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Abstract

Recently, the absolute value equation (AVE) has attracted a growing attention. The

absolute value program (AVP) is an extension of AVE, which contains absolute values of

variables in its objective function and constraints. The AVP has an interesting duality

result and reduces to a mathematical program with equilibrium constraints. In this paper,

we propose an algorithm for the AVP, which is based on the branch-and-bound method.

In the branching procedure, we generate two subproblems by restricting the sign of a

component of the variable x. In the bounding procedure, we exploit the duality result

in AVP. Furthermore, we carry out numerical experiments for nonconvex facility location

problems to show the effectiveness of the proposed algorithm.
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1 Introduction

Recently, the absolute value equation (AVE) [1, 7, 11, 13–15, 17–21, 25–27] has attracted

a growing attention. The absolute value program (AVP) is an extension of AVE, which

contains absolute values of variables in its objective function and constraints. Formally,

the AVP is stated as follows:

(P) min c⊤x + d⊤|x|
s.t. Ax + B|x| = b,

Hx + K|x| ≥ p,

where c, d ∈ Rn, b ∈ Rm, p ∈ Rℓ, A, B ∈ Rm×n, H, K ∈ Rℓ×n, and |x| denotes the vector

|x| = (|x1|, |x2|, . . . , |xn|)⊤ ∈ Rn. Although this problem is a nonconvex optimization

problem, Mangasarian [12] showed an interesting weak duality result and a sufficient op-

timality condition for the problem. In addition, the AVE that appears in the constraints

of the AVP was shown to be equivalent to a linear complementarity problem [12,17]. This

result indicates that the AVP is equivalent to a linear program with linear complementar-

ity constraints [5,6], which is a special case of the mathematical program with equilibrium

constraints (MPEC) [9]. MPEC has many applications in real life such as economic equi-

librium, engineering design, and traffic equilibrium. However, MPEC is in general difficult

to deal with, since its feasible region is necessarily nonconvex and even disconnected. The

study on AVP is in its infancy and, to the author’s knowledge, there have been no work

except for the above-mentioned duality results of Mangasarian [12].

In this paper, we first propose an algorithm for the AVP, which is based on the

branch-and-bound method. In the branching procedure, we generate two subproblems by

restricting the sign of a component of the variable x in (P). In the bounding procedure,

we exploit the duality results in AVP to obtain a lower bound for each subproblem.

Furthermore, we apply the proposed algorithm to solve facility location problems (FLPs).

By using the ℓ1 norm as a distance function, an FLP can naturally be formulated as an

AVP. In particular, we can use the AVP formulation to deal with a nonconvex region in

which facilities can be located. We stress that such a problem is considerably difficult to

solve compared with the conventional FLPs that assume the convexity of the region.

The paper is organized as follows. In the next section, we give some preliminary results

about the AVP. Using these results, we propose a branch-and-bound method for solving

AVP in Section 3. In Section 4, we consider two types of FLPs and give some numerical

results with the proposed algorithm. Finally, we conclude the paper in Section 5.
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2 Duality

The dual problem of AVP (P) is defined as follows [12]:

(D) max b⊤u + p⊤v

s.t. |A⊤u + H⊤v − c| + B⊤u + K⊤v ≤ d, (1)

v ≥ 0.

Note that the constraint (1) can be represented as

|A⊤u + H⊤v − c| + B⊤u + K⊤v ≤ d

⇐⇒ |A⊤u + H⊤v − c| ≤ d − B⊤u − K⊤v

⇐⇒ − d + B⊤u + K⊤v ≤ A⊤u + H⊤v − c ≤ d − B⊤u − K⊤v

⇐⇒

{
(−A + B)⊤u + (−H + K)⊤v ≤ d − c

(A + B)⊤u + (H + K)⊤v ≤ d + c.

Therefore, the dual problem (D) can be rewritten as follows:

max b⊤u + p⊤v

s.t. (−A + B)⊤u + (−H + K)⊤v ≤ d − c,

(A + B)⊤u + (H + K)⊤v ≤ d + c,

v ≥ 0.

Notice that the primal problem (P) is not generally convex, but the dual problem (D)

is always a convex optimization problem, or more precisely, a linear program. Moreover,

a weak duality theorem and a sufficient optimality condition for AVP are shown in [12],

which will be useful in our algorithm.

Theorem 1. [12] If x and (u, v) are feasible solutions of (P) and (D), respectively, then

the following inequality holds:

c⊤x + d⊤|x| ≥ b⊤u + p⊤v.

This theorem says that we can get a lower bound of the optimal value of (P) by solving

the dual problem (D). The next theorem gives us a sufficient optimality condition for (P).

Theorem 2. [12] Let x̄ be feasible for the primal AVP (P) and (ū, v̄) be feasible for the

dual AVP (D) with equal primal and dual objective values, that is,

c⊤x̄ + d⊤|x̄| = b⊤ū + p⊤v̄.

Then x̄ and (ū, v̄) are optimal solutions of (P) and (D), respectively．
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3 Branch-and-Bound Method

In this section, we propose a branch-and-bound method for AVP. Branch-and-bound

method is one of global optimization approaches for nonconvex optimization problems

and combinatorial optimization problems, and the method consists of branching and

bounding procedures [4]. In the branching procedure, we divide the feasible region of

the original problem into some subregions to generate subproblems. On the other hand,

in the bounding procedure, we check if a current subproblem can be discarded or not,

by implementing some fathoming tests. We now give the detail of the branching and

bounding procedures used in the proposed branch-and-bound method for AVP.

A subproblem is constructed from (P) by restricting some variables to be either non-

positive or nonnegative:

P(I,J ) min c⊤x + d⊤|x|
s.t. Ax + B|x| = b,

Hx + K|x| ≥ p,

xi ≥ 0 (i ∈ I),

xi ≤ 0 (i ∈ J ),

where I and J are subsets of {1, 2, . . . , n}. Note that (P) = P(∅, ∅). An example of the

enumeration tree with n = 2 is shown in Fig. 1.

Fig. 1: Enumeration tree (n = 2)

At each node of the tree, branching means that we choose a variable xi and restrict it

to be nonnegative or nonpositive in the corresponding subproblem. Therefore, the deepest
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nodes in the tree correspond to 2n linear programs, which contain no absolute values of

the variables. The branch-and-bound method maintains the set of subproblems that can

be selected to apply a branching procedure. Such subproblems are called active, and the

set of the current active subproblems is denoted by A. For example, if we generate two

subproblems P({1}, ∅), P(∅, {1}) at the node P(∅, ∅) in the enumeration tree of Fig. 1,

we have A = {P({1}, ∅), P(∅, {1})}.
In the bounding procedure, we consider the dual problem of P(I,J ) in order to get a

lower bound of P(I,J ). We now rewrite P(I,J ) in the following way. Let

hi =
( i

∨
0 · · · 0 1 0 · · · 0

)
i ∈ I,

hi =
( i

∨
0 · · · 0 −1 0 · · · 0

)
i ∈ J .

Then, the nonnegativity and nonpositivity constraints on variables xi in P(I,J ) can be

represented as

hix ≥ 0 (i ∈ I ∪ J ).

Now define H̃ ∈ R(ℓ+|I|+|J |)×n, K̃ ∈ R(ℓ+|I|+|J |)×n, p̃ ∈ R(ℓ+|I|+|J |) as

H̃ :=


H
...

hi

...

 , K̃ :=


K
...

0
...

 , p̃ :=


p
...

0
...

 ,

where |I| and |J | denote the numbers of elements of I and J , respectively. Then, we

can rewrite P(I,J ) as follows:

P(I,J ) min c⊤x + d⊤|x|
s.t. Ax + B|x| = b,

H̃x + K̃|x| ≥ p̃.

Moreover, the dual problem of P(I,J ) is written as

D(I,J ) max b⊤u + p̃⊤v

s.t. |A⊤u + H̃⊤v − c| + B⊤u + K̃⊤v ≤ d, v ≥ 0,

which can further be rewritten as a linear program. From the result of solving the dual

problem, subproblem P(I,J ) can be fathomed if one of the following conditions holds:
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1. D(I,J ) is unbounded.

2. The optimal value of D(I,J ) is greater than the objective value of the incumbent

solution, i.e. , the best feasible solution of (P) found so far.

3. There is no duality gap between P(I,J ) and D(I,J ).

We now give more details about the bounding operations based on the above three

conditions.

If the dual problem D(I,J ) is unbounded, then the primal problem P(I,J ) is in-

feasible from the weak duality theorem. In this case, any subproblem generated from

the current subproblem by restricting the sign of some of its variables cannot be feasible.

Hence we can discard the current subproblem.

If the optimal value of D(I,J ), which is a lower bound of the optimal value of P(I,J ),

is greater than the objective value of the incumbent solution, then Theorem 1 ensures that

we have no chance to obtain an optimal solution of (P) by generating subproblems from

P(I,J ) further. So we can discard the current subproblem.

If we find out that there is no duality gap between P(I,J ) and D(I,J ), then this

means subproblem P(I,J ) is just solved. For this reason, we need not generate new

subproblems from P(I,J ) further, and we can discard the current subproblem. Moreover,

if the optimal solution of P(I,J ) is better than the incumbent solution, then we replace

the incumbent solution by the optimal solution of P(I,J ), since it is a feasible solution

of the original problem (P). We can check if there is no duality gap between P(I,J ) and

D(I,J ) by solving the following system of absolute value equations and inequalities:

c⊤x + d⊤|x| = f∗
d ,

Ax + B|x| = b, (S1)

H̃x + K̃|x| ≥ p̃,

where f ∗
d is the optimal value of the dual problem D(I,J ). If we get a solution of (S1),

then the solution is an optimal solution of P(I,J ) and, in this case, P(I,J ) and D(I,J )

have no duality gap.

We now formally state the algorithm.
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Branch-and-Bound Method for Absolute Value Program

STEP 0 Let I := ∅, J := ∅. Find a feasible solution of problem (P) = P(∅, ∅). Let

it be the incumbent solution and let f∗ be the objective value at the incumbent

solution. Set A := {P(∅, ∅)}.

STEP 1 Choose a subproblem P(I,J ) from the set A.

STEP 1-1 If the dual problem D(I,J ) of P(I,J ) is infeasible, then go to STEP

2. If D(I,J ) is unbounded, then fathom P(I,J ). Set A := A − {P(I,J )}
and go to STEP 3.

STEP 1-2 If we get an optimal value f̄ of the dual problem D(I,J ) and it satisfies

f̄ > f∗, then fathom P(I,J ). Set A := A− {P(I,J )} and go to STEP 3.

STEP 1-3 Solve the system (S1) of absolute value equations and inequalities. If

we fail to get a solution of (S1), then go to STEP 2. If we get a solution of (S1)

and, in addition, the objective function value at the solution, denoted f(I,J ),

satisfies f(I,J ) ≥ f ∗, then P(I,J ) is fathomed immediately. If f(I,J ) < f ∗ is

satisfied, then set f ∗ := f(I,J ), update the incumbent solution, and fathom

P(I,J ). Set A := A− {P(I,J )} and go to STEP 3.

STEP 2 Choose xi as the branching variable, where i /∈ I ∪ J , and generate two sub-

problems P(I∪{i},J ) and P(I,J ∪{i}) from P(I,J ). Set A := A∪{P(I∪{i},J ),

P(I,J ∪ {i})} − {P(I,J )}, and return to STEP 1.

STEP 3 If A = ∅, then terminate. The incumbent solution is an optimal solution of the

original problem (P). Otherwise, return to STEP 1.

In order to get a feasible solution of (P) in STEP 0 and to solve (S1) in STEP 1-

3, we can use the Successive Linearization Algorithm (SLA) for the system of absolute

value equations and inequalities. This algorithm was first proposed by Mangasarian [12]

to solve AVE, and we extend the algorithm so as to deal with a system that contains

absolute value inequality (AVI).

Here we describe SLA for the AVE-AVI system (S2) shown below, which represents

the constraints of (P). The algorithm can similarly be applied to solve (S1).

{
Ax + B|x| = b,

Hx + K|x| ≥ p.
(S2)
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First we give a result that relates the AVE-AVI system (S2) to the following concave

minimization problem constructed from (S2):

min
(x,t,s1,s2)∈Rn+n+m+ℓ

ϵ(−e⊤|x| + e⊤t) + e⊤s1 + e⊤s2

s.t. −s1 ≤ Ax + Bt − b ≤ s1, (2)

−Hx − Kt + p ≤ s2,

0 ≤ s2,

− t ≤ x ≤ t,

where ϵ > 0 and e is the vector of ones.

Proposition 3. If (S2) is solvable, then there exists some ϵ̄ > 0 such that, for any

ϵ ∈ (0, ϵ̄], any solution (x̄, t̄, s̄1, s̄2) of (2) satisfies

|x̄| = t̄,

Ax̄ + B|x̄| = b,

Hx̄ + K|x̄| ≥ p.

Proof . The proof is analogous to that of Proposition 3 in [12].

From this result, a solution of the AVE-AVI system (S2) can be obtained by solving

the concave minimization problem (2) with a sufficiently small ϵ > 0. We now give the

algorithm for (S2), which is an extension of the SLA for AVE [12]. Let z = (x, t, s1, s2)
⊤.

Denote the feasible region of problem (2) by Z and its objective function by f(z).

Algorithm 1. Start with any z0 ∈ Z. At the k-th iteration, given zk, find zk+1 such that

zk+1 ∈ arg vertex min
z∈Z

ξ⊤(z − zk),

where ξ is a subgradient of f(z) at zk, and arg vertex minz∈Z ξ⊤(z − zk) is the set of

vertex solutions of the linear program minz∈Z ξ⊤(z − zk). Stop if ξ⊤(zk+1 − zk) = 0.

In our numerical experiments, we compute a subgradient ξ as follows:

ξ =


−ϵg

ϵe

e

e

 ∈ Rn+n+m+ℓ, gi =


1 (xk

i > 0)

0 (xk
i = 0)

−1 (xk
i < 0)

, i = 1, · · · , n.

As is well-known, a concave minimization problem has at least one optimal solution

at a vertex in its feasible region, provided a solution exists. Taking this fact into account,

the SLA tries to find an optimal solution of (2) by solving a sequence of linear programs
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formed by linearizing the objective function of problem (2). The sequence generated by

the SLA finitely converges to a point that satisfies a necessary optimality condition for

the concave minimization problem [10, 12]. Notice that the solution obtained by this

algorithm is not guaranteed to be a global optimal solution of (2). However, we can easily

check if the computed solution actually satisfies (S2) by direct substitution.

We now give the way to generate subproblems in STEP 2. Note that we go to STEP

2 after either of the following two cases occurs.

Case 1. In STEP 1-1, D(I,J ) is infeasible.

Case 2. In STEP 1-3, (S2) cannot be solved.

If Case 1 occurs, then we generate two subproblems by choosing any variable xi such

that i /∈ I ∪ J as the branching variable. In Case 2, we do not have a solution of (S2),

but a local optimal solution of problem (2) is available. In this case, we choose as the

branching variable a variable xi (i /∈ I ∪J ) such that |xi| ≥ |xi′| for all i′ /∈ I ∪J at the

local optimal solution of (2).

In STEP 1, some kinds of rules can be used for choosing an active subproblem

P(I,J ) ∈ A. In the numerical experiments conducted in the next section, we use the

depth-first search, which generally chooses an active subproblem corresponding to the

farthest node from the root node in the enumeration tree. In particular, when we return

to STEP 1 after generating two subproblems, we choose one of these subproblems. In this

case, the problem we choose depends on the above-mentioned two cases. If we generate

two subproblems in STEP 2 after Case 1 occurs, then we choose any of the two subprob-

lems. In Case 2, as we mentioned above, we have a local optimal solution of (2). In this

case, if the branching variable xi in the local optimal solution takes a positive value, then

we choose subproblem P(I ∪ {i},J ). Otherwise, we choose P(I,J ∪ {i}).

4 Numerical Experiments

In this section, we consider facility location problems (FLPs) as an application of AVP.

Moreover, we show some numerical results with the proposed branch-and-bound algorithm

applied to some examples of FLPs. All computations were carried out on an Intel(R)

Core(TM)2 Duo 3Ghz×2 machine with a MATLAB code. The CPLEX was used to solve

linear programs in SLA.

In general, FLP is the problem of finding optimal locations of facilities, and it can

be formulated as various kinds of mathematical programs depending on the type of con-

straints and optimization criteria [2]. In general, there are two kinds of facilities from the

resident’s point of view. The first category is a desirable facility such as schools, libraries
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and fire stations. Such a facility should be located as closely as possible to the residents.

The other category is an undesirable facility, which includes incineration plants, electric

power stations, chemical factories and so on. These facilities should be located far from

the residential area. From the viewpoint of geography, there are three kinds of areas

in which facilities can be located, i.e., continuous spaces, discrete spaces, and networks.

Furthermore, the distance between two facilities can be measured by using various norms

such as the Euclidean, ℓ1, and ℓ∞ norms.

In our numerical experiments, we consider two types of FLP on a continuous space

with ℓ1 metric, which can be represented as AVP. Note that the ℓ1 norm distance between

two points x and y can be represented as e⊤|x − y|.

4.1 Minimax Location Problem

A minimax multi-facility location problem can be formulated as a mathematical program

as follows [2]:

min max {maxi∈I,j∈J αije
⊤|xi − P j|, maxi,k∈I,i̸=k βike

⊤|xi − xk| }
s.t. xi ∈ X (i ∈ I),

(3)

where xi ∈ R2 (i ∈ I) and P j ∈ R2 (j ∈ J) denote the locations of the new and the

existing facilities, respectively, I and J are finite index sets, αij and βik are positive

weighting factors, and X ⊂ R2 is the locatable region for facilities.

This problem is to minimize the maximum weighted distance between new and existing

facilities, and between new facilities themselves. This represents a mathematical model

of locating desirable facilities, such as schools and fire stations, in a residential area. This

kind of problems has been well-studied for the past decades. In particular, using ℓ1 norm

as a distance function, Konforty and Tamir [8] studied the minimax single facility location

problem with a forbidden region around each existing facility.

Problem (3) can be rewritten as the following problem by introducing a new variable

z ∈ R:

(Pa) min
x,z

z

s.t. z ≥ αije
⊤|xi − P j| (i ∈ I, j ∈ J),

z ≥ βike
⊤|xi − xk| (i, k ∈ I, i ̸= k),

xi ∈ X (i ∈ I).

If X is a convex polyhedron, (Pa) is easy to solve because (Pa) reduces to a linear

program. Here, we deal with the more general case where X is a nonconvex region.
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We now give the detail of the problem that we solve in numerical experiments. We

define the facility locatable region X as the set of points x = (x1, x2)
⊤ ∈ R2 that satisfy

the following inequality:

|0.15x2 + ||x1| − 6|| + 0.5|x2| + |0.5x1 + ||x2| − 6|| + 0.1|x1| ≤ 10.5.

The region X is nonconvex, as shown in Fig. 2. The above inequality can be represented

by the following AVE-AVI system by introducing artificial variables θ1, θ2, θ3, θ4 ∈ R:

|x1| − θ1 = 6,

|x2| − θ2 = 6,

0.15x2 + |θ1| − θ3 = 0,

0.5x1 + |θ2| − θ4 = 0,

0.1|x1| + 0.5|x2| + |θ3| + |θ4| ≤ 10.5.

(4)

Notice that if the region X is described by (4), then problem (Pa) is formulated as AVP.

Fig. 2: Region X where the facilities are located.

In the numerical experiments, we let I = {1, 2}, J = {1, 2, . . . , 7} and set the locations

of the existing facilities as P 1 = (−10, 0), P 2 = (−6, 7), P 3 = (5, 5), P 4 = (4,−5), P 5 =

(−10,−10), P 6 = (−4,−10), P 7 = (−2, 0). Moreover, we choose the positive weight

β12 = 0.8, and use two data sets for the weights αij as follows:
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(α11, α12, α13, α14, α15, α16, α17) = (1.0, 0.8, 0.6, 0.6, 1.0, 0.8, 0.8),

(α21, α22, α23, α24, α25, α26, α27) = (0.6, 0.8, 1.0, 1.0, 0.6, 0.8, 0.8)
(5)

and

(α11, α12, α13, α14, α15, α16, α17) = (0.8, 1.0, 1.0, 0.6, 0.6, 0.6, 0.8),

(α21, α22, α23, α24, α25, α26, α27) = (0.8, 0.6, 0.6, 1.0, 1.0, 1.0, 0.8).
(6)

The problems with αij’s given by (5) and (6) will be called Minimax-1 and Minimax-

2, respectively. The branch-and-bound method was able to find solutions of Minimax-

1 and Minimax-2, which are given by x1 = (−6.35,−2.39), x2 = (−0.91,−0.33) and

x1 = (−4, 2.75), x2 = (−5.5,−3.25), respectively. The solutions are depicted in Figs. 3

and 4. For each problem, the CPUtime, the number of subproblems fathomed in STEP

1-1, STEP 1-2, STEP 1-3, and the number of nodes explored are summarized in Table 1.

Fig. 3: Solution of Minimax-1

Table 1: Results for minimax location problems

CPUtime (sec) STEP 1-1 STEP 1-2 STEP 1-3 No. of nodes explored

Minimax-1 0.7 14 38 4 110

Minimax-2 0.94 14 60 4 154
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Fig. 4: Solution of Minimax-2

4.2 Maximin Location Problem

A maximin multi-facility location problem is generally formulated as follows [2]:

max min {mini∈I,j∈J αije
⊤|xi − P j|, mini,k∈I,i ̸=k βike

⊤|xi − xk| }
s.t. xi ∈ X (i ∈ I),

(7)

where xi, P j, αij, βij and X represent the same stuffs as in Section 4.1. Unlike the

minimax location problem in the previous section, this problem maximizes the minimum

weighted distances between new and existing facilities, and between new facilities them-

selves. For example, this problem will be useful in locating competing facilities such as

convenience stores and gas stations.

Sayin [22] and Nadirler and Karasakal [16] reformulated single facility maximin loca-

tion problems on a convex region with ℓ1 norm as a mixed integer program. Tamir [23]

proposed an algorithm for two-facility maximin location problems on a convex region

with ℓ1 norm. Guerrero Garćıa et al. [3] studied an algorithm for a single facility maximin

location problem on a convex region with any norm. In these approaches, the region for

locating facilities is assumed to be convex. Here we solve multi-facility location problems

on a nonconvex region.

Problem (7) can be rewritten as the following problem by introducing a new variable
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z ∈ R [23, 24]:

(Pb) max
x,z

z

s.t. z ≤ αije
⊤|xi − P j| (i ∈ I, j ∈ J),

z ≤ βike
⊤|xi − xk| (i, k ∈ I, i ̸= k),

xi ∈ X (i ∈ I).

Notice that, unlike the inequality constraints in (Pa), those in this problem are nonconvex.

In the numerical experiments, we let the index sets of the new and the existing facilities

be I = {1, 2} and J = {1, 2, . . . , 7}, respectively. In addition, we set all the positive

weights αij and β12 to be 1. The region X is the nonconvex region described by (4).

Moreover, the locations of the existing facilities are given in the following two data sets:

P 1 = (−10, 0), P 2 = (−9,−3), P 3 = (−6, 2), P 4 = (−6,−7),

P 5 = (−2, 0), P 6 = (3, 4), P 7 = (5, 5)
(8)

and
P 1 = (−10, 0), P 2 = (−8, 10), P 3 = (−7,−5), P 4 = (−7, 4),

P 5 = (−5,−2), P 6 = (4,−3), P 7 = (5,−7).
(9)

The problems with the data sets (8) and (9) are called Maximin-1 and Maximin-2,

respectively. By using the proposed branch-and-bound method, we obtained a solution

x1 = (7.93,−6), x2 = (−4.18,−12.11) for Maximin-1 and a solution x1 = (6, 6), x2 =

(−11.29,−11.64) for Maximin-2. Those solutions are shown in Figs. 5 and 6. The

CPUtime, the number subproblems fathomed in STEP 1-1, STEP 1-2, STEP 1-3, and

the number of nodes explored in each problem are shown in Table 2.

Table 2: Results for maximin location problems

CPUtime (sec) STEP 1-1 STEP 1-2 STEP 1-3 No. of nodes explored

Maximin-1 35.3 1647 1402 20 6136

Maximin-2 78.6 3799 2595 41 12868

In all the AVPs of the form (P) formed from the above examples Minimax -1, 2, and

Maximin-1, 2, the number of variables is 43 and the number of constraints is 55. From

the results shown in Sections 4.1 and 4.2, we observe that we were able to find a global

optimal solution of each problem by exploring only a small number of nodes compared

with the number of all possible nodes (244−1) in the enumeration tree. Although (Pa) and

(Pb) have the same numbers of variables and constraints, there is a big difference in the

CPUtime between these two problems as shown in Table 1 and Table 2. The reason for

this phenomenon may be explained as follows. The minimax location problem (3) has a

convex objective function, although the feasible region is nonconvex. On the other hand,

the maximin location problem (7) has a nonconvex objective function in addition to a

nonconvex feasible region. Such a problem is extremely difficult to deal with in practice.
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Fig. 5: Solution of Maximin-1

Fig. 6: Solution of Maximin-2

17



5 Conclusion

In this paper, we have proposed an algorithm for the AVP, which is based on the branch-

and-bound method. We have also carried out numerical experiments for nonconvex multi-

facility location problems with ℓ1 norm, which may naturally be reformulated as AVP.

The numerical results demonstrate the effectiveness of the proposed algorithm.
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