
Abstract

In general, prices of financial assets, such as stocks, fluctuate uncertainly. Most of the existing portfolio

optimization models assume that the random processes of the prices are known in advance. Thus, we

need to estimate the processes before formulating the models. We usually use historical data of the assets

for the estimation, and hence the portfolio obtained from the model with the estimation deeply depends

on the specified situation where the data are picked out. Thus the portfolio may not be appropriate to

other situations. Moreover, when we do not have sufficient data that match the current situation, we

cannot have a good portfolio for the situation. If we can change the portfolio according to the economical

situations at the decision times of the investment, we can expect to control the risk and the return of the

assets more flexibly. Thus, we attempt to construct a function that outputs the optimal portfolio of the

current economical situation by directly using the long-time historical data of the assets.

In this paper, we call such a function a portfolio function. By replacing a decision variable in the

traditional portfolio optimization models with a portfolio function, we easily formulate optimization

models whose solution is the optimal portfolio function. However, since the decision variable of such

optimization model is a function, the models are formulated as infinite programming problems which are

not easily solved. To overcome the difficulty, we restrict the portfolio function to linear combinations

of certain basis functions. Moreover, we directly exploit the historical data to approximate the random

behaviors of the assets. Thereby, the infinite problem is reduced to the convex quadratic programming

problem. We also consider its dual problem, and show that the dual problem is formulated by using some

kernel functions. This so-called kernel method provides the optimal portfolio function represented with

the kernel functions only. Unfortunately the dual problem become very large and dense, and hence we

cannot apply the standard solvers, such as the interior point method. Thus, we propose to apply the

matrix splitting method that exploits the special structure of the dual problem. We present some results

of numerical experiments with practical data, and discuss the validity of the proposed approach.
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1 Introduction

In general, prices of financial assets, such as stocks, fluctuate uncertainly. Hence, when investors

allocate their funds in the assets, they have to consider not only the return of the investment but also

the risk. Most of them invest in various assets to keep a certain amount of the return, and to make the

risk as small as possible. This allocation is called a portfolio, and optimization problems which yield an

optimal portfolio is called a portfolio optimization model.

Until now various portfolio optimization models have been proposed [4, 5, 7, 9, 10]. One of the most

important task for the modeling is to decide how to represent a risk of portfolios. In the Markowitz’s

portfolio optimization model [7], called mean-variance model (MV model), the risk is defined as the

variance of the return rate of the portfolio. The model is to minimize the variance while keeping the

expected return rate above a certain level. It can be formulated as the convex quadratic programming

problem (convex QP), and hence we can solve the problem by the interior point method [8]. Konno

and Yamazaki [5] proposed the mean-absolute deviation model (MAD model) which adopts the expected

absolute deviation of the return rate as the risk of the portfolio. By using the historical data of the assets,

it can be formulated as the linear programming problem. Hence, the MAD model is much easier to solve

than the MV model. The above two models that adopt the variance or the absolute deviation of the return

rate as the risk are supposed that the investors consider a return larger than they expected as undesirable.

However, the larger return is usually favorable. Therefore Konno, Waki and Yuuki [4] considered the

lower semi-variance (LSV) and the lower semi-absolute deviation (LSAD) as the more practical risks.

The well-known Value-at-Risk (VaR) is also one such of risk measures. Given the constant β ∈ (0, 1), the

β−VaR is defined as the minimum loss of the worst loss happening at the probability of 1 − β. By the

definition, the loss is less than the β−VaR at the probability of β. The VaR is very easily understandable

as a risk, and hence it is popular to evaluate various financial assets. However, the minimization problem

of the VaR minimization cannot be formulated as the convex programming problem. Thus it is hard to

obtain the optimal portfolio based on VaR minimization [10]. Moreover, it is known that the VaR does

not satisfy the important properties of the risk measure, such as coherent. To overcome the difficulty,

the conditional Value-at-Risk (CVaR) have been proposed [10]. The CVaR is defined as the expectation

of the loss over the VaR. The portfolio optimization models with the CVaR is formulated as the convex

programming problem.

In order to formulate the above popular models, we have to estimate the random behaviors of the

prices of the assets in advance. The estimation is one of the most important topics in the financial

engineering research. One of the popular methods for the estimation is to use the realizations of the

random variables obtained directly from the historical data [7]. This method is very simple and easy to

implement. However, its validity deeply depends on the choice of the appropriate historical data. Sharpe

[12], Markowitz and Perold [9] proposed the factor model that use some economical factors to estimate

a price of each asset. The model is assumed that the return of each asset is represented by some factors

such as, exchange rates and industry indices. Markowitz and Perold [9] formulated the MV model with

the factor model. The scenario based estimation [6] is also useful. In this method we prepare multiple

scenarios which should occur in the future, and set a occurrence probability of each scenario. Then we

compute the risk and the expected return in the scenarios. It is also important for the scenario based
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method to estimate the occurrence probability of each scenario.

As described above, we should first estimate the probability distribution of the price of the assets. Then

we formulate a portfolio optimization model based on the estimation. Finally we get the desired portfolio

by solving the formulated model. Therefore, the obtained portfolio would be optimal for the situation

where the probability distribution is estimated. However, it might not be appropriate to the different

situations. To obtain an optimal portfolio for the specific situation, we have to estimate the probability

distribution under the situation. In general, to estimate the probability distribution accurately, we must

have a sufficiently-large number of data. Hence, if the number of data for the situation is not sufficient,

the estimated probability distribution become less-accurate. However, the number of data is finite, hence

we may not be able to have sufficient data corresponding to each individual situation. For example, there

may not exist the data in the case where the exchange rate is 101 yen to the dollar. Even in such a case,

there may exist sufficient data for 100 and 102 yens. Then we would estimate the distribution under

101 yen by using the data, and get the optimal portfolio for 101 yen. However, this process requires for

us to choose the appropriate data (100 and 102 yen), which is not a easy task. It would be desirable

to choose data automatically or to give a function that outputs the optimal portfolio according to the

current situation. Therefore, in this paper, we attempt to construct such a function.

We call the function a portfolio function. We can formulate the optimization models for the portfolio

function by naturally extending the existing portfolio optimization models. However, since the decision

variables of the extended models are functions, the extended models become the infinite programming

problem which are not easily solved. Thus, we propose to restrict the portfolio function to the linear

combinations of some feature vector functions, and to use the historical data. Thereby, we can reduce

the infinite programming problem to the convex QP. The number of the decision variables of the convex

QP is equivalent to the dimension of the feature vector function. In general, high dimension is desirable

to describe the portfolio function flexibly. However, the larger the dimension is, the larger the scale of

the convex QP is. Thus, we consider the Lagrangian dual problem of the convex QP. The number of the

decision variable of the dual problem is in proportion to the number of assets and the periods of historical

data, and is not related to the dimension of the feature vector function. Moreover, we can represent the

portfolio function as the linear combinations of kernel functions without computing the feature vector

explicitly.

However, even if the model is represented as the finite model, the dual problem becomes very large.

For example, when the number of the objective assets and the periods of the historical data is 500 and

1000, respectively, the number of the decision variables is over 500000 (see Section 4 in the detail). In

such a large-scale problem, it is difficult to apply the standard solver of the convex QPs such as the

interior point method. One of the methods solving very large-scale problems is the matrix splitting

method [3]. The matrix splitting method is originally used to solve the systems of linear equations,

and it is applied to solve the linear complementarity problems, the mixed complementarity problems

(MCPs) and the general convex QPs. The matrix splitting method needs some restricted assumption for

global convergence. Moreover, if it cannot be implemental for parallel computers, it takes long time for

convergence. Thus it is not popular in general. Fortunately, the Hessian of the objective function of the

dual problem has a special structure which satisfies the assumption for global convergence and which is

separable for parallel computing. Hence we consider the matrix splitting method for the dual problem.

This paper is organized as follows: In Section 2, we recall the existing models, that is, the mean-LSAD
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model and the CVaR model. Moreover, we describe the matrix splitting method for the MCP. In Section

3, we propose the portfolio function optimization models with the LSAD and CVaR minimizations. In

Section 4, we derive the Lagrangian dual problems of these models, and we apply the kernel methods to

represent an optimal portfolio function by the linear combinations of some kernel functions. In Section

5, we reformulate the dual problem as the MCP, and then we describe how to implement the matrix

splitting method for the MCP. In Section 6, we report some numerical results of the proposed approach.

Finally, Section 7 concludes the paper.

2 Preliminaries

In this section, we introduce the mean-lower semi-absolute deviation (M-LSAD) model [4] and the

CVaR minimization model [10]. We also describe the matrix splitting method for MCPs [3].

2.1 The Existing Portfolio Optimization Models

We first give the formulations of the portfolio optimization models used in subsequent sections. Let

Si, (i = 1, 2, . . . , n) be the objective assets. Also let yi be the rate of the fund to be allocated to Si, and

let y = (y1, y2, . . . , yn) be the portfolio which an investor has. In this paper, we do not consider the short

selling. Then, the portfolio y must satisfy the following conditions:
n∑

i=1

yi ≤ 1, yi ≥ 0, i = 1, 2, . . . , n.

Note that there exist uninvested funds in cash at the rate of 1−
∑n

i=1 yi. Let Ri be the return rate (per

period) of the asset Si. Note that Ri are random variables. The return rate R(y) of the portfolio y is

represented as

R(y) =
n∑

i=1

Riyi.

The return R(y) is also a random variable. Let V(y) be a risk measure of the portfolio y, and let γ be

the minimal return rate required by the investor.

Now we discuss the following model:

minimize V(y)
subject to yi ≥ 0, i = 1, 2, . . . , n,

n∑
i=1

yi ≤ 1,

n∑
i=1

E[Ri]yi ≥ γ,

(2.1)

where E[·] denotes the expectation of the random variable.

In the portfolio optimization models, the definition of the risk measure V(y) is important. Until now

various risk measures are proposed. Now we introduce LSAD and CVaR as the risk.

Konno and Yamazaki [5] proposed the mean-absolute deviation model (MAD model). In the MAD

model, the risk is represented as the following measure Va, called the absolute deviation:

Va(y) = E

[∣∣∣∣ n∑
i=1

Riyi − E

[ n∑
i=1

Riyi

]∣∣∣∣].
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The advantage of the MAD model is that it is formulated as the linear programming problem, while the

MV model [7] is formulated as the QP.

In the MAD model, the rate larger than the expected return rate
∑n

i=1 E[Ri]yi is also considered as

the risk. Thus, this model is less expressing to the investor’s feeling. The lower semi-absolute deviation

(LSAD) of the return rate R(y), denoted by Vl, is a risk measure that regard only the short of the

expected return goal as unfavorable.

Vl(y) = E[max{0, α − R(y)}],

where α is the goal of the return rate per period. For example, we can choose the expected return of

R(y) or the return of the benchmark as α. Note that the former is a constant, and the latter is a random

variable. The portfolio optimization problem (2.1) with the LSAD is called the mean-LSAD (M-LSAD)

model.

In general, since the exact probability distribution of Ri is unknown, it is difficult to compute the

expectation of R(y) and the LSAD. Therefore we often use the estimated values by the historical data

as follows. Let st
i be the price of the asset Si during period t, and let rt

i be the realization of random

variable Ri during the period t (t = 1, 2, . . . , T ). Then rt
i is given by

rt
i =

st+1
i − st

i

st
i

. (2.2)

By using the realization rt
i , the expectation of random variable Ri and the LSAD can be approximated

as

E[Ri] ≈
1
T

T∑
t=1

rt
i ,

Vl(y) ≈ 1
T

T∑
t=1

max
{

0, αt −
n∑

i=1

rt
iyi

}
,

where αt is the realization of α during period t. If α is a constant, then αt = α for all t.

By using the above approximations, the M-LSAD model is represented as follows:

minimize
1
T

T∑
t=1

max
{

0, αt −
n∑

i=1

rt
iyi

}
subject to yi ≥ 0, i = 1, 2, . . . , n,

n∑
i=1

yi ≤ 1,

1
T

T∑
t=1

n∑
i=1

rt
iyi ≥ γ.

Introducing an auxiliary variable η ∈ RT , this problem becomes equivalent to the linear programming
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problem

minimize
1
T

T∑
t=1

ηt

subject to ηt ≥ αt −
n∑

i=1

rt
iyi, t = 1, 2, . . . , T,

ηt ≥ 0, t = 1, 2, . . . , T,

yi ≥ 0, i = 1, 2, . . . , n,
n∑

i=1

yi ≤ 1,

1
T

T∑
t=1

n∑
i=1

rt
iyi ≥ γ.

(2.3)

The portfolio y obtained by solving the problem (2.3) depends on the data set {rt
i}. Therefore, to obtain

the portfolio y which is suitable for the particular economical situation, we have to collect the data set

{rt
i} fitting the situation.

Next we introduce the CVaR model. Let f(y, R) be the loss function for the portfolio y. One of the

popular loss function is f(y, R) = −
∑n

i=1 Riyi. In what follows, we only consider f(y, R) = −
∑n

i=1 Riyi

as the loss function.

Since the loss f(y, R) depends on the random variable R, the loss is also a random variable. Let Φ(·|y)

be the distribution function of the loss, that is,

Φ(v|y) =
∫

f(y,R)≤v

p(R)dR,

where p(·) denotes the probability density function of R.

Note that Φ(v|y) ≥ β means that the probability that the loss becomes over v is 1 − β or less. The

β-VaR, denoted by VVaR(y; β), is defined as the minimum loss such that the value of distribution function

Φ(v|y) is over β.
VVaR(y; β) = min{v | Φ(v|y) ≥ β}.

The β-VaR VVaR(y; β) is not convex with respect to y. Then Rockafellar and Uryasev [10] proposed

the CVaR as the risk, related to VaR. The CVaR, denoted by VCVaR(y; β), is defined as the expectation

of the loss over the β-VaR.

VCVaR(y; β) = VVaR(y; β) +
1

1 − β
E [max{0, f(y,R) − VVaR(y;β)}] .

Moreover, Rockafellar and Uryasev [10] shows that the CVaR is given by

VCVaR(y; β) = min
v

F (y, v; β),

where
F (y, v;β) = v +

1
1 − β

E [max{0, f(y, R) − v}] .

Therefore we can obtain the CVaR without computing the VaR. Moreover, the CVaR minimization
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problem is represented as follows:

minimizev,y v +
1

1 − β
E [max{0, f(y, R) − v}]

subject to yi ≥ 0, i = 1, 2, . . . , n,
n∑

i=1

yi ≤ 1,

1
T

T∑
t=1

n∑
i=1

E[Riyi] ≥ γ,

(2.4)

where the decision variables are y and v.

When the probability distribution of Ri is unknown, it is difficult to compute the CVaR. Then, in a

way similar to the MAD model, we estimate the CVaR by using the historical data [10]. Using rt
i defined

by (2.2), F (y, v; β) is approximated as

F (y, v; β) = v +
1

(1 − β)T

T∑
t=1

max{f(y, rt) − v},

where rt = (rt
1, r

t
2, . . . , r

t
n)>. By this approximation, the CVaR minimization model is reduce to

minimizev,y v +
1

(1 − β)T

T∑
t=1

max{0, f(y, rt) − v}

subject to yi ≥ 0, i = 1, 2, . . . , n,
n∑

i=1

yi ≤ 1,

1
T

T∑
t=1

n∑
i=1

rt
iyi ≥ γ,

which is equivalent to the following linear programming problem:

minimizev,y,η v +
1

(1 − β)T

T∑
t=1

ηt

subject to ηt ≥ −
n∑

i=1

rt
iyi − v, t = 1, 2, . . . , T,

ηt ≥ 0, t = 1, 2, . . . , T,

yi ≥ 0, i = 1, 2, . . . , n,
n∑

i=1

yi ≤ 1,

n∑
i=1

rt
iyi ≥ γ.

(2.5)

2.2 The Matrix Splitting Methods for MCP

The portfolio optimization models proposed in Section 4 become the convex QPs. The convex QP is

reformulated as the mixed complementarity problem (MCP). In this subsection, we describe the matrix

splitting method to solve large-scale MCPs.
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First we define a MCP. Given l, u ∈ Rn with li < ui (i = 1, 2, . . . , n) and a mapping F : Rn → Rn,

MCP(F, l, u) is defined by

Find z ∈ S

such that zi = li ⇒ Fi(z) ≥ 0,

li < zi < ui ⇒ Fi(z) = 0,

zi = ui ⇒ Fi(z) ≤ 0,

(2.6)

where S = {z | li ≤ zi ≤ ui}. We allow li and ui to be li = −∞ and ui = +∞, respectively. In this

paper, we assume that F is linear. When F (z) = Mz + d, we write MCP(F, l, u) as MCP(M,d, l, u).

When li = −∞ and ui = +∞ for all i, MCP(F, l, u) is reduced to a system of linear equations F (z) = 0.

Moreover, when li = 0 and ui = +∞ for all i, MCP(F, l,u) becomes the following linear complementarity

problem:

Find z ∈ Rn
+

such that Fi(z) ≥ 0,

zi > 0 ⇒ Fi(z) = 0,

where Rn
+ = {z | zi ≥ 0 (i = 1, 2, . . . , n)}.

The general convex QP can be reformulated as MCP(F, l, u). In what follows, we consider the following

convex QP:

minimize
1
2
z>Qz + d>z

subject to l ≤ z ≤ u,

Az = b,

(2.7)

where Q ∈ Rn×n, A ∈ Rm×n,d ∈ Rn and b ∈ Rm. The Karush-Kuhn-Tucker conditions (KKT conditions

in short) of problem (2.7) is written as

Qz + d − λ1 + λ2 + A>λ3 = 0,

z ≥ l, λ1 ≥ 0,λ>
1 z = 0,

z ≤ u,λ2 ≥ 0, λ>
2 (u − z) = 0,

Az − b = 0,

(2.8)

where λ1, λ2, λ3 are the Lagrange multipliers corresponding to the constraints. The KKT conditions

(2.8) are written as MCP(F, l, u), where F, l, u are given by

F (z,λ3) =
(

Qz + d + A>λ3

Az − b

)
,

l = (0, . . . , 0︸ ︷︷ ︸
n

,−∞, . . . ,−∞︸ ︷︷ ︸
m

)>,

u = (u1, . . . , un︸ ︷︷ ︸
n

, +∞, . . . , +∞︸ ︷︷ ︸
m

)>,

(2.9)

respectively.

We next explain the matrix splitting method for MCP(F, l, u). Usually, one of the standard solvers of

the convex QPs is the interior point method. However, when the problem is large scale and the matrix Q

is dense, the interior point method takes much time to solve the problem. When Q has a special structure
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and the matrix splitting method can exploit the structure, the matrix splitting method is useful for the

problem. As mentioned in Section 5, our problem has such a structure.

We now suppose that F is represented as F (z) = Mz + d.

We call a pare of matrices such that M = B + C a splitting of the matrix M . The matrix splitting

method for MCP(M,d, l, u) generates a sequence {z(k)} by setting a solution of MCP(B,Cz(k) +d, l, u)

as z(k+1).

Now we explain popular splittings. Let D,L and U be given by

D =


M11

M22

. . .
MNN

 , L =


0

M21
. . .

...
. . . . . .

MN1 · · · MN(N−1) 0

 , U =


0 M12 · · · M1N

. . . . . .
...

. . . M(N−1)N

0

 ,

where Mij (i, j = 1, 2, . . . , N) are ni × nj submatrices of M . Note that ni is the constant such that∑N
i=1 ni = n. Using these matrices, we can consider the following two types of splittings (B,C) [3].

(The block Jacobi) M = D, N = L + U. (2.10)

(The block SOR) M =
1
ζ
D + L, N =

(
1 − 1

ζ

)
D + U. (2.11)

The SOR stands for successive overrelaxation. In particular, we call the block-SOR method with ζ = 1

the block-Gauss-Seidel method. When we use the block-SOR method (2.11), we can split the original

subproblem MCP(B,Cz(k) + d, l, u) as z(k+1) in the following N smaller MCPs.

MCP(ζ−1Mii,
∑
j<i

Mijz
(k+1)
j +

∑
j≥i

Mijz
(k)
j − ζ−1Miiz

(k)
i + di, li, ui), i = 1, 2, . . . , N, (2.12)

where zi, li and ui are the corresponding subvectors of z, l and u, respectively. Moreover, if we set

Ni = 1, Nj = 1(i, j = 1, . . . , N), the procedure (2.12) can be simply written as

z
(k+1)
i = mid{li, z(k)

i − ζq−1
ii (di +

∑
j<i

qijz
(k+1)
j +

∑
j≥i

qijz
(k)
j ), ui}, (2.13)

where mid{·} denotes the median of three numbers. When we apply (2.13), we cannot exploit the

information of other variables, and hence the sequence may converge slowly. On the other hand, since

the computation at each iteration is cheap, the total computational time may not be so long.

The sequence generated by the matrix splitting method for the linear complementarity problem is

shown to converge globally under the following assumptions [3].

Assumption 1 Let (B,C) be a splitting of the matrix M .

(a) The matrix M is symmetric.

(b) The matrix B − C is positive definite.

(c) For any k, a subproblem MCP(B,Cz(k) + d, l, u) has a solution.

(d) The following inequality holds:

inf
{1

2
z>Mz + d>z

∣∣ l ≤ z ≤ u
}

> −∞. (2.14)

Assumption 1 holds for the SOR (2.13), when the following assumption holds.
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Assumption 1’

(a) Assumption 1 (a) and (d) hold.

(b) The matrix M is positive semi-definite, all of the diagonal elements of M are positive and 0 < ζ < 2.

(c) The matrix B − C is positive definite.

Under Assumption 1, we can easily show that the global convergence of the matrix splitting method

for MCP(F, l,u). We omit the proof.

Theorem 1 Suppose that Assumption 1 holds. Then, every accumulation point of a sequence {z(k)}
generated by the matrix splitting method is a solution of MCP(F, l,u).

In general, the matrix splitting method is poorly-convergent, hence it is not appropriate to obtaining an

accurate solution. However, when we do not need the accurate solution, we can expect that the method

has sufficient performance. Moreover, since the subproblem of the Jacobi method (2.10) is decomposed

into small problem, it can be solved quickly by parallel computers.

3 Optimization Models for a Portfolio Function

In this section, we propose optimization models for constructing the portfolio function.

Suppose that an economical index Xi for the asset Si are given. The example of Xi includes the prices

and trading volume of the asset Si, exchange rates of the currencies and some industry indices. We note

that Xi is a data at the investment time while the return rate Ri is in the future. We treat both variables

as random variables. Moreover, let X = (X>
1 , . . . , X>

n )>, R = (R1, . . . , Rn)>, and let ΩXi
and ΩX be

the sets of Xi and X, respectively.

Let gi : ΩXi
→ [0, 1] be a function from an index Xi to output the allocation of asset Si, and define

g(X) = (g1(X1), . . . , gn(Xn)). Then the portfolio y is given by

y = (y1, . . . , yn)> =
(

g1(X1), . . . , gn(Xn)
)>

. (3.1)

In this paper, we call the function g a portfolio function.

Now we formulate a minimization problem of LSAD with respect to the portfolio function g. Substi-

tuting portfolio function (3.1) into the M-LSAD model (2.3), we obtain the following problem:

minimize E

[
max{0, α −

n∑
i=1

Rugi(Xi)}
]

subject to gi(Xi) ≥ 0, i = 1, . . . , n, ∀X ⊆ ΩX ,
n∑

i=1

gi(Xi) ≤ 1,∀X ⊆ ΩX ,

E

[ n∑
i=1

Rigi(Xi)
]
≥ γ.

(3.2)

Note that the decision variable of the problem (3.2) is the function g. Because of the following reasons,

the problem (3.2) is difficult to solve.

• The probability distribution of (X, R) is unknown in general.
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• Since the decision variable g is a function and the number of constraints are infinite, the problem

(3.2) becomes the infinite programming problem.

To overcome the above difficulties, we propose an approximate model of the problem (3.2). In a way

similar to deriving the M-LSAD model (2.3), we first approximate the expectations of random variables

by using the historical data. Let economical indices xt
i at the period t = 1, 2, . . . , T are given. Then we

obtain the following approximation of the LSAD.

E

[
max{0, α −

n∑
i=1

Rigi(Xi)}
]
≈ 1

T
max{αt −

n∑
i=1

rt
igi(xt

i)},

where αt and rt
i are the realizations given in Section 2. Similarly, the constraints of the problem (3.2) is

represented as follows:
gi(xt

i) ≥ 0, i = 1, 2, . . . , n, t = 1, 2, . . . , T,

n∑
i=1

gi(xt
i) ≤ 1, t = 1, 2, . . . , T,

1
T

T∑
t=1

n∑
i=1

rt
igi(xt

i) ≥ γ.

Consequently, the problem (3.2) is reduced to

minimize
T∑

t=1

max{0, αt −
n∑

i=1

rt
igi(xt

i)}

subject to gi(xt
i) ≥ 0, i = 1, 2 . . . , n, t = 1, 2, . . . , T,

n∑
i=1

gi(xt
i) ≤ 1, t = 1, 2, . . . , T,

1
T

T∑
t=1

n∑
i=1

gi(xt
i) ≥ γ.

(3.3)

Note that the number of the constraints of this problem is finite. However, the decision variable is still

the function g, and hence it is still the semi-infinite programming problem. Thus we consider a restriction

on the function g in order to represent g by the finite number of variable. Let φi be a nonlinear mapping

from the space ΩXi
to a feature space Rθi . We may allow θi = ∞. The vector φi is called a feature

vector. We assume that for given wi ∈ Rθi , the portfolio function gi(Xi) is represented as

gi(Xi) = 〈wi, φi(Xi)〉, (3.4)

where 〈·, ·〉 denotes an appropriate inner product.

Remark 1 We can assume that the portfolio function is given by gi(Xi) = 〈wi, φi(Xi)〉+bi with bi ∈ R.

The following discussion can be easily extended into the case.
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By substituting this restriction (3.4) into the semi-infinite problem (3.3), we have the following problem:

minimize
T∑

t=1

max{0, αt −
n∑

i=1

rt
i〈wi,φi(xt

i)〉}

subject to 〈wi, φi(xt
i)〉 ≥ 0, i = 1, 2, . . . , n, t = 1, 2, . . . , T,

n∑
i=1

〈wi, φi(xt
i)〉 ≤ 1, t = 1, 2, . . . , T,

1
T

T∑
t=1

n∑
i=1

rt
i〈wi,φi(xt

i)〉 ≥ γ,

where the decision variable is w = (w>
1 , . . . , w>

n )>. By introducing an auxiliary variable

η = (η1, . . . , ηT )>, it is equivalent to the following linear programming problem:

minimize
1
T

T∑
t=1

ηt

subject to ηt ≥ αt −
n∑

i=1

rt
i〈wi, φi(xt

i)〉, t = 1, 2, . . . , T,

ηt ≥ 0, t = 1, 2, . . . , T,

〈wi, φi(xt
i)〉 ≥ 0, t = 1, . . . , T, i = 1, 2, . . . , n,

n∑
i=1

〈wi, φi(xt
i)〉 ≤ 1, t = 1, 2, . . . , T,

1
T

T∑
t=1

n∑
i=1

rt
i〈wi, φi(xt

i)〉 ≥ γ.

(3.5)

The problem (3.5) is regarded as a learning problem of the function g when the historical data is given.

If the dimension θi of the feature vector φi is larger than the number of the data, then η can equal 0.

It means that the return rate
∑n

i=1 rt
igi(xt

i) is larger than the goal αt for all periods. This phenomenon

is called an overfitting in the field of machine learning. If the overfitting occurs, then the obtained

result would be valid only for the given data, but not appropriate to unknown situations in the future.

Namely, the result of assets management in the future can fall behind. One of the often-used techniques

for preventing overfitting is the regularization [2]. The technique prevents the overfitting by adding a

regularization term to the objective function. The various regularization terms are proposed. In what

follows, we use τ
∑n

i=1 ‖wi‖2/n as the term, where τ , called a regularization parameter, is a positive

parameter for controlling the overfitting. Putting the term in the problem (3.5), we have the following
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convex QP:

minimize
τ

n

n∑
i=1

‖wi‖2 +
1
T

T∑
t=1

ηt

subject to ηt ≥ αt −
n∑

i=1

rt
i〈wi, φi(xt

i)〉, t = 1, 2, . . . , T,

ηt ≥ 0, t = 1, 2, . . . , T,

〈wi, φi(xt
i)〉 ≥ 0, t = 1, . . . , T, i = 1, 2, . . . , n,

n∑
i=1

〈wi, φi(xt
i)〉 ≤ 1, t = 1, 2, . . . , T,

1
T

T∑
t=1

n∑
i=1

rt
i〈wi, φi(xt

i)〉 ≥ γ.

(3.6)

Let w∗ be the solution of the problem (3.6). Then, the portfolio function gi(Xi) is represented as follows.

gi(Xi) = 〈w∗
i , φi(Xi)〉.

Remark 2 The constraints of the problem (3.6) hold for the historical data used during period t =

1, 2, . . . , T . However, when a index X ⊆ ΩX is different from any of the historical data Xt, the constraints

gi(Xi) ≥ 0 and
∑n

i=1 gi(Xi) ≤ 1 may not be satisfied. Therefore we have to transform gi(Xi) for the

practical use. For example, when gi(Xi) < 0, we set gi(Xi) = 0. When
∑n

i=1 gi(Xi) > 1, we use a

normalization yi = gi(Xi)/
∑n

i=1 gi(Xi).

We next formulate the optimization model with CVaR minimization. Substituting (3.1) into the prob-

lem (2.4), we have

minimizev,g v +
1

(1 − β)
E [max{0, f(g(X), R) − v}]　

subject to gi(Xi) ≥ 0, i = 1, 2, . . . , n, ∀X ⊂ ΩX , (3.7)
n∑

i=1

gi(Xi) ≤ 1, ∀X ⊂ ΩX ,

E

[
n∑

i=1

Rigi(Xi)

]
≥ γ.

This problem is similar to the infinite programming problem based on the LSAD (3.2), and hence it is

hard to obtain the solution. Then, in a way similar to deriving the problem (3.6), by using the historical
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data and restricting the form of the function g, we can reformulate (3.7) as the following convex QP.

minimizev,w,η
τ

n

n∑
i=1

‖wi‖2 + v +
1

(1 − β)T

T∑
t=1

ηt

subject to ηt ≥ −
n∑

i=1

rt
i〈wi,φi(xt

i)〉 − v, t = 1, 2, . . . , T,

ηt ≥ 0, t = 1, 2, . . . , T, (3.8)

〈wi, φi(xt
i)〉 ≥ 0, i = 1, 2, . . . , n, t = 1, 2, . . . , T,

n∑
i=1

〈wi, φi(xt
i)〉 ≤ 1, t = 1, 2, . . . , T,

1
T

T∑
t=1

n∑
i=1

rt
i〈wi, φi(xt

i)〉 ≥ γ,

where the first term of the objective function is the regularization term for preventing the overfitting.

4 Dual Problems of the Proposed Models and Its Solutions with Kernel

Functions

To solve the problem (3.6) given in Section 3, we have to evaluate the feature vector φi for all xt
i. If the

dimension of the feature vector φi is very high or infinite, the problem (3.6) becomes the large-scale or

infinite optimization problem, and hence we cannot solve the problem easily. Therefore, in this section,

we consider dual problems of the problems (3.6) and (3.8). We will show that the number of the decision

variables of the dual problem is in proportion to n × T . Moreover, We will also see that we need not to

evaluate φi(xt
i) by using the kernel methods and that the portfolio function gi(Xi) is represented by the

linear combinations of some kernel functions.

The Lagrangian function [1] of the problem (3.6) is given by

L(w, η, κ, λ, µ, ν, ξ) =
τ

n

n∑
i=1

‖wi‖2 +
1
T

T∑
t=1

ηt +
T∑

t=1

κt

{
αt −

n∑
i=1

rt
i〈wi,φi(xt

i)〉 − ηt

}

−
T∑

t=1

λtηt −
T∑

t=1

n∑
i=1

µt
i(〈wi, φi(xt

i)〉) +
T∑

t=1

νt

( n∑
i=1

〈wi,φi(xt
i)〉 − 1

)

+ ξ

{
γ − 1

T

T∑
t=1

n∑
i=1

rt
i〈wi, φi(xt

i)〉
}

,

where κ ∈ RT , λ ∈ RT ,µ ∈ RnT , ν ∈ RT , ξ ∈ R are the Lagrange multipliers corresponding to the

constraints of the problem (3.6), and µ = (µ>
1 , . . . , µ>

n)> with µi = (µ1
i , . . . , µ

T
i )>.

Let a function ω : R{(n+2)T+1} 7→ [−∞, +∞) be defined by

ω(κ, λ, µ, ν, ξ) = inf{L(w, η, κ,λ, µ, ν, ξ) | (w>, η>)> ∈ Rn+T }. (4.1)

Then the Lagrangian dual problem of the problem (3.6) is given by

maximize ω(κ, λ, µ, ν, ξ)
subject to κ ≥ 0, λ ≥ 0, µ ≥ 0, ν ≥ 0, ξ ≥ 0.

(4.2)

We now give the explicit formulation of the objective function ω as follows.
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We rewrite the Lagrangian function L as

L(w, η, κ,λ,µ,ν, ξ)

=
τ

n

n∑
i=1

‖wi‖2 +
n∑

i=1

〈
wi,−

T∑
t=1

κtrt
iφi(xt

i) −
T∑

t=1

µt
iφi(xt

i) +
T∑

t=1

νtφi(xt
i) −

ξ

T

T∑
t=1

rt
iφi(xt

i)
〉

+
T∑

t=1

ηt(
1
T

− κt − λt) +
T∑

t=1

αtκt −
T∑

t=1

νt + γξ.

Since L is decomposed into the terms of w and η, we can compute the objective function ω by minimizing

L for w and η separately. We first minimize L with respect to w. Since L is a convex quadratic function

with respect to w, the following equation holds at the minimum w∗
i of L.

∇wL(w, η, κ, λ, µ, ν, ξ) = 0.

The gradients of L for wi (i = 1, 2, . . . , n) is

∇wi
L(w, η,κ, λ,µ,ν, ξ)

=
2τ

n
wi −

T∑
t=1

κtrt
iφi(xt

i) −
T∑

t=1

µt
iφi(xt

i) +
T∑

t=1

νtφi(xt
i) −

ξ

T

T∑
t=1

rt
iφi(xt

i), i = 1, 2, . . . , n.

By the above two equations, we have the minimizer w∗
i of L(·, η, κ, λ, µ, ν, ξ).

w∗
i =

n

2τ

( T∑
t=1

κtrt
iφi(xt

i) +
T∑

t=1

µt
iφi(xt

i) −
T∑

t=1

νtφi(xt
i) +

ξ

T

T∑
t=1

rt
iφi(xt

i)
)

, i = 1, 2, . . . , n. (4.3)

Next we minimize L with respect to η. Since L is a linear function with respect to ηt, we have

inf{ηt(
1
T

− κt − λt)|ηt ∈ R} =

{
0 if κt + λt = 1

T ,

−∞ otherwise.

Thus, when κt + λt 6= 1/T for some t, we have ω(κ, λ, µ, ν, ξ) = −∞. Since the dual problem is the

maximization problem, we need not to consider the above case. Thus, we consider only the case where

κt + λt = 1/T (t = 1, 2, . . . , T ), and hence we add constraints κt + λt = 1/T (t = 1, 2, . . . , T ) to the dual

problem (4.2).

Substituting κt + λt = 1/T and w∗ into L, we have

ω(κ, λ,µ,ν, ξ) = L(w∗,η, κ, λ, µ, ν, ξ)

= − τ

n

n∑
i=1

‖w∗
i ‖2 +

T∑
t=1

αtκt −
T∑

t=1

νt + γξ. (4.4)

Note that
∑n

i=1 ‖w∗
i ‖2 is written as

n∑
i=1

‖w∗
i ‖2 =

n

2τ



µ1

...
µn

κ
ν
ξ



>

Q̄



µ1

...
µn

κ
ν
ξ


, (4.5)
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where Q̄ ∈ R{(n+2)T+1}×{(n+2)T+1} is the positive semi-definite matrix given by

Q̄ =



H1 0 · · · 0 H1R1 −H1 p1

0 H2
. . .

...
...

...
...

...
. . . . . . 0

...
...

...
0 · · · 0 Hn HnRn −Hn pn

R1H1 · · · · · · RnHn H0 −
∑n

i=1 RiHi h
−H1 · · · · · · −Hn −

∑n
i=1 HiRi

∑n
i=1 Hi −

∑n
i=1 pi

p>
1 · · · · · · p>

n h> −
∑n

i=1 pi q


. (4.6)

Here, Ri denotes the T × T diagonal matrix whose (t, t)-element is rt
i , and Hi, H0 ∈ RT×T , h, pi ∈

RT , q ∈ R denote

(Hi)kl =
n〈φi(xk

i ), φi(xl
i)〉

2τ
, H0 =

n∑
i=1

RiHiRi,

h =
1
T

n∑
i=1

RiHiri, pi =
1
T

Hiri, q =
1

T 2

n∑
i=1

r>
i Hiri,

ri = (ri
1, . . . , r

T
i )>.

From the above discussion, the dual problem (4.2) is written as

maximize − 1
2



µ1

...
µn

κ
ν
ξ



>

Q̄



µ1

...
µn

κ
ν
ξ


+

T∑
t=1

αtκt −
T∑

t=1

νt + γξ

subject to κt ≥ 0, λt ≥ 0, κt + λt =
1
T

, t = 1, 2, . . . , T,

µ ≥ 0, ν ≥ 0, ξ ≥ 0,

which is equivalent to the convex QP:

minimize
1
2



µ1

...
µn

κ
ν
ξ



>

Q̄



µ1

...
µn

κ
ν
ξ


−

T∑
t=1

αtκt +
T∑

t=1

νt − γξ

subject to 0 ≤ κt ≤ 1
T

, t = 1, 2, . . . , T,

µ ≥ 0, ν ≥ 0, ξ ≥ 0.

(4.7)

We can express the optimal portfolio function g with the solution (µ̂, κ̂, ν̂, ξ̂) of the dual problem (4.7).

From the equation (4.3), we have

w∗
i =

n

2τ

( T∑
t=1

µ̂t
iφi(xt

i) +
T∑

t=1

κ̂trt
iφi(xt

i) −
T∑

t=1

ν̂tφi(xt
i) +

ξ̂

T

T∑
t=1

rt
iφi(xt

i)
)

, i = 1, 2, . . . , n.

15



Hence we can represent the optimal portfolio function (3.4) as follows:

gi(Xi) = 〈w∗
i , φi(Xi)〉

=
n

2τ

(
T∑

t=1

µ̂t
i〈φi(xt

i), φi(Xi)〉 +
T∑

t=1

κ̂trt
i〈φi(xt

i), φi(Xi)〉

−
T∑

t=1

ν̂t〈φi(xt
i),φi(Xi)〉 +

ξ̂

T

T∑
t=1

rt
i〈φi(xt

i), φi(Xi)〉

)
, i = 1, 2, . . . , n. (4.8)

Remark 3 As discussed in Remark 2 in Section 3, the constraints of problem (3.3) are satisfied only for

the historical data during period t = 1, . . . , T . Thus, the constraints gi(Xi) ≥ 0,
∑n

i=1 gi(Xi) ≤ 1 may

not be satisfied for the current economical index X. If the constraints is not satisfied, then we need to

transform g as discussed in Remark 2.

The feature vector φi(Xi) does not appear solely in the coefficient matrix Q̄ of the dual problem (4.7)

and in the optimal portfolio function g given by (4.8). On the other hand, the inner products of φi(Xi)

and φi(xt
i) appear. Now, let Ki : ΩXi

× ΩXi
→ R. be given by

Ki(xi, x̄i) = 〈φi(xi),φi(x̄i)〉.

Then, the matrix Q̄ is represented with the function Ki only. Moreover, the optimal portfolio function g

is also given with Ki.

gi(Xi) =
n

2τ

( T∑
t=1

µ̂t
iKi(xt

i, Xi) +
T∑

t=1

κ̂trt
iKi(xt

i,Xi) −
T∑

t=1

ν̂tKi(xt
i,Xi) +

ξ̂

T

T∑
t=1

rt
iKi(xt

i, Xi)
)

. (4.9)

Conversely, if we first define a function Ki : ΩXi
× ΩXi

→ R, then we can construct the matrix Q̄ in

the dual problem (4.7) without defining the feature vector φi(Xi) explicitly. However, the dual problem

(4.7) with Ki may not be the convex QP. Moreover, g given in the form of (4.9) with Ki may not be a

solution of the original problem (3.6). A sufficient condition for the convexity and the equivalence is that

the function Ki is a kernel function, which is defined as follows [11].

Definition 1 A function K : X × X → R is said to be a kernel function, if there exists a feature vector

φ : X 7→ F , and the following equation is satisfied for all x, x̄ ∈ X.

K(x, x̄) = 〈φ(x), φ(x̄)〉.

The technique obtaining the optimal solution with kernel functions is said to be the kernel trick [11].

The kernel trick is one of the main techniques in the kernel methods.

The following are popular examples of the kernel function.

K(x, x̄) = (x>x̄ + c)d (d : natural number, c ≥ 0). (4.10)

K(x, x̄) = exp
(
− ‖x − x̄‖2

σ2
.

)
(4.11)

The function (4.10) is called a polynomial kernel, and (4.11) is called a Gaussian kernel. The dimension

of the feature vector for the polynomial kernel is finite. On the other hand, the dimension of the feature

vector for the Gaussian kernel is infinite.

We next give the dual problem of the CVaR minimization model (3.8).
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The Lagrangian function of problem (3.8) is given by

L(w, η, κ,λ,µ,ν, ξ)

=
τ

n

n∑
i=1

‖wi‖2 + v +
1

(1 − β)T

T∑
t=1

ηt +
T∑

t=1

κt

{
−

n∑
i=1

rt
i〈wi, φi(xt

i)〉 − v − ηt

}

−
T∑

t=1

λtηt −
T∑

t=1

n∑
i=1

µt
i(〈wi, φi(xt

i)〉) +
T∑

t=1

νt

( n∑
i=1

〈wi, φi(xt
i)〉 − 1

)

+ξ

{
γ − 1

T

T∑
t=1

n∑
i=1

rt
i〈wi, φi(xt

i)〉
}

=
τ

n

n∑
i=1

‖wi‖2 +
n∑

i=1

〈
wi,−

T∑
t=1

κtrt
iφi(xt

i) −
T∑

t=1

µt
iφi(xt

i) +
T∑

t=1

νtφi(xt
i) −

ξ

T

T∑
t=1

rt
iφi(xt

i)
〉

+
T∑

t=1

ηt

(
1

(1 − β)T
− κt − λt

)
+

(
1 −

T∑
t=1

κt

)
v −

T∑
t=1

νt + γξ, (4.12)

where κ, λ, µ, ν and ξ are the Lagrange multipliers corresponding to the constraints of the problem (3.8).

The Lagrangian dual problem of the problem (3.8) is given by (4.2).

The Lagrangian function L is decomposed into functions of w, η and v, respectively. Hence, minimizing

L with respect to w, η, v separately, we can obtain the objective function value of the dual problem. We

first minimize L with respect to w. The gradients of L for wi (i = 1, 2, . . . , n) is

∇wi
L(w, η,κ, λ,µ,ν, ξ)

=
2τ

n
wi −

T∑
t=1

κtrt
iφi(xt

i) −
T∑

t=1

µt
iφi(xt

i) +
T∑

t=1

νtφi(xt
i) −

ξ

T

T∑
t=1

rt
iφi(xt

i), i = 1, 2, . . . , n.

Thus, we have the minimizer w∗
i of L(·, η, κ, λ, µ, ν, ξ).

w∗
i =

n

2τ

( T∑
t=1

κtrt
iφi(xt

i) +
T∑

t=1

µt
iφi(xt

i) −
T∑

t=1

νtφi(xt
i) +

ξ

T

T∑
t=1

rt
iφi(xt

i)
)

, i = 1, . . . , n.

We next minimize L with respect to η. Since L is the linear function with respect to η, L tends to

be −∞ as ηt → +∞ when κt + λt 6= 1/(1 − β)T for some t. Thus, we consider only the case where

κt + λt = 1/(1 − β)T for all t, and we add these equations to the dual problem (4.2) as the constraints.

Since L is also the linear function with respect to v, we add a constraint
∑T

t=1 κt = 1 to the dual

problem (4.2).

Substituting κt + λt = 1/(1 − β)T ,
∑T

t=1 κt = 1 and w∗ into L, we have

ω(κ, λ, µ, ν, ξ) = L(w∗, η, κ, λ, µ, ν, ξ) = − τ

n

n∑
i=1

‖w∗
i ‖2 −

T∑
t=1

νt + γξ.
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Hence we can write the dual problem (4.2) is written as

minimize
1
2



µ1

...
µn

κ
ν
ξ



>

Q̄



µ1

...
µn

κ
ν
ξ


+

T∑
t=1

νt − γξ

subject to 0 ≤ κt ≤ 1
(1 − β)T

, t = 1, 2, . . . , T, (4.13)

T∑
t=1

κt = 1,

µ ≥ 0, ν ≥ 0, ξ ≥ 0,

where the matrix Q̄ is defined as (4.6). By using the solution (µ̂, κ̂, ν̂, ξ̂) of the dual problem (4.13), we

can represent the solution of the CVaR minimization model (3.8) as the equation (4.8). We can also use

the kernel trick for the CVaR minimization model, because the matrix Q̄ in the dual problem and the

portfolio function g are represented with kernel functions.

5 The Matrix Splitting Method for the Dual Problem

When the numbers of the assets n and the period T are large, the problem (4.7) becomes very large-

scale. Thus, we consider the matrix splitting method described in Section 2 to solve (4.7). Note that,

since the data used are usually insufficient and the problems include some uncertainties, we need not

to obtain an accurate solution of the problem (4.7). Moreover, as written below, the problem can be

parallelized by exploiting the structure Q̄ defined by (4.6). Therefore the matrix splitting method is

appropriate to the problem (4.7). Now we discuss the implemental.

The KKT conditions of the problem (4.7) are written as

Q̄z̄ + d̄ − λ1 + λ2 = 0, λ>
1 z̄ = 0, λ>

2 (ū − z̄) = 0,

z̄ ≥ 0, λ1 ≥ 0,

z̄ ≤ ū,λ2 ≥ 0,

where

z̄ = (µ>
1 , . . . , µ>

n ,κ>, ν>, ξ)>,

d̄ = (0, . . . , 0,−α1, . . . ,−αT , 1, . . . , 1,−γ)>,

ūi =

{
1
T if i = nT + 1, . . . , (n + 1)T,

+∞ otherwise.

Then, these KKT conditions are equivalent to MCP(Q̄, d̄,0, ū), where 0 = (0, . . . , 0). Let (B,C) be a
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splitting of Q̄ given by

B =



1
ζ H1

0 1
ζ H2

...
. . . . . .

0 · · · 0 1
ζ Hn

R1H1 · · · · · · RnHn
1
ζ H0

−H1 · · · · · · −Hn −
∑n

i=1 HiRi
1
ζ

∑n
i=1 Hi

p>
1 · · · · · · p>

n h> −
∑n

i=1 pi
1
ζ q


,

C =



(1 − 1
ζ )H1 0 · · · 0 H1R1 −H1 p1

(1 − 1
ζ )H2

. . .
...

...
...

...
. . . 0

...
...

...
(1 − 1

ζ )Hn HnRn −Hn pn

(1 − 1
ζ )H0 −

∑n
i=1 RiHi h

(1 − 1
ζ )

∑n
i=1 Hi −

∑n
i=1 pi

(1 − 1
ζ )q


.

(5.1)

By using (B,C), the block-SOR method solves the following n+3 MCPs at each iteration successively.

MCP(ζ−1Hi, (1 − ζ−1)Hiµ
(k)
i + HiRiκ

(k) − Hiν
(k) + ξ(k)pi, 0,+∞), i = 1, 2, . . . , n,

MCP(ζ−1H0,

n∑
i=1

RiHiµ
(k+1)
i + (1 − ζ−1)H0κ

(k) −
n∑

i=1

RiHiν
(k) + ξ(k)h − α, 0, T−1e),

MCP(ζ−1
n∑

i=1

Hi, −
n∑

i=1

Hiµ
(k+1)
i −

n∑
i=1

HiRiκ
(k+1) + (1 − ζ−1)

n∑
i=1

Hiν
(k) − ξ(k)

n∑
i=1

pi + e, 0, + ∞),

MCP(ζ−1q,
n∑

i=1

p>
i µ

(k+1)
i + h>κ(k+1) −

n∑
i=1

piν
(k+1) + (1 − ζ−1)ξ(k) − γ, 0, ∞),

(5.2)

where +∞ = (+∞, . . . , +∞)> and e = (1, . . . , 1)>. Note that the decision variables of these MCPs are

µ1, µ2, . . . , µn, κ, ν and ξ, respectively. Thus the maximum size of the MCPs is T . Furthermore, we

can solves the first n subproblems separately. Hence, using parallel processing according to the number

of the assets, the computational cost at each iteration is propose to T . Moreover, when we split Q̄ in

each variable, that is, we apply (2.13), z̄
(k+1)
i is obtained by the following equations:

z̄
(k+1)
i =

{
mid{0, z̄

(k)
i − ζq̄−1

ii (d̄i +
∑

j<i q̄ij z̄
(k+1)
j +

∑
j≥i q̄ij z̄

(k)
j ), 1

T } if i = nT + 1, . . . , (n + 1)T
max{0, z̄

(k)
i − ζq̄−1

ii (d̄i +
∑

j<i q̄ij z̄
(k+1)
j +

∑
j≥i q̄ij z̄

(k)
j )} otherwise,

(5.3)

where q̄ij denotes (i, j) element of the matrix Q̄. As described in Section 2, though the number of

iterations may be large, each computational cost of (5.3) is very cheap.

We now discuss the global convergence of the matrix splitting method (5.3). First the matrix Q̄

is symmetric positive semi-definite, and the problem (4.7) has a solution, therefore Assumption 1’ (a)

holds. Moreover, all of the diagonal elements of the matrix Q̄ are positive, if we use the positive definite

19



kernels such as the polynomial kernel (4.10) and the Gaussian kernel (4.11). Thus Assumption 1’ (b)

holds when we choose ζ such that 0 < ζ < 2. Finally, since v>(B − C)v = v>Dv for all v, B − C is

positive definite. Therefore Assumption 1’ (c) holds. Consequently, by Theorem 1, we can obtain the

global optimal solution of the dual problem (4.7) by using the procedure (5.3).

Unfortunately, the same matrix splitting method for the CVaR minimization model (4.13) does not

satisfy Assumption 1’ because the problem (4.13) have the equality constraint. Then we may use the

coordinate gradient descent method [13], which is one of the efficient solver for such a large-scale QP

with one equality constraint.

6 Numerical Experiments

In this section, we report results of numerical experiments for the proposed models. We compared the

proposed model (3.6) with the M-LSAD model (2.3). All computation were carried out in Matlab 7.4 on

a machine with 3.2 GHz Pentium 4 CPU and 2.0 GB memory.

We chose 191 stocks included in NIKKEI 225 as the objective assets. All of the data of the stocks were

collected from Yahoo! Finance [14], The economical indices X were calculated from trading volumes

of some stocks as follows. We first chose some categories of industry, that is, the food, the electronics

device, the car and the communications. Let Ck be a set of assets that belongs to a category k. Let vt
i

be the rate of the trading volume of the asset Si during the period t. We define V t
k , k = 1, 2, 3, 4 as the

means of the rate of the assets in the categories, that is,

V t
k =

1
|Ck|

∑
i∈Ck

vt
i ,

where |Ck| denotes the number of elements in Ck. Moreover, let V t be the mean of the trading volumes

of all of the stocks during the period t, and we define Ṽ t
k , k = 1, 2, 3, 4 as the difference between V t

k and

V t. Then, Ṽ t
k is given by

Ṽ t
k = V t

k − V t.

Furthermore, let It
k be the means of Ṽ t

k of the recent four weeks, that is,

It
k =

1
4
(Ṽ t

k + Ṽ t−1
k + Ṽ t−2

k + Ṽ t−3
k ).

Then, we define the realization of the economical indices xt during the period t as

xt = (It
1, It

2, It
3, It

4)
>. (6.1)

We adopted the SOR method (5.3) as the matrix splitting method for solving the MCP(Q̄, d̄,0, ū). We

employed
‖Φ(z(k))‖ <

√
ε (6.2)

as the stopping rule, where ε is a stopping parameter and Φ(z) is given by

Φ(z) = (Φ1(z), . . . , Φ(n+2)T+1(z))>,

Φi(z) = mid{zi, zi − ūi, (Q̄z + d̄)i}.

Note that ‖ · ‖ denotes the L2 norm of a vector.
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We set the regularization parameter τ = 0.05. Moreover, we set the realization of the Nikkei Stock

Average during period t (t = 1, . . . , T ) as αt. We adopted the Gaussian kernel (4.11) as the kernel

function, and we set the Gaussian parameter as σ2 = 50.

We used two sets of the data, Data 1 and Data 2 as in Table 1. Data 1 includes as the training data

from 2000 to 2004, and as the test data from 2005 to 2006. Data 2 includes as the training data from

2001 to 2005, and as the test data from 2006 to 2007. The return rate of 191 stocks were calculated from

the weekly data.

Table 1 The data we use in the experiments

　 The training data The test data

Data 1 the weekly data during ’00 - ’04 the weekly data during ’05 - ’06

Data 2 the weekly data during ’01 - ’05 the weekly data during ’06 - ’07

6.1 Experiments with Various Parameters for the Matrix Splitting Method

In the first experiment, we investigated the effect of relaxation parameter ζ in the SOR method (2.13)

for the proposed model. Table 2 reports the number of iterations and the calculation time in which we

obtain a solution satisfying (6.2) with ε = 1.0× 10−5. We used Data 1. From the results, we see that we

can obtain the solution in the practical time, if we choose ζ appropriately. In particular, ζ = 1.2 is the

best among the experiments. Hence, we choose ζ = 1.2 in the subsequent experiments.

Table 2 Effect of relaxation parameter

ζ Iteration Time Iteration Time

γ = 0.005 (s) γ = 0.010 (s)

0.8 173 552.23 165 551.33

0.9 157 498.08 143 470.01

1.0 146 466.01 133 435.76

1.1 135 427.54 128 413.64

1.2 127 405.27 128 416.23

1.3 123 388.25 129 419.56

1.4 123 388.81 133 449.67

1.5 127 396.35 141 464.58

1.6 149 491.19 995 3440.3

We next investigated the effect of the stopping parameter ε. The results are shown in Tables 3 and 4.

Note that ’Mean’ and ’Std’ in the tables denote the expectation and the standard deviation of the return

rate per a week, respectively, and ’Sharpe’ denotes Sharpe ratio given by Mean/Std. From these results,

we see that the method with ε = 1.0×10−6 takes more iterations than that with ε = 1.0×10−5, while the

performances of the portfolios obtained from ε = 1.0× 10−5 and 1.0× 10−6 are not much different. This

indicates that we need not to employ the restrictive stopping rule for appropriate solutions. Therefore,

we set the stopping parameter ε = 1.0 × 10−5 in the subsequent experiments.
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Table 3 Effect of stopping parameter : Data 1

ε Iteration Mean (×10−3) Std (×10−3) Sharpe

1.0×10−3 57 5.09 12.8 0.398

1.0×10−4 90 5.17 12.9 0.402

1.0×10−5 122 5.20 12.9 0.403

1.0×10−6 166 5.19 12.9 0.403

Table 4 Effect of stopping parameter : Data 2

ε Iteration Mean (×10−3) Std (×10−3) Sharpe

1.0×10−3 96 1.55 16.4 0.0944

1.0×10−4 166 1.49 16.9 0.0878

1.0×10−5 253 1.44 17.1 0.0844

1.0×10−6 890 1.50 16.7 0.0895

6.2 Comparisons of the Proposed Model with the M-LSAD Model

We next compared the proposed model (3.6) with the M-LSAD model (2.3) for various values of the

required return rate γ. Table 5 shows the results of the portfolios obtained from the proposed model

and the M-LSAD model, respectively. ’Average share of the top stock’ denotes the average share of the

stock which has the highest average share at each period. ’Average share of the top 5 stocks’ is the same

average of top 5 share stock. ’Average share of stocks’ denotes the average of the share of all stocks.

From the table, we see that the value of the standard deviation with the proposed model was less than

that with the M-LSAD model. The reason for the result is that the share of each stock bought by the

proposed model was less, while the number of the bought stocks was much more than that in the M-LSAD

model. Thus, the proposed model is more risk-adverse than the M-LSAD model. Moreover, the proposed

Table 5 Results of the portfolios (γ = 0.005)

Data set Data 1 Data2

Portfolio proposed M-LSAD proposed M-LSAD

Mean (×10−3) 5.20 4.79 1.44 -0.167

Std (×10−3) 12.9 22.1 17.1 21.5

Sharpe 0.403 0.227 0.0844 -0.00778

Average share

of the top stock 0.0427 0.311 0.0450 0.292

Average share

of the top 5 stocks 0.0950 0.770 0.102 0.663

Average share

of stocks 0.600 0.844 0.631 0.970
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model was superior to the M-LSAD model with respect to the value of the Sharpe ratio. Particularly,

the mean of the return rate of the M-LSAD model was negative for the Data2. On the other hand, that

of the proposed model was positive. The result shows that we were able to obtain a portfolio according

to situations by the proposed model.

Figures 1 and 2 are show the fluctuation of the value of the portfolios with required return rate γ = 0.005

for Data1 and Data 2, respectively.
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Figure 1 Fluctuation of the portfolios : Data 1
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Figure 2 Fluctuation of the portfolios : Data 2

Moreover, Figures 3 and 4 show the expectation and the standard deviation of the obtained return rate

with various required return rate γ for Data 1 and Data 2, respectively. From these figures, we see that

23



Figure 3 Relation between Mean and Std : Data 1

Figure 4 Relation between Mean and Std : Data 2

the risk by the proposed model is less than that by the M-LSAD model.

7 Conclusion

In this paper, we considered the portfolio function which outputs the optimal portfolio of the present

economical situation, and formulated the optimization models to obtain the optimal portfolio function.

We also derived the dual problem of the proposed models, and we showed that the optimal portfolio func-

tion is represented by the linear combinations of the kernel functions. From the numerical experiments,

we see that the matrix splitting method can obtain the optimal portfolio function even if the number
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of the assets is large. Moreover, we showed the validity of the proposed model as compared it with the

M-LSAD model.

Our next step is to consider a transaction cost. If we change the portfolio frequently according to the

situation, we cannot ignore the transaction cost. Hence we must consider the optimization models for

the portfolio function with the transaction constraint.
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A Data for Numerical Experiments

Table 6 shows the stocks which are used in numerical experiments.

Table 6 List of stocks used in numerical experiments

Stockname code Stockname code

Ajinomoto 2802 Danippon Sumitomo Pharma 4506

Asahi Breweries 2502 Eisai 4523

Japan Tobacco 2914 Kyowa Hakko Holdings 4151

Kikkoman 2801 Shionogi & 4507

Kirin Brewery 2503 Takeda Pharmaceutical Company 4502

Nichirei 2871 Astellas Pharma 4503

Nippon Meat Packers 2282 Chugai Pharmaceutical 4519

Nisshin Seihun Group 2002 Showa Shell Sekiyu K.K. 5002

Sapporo Holdings 2501 The Yokohama Rubber 5101

Takara Holdings 2531 Bridgestone 5108

Unitika 3103 Nippon Sheet Glass 5202

Nisshinbo Industries 3105 Nitto Boseki 3110

Teijin 3401 Sumitomo Osaka Cement 5232

Toray Industries 3402 Taiheiyo Cement 5233

Toyobo 3101 Tokai Carbon 5301

Ojipaper 3861 NGK Insulators 5333

Hokuetsu Paper Mills 3865 Asahi Glass 5201

Mitsubishi Paper Mills 3864 Toto 5332

Ube Industries 4208 Sumitomo Metal Industries 5405

Asahi Kasei 3407 Pacific Metals 5541

Denki Kagaku Kogyo K.K. 4061 Nippon Steel 5401

Kuraray 3405 Kobe Steel 5406

Fujifilm Holdings 4901 Nisshin Steel 5407

Kao 4452 Toho Zinc 5707

Shin-Etsu Chemical 4063 The Furukawa Electric 5801

Mitsui Chemicals 4183 Mitsubishi Materials 5711

Nippon Kayaku 4272 Mitsui Mining & Smelting 5706

Nippon Soda 4041 Nippon Light Metal 5701

Nissan Chemical Industries 4021 Sumitomo Electric Industries 5802

Shiseido 4911 Sumitomo Metal Mining 5713

Showadenko K.K. 4004 Furukawa 5715

Sumitomo Chemical 4005 Fujikura 5803

Tosoh 4042 Dowa Holdings 5714
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Stockname code Stockname code

Sumitomo Heavy Industries 6302 Sharp 6753

Toyo Seikan Kaisya 5901 Sony 6758

Chiyoda 6366 Taiyo Yuden 6976

Daikin Industries 6367 TDK 6762

Ebara 6361 Tokyo Electron 8035

Hitachi Costruction Machinery 6305 Yokogawa Electric 6841

Mitsubishi Heavy Industries 7011 Kawasaki Heavy Industries 7012

NSK 6471 Mitsui Engineering & Shipbuilding 7003

NTN 6472 Ricoh 7752

Okuma Holdings 6103 Fuji Heavy Industries 7270

Kubota 6326 Hino Motors 7205

Komatsu 6301 Honda Motor 7267

JTEKT 6473 Isuzu Motors 7202

The Japan Steel Works 5631 Mazda Motor 7261

IHI 7013 Mitsubishi Motors 7211

Hitachi Zo-sen Corporation 7004 Nissan Motor 7201

Fanuc 6954 Suzuki Motor 7269

Fuji Electric Holdings 6504 Toyota Motor 7203

Fujitsu 6702 Citizen Holdings 7762

Kyocera 6971 Konica Minolta Holdings 4902

Hitachi 6501 Nikon 7731

Panasonic 6752 Olympus 7733

Panasonic Electric Works 6991 Terumo 4543

Meidensha 6508 Dai Nippon Printing 7912

Minebea 6479 Yamaha 7951

Mitsubishi Electric 6503 Toppan Printing 7911

Mitsumi Electric 6767 Nippon Suisan Kaisha 1332

NEC 6701 Daiwa House Industry 1925

Oki Electric Industry 6703 JGC 1963

Pioneer Corporation 6773 Kajima 1812

Denso 6902 Obayashi 1802

Casio Computer 6952 Sekisui House 1928

Canon 7751 Shimizu 1803

Alps Electric 6770 Taisei 1801

Advantest 6857 Itochu 8001

Toshiba 6502 Marubeni 8002

Sanyo Electric 6764 Mitsubishi 8058

27



Stockname code Stockname code

Mitsui 8031 Central Japan Railway Company 9022

Sumitomo 8053 Tobu Railway 9001

Toyota Tsusho 8015 Nippon Express 9062

Aeon 8267 Yamato Holdings 9064

Fast Retailing 9983 Kawasaki Kisen Kaisha 9107

Uny 8270 Mitsui O.S.K. Lines 9104

Takashimaya 8233 Nippon Yusen K.K. 9101

The Chiba Bank 8331 All Nippon Airways 9202

The Bank of Yokohama 8332 Mitsubishi Logistics 9301

Mizuho Trust & Banking 8404 Softbank 9984

The Shizuoka Bank 8355 KDDI 9433

Nomura Holdings 8604 Nippon Telegraph and Telephone 9432

Daiwa Securities Group 8601 NTT Data 9613

Mizuho Securities 8606 NTT Docomo 9437

Credit Saison 8253 Chubu Electric Power 9502

Heiwa Real Estate 8803 The Kansai Electric Power 9503

Mitsubishi Estate 8802 The Tokyo Electric Power 9501

Mitsui Fudosan 8801 Osaka Gas 9532

Sumitomo Realty & Development 8830 Tokyo Gas 9531

Tokyu Land 8815 CSK Holdings 9737

East Japan Railway Company 9020 Konami 9766

Keio 9008 Secom 9735

Tokyu 9005 Tokyo Dome 9681

West Japan Railway Company 9021 Toho 9602

Keisei Electric Railway 9009 Yahoo Japan 4689

Odakyu Electric Railway 9007
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