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Abstract

The Traffic Assignment Problem (TAP) is to find the traffic flow satisfying Wardrop’s user
equilibrium principle, under which each driver selects his/her route with the minimum traffic
cost. In order to solve the TAP, the data in the traffic network and each driver’s cost function
must be evaluated exactly. However, in the real network, those data often involve uncertainties.
For such an uncertain network, we consider the robust TAP based on the robust Wardrop
equilibrium. Under such an equilibrium, each driver selects his/her route with taking the worst
possible case into consideration.

In this paper, we first study the existence condition for the robust Wardrop equilibria. To
this end, we reformulate the robust TAP as a nonlinear complementarity problem (NCP), and
apply the solvability theorem to such an NCP. Next we formulate the robust TAP with ellipsoidal
uncertainty as the Second-Order Cone Complementarity Problem (SOCCP), which can be solved
by using an existing algorithm based on the smoothing Newton method. Finally, by means of
some numerical experiments, we observe the property of the robust Wardrop equilibria.
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1 Introduction

Since the 1930s, the automobiles have been widely used all over the world because of the economic
growth and the technological and scientific development. In order to make the automobile traffic
more efficient, we need to design roadway infrastructures such as highways, traffic signals, and
toll roads.

When we build new roads or decide new tolls on a traffic network, we need to forecast the
traffic flow to estimate the effect due to such decisions. In general, all drivers are supposed to
select the route with the minimum cost from the origin to the destination. In other words, the
routes with positive traffic flow have the minimum cost, and more costly routes are not used. This
flow distribution principle is called Wardrop’s user equilibrium principle [21]. Also, the problem
of finding a flow pattern satisfying Wardrop’s user equilibrium principle is called the Traffic
Assignment Problem (TAP). The TAP is formulated as mathematical programming problems
such as a linear or nonlinear optimization problem, Variational Inequality Problem (VIP), Mixed
Complementarity Problem (MCP), and Nonlinear Complementarity Problem (NCP) [1, 2, 5,
12, 18, 19].

In order to formulate the TAP as a mathematical programming problem, it is important to
model the cost on each route appropriately. When the route cost function is expressed as the
sum of road1 costs, the route cost function is called additive [1, 5, 18, 19]. Otherwise, it is called
non-additive [2, 12].

In the TAP, we suppose that each user has complete information on the traffic network and
can choose a route with minimum cost by using that information. However, in the real traffic
network, each user’s estimated cost can be often incorrect due to various uncertainties such
as weather changeability or traffic accidents. Therefore he/she may choose a route with non-
minimal cost, and the flow based on Wardrop’s user equilibrium principle does not necessarily
express the real network flow.

For the traffic model in which the drivers do not know the complete information on the
network, the new concept called the robust Wardrop equilibrium [15, 16, 20] attracts much
attention recently. In the robust Wardrop equilibrium, we assume that each driver can estimate
the “uncertainty set” in which the uncertain data of his/her route cost function are contained,
and then choose his/her route with taking the value of the worst (route) cost function into
consideration. In other words, each driver chooses his/her route based on the robust optimization
policy [4, 7, 6, 14]. The traffic assignment problem based on the robust Wardrop equilibrium is
called a robust TAP, which we will mainly discuss in the paper.

The robust Wardrop equilibrium has been studied by some researchers so far. Ordóñez and
Stier-Moses [15, 16] defined the robust Wardrop equilibrium for the restrictive case where each
user’s cost function can be expressed as the sum of two terms: (1) the term depending on the
flow but not involving any uncertainty and (2) the term not depending on the flow but involving
some uncertainty. They showed that, when the uncertainty set in each route cost functions is
polyhedral, the robust TAP can be formulated as an NCP. On the other hand, Takahashi [20]

1The road in a traffic network corresponds to the link in a directed graph. For more detail, see Section 2.
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defined the robust Wardrop equilibrium for more general route cost functions without Ordóñez
and Stier-Moses’ restriction. Moreover, he showed that the robust TAP can be reformulated as
a Second-Order Cone Complementarity Problem (SOCCP) [9, 11, 13, 17], when the route cost
function is additive, the link cost function is linear and separable2 , and the uncertain set is
ellipsoidal. Also Takahashi showed that the robust TAP can be reformulated as an MCP when
the uncertainty set is defined by means of the ∞-norm.

For the traffic model with uncertain cost functions, Zhang, Chen and Sumalee [23] studied
another mathematical approach called a stochastic TAP. They assumed that the uncertain data
in the cost functions follow some stochastic distribution, and reformulated the stochastic TAP
as a stochastic complementarity problem that can be solved by using the expected residual
minimization method. Although Zhang et al. discuss the robustness of the obtained stochastic
TAP solution, the meaning of “robust” is essentially different from that in the “robust” TAP
model. The robustness in Zhang et al.’s study means that the obtained stochastic TAP solution
does not vary so much if the actual value of the stochastic data varies in some degree. On the
other hand, the robustness for the robust TAP comes from the “robust optimization,” by which
each driver chooses his/her route.

In this paper, we consider the robust Wardrop equilibrium in [15, 16, 20] to TAPs with more
general uncertainty structures. In [20], Takahashi only considered the case where the link cost
functions in traffic network are linear and separable, whereas we study the robust TAP without
such a linearity and separability assumption. We also provide the condition for the existence
of a robust Wardrop equilibrium, and reformulate the robust TAP as an SOCCP when the
uncertainty set is ellipsoidal.

This paper is organized as follows. In Section 2.1, we describe the traffic model and Wardrop’s
user equilibrium without uncertainty, and formulate the TAP based on the traffic model and
Wardrop’s user equilibrium. In Section 2.2, we recall background of some equilibrium problems
such as SOCCP, MCP, and NCP. In Section 2.3, we formulate the TAP as an NCP and an MCP.
Moreover we provide the condition for the existences of a solution for TAP. Section 3 is the main
section of this paper. In Section 3.1, we define the robust Wardrop equilibrium, and formulate
the robust TAP as an MCP. Furthermore we show the condition for the existence of a solution
of the robust TAP. In Section 3.2, we formulate the robust TAP with an ellipsoidal uncertainty
set as an SOCCP. In Section 4, we observe the property of equilibria for robust TAPs by means
of numerical experiments. In Section 5, we conclude this paper with some remarks.

Throughout the paper, we use the following notations and definitions: ∥ · ∥ denotes the 2-
norm defined by ∥z∥ :=

√
z⊤z for a vector z. For a given set S, |S| denotes the cardinality of

S. Rn denotes the n-dimensional Euclidean space. Rm×n denotes the set of m×n real matrices.
For a finite set N and z = (z1, z2, . . . , z|N |), we write z = [zi]i∈N . We often write z = (x, y) for
[x⊤, y⊤]⊤. For the vectors a and b of the same dimension, a ⊥ b means a⊤b = 0.

2The link cost function is said to be separable if its value depends only on the link flow.
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2 Preliminaries

In this section, we recall some fundamental background on the TAP and some related topics. In
Subsection 2.1, we give a mathematical expression of the TAP by using Wardrop’s user equilib-
rium principle. In Subsection 2.2, we introduce some classes of complementarity problems, which
play an important role in solving TAPs and robust TAPs. In Subsection 2.3, we reformulate the
TAP as a complementarity problem, and study the condition under which TAP solutions exist.

2.1 Mathematical formulation of traffic assignment problem

In this section, we provide a mathematical formulation of TAP. Consider a directed graph
G = (N , L ) corresponding to the traffic network, where N and L denote the node (vertex
or point) set and the link (edge or arc) set, respectively. In the real traffic network, the nodes
correspond to the origins, the destinations and the intersections, and the links correspond to
the roads. W denotes the set which consists of origin-destination pairs (OD pairs). We assume
that graph G is strongly connected, that is, there exists at least one route for every OD pair
w ∈ W . Let Rw be the set of all routes between OD pair w ∈ W , and R := ∪w∈W Rw. For
r ∈ R, Lr ⊂ L denotes the set of all links contained in r. yl ∈ R and xr ∈ R denote the
flow of link l ∈ L and route r ∈ R, respectively. Let the link and the route flow vectors be
denoted as y := (y1, y2, . . . , y|L |) and x := (x1, x2, . . . , x|R|), respectively. fr : R|R| → R denotes
the cost function for route r ∈ R with variable x ∈ R|R|. tl : R|L | → R denotes the cost
function for link l ∈ L with variable y ∈ R|L |. For an OD pair w ∈ W , λw := minr∈Rw fr(x)
denotes the minimum route cost. dw : R|W | → R|W | denotes the demand function with variable
λ := [λw]w∈W .

Next, we describe Wardrop’s user equilibrium principle which shows drivers’ behavior in the
traffic network. A route flow vector x ∈ R|R| is called Wardrop’s user equilibrium if it satisfies

[xr > 0 =⇒ fr(x) ≤ fr′(x) ∀r′ ∈ Rw] r ∈ Rw, w ∈ W. (2.1)

Wardrop’s user equilibrium principle states that each driver in the network selects the route
with minimum cost. Conversely, the drivers avoid the routes with non-minimum cost. In other
words, under such an equilibrium, the cost of the route with non-zero flow must be less than or
equal to other routes for the same OD pair, and conversely, any route with non-minimum cost
for an OD pair has no flow.

In addition to Wardrop’s user equilibrium principle (2.1), the TAP requires the condition
that every route flow is nonnegative and the sum of route flows for each OD pair w is equal to
its traffic demand dw(λ), that is,

x ≥ 0,
∑

r∈Rw

xr = dw(λ) (w ∈ W ). (2.2)
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Combining (2.1) with (2.2), the TAP can be formulated as follows:

Find (x, λ) ∈ R|R| × R|W |

such that 0 ≤ fr(x) − λw ⊥ xr ≥ 0 (r ∈ Rw, w ∈ W ),∑
r∈Rw

xr = dw(λ) (w ∈ W ),

λw ≥ 0 (w ∈ W ).

(2.3)

Furthermore, TAP (2.3) can be rewritten equivalently as follows:

Find (x, λ) ∈ R|R| × R|W |

such that 0 ≤ f(x) − N⊤λ ⊥ x ≥ 0,

Nx − d(λ) = 0, λ ≥ 0,

(2.4)

where function f : R|R| → R|R| and matrix N ∈ R|W |×|R| are defined by

f(x) := [fr(x)]r∈R, Nwr =

{
1 r ∈ Rw

0 r /∈ Rw

, (2.5)

respectively.

2.2 Complementarity problems

In this subsection, we introduce some classes of complementarity problems [10]. The comple-
mentarity problem is a kind of equilibrium problem, and has been studied extensively so far
since it is mathematically tractable and can be solved efficiently by existing algorithms such
as the smoothing Newton method. In the subsequent sections, we reformulate robust TAPs as
complementarity problems.

For given functions h : Rn → Rn and F : Rn × Rn × Rν → Rn × Rν , NCP and MCP can be
formulated as

Find x ∈ Rn

such that 0 ≤ x ⊥ h(x) ≥ 0,
(2.6)

and
Find (x, y, ζ) ∈ Rn × Rn × Rν

such that 0 ≤ x ⊥ y ≥ 0, F (x, y, ζ) = 0,
(2.7)

respectively. Notice that MCP contains NCP as a subclass since NCP (2.6) reduces to MCP
(2.7) by setting F (x, y, ζ) := y − h(x).

The second-order cone complementarity problem (SOCCP) [9, 11, 13, 17] is a more general
class of complementarity problems written as follows:

Find (x, y, ζ) ∈ Rn × Rn × Rν

such that K ∋ x ⊥ y ∈ K, F (x, y, ζ) = 0,
(2.8)

where F : Rn × Rn × Rν → Rn × Rν is a given function, and K is the Cartesian product of
several second-order cones, that is, K = Kn1 × Kn2 × · · · × Knm with n = n1 + n2 + · · · + nm,
and the ni-dimensional second-order cone Kni ⊂ Rni is defined as

Kni =
{

(z1, z
⊤
2 )⊤ ∈ R × Rni−1 | z1 ≥ ∥z2∥

}
.
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Notice that SOCCP contains MCP as a subclass since K coincides with the nonnegative orthant
when n1 = n2 = · · · = nm = 1. In this paper, we formulate the robust TAP as an SOCCP of
the form

Find ζ ∈ Rν

such that K ∋ G(ζ) ⊥ H(ζ) ∈ K, Cζ = h,
(2.9)

where G : Rν → Rn and H : Rν → Rn are given functions, and C ∈ Rν×ν and h ∈ Rν are
given constants. We can easily see that SOCCP(2.9) can be rewritten as SOCCP(2.8) by letting
x := G(ζ), y := H(ζ), and

F (x, y, ζ) :=

 x − G(ζ)
y − H(ζ)
Cζ − d

 .

2.3 Complementarity reformulation of TAP and existence of solution

In this section,we show some relation between TAP(2.4) and NCP(2.6) or MCP(2.7), and discuss
the existence of a TAP solution. In order to formulate the TAP as an NCP,we make the following
assumption.

Assumption 2.1. In TAP (2.4),the following conditions hold:

(a) f(x) ≥ 0 and d(λ) ≥ 0 for any (x, λ) ∈ R|R|
+ × R|W |

+ ,

(b) For all r ∈ R, fr(x)xr = 0 implies xr = 0.

Notice that (b) automatically holds if f(x) > 0 for any x ∈ R|R|
+ . Under this assumption,

TAP (2.4) can be rewritten in the form of NCP (2.6).

Theorem 2.1. [10, Proposition 1.4.6] Suppose that TAP (2.4) satisfies Assumption 2.1. Then,the
TAP can be reformulated as the following NCP equivalently:

Find (x, λ) ∈ R|R| × R|W |

such that 0 ≤

[
f(x) − N⊤λ

Nx − d(λ)

]
⊥

[
x

λ

]
≥ 0.

(2.10)

By using the above NCP reformulation, we can derive a sufficient condition under which
there exists at least one solution of TAP (2.4).

Assumption 2.2. In TAP (2.4), functions f and d are continuous. Moreover, there exists
M > 0 such that dw(λ) ≤ M for any w ∈ W and λ ∈ R|W |.

Theorem 2.2. [10, Proposition 2.2.14] Suppose that Assumptions 2.1 and 2.2 hold. Then, TAP
(2.4) has at least one solution.

We have shown that TAP (2.4) reduces to an NCP under Assumption 2.1. On the other hand,
it also reduced to an MCP under another assumption. In the subsequent numerical experiments,
in order to some (robust) TAPs, we apply a smoothing Newton algorithm to this MCP.

7



Assumption 2.3. In TAP (2.4), It follows f(x) ≥ 0 and d(λ) > 0 for any (x, λ) ∈ R|R|
+ ×R|W |

+ .

Theorem 2.3. Suppose that TAP (2.4) satisfies Assumption 2.3. Then, the TAP can be refor-
mulated as the following MCP equivalently:

Find (x, λ) ∈ R|R| × R|W |

such that 0 ≤ f(x) − N⊤λ ⊥ x ≥ 0,

Nx = d(λ).

(2.11)

Proof. For any solution (x, λ) of MCP (2.11), it suffices to show λ ≥ 0. Let (x, λ) be an
arbitrary solution of MCP (2.11), and fix w ∈ W arbitrarily. Then, by Assumption 2.3 and
the equality in MCP (2.11), we have 0 < dw(λ) =

∑
r∈Rw

xr. Hence, there exists an r̄ ∈ Rw

such that xr̄ > 0, which together with the complementarity condition 0 ≤ fr̄(x) − λw ⊥ xr̄ ≥ 0
implies fr̄(x) − λw = 0. We thus have λw = fr̄(x) ≥ 0 by Assumption 2.3. Since w ∈ W was
chosen arbitrarily, we have λ ≥ 0.

3 Traffic assignment problem based on robust Wardrop’s user

equilibrium

In this section, we define the robust TAP and discuss the existence of its solution. We also
formulate the robust TAP with special uncertainty structure as an SOCCP.

3.1 Robust traffic assignment problem and existence of solutions

In this subsection, we provide a mathematical expression of the robust TAP, and study the
existence of a robust Wardrop equilibrium.

Consider the following situation. The cost function f ûr

r for route r ∈ R contains uncertain
data ûr. Even though the users cannot estimate the value of ûr accurately, they know that it
belongs to a certain compact set Ur. In such a situation, we assume that each user with OD
pair w chooses a route with minimum worst cost, i.e., a route r such that r = argminr∈Rw

f̃r(x),
where

f̃r(x) := max
{

f ûr

r (x) | ûr ∈ Ur

}
(3.1)

is called the worst cost function. Moreover, a Wardrop equilibrium with respect to the worst
cost f̃r(x) is called a robust Wardrop equlibrium.

Definition 3.1. Let the worst cost function f̃r be defined by (3.1). Then, a route flow vector
x ∈ R|R| satisfying

[xr > 0 =⇒ f̃r(x) ≤ f̃r′(x) ∀r′ ∈ Rw] (r ∈ Rw, w ∈ W ), (3.2)

is called a robust Wardrop equlibrium. Moreover, the problem of finding the robust Wardrop
equilibrium is called a robust TAP, i.e., it is to find (x, λ) ∈ R|R| × R|W | such that

0 ≤ f̃r(x) − λw ⊥ xr ≥ 0 (r ∈ Rw, w ∈ W ),∑
r∈R

xr = dw(λ), λw ≥ 0 (w ∈ W ). (3.3)
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By using the complementarity reformulation technique in the previous section, we can also
show conditions under which a robust Wardrop equilibrium exists. In what follows, we denote
f̃(x) := [f̃r(x)]|R|

r=1 ∈ R|R|
+ .

Assumption 3.1. For the robust TAP (3.3), the following four conditions hold:

(a) For any x ∈ R|R|
+ , there exists ûr ∈ Ur such that f ûr

r (x) > 0 for each r ∈ R.

(b) For each r ∈ R, the function hr :R|R|
+ ×Ur → R+ defined by hr(x, ûr) := f ûr

r (x) is continuous
on R|R|

+ × Ur.

(c) d(λ) > 0 for any λ ∈ R|W |
+ .

(d) For each w ∈ W , function dw(λ) is continuous and bounded above on R|W |.

Theorem 3.1. Suppose that Assumption 3.1 holds. Then the robust TAP (3.3) is equilivalent
to the following MCP:

Find (x, λ) ∈ R|R| × R|W |

such that 0 ≤ f̃(x) − N⊤λ ⊥ x ≥ 0,

Nx − d(λ) = 0.

(3.4)

Proof. From (b) together with [3, Theorem 1.4.6], we can see that the worst cost function f̃r

is continuous on R|R|
+ . Moreover, by (a) and the compactness of Ur, we have f̃(x) > 0 for any

x ∈ R+. Therefore, Assumptions 2.1 – 2.3 hold for f(x) := f̃(x). (Notice that Assumption 2.1
(b) holds since f̃(x) > 0.) Thus, by Theorems 2.2 and 2.3 with f(x) = f̃(x), we obtain the
theorem.

3.2 SOCCP reformulation for robust TAP with ellipsoidal uncertainty sets

In the previous subsection, we have defined the robust TAP and showed the condition for the
existence of a solution. In this section, we show that the robust TAP can be reformulated as an
SOCCP when the uncertainty sets are described by means of the Euclidean norm.

3.2.1 Robust TAP with general link cost function

In what follows, we assume that each link cost function is expressed as

tûl
l (y) = tl(y) + ûl∆tl(y), (3.5)

where tl : R|L | → R and ∆tl : R|L | → R are given functions , and ûl ∈ R denotes the uncertainty
parameter. Moreover, we suppose that the uncertain route cost function f ûr

r (x) is additive, i.e.,

f ûr

r (x) =
∑
l∈Lr

tûl
l (y), (3.6)

where the uncertainty parameter satisfies ûr = [ûl]l∈L ∈ R|L |. Now, let M ∈ R|L |×|R| be the
link-route incidence matrix with the (l, r) entry

Mlr :=

{
1 (l ∈ Lr)
0 (l /∈ Lr).
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Then we have y = Mx, which together with (3.5) and (3.6) yields

f ûr

r (x) =
∑
l∈Lr

tl(Mx) + ûl∆tl(Mx). (3.7)

Furthermore, we make the following assumption on the uncertainty set Ur.

Assumption 3.2. Uncertainty set Ur is ellipsoidal for each r ∈ R, i.e.,

Ur :=
{

ûr ∈ R|L |
∣∣∣ ûr = ūr + Drv̂

r, ∥v̂r∥ ≤ δr,
}

,

where ūr is a given vector, Dr ∈ R|L |×|L | is a given symmetric positive definite matrix, and δr

is a given positive scalar.

Under Assumption 3.2, we can represent the worst cost function f̃r explicitly. To this end,
we need the following lemma.

Lemma 3.1. Let (a, b) ∈ Rn × Rm be arbitrary vectors, C ∈ Rm×n be an arbitrary matrix, and
δ > 0 be any positive scalar. Let P ⊂ Rm be defined by

P :=
{
p ∈ Rm

∣∣ p = b + Cq, ∥q∥ ≤ δ
}

.

Then we have
max
p∈Rm

{
a⊤p

∣∣ p ∈ P
}

= a⊤b + δ∥C⊤a∥. (3.8)

Proof. Since (3.8) is evident for a = 0, we assume a ̸= 0. Let q ∈ Rn be an arbitrary vector
with ∥q∥ ≤ δ, and let p := b + Cq. Then, by Cauchy’s inequality, we have

a⊤p = a⊤b + a⊤Cq ≤ a⊤b + ∥C⊤a∥∥q∥ ≤ a⊤b + δ∥C⊤a∥. (3.9)

Moreover, the above inequalities hold as equalities when we choose q := δC⊤a/∥C⊤a∥.

Applying Lemma 3.1 to the uncertain route cost f ûr

r with (3.7) under Assumption 3.2, we
readily obtain

f̃r(x) =
∑
l∈Lr

tl(Mx) + ūr
l ∆tl(Mx) + δr∥Drdiag(Mr)∆t(Mx)∥, (3.10)

where diag(Mr) ∈ R|L |×|L | is the diagonal matrix whose diagonal components are given by Mlr

(l ∈ L ).
By Theorem 3.1, the robust TAP with f̃r(x) defined by (3.10) reduces to MCP (3.4) under

Assumption 3.1. However, since f̃ is nondifferentiable, it is difficult to apply existing algorithms
to MCP(3.4) directly. To avoid this difficulty, we reformulate the robust TAP as an SOCCP
that contains differentiable functions only.

Let gr(x) :=
∑

l∈Lr
tl(Mx)+ ūr

l ∆tl(Mx) and g(x) := [gr(x)]|R|
r=1 ∈ R|R|. Then the worst cost

function (3.10) can be expressed explicitly as

f̃(x) = g(x) +


δ1∥D1diag(M1)∆t(Mx)∥
δ2∥D2diag(M2)∆t(Mx)∥

...
δ|R|∥D|R|diag(M|R|)∆t(Mx)∥

 .
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Moreover, by using an auxiliary variable s := [sr]
|R|
r=1 ∈ R|R|, MCP(3.4) can be rewritten as the

following problem:

Find (x, λ, s) ∈ R|R| × R|W | × R|R|

such that 0 ≤ g(x) + s − N⊤λ ⊥ x ≥ 0,

sr = δr∥Drdiag(Mr)∆t(Mx)∥ (r ∈ R),
Nx = d(λ).

(3.11)

Furthermore, we can reformulate (3.11) as an SOCCP by the following lemma.

Lemma 3.2. Let (ξ1, ξ2) ∈ R × Rk−1 be an arbitrary vector with k ≥ 2. Then, ξ1 = ∥ξ2∥ if and
only if there exists a vector v ∈ Rk−1 such that

Kk ∋

[
ξ1

ξ2

]
⊥

[
1
v

]
∈ Kk. (3.12)

Proof. First we show the “only if” part. Suppose that ξ1 = ∥ξ2∥ holds.When ξ1 = ∥ξ2∥ = 0, it is
obvious that there exists a v satisfying (3.12). So, we assume ξ1 = ∥ξ2∥ > 0. Let v := −ξ2/∥ξ2∥.
Then we have (1, v) = (1,−ξ2/∥ξ2∥) ∈ Kk and (ξ1, ξ2)⊤(1, v) = ξ1 − ∥ξ2∥ = 0. We thus have
(3.12).

Next we show the “if” part. Let v ∈ Rk−1 and (ξ1, ξ2) ∈ R × Rk−1 be arbitrary vectors
satisfying (3.12). Then the following three formulas hold:

0 = ξ1 + v⊤ξ2, (3.13)

1 ≥ ∥v∥, (3.14)

ξ1 ≥ ∥ξ2∥. (3.15)

By Cauchy’s inequality, we have

0 = ξ1 + v⊤ξ2 ≥ ∥v∥∥ξ2∥ + v⊤ξ2 ≥ 0,

which implies that all the inequalities hold as equalities, and hence ξ1 = ∥v∥∥ζ2∥. Substituting
(3.14) to this equality, we obtain

ξ1 = ∥v∥∥ξ2∥ ≤ ∥ξ2∥.

On the other hand, we also have (3.15). Hence, ξ1 = ∥ξ2∥.

By Lemma 3.2, problem (3.11) can be reformulated as the following SOCCP:

Find (x, λ, s, v) ∈ R|R| × R|W | × R|R| × R|L ||R|

such that 0 ≤ g(x) + s − N⊤λ ⊥ x ≥ 0,

K |L |+1 ∋

[
sr

δrDrdiag(Mr)∆t(Mx)

]
⊥

[
1
vr

]
∈ K |L |+1 (r ∈ R),

Nx = d(λ).

(3.16)
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Moreover, if d is a constant function, i.e., d(λ) = d for any λ ∈ R|W |, then SOCCP (3.16) can
be rewritten in the form of SOCCP (2.9) with K := (K1)|R| × (K |L |+1)|R|, ζ := (x, λ, s, v) ∈
R|R|+|W |+|R|(|L |+1),

C =

 0|R|×|R| 0|R|×(|W |+|R|(|L |+1))

N 0|R|×(|W |+|R|(|L |+1))

0|R|(|L |+1)×|R| 0|R|×(|W |+|R|(|L |+1))

 , h =

 0|R|

d

0|R|(|L |+1)

 ,

F (x, λ, s, v) :=



g(x) + s − N⊤λ

s1

δ1D1diag(M1)∆t(Mx)
s2

δ2D2diag(M2)∆t(Mx)
...

s|R|

δ|R|D|R|diag(M|R|)∆t(Mx)


, G(x, λ, s, v) :=



x

1
v1

1
v2

...
1

v|R|


,

where 0m and 0m×n are the m-dimensional zero vector and the (m×n)-dimensional zero matrix,
respectively.

3.2.2 Robust TAP with uncertain BPR function

Next we introduce a more concrete link cost function called the U. S. Bureau of Public Roads
(BPR) function [8]. The BPR function tl(y) is defined as follows:

tl(y) = al

(
1 + bl

(
yl

cl

)ν)
, (3.17)

where ν, al, bl, cl are positive scalars. More precisely, al represents the free-flow travel time,
bl represents the congestion factor, cl represents the traffic capacity of link l, and ν is usually
chosen as a number between 4 and 5. The BPR function is one of the most popular link cost
functions employed in a mathematical model for the traffic network. We suppose that for all
routes r ∈ R, the cost functions fr(x) are additive. Then by using the BPR function, we can
express the route cost function as follows:

fr(x) =
∑
l∈Lr

al

(
1 + bl

(
Mlx

cl

)ν)
, (3.18)

where Ml denotes the l-th row vector of the link-route incidence matrix M .
Now we consider the situation where the data in the BPR function (3.17) involve uncertain-

ties. Then we formulate such a robust TAP as an SOCCP. In the remainder of this section, we
suppose that Assumption 3.2 holds for the uncertainty set.

Uncertainty in the traffic capacity We consider the situation that the traffic capacity cl

is uncertain. Specifically we suppose that cl is expressed as cl = c̄l + ûl with nominal c̄l and
uncertainty parameter ûl ∈ R.

12



Then, the link cost and route cost functions can be expressed as

tûl
l (y) = al

(
1 + bl

(
Mlx

c̄l + ûl

)ν)
, (3.19)

f ûr

r (x) =
∑
l∈Lr

al

(
1 + bl

(
Mlx

cl + ûl

)ν)
, (3.20)

respectively. Here we assume that ûl > −c̄l so that the denominator will not be zero.
In order to obtain the SOCCP reformulation, we had to assume that the uncertain link cost

function is expressed as (3.5). However, function tûl
l in (3.19) cannot be written in the form

(3.5) in a straightforward manner. We therefore introduce an “approximate link cost function”
based on the first-order Taylor expansion as follows:

tûl
l (y) := al

(
1 + bl

(
Mlx

c̄l

)ν)
− νalbl(Mlx)ν

c̄ν+1
l

ûl. (3.21)

Also the approximate route cost function can be expressed as

f ûr

r (x) :=
∑
l∈Lr

al

(
1 + bl

(
Mlx

cl

)ν)
−

∑
l∈Lr

νalbl(Mlx)ν

cν+1
l

ûl. (3.22)

Since the uncertainty parameter ûl is very small in general, this approximation is reasonable.
Now, let

∆tl(y) = −νalbl(Mlx)ν

cν+1
l

.

Then, (3.21) and (3.22) correspond to (3.5) and (3.7), respectively. Thus, we can reformulate
the robust TAP as an SOCCP by using the results of Subsection 3.1.2.

Uncertainty in the congestion factor We consider the situation that the congestion factor
bl is uncertain. Specifically we suppose that bl is expressed as bl = b̄l + ûl with nominal b̄l and
uncertainty parameter ûl ∈ R. Then, the link and route cost functions can be expressed as

tûl
l (y) = al

(
1 + b̄l

(
yl

cl

)ν)
+ ûlal

(
yl

cl

)ν

, (3.23)

f ûr

r (x) =
∑
l∈Lr

al

(
1 + b̄l

(
Mlx

cl

)ν)
+

∑
l∈Lr

alûl

(
Mlx

cl

)ν

, (3.24)

respectively. Let

∆tl(y) := al

(
yl

cl

)ν

.

Then, (3.23) and (3.24) correspond to (3.5) and (3.7), respectively. Thus, we can also reformulate
the robust TAP as an SOCCP by using the results of Subsection 3.1.2.
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Uncertainty in the free-flow travel time We consider the situation that the free-flow
travel time al is uncertain. Specifically we suppose that al is expressed as al = āl + ûl with
nominal value āl and uncertainty parameter ûl ∈ R. Then, the link and route cost functions can
be expressed as

tûl
l (y) = āl

(
1 + bl

(
yl

cl

)ν)
+ ûl

(
1 + bl

(
yl

cl

)ν)
, (3.25)

f ûr

r (x) =
∑
l∈Lr

āl

(
1 + bl

(
Mlx

cl

)ν)
+

∑
l∈Lr

ûl

(
1 +

(
Mlx

cl

)ν)
, (3.26)

respectively. Let

∆tl(y) := 1 +
(

Mlx

cl

)ν

.

Then (3.25) and (3.26) correspond to (3.5) and (3.7), respectively. Thus, we can reformulate
the robust TAP as an SOCCP by using the results in Subsection 3.2.1.

4 Numerical experiments

In this section, we introduce two specific traffic models with uncertainty set of various sizes in
the cost functions defined by (3.17) and (3.18). We try to compute robust Wardrop equilibria by
using the SOCCP reformulation approach studied in Section 3.2 and observe their properties.
Throughout this section, we let the uncertainty set Ur (r ∈ Rw) be given by

Ur :=
{

ûr ∈ R|E|
∣∣∣ ∥ûr∥ ≤ ρw

}
, (4.1)

where ρw is a positive constant for each w ∈ W . Notice that OD pair is identified for each
r ∈ R. Also, we consider the case with ν = 4 in the cost functions defined by (3.17) and (3.18).

For solving the SOCCPs, we apply the Newton-type method that uses a smoothing technique
[13]. All programs are coded in MATLAB 2010a and run on a machine with Intel R⃝ Core i5
430M 2.27GHz CPU and 4.00GB memories.

4.1 Relationship between size of uncertainty sets and robust Wardrop equi-

libria

In this subsection, We consider the traffic model illustrated in Figure 1. Each node denotes an
origin, a destination, and an intersection, and each link denotes a road connecting the nodes.
The set of OD pairs is given by W := {w1, w2}, where w1 = (1 → 5) and w2 = (2 → 6). The
demands for w1 and w2 are given by dw1 = dw2 = 10. We suppose that the demands do not
depend on λ. We give the routes r ∈ R = Rw1 ∪ Rw2 , and the coefficients al, bl, and cl of the
link functions (3.17) as shown in Table 1 and 2, respectively. Now we consider the case where
only al is uncertain with uncertainty set Ur expressed by (4.1). Therefore, we use (3.25) and
(3.26) as the link cost function and the route cost function with uncertainty, respectively. In this
experiment, we vary ρw1 from 0.001 to 5, and fix ρw2 at 0.001, and compute a robust Wardrop
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equilibrium for each ρw1 . Then, we observe the route flow {xr}r∈R and the minimum cost λw

at the obtained equilibria of the robust TAPs.
Table 3 shows the obtained values of {xr}r∈R and {λw}w∈W at the equilibrium for each

ρw1 . From the table, we can observe that, as ρw1 increases, xr1 and λw1 get larger, but xr2

gets smaller. On the other hand, as to w2, as ρw1 increases, xr4 and λw2 get smaller, but xr3

gets larger. We can interpret these results as follows: Let us consider the drivers who belong
to the OD pair w1 ∈ W . In Figure 1, r1 has only one link 1, while r2 has three links 2, 3 and
4, that is, route r2 is more complicated than r1. In such a situation, drivers may think that
more complicated routes involve more uncertainty and require higher costs than simple routes,
and therefore avoid using route r2. Thus the result of this experiment well reflect such driver’s
estimation for uncertainty.

Figure 1: The network in section 4.1

Table 1: Relation of OD pairs, routes and links in Figure 1
OD pair route order of links

w1 r1 1
r2 2 → 3 → 4

w2 r3 5 → 3 → 8
r4 7

4.2 Difference of the minimal cost on equilibrium and actual cost in the

network

In this subsection, we consider the traffic model illustrated in Figure 2. This network is taken
from [22]. The set of OD pairs is given by W := {w1, w2, w3, w4}, where w1 = (1 → 7),
w2 = (2 → 7), w2 = (3 → 7), and w4 = (4 → 7). The routes for each OD pair and the
coefficients al, bl and cl of the link cost function (3.17) are shown in Tables 4 and 5, respectively.
We suppose that, in OD pair w4, there are six types of drivers. In order to describe such different
types of drivers, we introduce the virtual OD pairs w4a, w4b, . . ., w4f which have the same origin
and destination nodes, but different uncertainty parameters. Let the set of the virtual OD pairs
be W̃4 := {w4a, w4b, . . . , w4f}. Then we distinguish each route in OD pair w4 for six types of
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Table 2: Coefficients of link cost functions
link al bl cl

1 5 0.15 2
2 1 0.15 1
3 1 0.15 1
4 1 0.15 1
5 1 0.15 1
6 1 0.15 1
7 5 0.15 2

Table 3: Uncertainty size, obtained route flow and minimum cost (ρw2 = 0.001)
ρw1 xr1 xr2 xr3 xr4 λw1 λw2

0 7.329 2.671 2.670 7.330 140.268 140.369
0.001 7.330 2.670 2.670 7.330 140.345 140.345
0.005 7.333 2.667 2.671 7.329 140.654 140.250
0.01 7.336 2.664 2.673 7.327 141.039 140.131
0.05 7.362 2.638 2.685 7.315 144.114 139.206
0.1 7.393 2.607 2.701 7.299 147.938 138.104
0.5 7.603 2.397 2.800 7.200 177.753 131.003
1 7.793 2.207 2.887 7.113 213.425 125.000
5 8.378 1.622 3.137 6.863 471.863 109.038
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drivers as follows:

Rw4a := {r8a, r9a, r10a, r11a, r12a},

Rw4b
:= {r8b, r9b, r10b, r11b, r12b},
...

Rw4f
:= {r8f , r9f , r10f , r11f , r12f}.

We denote the sets of virtual OD pairs and routes as

R̃ := Rw1 ∪ Rw2 ∪ Rw3 ∪ Rw4a ∪ Rw4b
∪ Rw4c ∪ Rw4d

∪ Rw4e ∪ Rw4f

W̃ := {w1, w2, w3, w4a, w4b, w4c, w4d, w4e, w4f}.

We use the link cost functions (3.17) with uncertain data bl, that is, tûl
l (y) given by (3.23). Then

the uncertain route cost function f ûr

r (x) is given by (3.24), and the uncertainty set Ur is given
by (4.1). For each w ∈ W̃ , the uncertainty radius ρw and the traffic demands dw are given in
Table 6. Note that OD pair w4 has the six types of drivers with the same demands and the
different uncertainty radiuses ρw. In this experiment, we calculate the minimum worst costs at
the robust Wardrop equilibrium. Table 6 shows the route flow {x̄r}r∈R̃ at the robust Wardrop
equilibrium and the minimum value {λ̄w}w∈W̃ of the worst cost for each (virtual) OD pair.

Based on the calculated robust Wardrop equilibria, we next observe the distribution of each
driver’s “actual” route cost by means of a simulation based approach. Let {x̄r}r∈R̃ and {λ̄w}w∈W̃

be the solution of the robust TAP. Moreover, let Fw be the actual route cost of the driver with
OD pair w ∈ W̃ , i.e., Fw = Fw(r, ur):= fur

r (x̄) =
∑

l∈Lr
tul
l (Mx̄), where ur denotes the actual

value of the uncertain parameter ûr. Then, we calculate the value of Fw for each w ∈ W̃ by the
following steps:

1. Let each driver choose his/her route r ∈ R̃w with probability xr/dw.

2. Then, let Fw :=
∑

l∈Lr
tul
l (Mx), where each ul (l ∈ Lr) is randomly chosen from the

normal distribution with mean 0 and variance 0.03

We carry out the above steps 10,000 times for each virtual OD pair w ∈ W̃4, and get the
histograms shown in Figures 3–8. In each figure, the horizontal and the vertical axes show
the value of Fw and the number of times each value is obtained, respectively. The red vertical
line shows the value of λ̄w. Table 7 shows the mean value and the standard deviation of Fw

for 10,000 trials, and the frequency of the event that the actual cost Fw was larger than the
presumed worst route cost λ̄w.

From Table 7, we can see that the value of ρw makes a very small impact on the mean and the
standard deviation of Fw. However we can also observe that the actual route cost Fw becomes
smaller than λw more often as ρw becomes larger. Especially, when w = w4a, i.e., ρw4a = 0, the
mean value of Fw4a is almost equal to the minimum value λw4a of the worst route cost. On the
other hand, when w = w4f , i.e., ρw4f

= 0.05, the mean value of Fw4f
is much smaller than λw4f

.
In the real networks, drivers who estimate the uncertain events very carefully often experience
the situation that the actual cost was smaller than that he/she had presumed. From such a
viewpoint, the result of this experiment is intuitive and persuasive.
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Figure 2: The network in Section 4.2

Table 4: Relation between routes and links for each OD pair
OD pair route: order of links

w1 r1 : 2, r2 : 1 → 4
w2 r3 : 3 → 4, r4 : 5, r5 : 6 → 7
w3 r6 : 10, r7 : 9 → 7
w4 r8 : 11 → 10, r9 : 11 → 9 → 7, r10 : 8 → 6 → 7, r11 : 8 → 5, r12 : 8 → 3 → 4

Table 5: Coefficients of link cost functions
link 1 2 3 4 5 6 7 8 9 10 11

al 5 11 6 6 15 5 7 6 1 11 10
bl 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
cl 150 160 200 200 150 200 200 100 100 160 100

Table 6: Obtained solutions of robust TAPs

OD pair class ρw dw λ̄w x̄r

w1 0.001 500 67.924 (x1, x2) = (387.124, 112.876)

w2 0.001 600 91.699 (x3, x4, x5) = (140.226, 361.844, 97.929)

w3 0.001 400 107.726 (x6, x7) = (400, 0)

w4a 0 140 464.219 (x8a, x9a, x10a, x11a, x12a) = (0, 0, 140, 0, 0)
w4b 0.01 140 489.134 (x8b, x9b, x10b, x11b, x12b) = (0, 0, 0, 0, 140)

w4 w4c 0.02 140 513.937 (x8c, x9c, x10c, x11c, x12c) = (0, 0, 0, 0, 140)
w4d 0.03 140 538.740 (x8d, x9d, x10d, x11d, x12d) = (41.991, 68.626, 0, 0, 29.383)
w4e 0.04 140 562.636 (x8e, x9e, x10e, x11e, x12e) = (0, 140, 0, 0, 0)
w4f 0.05 140 586.532 (x8f , x9f , x10f , x11f , x12f ) = (0, 140, 0, 0, 0)
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Table 7: Actual route cost Fw

class of w4 mean deviation Fw > λ̄w (%)

w4a 464.302 74.324 50.1
w4b 464.315 74.323 37
w4c 464.235 74.704 25.3
w4d 463.966 74.312 15.7
w4e 464.704 74.487 9.5
w4f 464.380 74.686 5.1

Figure 3: Cost of drivers with ρw4a = 0 Figure 4: Cost of drivers with ρw4b
= 0.01

Figure 5: Cost of drivers with ρw4c = 0.02 Figure 6: Cost of drivers with ρw4d
= 0.03
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Figure 7: Cost of drivers with ρw4e = 0.04 Figure 8: Cost of drivers with ρw4f
= 0.05

5 Conclusion and remarks

In this paper, we consider the robust TAP for the traffic network with uncertain data. We have
shown a condition for the existence of a robust Wardrop equilibrium. Furthermore we have
shown that the robust TAP can be formulated as an SOCCP under the assumption that the
route cost functions are additive, the link cost functions are non-separable and the uncertainty
sets are ellipsoidal. In the numerical experiments, we have observed that our model well explains
each user’s route selection under uncertain situations.

We still have some future issues to be addressed. First of all, we have not given conditions for
uniqueness of the robust Wardrop equilibrium. It is known that the TAP without uncertainty has
a unique link flow y satisfying Wardrop’s user equlibrium principle under a certain monotonity
assumption. So, it would be also interesting to study under which condition a similar uniqueness
property is satisfied for the robust TAP. Second, we have not focused on non-additive route cost
functions with uncertainty. Since the non-additive route cost functions play an important role
in practical situations, it would be important to formulate robust TAPs with non-additive route
cost functions as computable classes of traffic equilibrium problems.
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