We can calculate qt+1
i

similarly.

3.4 Fixing variables after solving the SDP relaxation problem

Some flows at
ij in the solution of the SDP relaxation problem may become zero. Then we may

construct a SDP relaxation problem with such at
ij fixed to zero. The resulting SDP becomes

smaller, and may provide a tight relaxation. Now we explain how to fix such variables. Let ā
be the flows in the solution of the SDP relaxation problem, and let ϵ be a small positive scaler.
Then, the set J t

0 of the expected no flow pipelines is defined by J t
0 = {(i, j) ∈ A | at

ij ≤ ϵ}.
Let J t

f be J t
f := A \ J t

0. Note that J t
f is the set of pipelines that are supposed to be used. We

set J0 := {(i, j, t)|(i, j) ∈ J t
0, t ∈ T}, Jf := {(i, j, t)|(i, j) ∈ J t

f , t ∈ T}. The relaxed pooling
problem (P-POP) with Jf and J0 are stated as follows.

(NPP(Jf , J0)) minimize
a,u,p,q,v

∑
t∈T

∑
(i,j)∈It

f

CAija
t
ij +

∑
t∈T

∑
i∈VP

CQiDCt
iv

t
i

subject to
∑

j,k∈Ĩt(i),j ̸=k

at
jia

t
ki +

∑
j,k∈Ẽt(i),j ̸=k

at
ija

t
ik +

∑
j∈Ĩt(i),k∈Ẽt(i)

at
jia

t
ik = 0 (∀i ∈ V, ∀t ∈ T)

0 ≤ at
ij ≤ Uij (∀(i, j) ∈ It

f ,∀t ∈ T)

(a, p, q, v) ∈ Ω̂,
(21)

where Ĩt(i) and Ẽt(i) are given by

Ĩt(i) ≡ {j ∈ I(i) | (j, i) ∈ J t
f},

Ẽt(i) ≡ {k ∈ E(i) | (i, k) ∈ J t
f},

12

and, Ω̂ is the set Ω with Ĩt(i) and Ẽt(i) instead of I(i) and E(i), respectively. Comparing the
problem (21) with the original problem (13), the number of flow variables a decreases by |I0|.
Note that the problem without fixed variables (NPP(A, ∅)) is equal to the original problem (13).
We denote the semidefinite relaxation problem of the problem (21) with relaxation order r as
SDRr(NPP(Jf ,J0)).

3.5 Finding a feasible solution

When the solution (ā, ū, p̄, q̄, v̄) of the SDP relaxation problem is not feasible for the origi-
nal problem (12), we should find a reasonable feasible solution of (12). We can get a feasible
solution by solving the pooling problem without nonlinear equality constraints (3), which is
a mixed-integer linear programming problem. However, such a problem ignores the most im-
portant cost, that is, the compensation cost. Thus, we consider to exploit information of the
solution (ā, ū, p̄, q̄, v̄) by two ways. First, we search a feasible solution near the approximate
solution (ā, ū, p̄, q̄, v̄). That is, we regard a feasible solution that minimizes ∥p− p̄∥1 as a better
solution. Second, we calculate a compensation v by using the quality q̄ of the solution. Thus,
using the auxiliary variable s for ∥p − p̄∥1, our proposal is formulated as follows:

FFS(p̄, q̄) minimize
a,u,p,q,v,s

w
∑
t∈T

∑
i∈V

st
i +

∑
t∈T

∑
(i,j)∈A

CAija
t
ij +

∑
t∈T

∑
i∈VP

vt
i

subject to −s ≤ p − p̄ ≤ s
pt+1

i = pt
i + SAt

i −
∑

k∈E(i)

at
ik

pt
i ≥ 0

(∀i ∈ VS ,∀t ∈ T)

pt+1

i = pt
i +

∑
j∈I(i)

at
ji −

∑
k∈E(i)

at
ik

pmin
i ≤ pt

i ≤ pmax
i

(∀i ∈ VB,∀t ∈ T)

DCt
i =

∑
j∈I(i)

at
ji

DCt
iq

t+1
i =

∑
j∈I(i)

at
jiq̄

t
j

qt
i ≥ DQt

i − vt
i

vt
i ≥ 0

(∀i ∈ VP ,∀t ∈ T)

ut
ijLij ≤ at

ij ≤ ut
ijUij (∀(i, j) ∈ A,∀t ∈ T)∑

j∈I(i)

ut
ji +

∑
k∈E(i)

ut
ik ≤ 1 (∀i ∈ V, ∀t ∈ T)

ut
ij ∈ {0, 1} (∀(i, j) ∈ A,∀t ∈ T),

(22)

where w is a weight coefficient for the term ∥p− p̄∥ in the objective function. Since the problem
FFS(p̄, q̄) is MILP, we get the optimal value by an existing an MILP solver. After we obtain
the optimal solution (ã, ũ, p̃) of the problem FFS(p̄, q̄), we can calculate the quality q̃ and the

13

compensations v as follows,q̃1
i = qstart

i

q̃t+1
i =

p̃t
i q̃

t
i+SAt

iSQt
i−
∑

k∈E(i) ãt
ik q̃t

i

p̃t+1
i

(∀i ∈ VS ,∀t ∈ T),

q̃1
i = q̃start

i

q̃t+1
i =

pt
i q̃

t
i+
∑

j∈I(i) at
jiq̃

t
j−
∑

k∈E(i) at
ik q̃t

i

pt+1
i

(∀i ∈ VB,∀t ∈ T),

q̃t+1
i =

∑
j∈I(i) at

jiq̃
t
j

DCt
i

ṽt
i = max(0, DQt

i − q̃t
i)

(∀i ∈ VP ,∀t ∈ T).

3.6 Summary of the proposed approach

We summarize the relations among the problems defined in Subsections 3.1 to 3.4 in Fig.2.

Figure 2: Relations among the problems

Moreover, the following inequalities hold for the optimum values of the problems.

min(P) = min(P-POP) ≥ min(P-POP) = min(P-POPv) ≥ min(SDR(P-POPv)) ≥ min(SDR(P-POP)),

where min(P) denotes the optimum value of the problem (P). Note that the inequality min(SDR(P-POP)) ≥
min(SDR(P-POP)) does not always hold.

Now, we give the concrete algorithm as follows.

14

Proposed Algorithm

Step 0: Set J0 = ∅, Jf = {(i, j, t) | (i, j) ∈ A, t ∈ T}, and choose a small ϵ > 0 such that
ϵ < min(i,j)∈A Lij .

Step 1: Solve the SDP relaxation problem for NPP(Jf ,J0) with some valid inequalities men-
tioned in Subsection 3.4, and obtain its solution (ā, p̄, q̄, v̄).

Step 2: Let J̄0 = {(i, j, t) ∈ Jf | at
ij ≤ ϵ}. If J̄0 is not empty, then set J0 = J0 ∪ J̄0 and

Jf = Jf \ J̄0, and go to Step 1.

Step 3: Solve FFS(p̄, q̄) defined in Subsection 3.5, and obtain a feasible solution (ã, p̃, q̃, ṽ) of
the original problem.

Step 4: Obtain a local optimal solution (a∗, p∗, q∗,v∗) by a general nonlinear programming
solver starting from the feasible solution (ã, p̃, q̃, ṽ)．

The feasible solution (ã, p̃, q̃, ṽ) obtained in Step 3 is not necessarily a local optimum for the
pooling problem with the binary variables fixed. Thus, in Step 4, we solve the problem by some
local search method.

4 Numerical Experiments

In this section, we present some numerical experiments with the proposed method. The experi-
ments were carried out for eight problems. The network systems of the problems are presented
in Figs. 3-6 and the given constants are shown in Tables 9-16. The numbers of their components,
discretized time horizons and pipelines are shown in Table 2.

Figure 3: Problems 1, 2 Figure 4: Problems 3, 4

Problems 1 and 2 have the same network system, while they have different time horizons and
constants. Similarly, Problems 3 and 4 have different time horizons and the same network. Note
that their network is different from that of Problems 1 and 2. Problems 1-4 have only two
BlendTanks. Since the requirement of Plant is always positive, one of the tanks should send
the final products to the Plant. Thus the pipelines between the tanks are not used due to the
constraints (10). On the other hand, Problems 5-8 have more than three BlendTanks. Thus,
they may have flows between each pair of BlendTanks. Problems 7 and 8 are relatively large

15

Figure 5: Problems 5, 6 Figure 6: Problems 7, 8

Table 2: The sizes of sets and the numbers of variables for each problem

MS MB MP MT |A| #a #u #p #q #v

Problem 1 1 2 1 10 6 60 60 30 30 10
Problem 2 1 2 1 20 6 120 120 60 60 20
Problem 3 2 2 1 10 8 80 80 40 30 10
Problem 4 2 2 1 20 8 160 160 80 60 20
Problem 5 1 4 1 7 12 84 84 35 35 7
Problem 6 1 4 1 14 20 280 280 70 70 14
Problem 7 2 4 2 28 28 784 784 168 168 56
Problem 8 2 4 2 28 28 784 784 168 168 56

16

problems. They have 28 discretized time horizons, which correspond to one week with four
divisions of one day or about four weeks. Thus they have about 2,000 decision variables. Note
that, in all problems, the total of the initial values is more than the value required by Plants in
the time horizon, which means that it may be possible to satisfy all requirements.

In numerical experiments, we use a simple algorithm which does not include Step 2, that is,
we solved FFS(p̄, q̄) in Step 3 soon after the first SDP relaxation problem was solved.

All algorithms were coded in MATLAB 7.4, and run on a machine with 3.2GHz Pentium 4
CPU and 3.2 GB memory. We generate sparse SDP relaxation problems by SparsePOP [18],
and solve the SDP relaxation problems by SeDuMi [16]. Moreover, we solve the MILPs by the
ILOG CPLEX R⃝ 11.0 solver and local search is carried out by the function fmincon in MATLAB
which is a solver for nonlinear programming problem.

We investigate effects of the formulation of (P-POP) with the valid inequalities proposed in
Section 3. We compare the proposed formulation with the naive formulation (P-POP). However,
the SDP relaxation problem derived from (P-POP) may become unbounded. Thus the trivial
upper and lower bounds (14) and (15) are added to all formulations in order to avoid the
unboundedness. Moreover, since some large problems may not be solvable because of numerical
instability in the SDP, we scaled all problems in an appropriate manner. Moreover, in each
problem, we added the constraints

pMT
i = 0 (∀i ∈ VS), (23)

which mean that, in the last time period, all the sources must be empty.
First, we compare the naive formulation (P-POP) with the proposed formulation (P-POP).

Here, we did not add the valid inequalities to (P-POP). Table 3 shows the size of the SDP solved
in Step 1. For all problems, due to the removal of u, the size of the primal SDP is reduced
about a half, and that of the dual SDP is drastically reduced.

Table 3: The number of variables of the SDP relaxation problem generated by SparsePOP

SDR1(P-POP) SDR1(P-POP)
problem 1 (457,2469) (327,769)
problem 2 (907,4919) (647,1519)
problem 3 (638,4013) (448,1023)
problem 4 (1268,8003) (888,2023)
problem 5 (1805,21637) (1196,2520)
problem 6 (3597,43239) (2379,5055)
problem 7 (12054,184568) (7406,15439)
problem 8 (12054,184569) (7406,15439)

Two numbers in parentheses represent the number of variables of the primal problem (left) and that of
the dual problem (right).

Next, we show the computation times and the objective values in Table 4. The objective value
means the final optimum value obtained by the proposed algorithm, that is, the objective func-
tion value at the local solution (a∗, u∗, p∗, q∗, v∗) obtained in Step 4. The computational times
of the proposed formulation are less than those of the naive formulation due to the smaller SDP
sizes. On the other hand, from the viewpoint of the objective value, the proposed formulation

17

Table 4: Computational times [s] and objective values

the naive formulation (P-POP) the proposed formulation (P-POP)
time objective value time objective value

Problem 1 5.57 16800 3.65 16800
Problem 2 10.3 13100 5.52 13100
Problem 3 5.95 9550 3.44 9550
Problem 4 22.7 17400 14.9 17400
Problem 5 21.4 36300 8.66 29700
Problem 6 60.4 62600 15.6 60200
Problem 7 430 44800 138 70200
Problem 8 449 59900 137 98400

is comparable to the naive formulation. Moreover, it is interesting to note that the objective
value of (P-POP) for Problems 1, 5 and 6 are much better than those by (P-POP).

Next, we investigate the effects of the valid inequalities proposed in Subsection 3.3. We
examined the following four types of valid inequalities.

(a) We add only the trivial upper and lower bounds (14) and (15), which we call the de-
fault bound constraints. We refer to the problem (P-POP) with these valid inequalities as
(P-POPva).

(b) We add the valid inequalities (17) and (18) for the monomials with degree 2 in addition to
the default bound constraints. We refer to the problem (P-POP) with these valid inequalities
as (P-POPvb

).

(c) We add the time dependent upper and lower bounds on p and q by the method proposed
in Subsection 3.3 in addition to the default bound constraints. We refer to the problem
(P-POP) with these valid inequalities as (P-POPvc).

(d) We add the valid inequalities (17) and (18) with the time dependent upper and lower bounds.
We refer to the problem (P-POP) with these valid inequalities as (P-POPvd

).

Table 5 shows the size of the SDP which is solved in Step 1. Since the size of SDR1(P-POPva)
is the same as that of SDR1(P-POPvc), and since SDR1(P-POPvb

) is the same as that of SDR
1(P-POPvd

), we omit the numbers for SDR1(P-POPvb
) and SDR1(P-POPvd

). Table 6 shows
the computational times. We see that, when we added the upper and lower bound of monomials
with degree 2, that is the type (b) or (d), the computational time for solving the SDP increases.
Moreover, when we used the time dependent upper and lower bounds, that is type (c) or (d), the
computational time for solving the MILPs increases. In relatively small problems (Problems 1-6),
the computational time required to solve the MILPs is reasonable compared to those required
in the other part of computations.

Table 7 shows the objective value obtained in each case. In Table 7, “ratio” represents the
ratio of each objective value to the objective value of (P-POPva). For almost all problems, we
could get better solutions by adding valid inequalities.

18

Table 5: The number of variables of the SDP relaxation problem generated by SparsePOP

SDR1(P-POPva) SDR1(P-POPvb
)

Problem 1 (327, 769) (898, 5830)
Problem 2 (647, 1519) (1764, 11403)
Problem 3 (448, 1023) (1077, 11403)
Problem 4 (888, 2023) (1077, 6565)
Problem 5 (1196, 2520) (2021, 12021)
Problem 6 (2379, 5055) (3537, 25664)
Problem 7 (7406, 15439) (7106, 50954)
Problem 8 (7406, 15439) (19164, 136434)

Two numbers in parentheses represent the number of variables of the primal problem (left) and that of
the dual problem (right).

Table 6: Computational times [s]

SDR1(P-POPva) SDR1(P-POPvb
) SDR1(P-POPvc) SDR1(P-POPvd

)

Problem 1
1.53 6.90 1.59 5.65

(1.53, 0.03) (6.90, 0.04) (1.59, 0.37) (5.65, 0.33)

Problem 2
3.55 11.7 3.57 12.3

(3.55, 0.27) (11.7, 0.27) (3.57, 16.8) (12.3, 15.9)

Problem 3
2.28 8.07 2.39 6.55

(2.28, 0.06) (8.07, 0.06) (2.39, 0.65) (6.55, 0.61)

Problem 4
5.01 10.8 5.05 10.6

(5.01, 0.82) (10.8, 0.83) (5.05, 78.5) (10.6, 73.3)

Problem 5
4.58 57.9 4.48 42.4

(4.58, 0.19) (57.9, 0.22) (4.48, 0.90) (42.4, 0.90)

Problem 6
11.2 292 11.6 478

(11.2, 2.46) (292, 3.64) (11.6, 8.13) (478, 9.82)

Problem 7
58.7 229 58.7 228

(58.7, 58.2) (229, 58.9) (58.7, 177) (228, 178)

Problem 8
58.5 229 58.7 228

(58.5, 58.1) (229, 58.0) (58.7, 179) (228, 180)

The number at the top of each entry represents the total computational time, and two numbers in
parentheses represent the computational times of solving SDP (left) and MILP (right)

19

Table 7: Objective values

SDR1(P-POPva) SDR1(P-POPvb
) SDR1(P-POPvc) SDR1(P-POPvd

)

Prob. 1
objective value 16800 17800 7940 14100

ratio (%) (100) (106) (47.2) (83.7)

Prob. 2
objective value 13100 2250 4560 4560

ratio (%) (100) (17.2) (34.8) (34.8)

Prob. 3
objective value 9550 9550 550 5800

ratio (%) (100) (100) (5.76) (60.7)

Prob. 4
objective value 17500 14400 16900 14400

ratio (%) (100) (82.1) (96.7) (82.1)

Prob. 5
objective value 29700 400 8380 400

ratio (%) (100) (1.35) (28.2) (1.35)

Prob. 6
objective value 60300 20900 51500 5040

ratio (%) (100) (34.7) (85.5) (8.36)

Prob. 7
objective value 70200 26800 26600 42500

ratio (%) (100) (38.2) (37.9) (60.5)

Prob. 8
objective value 98400 57100 101000 43300

ratio (%) (100) (58.0) (103) (44.0)

Finally, Table 8 shows a kind of customer satisfaction, which is defined by

(satisfaction) = 100 ∗ (the total required value) − (the total insufficiency of the value)
(the total required value)

.

In most cases, we were able to get better satisfactions by the proposed formulations.

Table 8: Customer satisfaction (%)

SDR1(PP’) SDR1(P-POPv1) SDR1(P-POPv2) SDR1(P-POPv3) SDR1(P-POPv4)
problem 1 96.4 96.4 96.2 98.3 97.0
problem 2 98.7 98.7 99.9 99.6 99.6
problem 3 98.0 98.0 98.0 100 98.8
problem 4 98.2 98.2 98.5 98.2 98.5
problem 5 92.4 93.8 100 98.3 100
problem 6 93.5 93.8 97.9 94.7 99.6
problem 7 96.8 94.9 98.1 98.1 97.0
problem 8 95.7 92.8 95.9 92.6 96.9

20

5 Concluding Remarks

In this paper, we considered to apply the SDP relaxation approach to the pooling problem.
We proposed a new formulation of the pooling problem in order to reduce the size of the SDP
relaxation problem. Moreover, we proposed some valid inequalities that can tighten the feasible
region of the relaxation problem. Finally, we carried out some numerical experiments, which
show that the proposed formulations enable us to get better solutions compared to the naive
formulation.

We hope that this work contributes to future development of efficient algorithms for the
pooling problem. The proposed formulation (22) to get a feasible solution exploits a primal
solution of the SDP relation problem, but does not use a dual solution. Thus, by using the dual
solution, we may construct a problem that can find a better feasible solution. In addition, more
numerical experiments should be conducted in order to examine more practical situations, for
example, by using real data of a gas company.

Acknowledgements

The author would like to express his sincerest thanks and appreciation to Associate Professor
Nobuo Yamashita for his kind guidance and direction in this study, invaluable discussions,
constructive criticisms in the writing of the manuscripts, valuable comments for the presentation,
extreme patience, and encouragement. The author wishes to tender his acknowledgments to
Professor Masao Fukushima for his constructive comments and kind guidance. The author also
wishes to express his thanks to Assistant Professor Shunsuke Hayashi for his invaluable advice.
The author greatly appreciates the help of all members of Fukushima Laboratory. Last but
not least, precious thanks are due to his family for their strong encouragement and financial
support.

References

[1] C. Audet, J. Brimberg, P. Hansen, S. L. Digabel, and N. Mladenovic, Pooling
problem: Alternate formulations and solution methods, Management Science, 50 (2004),
pp. 761–776.

[2] J. Bisschop, AIMMS - Optimization Modeling, Lulu.com, 2006.

[3] P. Brucker, Scheduling Algorithms, Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2001.

[4] K. Dahal, G. Burt, J. NcDonald, and A. Moyes, A case study of scheduling storage
tanks using a hybrid genetic algorithm, IEEE Transactions on Evolutionary Computation,
5 (2001), pp. 283–294.

[5] M. A. Duran and I. E. Grossmann, An outer-approximation algorithm for a class of
mixed-integer nonlinear programs, Mathematical Programming, 36 (1986), pp. 307–339.

[6] T. Fujie and M. Kojima, Semidefinite programming relaxation for nonconvex quadratic
programs, Journal of Global Optimization, 10 (1997), pp. 367–380.

21

[7] M. Fukuda, M. Kojima, K. Murota, and K. Nakata, Exploiting sparsity in semidef-
inite programming via matrix completion, I: General framework, SIAM Journal on Opti-
mization, 11 (2001), pp. 647–674.

[8] A. M. Geoffrion, A generalized Benders decomposition, Journal of Optimization Theory
and Applications, 10 (1972), pp. 237–260.

[9] C. A. Haverly, Studies of the behaviour of recursion for the pooling problem, ACM
SIGMAP Bulletin, 25 (1978), pp. 19–28.

[10] J. B. Lasserre, An explicit exact sdp relaxation for nonlinear 0-1 programs, in Proceedings
of the 8th International IPCO Conference on Integer Programming and Combinatorial
Optimization, London, UK, 2001, Springer-Verlag, pp. 293–303.

[11] J. B. Lasserre, Global optimization with polynomials and the problems of moments, SIAM
Journal on Optimization, 11 (2001), pp. 796–817.

[12] G. P. McCormick, Nonlinear Programming: Theory, Algorithms, and Applications, John
Wiley & Sons, Inc., New York, NY, USA, 1983.

[13] Y. Nesterov, Semidefinite relaxation and nonconvex quadratic optimization, Optimization
Methods and Software, 9 (1998), pp. 141–160.

[14] M. Pinedo, Scheduling: Theory, Algorithms and Systems Second Ed, Prentice Hall, 2001.

[15] S. Poljak, F. Rendl, and H. Wolkowicz, A recipe for semidefinite relaxation for
(0,1)-quadratic programming, Journal of Global Optimization, 7 (1995), pp. 51–73.

[16] J. F. Sturm, Using SeDuMi 1.02, A MATLAB toolbox for optimization over symmetric
cones, Optimization Methods and Software, 11-12 (1999), pp. 625–653.

[17] H. Waki, S. Kim, M. Kojima, and M. Muramatsu, Sums of squares and semidefi-
nite programming relaxations for polynomial optimization problems with structured sparsity,
SIAM Journal on Optimization, 17 (2006), pp. 218–242.

[18] H. Waki, S. Kim, M. Kojima, M. Muramatsu, and H. Sugimoto, Algorithm 883:
Sparsepop—a sparse semidefinite programming relaxation of polynomial optimization prob-
lems, ACM Transactions on Mathematical Software, 35 (2008), pp. 1–13.

22

A Problem Data for Numerical Experiments

Table 9: The constants of Problem 1

constant value
MT 10
Lij (∀(i, j) ∈ A) 10
Uij (∀(i, j) ∈ A) 30

CAij (∀(i, j) ∈ A) 1
p0
1 200

q0
1 20

SAt
1 (∀ t ∈ T) 0

SQt
1 (∀ t ∈ T) 0

(p0
2, p

0
3) (100,100)

(q0
2, q

0
3) (20,10)

(pmax
2 , pmax

3) (200,200)
(pmin

2 , pmin
3) (10,10)
CQ4 100
DCt

4 (∀ t ∈ T) 30
DQt

4 (∀ t ∈ T) 15

Table 10: The constants of Problem 2

constant value
MT 20
Lij (∀(i, j) ∈ A) 10
Uij (∀(i, j) ∈ A) 30

CAij (∀(i, j) ∈ A) 1
p0
1 500

q0
1 20

SAt
1 (∀ t ∈ T) 0

SQt
1 (∀ t ∈ T) 0

(p0
2, p

0
3) (100,100)

(q0
2, q

0
3) (17,13)

(pmax
2 , pmax

3) (200,200)
(pmin

2 , pmin
3) (10,10)
CQ4 100
DCt

4 (∀ t ∈ T) 30
DQt

4 (∀ t ∈ T) 15

Table 11: The constants of Problem 3

constant value
MT 10
Lij (∀(i, j) ∈ A) 10
Uij (∀(i, j) ∈ A) 30

CAij (∀(i, j) ∈ A) 1
(p0

1, p
0
2) (150,0)

(q0
1, q

0
2) (25,0)

SAt
1 (∀ t ∈ T) 0

SQt
1 (∀ t ∈ T) 0

SA5
2 100

SAt
2 (∀ t ∈ T \ 5) 0

SQ5
2 10

SQt
2 (∀ t ∈ T \ 5) 0

(p0
3, p

0
4) (100,100)

(q0
3, q

0
4) (17,12)

(pmax
3 , pmax

4) (200,200)
(pmin

3 , pmin
4) (10,10)
CQ5 100
DCt

5 (∀ t ∈ T) 30
DQt

5 (∀ t ∈ T) 15

Table 12: The constants of Problem 4

constant value
MT 20
Lij (∀(i, j) ∈ A) 10
Uij (∀(i, j) ∈ A) 30

CAij (∀(i, j) ∈ A) 1
(p0

1, p
0
2) (300,0)

(q0
1, q

0
2) (25,0)

SAt
1 (∀ t ∈ T) 0

SQt
1 (∀ t ∈ T) 0

SA4
2 250

SAt
2 (∀ t ∈ T \ 10) 0

SQ4
2 10

SQt
2 (∀ t ∈ T \ 10) 0

(p0
3, p

0
4) (100,100)

(q0
3, q

0
4) (17,12)

(pmax
3 , pmax

4) (200,200)
(pmin

3 , pmin
4) (10,10)
CQ5 100
DCt

5 (∀ t ∈ T) 30
DQt

5 (∀ t ∈ T) 15

23

Table 13: The constants of Problem 5

constant value
MT 7
Lij (∀(i, j) ∈ A) 10
Uij (∀(i, j) ∈ A) 40

CAij (∀(i, j) ∈ A) 1
p0
1 100

q0
1 20

SAt
1 (∀ t ∈ T) 0

SQt
1 (∀ t ∈ T) 0

(p0
2, p

0
3, p

0
4, p

0
5) (100,100,80,80)

(q0
2, q

0
3, q

0
4, q

0
5) (20,10,15,20)

(pmax
2 , pmax

3 , pmax
4 , pmax

5) (200,200,200,200)
(pmin

2 , pmin
3 , pmin

4 , pmin
5) (10,10,10,10)

CQ6 100
DCt

6 (∀ t ∈ T) 40
DQt

6 (∀ t ∈ T) 17

Table 14: The constants of Problem 6

constant value
MT 14
Lij (∀(i, j) ∈ A) 10
Uij (∀(i, j) ∈ A) 40

CAij (∀(i, j) ∈ A) 1
p0
1 300

q0
1 20

SAt
1 (∀ t ∈ T) 0

SQt
1 (∀ t ∈ T) 0

(p0
2, p

0
3, p

0
4, p

0
5) (100,100,80,80)

(q0
2, q

0
3, q

0
4, q

0
5) (20,10,15,20)

(pmax
2 , pmax

3 , pmax
4 , pmax

5) (200,200,200,200)
(pmin

2 , pmin
3 , pmin

4 , pmin
5) (10,10,10,10)

CQ6 100
DCt

6 (∀ t ∈ T) 40
DQt

6 (∀ t ∈ T) 17

Table 15: The constants of Problem 7

constant value
MT 28
Lij (∀(i, j) ∈ A) 10
Uij (∀(i, j) ∈ A) 30

CAij (∀(i, j) ∈ A) 1
(p0

1, p
0
2) (400,0)

(q0
1 , q0

2) (18,0)
SAt

1 (∀ t ∈ T) 0
SQt

1 (∀ t ∈ T) 0
SA14

2 400
SAt

2 (∀ t ∈ T \ 14) 0
SQ14

2 13
SQt

2 (∀ t ∈ T \ 14) 0
(p0

3, p
0
4, p

0
5, p

0
6) (100,100,100,100)

(q0
3 , q0

4 , q0
5 , q0

6) (20,17,15,13)
(pmax

3 , pmax
4 , pmax

5 , pmax
6) (300,300,300,300)

(pmin
3 , pmin

4 , pmin
5 , pmin

6) (10,10,10,10)
(CQ7, CQ8) (100,100)
(DCt

7, DCt
8) (∀ t ∈ T) (20,10)

(DQt
7, DQt

8) (∀ t ∈ T) (15,18)

Table 16: The constants of Problem 8

constant value
MT 28
Lij (∀(i, j) ∈ A) 10
Uij (∀(i, j) ∈ A) 30

CAij (∀(i, j) ∈ A) 1
(p0

1, p
0
2) (400,0)

(q0
1 , q0

2) (13,0)
SAt

1 (∀ t ∈ T) 0
SQt

1 (∀ t ∈ T) 0
SA14

2 400
SAt

2 (∀ t ∈ T \ 14) 0
SQ14

2 18
SQt

2 (∀ t ∈ T \ 14) 0
(p0

3, p
0
4, p

0
5, p

0
6) (100,100,100,100)

(q0
3 , q0

4 , q0
5 , q0

6) (20,17,15,13)
(pmax

3 , pmax
4 , pmax

5 , pmax
6) (300,300,300,300)

(pmin
3 , pmin

4 , pmin
5 , pmin

6) (10,10,10,10)
(CQ7, CQ8) (100,100)
(DCt

7, DCt
8) (∀ t ∈ T) (20,10)

(DQt
7, DQt

8) (∀ t ∈ T) (15,18)

24

	hyoshi.pdf
	masterthesis

