
Abstract

In this paper, we consider the quasi-Newton methods for the large scale unconstrained minimization

problem. The conventional quasi-Newton methods such as the BFGS and DFP methods are not applica-

ble to large scale problems since they use a dense approximate Hessian of the objective function. The true

Hessian in large scale problems is usually sparse. Recently a method taking advantage of this sparsity

has been proposed as the Matrix Completion Quasi-Newton (MCQN) Method. The MCQN method uses

an approximate matrix of the inverse of the Hessian, and it is implemented with fewer space complex-

ities when the true Hessian is sparse. However, the MCQN method converges slowly when an initial

approximate matrix is not given appropriately. In addition, it cannot be applied if the true Hessian is

dense.

To overcome the above difficulties, we propose the tridiagonal MCQN update in which the approximate

Hessian is limited to be only tridiagonal. Because of this limitation, the memory to store the approximate

Hessian isO(n). However, when the true Hessian is not tridiagonal, the fast convergence is not guaran-

teed. Therefore, we combine the LBFGS and the tridiagonal MCQN methods. From several numerical

experiments, we discuss the effectiveness of the proposed method.

Contents

1 Introduction 3

2 The existing quasi-Newton Methods 4

2.1 Quasi-Newton Methods. 4

2.2 Limited memory BFGS method. 6

2.3 Matrix Completion quasi-Newton Method. 7

3 An example where the MCQN method converges slowly 8

4 The proposed method 9

5 Numerical experiments 13

5.1 Experiments for the parameters in the restart condition. 14

5.2 Experiment for the parameterm . 18

5.3 Experiment comparing the proposed method with the LBFGS method. 19

6 Concluding remarks 21

7 Acknowledgements 21

1 Introduction

In the present paper, we consider the following unconstrained minimization problem.

min f (x)

subject to x ∈ Rn.
(1.1)

Throughout the paper, it is assumed thatf is twice continuously differentiable, andn is huge.

For solving the unconstrained minimization problem, there exist several useful solution methods, in-

cluding the steepest descent method, the Newton and quasi-Newton methods, and the conjugate gradient

method [11]. The quasi-Newton method, in particular the BFGS method, is widely used, because it is

easy to implement and has good convergence properties. The quasi-Newton method generates a sequence

{xk} with using an approximate matrixBk of the Hessian∇2 f (xk) at thek-th iteratexk. The approximate

HessianBk is usually generated by the BFGS and DFP update formulas [4, 6]. Since the quasi-Newton

method with the BFGS update converges superlinearly under some mild assumptions, it can obtain a solu-

tion of (1.1) with the relatively small number of iterations. However, the DFP and BFGS updates usually

generate dense approximate Hessians, and therefore it requiresO(n2) time and space complexities at each

iteration. Thus we cannot apply the quasi-Newton method to large scale problems. To overcome this

difficulty, the Limited memory BFGS (LBFGS) method [10] and the Matrix Completion quasi-Newton

(MCQN) method [12] has been proposed.

The LBFGS method was proposed by Nocedal [10] in 1980. It constructs an approximate Hessian by

using a few vector pairs and a diagonal matrix. Therefore, it can reduce the time and space complexities

per iteration effectively. However, because of the lack of the full information onn × n matrix, only

linear convergence is guaranteed [9]. Furthermore, this method converges very slowly for ill-conditioned

problems.

The Hessian∇2 f (x) in large scale problems is usually sparse. The MCQN method takes advantage

of this sparsity to update the approximate matrixHk of ∇2 f (xk)−1 [12]. In the MCQN method, as a

first step, some elements corresponding to nonzero elements of the true Hessian, that is, (Hk+1)i j for

(i, j) ∈ E :=
{
(i, j)

∣∣∣∣ (∇2 f (x)
)
i j
, 0 f or some x∈ Rn

}
, are updated by using the existing quasi-Newton

updates, such as the BFGS and DFP updates. As a second step, we consider a maximum-determinant

positive definite matrix completion of the matrixHk+1 with the elements (Hk+1)i j , (i, j) ∈ E fixed. Then

we adopt the maximum determinant matrix as the next approximate matrixHk+1. Throughout this paper,

a graphG = (V,E) with V = {1, . . . ,n} is called as a sparse graph. If the graphG is a chordal graph, the

approximate matrixHk+1 is given as a product of sparse matrices explicitly [7]. However, the sparse graph

is not necessarily chordal. In such cases, the approximate matrixHk+1 is updated by a setF instead of

E, whereF is an extension ofE and its corresponding sparse graphG = (V, F) is chordal. If the Hessian

is sparse, then the MCQN method requires lower space and time complexities than those for the existing

quasi-Newton methods. Theoretically, the MCQN method has nice convergence properties. In particular,

it is shown that a sequence generated by the MCQN method has a local and superlinear convergence under

the same assumptions of the DFP method. However even if∇2 f (x) is sparse,|F|may be much larger than

|E|. Moreover, if the true Hessian is dense, then|E| is almostn2. Therefore, it makes no sense to apply

this method to problems which do not have the sparsity. Furthermore, if the initial approximate matrix

H0 is not given appropriately, the generated sequence converges to an optimal solution very slowly. We

will explain the details of the slow convergence in Section 3.

3

To overcome the above difficulties of the MCQN method, in the present paper, we propose a method

that combines the LBFGS and the MCQN methods. The proposed method is based on three ideas. As

the first idea, the approximate HessianBk = H−1
k by the MCQN update is limited to be only tridiagonal,

that is, the setF is given asF = {(i, j)| |i − j| ≤ 1}. Then the graphG = (V, F) is chordal, and hence, the

time and space complexities per iteration of the MCQN update withF areO(n). This method is called

as a Tri-MCQN method. As mentioned above, the approximate matrix updated by MCQN is sometimes

inappropriate. Then the generated sequence might converge to an optimal solution slowly. As the second

idea, we also apply the full BFGS updates as well as Tri-MCQN. We construct thek-th approximate

matrix Hk by applying the Tri-MCQN update until (k −m)-th iteration and by the existing BFGS update

after the reminderm iterations, that is, from (k−m+1)-th tok-th iteration. The lastm times BFGS updates

are implemented by the LBFGS update withm vector pairs. Note that the usual LBFGS constructs an

approximate matrix with the initial matrixHk−m = y⊤k sk/y⊤k ykI . Therefore the second idea is regarded as

a change of this initial diagonal matrixHk−m for the matrix updated by Tri-MCQN. As a consequence,

the approximate Hessian of the proposed method is expected to be better than that of the LBFGS update.

However, we discussed in Section 3, if the initial approximate matrixH0 is far from the inverse of the

true Hessian∇2 f (x0), the method based on the first and the second ideas may be worse than the LBFGS.

Therefore, as the third idea, if a search direction calculated withHk by the above two ideas is not suitable,

we perform a restart, that is, we discard the current matrixHk−m updated by the Tri-MCQN method and

set an initial matrix again. In Section 4, we give concrete criteria on the restart.

The present paper is organized as follows. In Section 2, the existing quasi-Newton methods are intro-

duced, and these advantages and disadvantages are discussed. In Section 3, we present an example of a

problem in which a sequence updated by the MCQN method converges very slowly. In Section 4, in or-

der to overcome the disadvantages of the existing methods, the method which combines the LBFGS and

the MCQN is proposed. In Section 5, a number of numerical experiments for large scale unconstrained

problems are presented. We make some concluding remarks in Section 6.

2 The existing quasi-Newton Methods

In this section, we describe the existing quasi-Newton methods, and discuss about these advantages

and disadvantages.

2.1 Quasi-Newton Methods

The quasi-Newton method generates a sequence{xk} by using the approximate Hessian of the objection

function f . Throughout the rest of this paper,Bk denotes an approximate Hessian of∇2 f (xk). An inverse

of the approximate HessianBk is denoted byHk = B−1
k . Usually, we suppose thatBk andHk are positive

definite. The quasi-Newton method adopts a search directiondk given by

dk = −Hk∇ f (xk). (2.1)

WhenHk is positive definite,dk is a descent direction off . Thus, we can choose a stepsize so as to

satisfy the following Wolfe conditions.

f (xk + αdk) ≤ f (xk) + ξ1α∇ f (xk)
⊤dk, (2.2)

4

ξ2∇ f (xk)
⊤dk ≤ ∇ f (xk + αdk)

⊤dk, (2.3)

whereξ1, ξ2 are constants such that 0< ξ1 < ξ2 < 1.

Using the directiondk and the stepsizeαk, the next iteratexk+1 is given by

xk+1 = xk + αkdk.

The matrixHk is updated by some formulae in each iteration. We will discuss the formulae later. A

general form of the quasi-Newton method is described as follows.� �
The quasi-Newton method

Step 0: Choose an initial pointx0 and an initial symmetric positive definite matrixH0 ∈ Rn×n. Set

k = 0.

Step 1: If xk satisfies the termination criterion, outputxk as an optimal solution and stop. Otherwise

go to Step 2.

Step 2: Obtain the search directiondk = −Hk∇ f (xk).

Step 3: Choose the step sizeαk satisfying the Wolfe conditions (2.2) and (2.3), and setxk+1 =

xk + αkdk.

Step 4: UpdateHk+1 by some quasi-Newton update formulae.

Step 5: Setk := k+ 1 and go to Step 1.� �
For the rapid convergence, we usually enforce the matrixHk+1 to satisfy the following secant condition.

Hk+1yk = sk, (2.4)

where

sk = xk+1 − xk (2.5)

yk = ∇ f (xk+1) − ∇ f (xk). (2.6)

There are various update methods ofHk that satisfy the secant condition (2.4). Among them, BFGS

and DFP are well-known.

The DFP update adopts a solution of the following problem asHk+1.

minH ψ(H
− 1

2
k HH

− 1
2

k)

subject to Hyk = sk

H = H⊤

H ≽ 0,

(2.7)

whereψ : Rn×n → R is a strictly convex function defined asψ(A) = trace(A) − ln det(A). Moreover,

H ≽ 0 (H ≻ 0) means thatH is positive semidefinite (positive definite) . WhenHk is positive definite and

the conditions⊤k yk > 0 is satisfied, the optimal solutionHDFP
k+1 of the problem (2.7) is unique, and given by

HDFP
k+1 = Hk −

Hkyk(Hkyk)⊤

y⊤k Hkyk
+

sks⊤k
s⊤k yk

.

5

The BFGS update is similar to the DFP update. The next matrixBBFGS
k+1 is a solution of the problem

(2.7) whereHk, H, sk andyk are replaced withBk, B, yk and sk, respectively. The inverse ofBBFGS
k+1 is

given by

HBFGS
k+1 = Hk −

Hkyks⊤k + sk(Hkyk)⊤

s⊤k yk
+

(
1+

y⊤k Hkyk

s⊤k yk

)
sks⊤k
s⊤k yk

. (2.8)

Even if the true Hessian∇2 f (x) is sparse, the approximate HessianBk+1 = H−1
k+1 updated by DFP and

BFGS becomes dense. Therefore, those updates requireO(n2) memory to store the matrixBk+1 or Hk+1,

and then these update formulas cannot be used for large scale problems.

2.2 Limited memory BFGS method

In order to overcome the disadvantage of the quasi-Newton method, the LBFGS method is proposed

by Nocedal in 1980. Unlike the BFGS method which stores a dense matrix, the LBFGS method stores

only a few vector pairs and a diagonal matrix. It never explicitly forms or stores a full matrix. Instead, it

maintains a history of the past updates ofxk and∇ f (xk). Therefore, the time and space complexities per

iteration are cut down dramatically. The essential idea of LBFGS is described as follows.

First, note that the BFGS formula (2.8) at thek-th update is written as

Hk = V⊤k−1Hk−1Vk−1 + Tk−1, (2.9)

where

Vi = I −
yi s⊤i
s⊤i yi

, Ti =
si s⊤i
s⊤i yi

.

Using the formula (2) recurrently from the (k−m)-th iteration, we have

Hk = (Vk−mVk−m+1 · · ·Vk−2Vk−1)⊤ Hk−m (Vk−mVk−m+1 · · ·Vk−2Vk−1)

+ (Vk−m+1Vk−m+2 · · ·Vk−2Vk−1)⊤ Tk−m (Vk−m+1Vk−m+2 · · ·Vk−2Vk−1) + · · ·
+ (Vk−2Vk−1)⊤ Tk−3 (Vk−2Vk−1) + V⊤k−1Tk−2Vk−1 + Tk−1.

HereHk−m is the approximate Hessian at the (k − m)-th iteration. The matrixHk−m is dense in general.

The LBFGS method replaces the dense matrixHk−m with some diagonal matrixH0
k−m. Usually we use

H0
k−m given by

H0
k−m =

s⊤k yk

y⊤k yk
I , (2.10)

whereI is the unit matrix.

A product of some vectorw ∈ Rn andHk is calculated by using vectorssi , yi (i = k−m, . . . , k− 1) and

H0
k−m without a explicit calculation ofHk. Therefore, only 2m vectors and the diagonal matrixH0

k−m is

required to implement the algorithm. Thus, the time and space complexities of the LBFGS method per

iteration areO(mn), which are much lower than those of the usual BFGS method. On the other hand, only

linear convergence is guaranteed for the LBFGS method, because little information of the true Hessian

can be included in the approximate matrix whenm is small. Actually, it is reported that the LBFGS

converges slowly for ill-conditioned problems. However, when an accurate solution is not required, the

LBFGS method is very practical.

6

2.3 Matrix Completion quasi-Newton Method

We describe the MCQN method, and its advantages and disadvantages.

The Hessian∇2 f of the large scale problem is usually sparse. Then, it is better to use a sparse matrix

with the same sparse structure of∇2 f (x) as an approximate Hessian. Thus we add a sparsity constraint to

the problem (2.7) of DFP.

minH ψ(H
− 1

2
k HH

− 1
2

k)

subject to Hyk = sk

H = H⊤

H ≽ 0

(H−1)i j = 0 ∀(i, j) < F,

(2.11)

where F ⊇ E :=
{
(i, j) |

[
∇2 f (x)

]
i j
, 0 f or some x∈ Rn

}
. Here we assume that (1) (i, i) ∈ F, i =

1,2, . . . , n, (2) (i, j) ∈ F ⇒ (j, i) ∈ F. It is desirable to chooseF asF ≈ E.

Unfortunately, an optimal solution of the problem (2.11) cannot be obtained explicitly. Therefore, the

MCQN adopts an approximate solutionHk+1 obtained by the following algorithm.� �
The MCQN method

Step 1: Obtain a partial matrix
(
H̄k+1

)
i j
,∀(i, j) ∈ F using the existing quasi-Newton updates from

Hk.

Step 2: Obtain a solutionHk+1 of the following problem with
(
H̄k+1

)
i j
, (i, j) ∈ F as the given con-

stants.
minH ψ(H

− 1
2

k HH
− 1

2
k)

subject to Hi j =
(
H̄k+1

)
i j
∀(i, j) ∈ F

H = H⊤

H ≽ 0

(H−1)i j = 0 ∀(i, j) < F

(2.12)

� �
The problem (2.12) replaces the secant conditionHyk = sk of the problem (2.11) by the constraints

Hi j =
(
H̄k+1

)
i j
,∀(i, j) ∈ F. Thus, the update matrixHk+1 is regarded as a kind of approximate solution of

(2.11). In the rest of this section,̄Hk+1 is simply written asH̄.

The problem (2.12) still appears to be difficult to solve. However, ifF satisfies the following condition,

then the solution is given explicitly [7].� �
(The chordal condition) An undirected graphǴ =

(
V, F̄

)
with a vertex setV = {1, . . . ,n} and an

edge setF̄ := {F \ (i, i) | i = 1, . . . ,n} is a chordal graph.� �
It is desirable to chooseF = E for fully exploiting the sparse pattern of the problem. However, the

sparse graphG =
(
V, Ē

)
of the Hessian is not necessarily chordal. Therefore, it is proposed to use a setF

satisfyingF ⊇ E andthe chordal condition.

Next, whenF satisfiesthe chordal condition, we see that the solution of the problem (2.12) is expressed

as a product of sparse matrices. Let{Cr } be a set of maximum cliques of the chordal graph
(
V, F̄

)
. Then

7

families{Sr } and{Ur } are defined as

Sr := Cr \ (Cr+1 ∪Cr+2 ∪ · · · ∪Cl), r = 1, . . . , l

Ur := Cr ∩ (Cr+1 ∪Cr+2 ∪ · · ·Cl), r = 1, . . . , l,

wherel is the number of the maximum cliques. Note thatV = ∪l
r=1Sr andSi ∩ S j = ∅. We can thus

obtain a perfect elimination ordering [7] of the vertices, in which the vertices inSr are given consecutive

numbers for eachr. Let P denote a permutation matrix corresponding to the ordering. Then, the solution

of the problem (2.12) is given as follows.

H̄ = P⊤
[
L(k+1)

1

]⊤ [
L(k+1)

2

]⊤ · · · [L(k+1)
l−1

]⊤
D(k+1)

[
L(k+1)

l−1

]
· · ·

[
L(k+1)

2

] [
L(k+1)

1

]
P, (2.13)

where the matricesL(k+1)
r andD(k+1) are given by

[
L(k+1)

r

]
i j
=


1 i = j[(

H̄Ur Ur

)−1
H̄Ur Sr

]
i j

(i, j) ∈ Ur × Sr

0 otherwise

(2.14)

for r = 1,2, . . . , l − 1, and

D(k+1) =


D(k+1)

S1S1

D(k+1)
S2S2

. . .

D(k+1)
SlSl


(2.15)

with

D(k+1)
Sr Sr
=

 H̄Sr Sr − H̄Sr Ur

(
H̄Ur Ur

)−1
H̄Ur Sr r ≤ l − 1

H̄Sr Sr r = l.

Note thatHk+1 is calculated by using onlȳHi j ,∀(i, j) ∈ F. Moreover, if |F| is small, the matrices

L(k+1)
r , r = 1, . . . , l are sparse lower triangle matrices andD(k+1) is a block diagonal matrix.

The MCQN method requires lower space and time complexities than the quasi-Newton method. More-

over, it is shown that any sequence generated by the MCQN update converges locally and superlin-

early under the same assumptions of the DFP update [12]. The MCQN can be implemented with

only (Hk)i j ,∀(i, j) ∈ F. Then its space complexity isO(|F|) and the time complexity per iteration is

O(Σl
r=1|Cr |3). On the other hand, when we implement it with (Hk)i j ,∀(i, j) ∈ F and ((Hk)Ur Ur)

−1, r =

1,2, . . . , l − 1, the space complexity of the MCQN update isO(|F| + Σl
r=1|Ur |2) and the time complexity

per iteration isO(Σl
r=1|Cr |2).

The MCQN method requires an additional work to construct the setF from the setE of the true Hessian

[1]. In addition, depending on the problems, the size ofF becomes large compared toE. Furthermore, if

the initial approximate matrix is not given appropriately, the generated sequence converges to the optimal

solution very slowly. In the next section, we describe such an example.

3 An example where the MCQN method converges slowly

The MCQN method sometimes converges slowly as compared to the LBFGS method. In this section,

we present a simple example where such a situation actually occurs.

8

The main reason for the slow convergence of the MCQN method is that it does not exploit the informa-

tion on the elements of (i, j) < F. EachHi j , (i, j) ∈ F of the MCQN with the BFGS update in the second

step is given as

HBFGS
i j = (Hk)i j +

(
1

s⊤k yk
+

(yk)⊤Hkyk

(s⊤k yk)2

)
si sj −

(Hkyk)i(sk) j + (sk) j(Hkyk) j

s⊤k yk
, ∀(i, j) ∈ F. (3.1)

In general, the numerators of the second and third terms in (3.1) are very small in comparison with their

denominator. Although the pure BFGS also has the same circumstance, the total sum of the changes of

the pure BFGS update is

n∑
i

n∑
j

∣∣∣(Hk)i j − HBFGS
i j

∣∣∣ = n∑
i=1

n∑
j=1

∣∣∣∣∣∣
(

1
s⊤k yk

+
(yk)⊤Hkyk

(s⊤k yk)2

)
si sj −

(Hkyk)i(sk) j + (sk) j(Hkyk) j

s⊤k yk

∣∣∣∣∣∣ ,
which is not so small. On the other hand, the total sum of the changes of the MCQN is often small.

This happens because the elementsHBFGS
i j , (i, j) < F are not used, and are given as a solution of the

maximum-determinant positive definite matrix completion.

To see this, consider the unconstrained minimization problem off (x) =
∑n

i=1 x2
i /2. Letx0 = (1, . . . ,1)⊤

andH0 = δI whereδ is some small constant. Then the next iterate is given asx1 = (1 − δ, . . . , 1 − δ)⊤.

Moreover,s0 = (−δ, . . . ,−δ)⊤, y0 = (−δ, . . . ,−δ)⊤, H0y0 = (−δ2, . . . ,−δ2)⊤ ands⊤0 y0 = nδ2. Therefore,

the BFGS update is given by

(H1)BFGS
i j =


δ +

1
n
− δ

n
i = j

1
n
− δ

n
i , j.

SinceE = {(i, j) | i = j}, we have (Hk)i j = 0, i , j. Moreover, whenδ is small andn is large, the

diagonal elements ofHk remain small during lots of iterations. As a result,dk = −Hk∇ f (xk) is also small,

and hence∥xk+1 − xk∥ is small. Therefore, if the MCQN method is applied to this problem withH0 = δI ,

a lot of iterations are needed.

4 The proposed method

One of the drawbacks of the LBFGS method is that the convergence could be slow if the initial approx-

imate HessianH0
k−m is not appropriate. For the MCQN method, there exist the following problems.

• An additional work is required to obtain the chordal extentionF of E.

• There is no difference between the MCQN and the usual quasi-Newton method for a problem that

has a dense Hessian.

• The convergence may be slow if the initial approximate matrix is not appropriate.

In order to overcome such difficulties, we propose a method that combines the LBFGS and MCQN

method. The proposed method is based on the following three ideas.

(1)Restriction of the approximate HessianBk to be tridiagonal

If the Hessian∇2 f (x) is tridiagonal, the corresponding sparse graph (V,E) is already chordal. Then,

9

as discussed in detail below, the time and space complexities per iteration of the MCQN withE are

O(n). Therefore, even if the Hessian is not tridiagonal, we enforceBk = H−1
k by the MCQN to be

tridiagonal, that is,F = {(i, j) | |i − j| ≤ 1}. In the rest of this paper, this MCQN method is called

as the Tridiagonal MCQN (Tri-MCQN) method. The approximate Hessian updated by this method

is written asHTri .

The sparse graph corresponding to the tridiagonal matrix is a chain graph as in Figure 1. The chain

graph is chordal.

Figure 1: The tridiagonal matrix and the chain graph

The number of maximal cliques of the chain graph isn − 1, and the maximal cliques areCr =

{r, r + 1} , r = 1, . . . ,n− 1. Then,Sr = {r} , r = 1, . . . , n− 2,Sn−1 = {n− 1,n} , Ur = {r + 1}，r =

1, . . . ,n− 2, Un−1 = ∅. Therefore,Ln−1 = I , andLr , r = 1, . . . , n− 2 are given by

[Lr] i j =


1 i = j

H̄r+1,r/H̄(r+1),(r+1) (i, j) = (r + 1, r)

0 otherwise.

Furthermore,Dr is given by

Dr =

 H̄r,r −
(
H̄r,r+1

)2
/H̄(r+1),(r+1) r ≤ n− 2

H̄Sr ,Sr r = n− 1.

Consequently, ifH̄i,i , i = 1, . . . , n and H̄i+1,i , i = 1, . . . , n − 1 are stored, eachLr and Dr are

obtained inO(1). Therefore, the time complexity isO(n). Note that the matrixHk is used only

whendk = −Hk∇ f (xk) andHkyk are calculated. Therefore, we do not need to storeHk explicitly.

We only need to store (Hk)i j ,∀(i, j) ∈ F̄, and update these elements in each iteration, whereF̄ =

{(i, j) | i < j, |i − j| < 1}. In practical,Hkω, which is a product ofHk and some vectorω ∈ Rn, is

computed as follows, when (Hk)i j ,∀(i, j) ∈ F̄ is stored.

First note that the productHkω is written as

Hkω =
[
L(k)

1

]⊤ [
L(k)

2

]⊤ · · · [L(k)
l−1

]⊤
DL(k)

l−1 · · · L
(k)
2 L(k)

1 ω.

Then the vectorHkω = ω2l−1 is obtained by calculating this equation from right side asω1 =

L(k)
1 Pω, ω2 = L(k)

2 ω1, · · · , ωl−1 = L(k)
l−1ωl−2, ωl = D(k)ωl−1, ωl+1 =

[
L(k)

l−1

]⊤
ωl , · · · , ω2l−1 =

P⊤
[
L(k)

1

]⊤
ω2l−2.

Consequently, the time complexity of the Tri-MCQN method isO(n).

(2)Applying the pure BFGS update from the (k−m)-th iteration

When the approximate Hessian by the Tri-MCQN update is far from the true Hessian, the MCQN

10

method may converge slowly. Then, thek-th approximate HessianHk is updated by the Tri-MCQN

update until (k − m)-th iterate, and by the pure BFGS update after the reminderm iterates, that

is, from (k − m+ 1)-th to k-th iterate. The lastm times BFGS updates are implemented by the

LBFGS update withm vector pairs. We will give an appropriatem by means of some numerical

experiments in Section 4. The update idea of some method is described in Figure 2. Tri-MCQN-B

means a method containing the idea (1) and (2).

Figure 2: The differences between the proposed method and the existing quasi-Newton methods

(3)Restart of the initial approximate matrix

The Tri-MCQN-B method converges fast, if the true Hessian of the problem is tridiagonal and

the approximate Hessian is close to the true Hessian. However, if the approximate Hessian is far

from the true Hessian, the convergence may be slow because of the reason described in Section 3.

Therefore, to overcome this difficulty, if a search directiondk is not suitable, we perform a restart,

that is, we discard the current matrixHTri
k−m and set an initial matrix again.

As the restart condition, we propose the following conditions with the stepsizeαk and the search

directiondk.

11

� �
The restart condition

Let δ, αmin, αmax, c1, c2 be positive constants satisfyingδ ∈ (0,1),αmin ≤ αmax andc2 ≤ c1. If

all the following conditions (4.1), (4.2) and (4.3) are not satisfied, then we replaceHk−m with
y⊤k yk

s⊤k yk
I .

αmin ≤ α ≤ αmax (4.1)

c2
s⊤k yk

y⊤k yk
∥∇ f (xk)∥ ≤ ∥dk∥ ≤ c1

s⊤k yk

y⊤k yk
∥∇ f (xk)∥ (4.2)

−d⊤k ∇ f (xk)

∥dk∥∥∇ f (xk)∥
> δ (4.3)� �

We explainthe restart conditions(4.1), (4.2) and (4.3). The condition (4.3) guarantees that an

angle between the search direction and the gradient of the objective function is always larger than

some constantδ. If this angle is sufficiently large, the global convergence is guaranteed. The

conditions (4.1) and (4.2) guarantees that the search directiondk is scaled well. In general, when

the search direction is appropriate for the Newton-type methods, the stepsizeαk must be 1. For this

reason, if the condition (4.1) is not satisfied withαmin, αmax ≈ 1, dk would be bad. Additionally,

even if the stepsize is 1, the convergence is slow when∥dk∥ is very small. The condition (4.2)

guarantees that∥dk∥ is within the appropriate magnitude. Since,∥∇ f (xk)∥ depends on the problem

scale, we compare∥dk∥ with a product of∥∇ f (xk)∥ and s⊤k yk/y⊤k yk. Note that this is equivalent

to compare∥dk∥ with a search direction−s⊤k yk/y⊤k yk∇ f (xk) of the Barzilai-Borwein (BB) method

[5]. Consequently, the global convergence of the proposed method with the restart is guaranteed

under the same conditions as the BB method. Moreover, if conditions (4.1), (4.2) are satisfied, the

Tri-MCQN method is adopted, so the faster convergence than the BB method and LBFGS method

is expected.

We present the concrete update algorithm consisting of these three ideas below. Note that the proposed

update corresponds toStep 4in the quasi-Newton algorithm in Section 2.

12

� �
The proposed update

Let αk anddk be the stepsize and the search direction at thek-th iteration, respectively. Letp be a

counter related to the restart.

Step 4-1: If k = 0 or the restart condition does not hold, then setp = 0, HTri
k−m =

s⊤0 y0

y⊤0 y0
I .

Step 4-2: Set the (k−m)-th approximate matrix as follows.

• If p > m, setHk−m = HTri
k−m.

• If k > m, p ≤ m, setHk−m =
s⊤k yk

y⊤k yk
I .

• If k ≤ m, p ≤ m, setH0 =
s⊤k yk

y⊤k yk
I .

Step 4-3: ObtainHk+1 from Hk−m by the BFGS update as follows.

• If k > mandp > m, obtainHk+1 by Hk−m and (si , yi), i = k−m, . . . , k.

• If k ≤ mandp ≤ m, obtainHk+1 by H0 and (si , yi), i = 1, . . . , k.

• If k > mandp ≤ m, obtainHk+1 by Hk−m and (si , yi), i = 1, . . . , p.

Step 4-4: If p ≥ m, obtainHTri
k−m+1 by the MCQN update withHTri

k−m andsk−m, yk−m. Setp = p+ 1.� �
We explain this update algorithm.Step 4-1corresponds to the idea (3). Ifthe restart conditionis not

satisfied, i.e., any (4.1), (4.2) and (4.3) are not satisfied, then we setp = 0 and perform a restart, that is,

we discard the current matrixHk−m and set an initial matrix as
s⊤k yk

y⊤k yk
I . Steps 4-2and4-3 correspond to

the idea (2). The Tri-MCQN update is used until (k − m)-th iterate, and the BFGS update is used from

(k −m+ 1)-th tok-th iterate to construct thek-th approximate HessianHk. Step 4-4corresponds to the

idea (1). The updates of Hessian by the MCQN are limited to only the tridiagonal elements.

5 Numerical experiments

In this section, numerical results are reported for the proposed method, as well as for the LBFGS

method. All algorithms were coded in MATLAB 7.4, and run on a machine with 3.2GHz Pentium 4

CPU and 3.2GB memory. In each experiment, benchmark problems were chosen from CUTEr [8]. In

the Tri-MCQN method, the partial matrix̄Hi j ,∀(i, j) ∈ F is updated by the BFGS formula. We employ

∥∇ f (xk)∥ < n10−9 as the termination criterion. If the number of outer iterations exceeds 50000, then we

terminated all methods as failing. The Wolfe conditions (2.2), (2.3) are used to obtain the stepsize. Note

that CUTEr contains problems for which the LBFGS method can obtain a solution within the small num-

ber of iteration. The proposed method is ineffective for such problems. Therefore, in all the experiments,

the LBFGS method has been executed until the first 20 iterations, and after that, the proposed method

starts. Moreover, the LBFGS method stores 5 vector pairs. The Numerical results are shown in Tables

2-6. In the tables, ”n” means the dimension number. ”nf” means the value of∥∇ f ∥ at the last iteration.

”ite” means the number of the iteration. ”eval” means the number of the function evaluation.

We will compare algorithms by using the distribution function proposed in [3]. We denote a set of

solvers asS, and a set of problems that can be solved by all methods inS as PS. We also denote a

measure for evaluation required to solve a problemp by a solvers astp,s, and the besttp,s for eachp as

13

t∗p, i.e.,t∗p := min
{
tp,s | s ∈ S

}
. The distribution functionFS

s (τ) for a methods is defined by

FS
s (τ) =

∣∣∣∣{p ∈ PS | tp,s ≤ τt∗p
}∣∣∣∣

|PS|
, τ ≥ 1. (5.1)

The algorithm whoseFS
s (τ) is close to 1 is considered to be superior to the other algorithms inS. In

addition, the algorithm whoseFS
s (τ) reach to 1 rapidly with increased value ofτ is considered to be

more stable than the other algorithms. We regardtp,s as the number of iterations and the number of the

function evaluations. We call the graph whose vertical and abscissa axes areFS
s (τ) andτ, respectively, as

performance profile.

5.1 Experiments for the parameters in the restart condition

We investigate behaviors of the proposed method by varying the parameterαmin, αmax, c1, c2 in the

restart condition. We setδ = 10−8 and examine 16 combinations of parameters listed in Table 1. The

”p 0” is benchmark in Table 1. We vary the each parameter on the basis of the ”p 0”. The results are

given in Figures 3 - 18. In the figures, the abscissa axis represents the rate of the Tri-MCQN update over

iterations, that is,

r1 =
The number of the Tri-MCQN update
The number of the total iterations− 20

.

Note that we subtract 20 from the denominator, because we have used the LBFGS method for the first

iterations. The vertical axis represents how fast the proposed method is. We use

r2 =
The number of iterates of the proposed method
The number of iterates of the LBFGS method

.

as the measure. The each point in the figure denotes the results for each problem. Note that the results

of the problems solved within 20 iterations are plotted at (0,1). From graphs, we can observe the effec-

tiveness of the each parameter combinations. When the higher Tri-MCQN rate implies that the proposed

method is faster than the LBFGS method,the restart conditionis effective.

Overall, if the parameters are chosen appropriately,the restart conditionappears effective. First, we

investigateαmin. If αmin is small, the results are not good from Figures 4-6. The adoption of the small

stepsize may mean the inappropriate construction of the approximate Hessian. Second, the results are

rarely different among some varieties ofαmax. Third, whenc1 = 1.5 or 2, the restart conditionhas been

rarely satisfied. Therefore, we cannot regard this parameter as the best candidate. In the case ofc1 = 5 or

10, although the restart condition is sometimes satisfied, the results are not good. This means that even if

∥dk∥ generated by the MCQN update is much larger than
s⊤k yk

y⊤k yk
∥∇ f (xk)∥, dk is not bad. Finally, we observe

c2. If c2 is small, the results are not good compared toc2 = 1. This means that even if the stepsize is

1, the proposed method converges slowly for the case∥dk∥ is small. Next, we choose the characteristic

combinations of parameters from Table 1, and observe the performance profile in Figures 19 and 20.

From this figure, we can see that ifthe restart conditionis not used, the convergence becomes slow

depending on a problem. Consequently, we conclude that the parameterαmin = 1, αmax = ∞, c1 = ∞,

c2 = 0.7 are the best, and we conduct the next experiments with this parameter.

14

Table 1: The list of parameters

αmin αmax c1 c2

p 0 1 ∞ ∞ 1
p 1 0 ∞ ∞ 1
p 2 0.5 ∞ ∞ 1
p 3 0.7 ∞ ∞ 1
p 4 1 1 ∞ 1
p 5 1 2 ∞ 1
p 6 1 5 ∞ 1
p 7 1 10 ∞ 1
p 8 1 ∞ 1.5 1
p 9 1 ∞ 2 1
p 10 1 ∞ 5 1
p 11 1 ∞ 10 1
p 12 1 ∞ ∞ 0
p 13 1 ∞ ∞ 0.1
p 14 1 ∞ ∞ 0.5
p 15 1 ∞ ∞ 0.7

Figure 3: p 0, (αmin, αmax, c1, c2) = (1,∞,∞, 1) Figure 4: p 1, (αmin, αmax, c1, c2) = (0,∞,∞,1)

Figure 5: p 2, (αmin, αmax, c1, c2) = (0.5,∞,∞,1) Figure 6: p 3, (αmin, αmax, c1, c2) = (0.7,∞,∞,1)

15

Figure 7: p 4, (αmin, αmax, c1, c2) = (1, 1,∞,1) Figure 8: p 5, (αmin, αmax, c1, c2) = (1,2,∞,1)

Figure 9: p 6, (αmin, αmax, c1, c2) = (1, 5,∞,1) Figure 10: p 7, (αmin, αmax, c1, c2) = (1,10,∞,1)

Figure 11: p 8, (αmin, αmax, c1, c2) = (1,∞,1.5,1) Figure 12: p 9, (αmin, αmax, c1, c2) = (1,∞,2,1)

Figure 13: p 10, (αmin, αmax, c1, c2) = (1,∞, 5,1) Figure 14: p 11, (αmin, αmax, c1, c2) = (1,∞,10,1)

16

Figure 15: p 12, (αmin, αmax, c1, c2) = (1,∞,∞,0) Figure 16: p 13,(αmin, αmax, c1, c2) = (1,∞,∞,0.1)

Figure 17: p 14, (αmin, αmax, c1, c2) = (1,∞,∞,0.5) Figure 18: p 15, (αmin, αmax, c1, c2) = (1,∞,∞, 0.7)

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

F
S s
(τ

)

p 1

p 12

p 11

p 15

no condition

Figure 19: The performance profile of the iteration for the parameters in the restart condition

17

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
S s
(τ

)

τ

p 1

p 12

p 11

p 15

no condition

Figure 20: The performance profile of the function evaluation for the parameters in the restart condition

5.2 Experiment for the parameterm

The results of the proposed method with severalm = 0, 2, 5, 10 are shown. The distribution function

(5.1) for the numerical results is shown in Figures 21 and 22.m = 0 means that the only Tri-MCQN

update is used from 20th iterate to termination. In the case ofm = 0, if the approximate Hessian is not

good, the convergence may become slow. In fact, even ifτ becomes larger than 3,m = 0 doesn’t reach

top. The case ofm= 5 seems to be appropriate for the benchmark problems. From Figures 21 and 22, we

see that the case ofm = 2 is unstable. This is because this case exploits the small number of the stored

vector pairs to construct the approximate matrix. This means the lack of the information.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

F
S s
(τ

)

m=0

m=2

m=5

m=10

Figure 21: The performance profile of the number of iterations for the parameterm

18

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

F
S s
(τ

)

m=0

m=2

m=5

m=10

Figure 22: The performance profile of the number of function evaluations for the parameterm

5.3 Experiment comparing the proposed method with the LBFGS method

In this section, the proposed method is compared with the LBFGS method by using (5.1). We adopt p

15 as the parameter ofthe restart condition. The result is shown in Figures 23 and 24. Despite the value

of τ, the proposed method is always upper than the LBFGS method and reaches top rapidly. Therefore,

even if this method is inferior to the LBFGS method for some problem, the degree of loss is within 1.4

times roughly. Furthermore, if the proposed method solves the problems for which the LBFGS method

requires a lot of iterates, the optimal solution is obtained faster. In the Table 2, the LBFGS requires a lot

of iterates for TRIDIA. TRIDIA is a problem defined as follows [8].

f (x) = (x1 − 1)2 +
n∑

i=2

i(xi−1 − 2xi)
2, x0 = (1, . . . ,1)⊤.

It is known that TRIDIA is ill-conditioned, and the LBFGS requires lots of iterates to solve it. From this

experiment, it is shown that the proposed method is effective for such problems.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

F
S s
(τ

)

m=5

LBFGS

Figure 23: The performance profile between the LBFGS and the proposed method with the number of

iterations

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

F
S s
(τ

)

m=5

LBFGS

Figure 24: The performance profile between the LBFGS and the proposed method with the number of

the function evaluations

20

6 Concluding remarks

In this paper, we proposed the method which combines the tridiagonal MCQN method and the LBFGS

method. The numerical results suggest that the proposed method is very promising.

Only unconstrained minimization problems were considered in the paper. The extension of the LBFGS

method to problems with bound constrained is proposed in [2]. Using the similar idea, we may extend

the proposed method to such problems.

7 Acknowledgements

I would like to express my deep appreciation to Associate Professor Nobuo Yamashita for his continual

guidance and invaluable suggestions to accomplish this paper. He carefully read this paper and com-

mented in detail on the whole work. Without his considerable help, none of the work could be completed.

I am deeply indebted to Professor Masao Fukushima who has given me careful advice and guidance. I

am also grateful to Assistant Professor Shunsuke Hayashi for his significant advice. I would like to thank

all members in Professor Fukushima’s Laboratory for their warm friendship during the course.

References

[1] Blair, J.R.S., Peyton, B.: An introduction to chordal graphs and clique trees. In: George, A.,

Gilbert, J.R., Liu, J.W.H. (eds.), Graph Theory and Sparse Matrix Computation, pp. 1–29, Springer,

NewYork (1993).

[2] Byrd, H, R., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained

optimization, ACM transactions on mathematical software,23(4), 550–560 (1997).

[3] Dolan, D.E., More, J.J.: Benchmarking optimization software with performance profiles, Mathe-

matical Programming,91, pp. 201–213 (2002).

[4] Fletcher, R.: A new approach to variable metric algorithms, Computer Journal,13(3), 317–322

(1970).

[5] Fletcher, R.: On the Barzilai-Borwein method, Applied Optimization,96(II), 235–256 (2005).

[6] Fletcher, R., Powell, M. J. D.: A rapidly convergent descent method for minimization, Computer

Journal,6, pp. 163–168 (1963).

[7] Fukuda, M., Kojima, M., Murota, K., Nakata, K.: Exploiting sparsity in semidefinite programming

via matrix completion I: general framework, SIAM Journal on Optimization,11(3), 647–674 (2000).

[8] Gould, N.I.M., Orban, D., Toint, Ph.L.: CUTEr, a constrained and unconstrained testing environ-

ment: revisited, ACM transactions on mathematical software,29, 373–394 (2003).

[9] LIU, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization, Mathe-

matical Programming,45, 503–528 (1989).

[10] Nocedal, J.: Updating quasi-Newton matrices with limited storage, Mathematics of Computation

35, 773–782 (1980).

[11] Nocedal, J., Wright, S.J.: Numerical optimization, Springer, New York (1999).

[12] Yamashita, N.: Sparce quasi-newton updates with positive difinite matrix completion, Mathematical

Programming, Ser. A115, 1–30 (2008).

[13] Zhang, H., William, W.H.: A nonmonotone line search technique and its application to uncon-

strained optimization, SIAM Journal on Optimization,14(4), 1043–1056 (2004).

22

Table 2: The LBFGS method

Problem n method nf ite eval time

ARWHEAD 5000 LBFGS 2.01E-05 9 28 5.000E-02
BROYDN7D 5000 LBFGS 4.29E-05 7080 7609 7.937E+01

BRYBND 5000 LBFGS 4.61E-05 23 42 1.200E-01
CHAINWOO 4000 LBFGS 3.34E-05 388 547 1.190E+00

COSINE 10000 LBFGS 2.06E-05 9 21 9.000E-02
CRAGGLVY 5000 LBFGS 4.92E-05 76 115 4.300E-01
DIXMAANA 3000 LBFGS 2.17E-06 9 14 2.000E-02
DIXMAANB 3000 LBFGS 2.02E-06 9 14 2.000E-02
DIXMAANC 3000 LBFGS 1.51E-05 9 15 2.000E-02
DIXMAAND 3000 LBFGS 1.06E-05 9 17 2.000E-02
DIXMAANE 3000 LBFGS 2.10E-05 180 198 3.300E-01
DIXMAANF 3000 LBFGS 2.21E-05 159 173 2.800E-01
DIXMAANG 3000 LBFGS 2.99E-05 185 205 3.300E-01
DIXMAANH 3000 LBFGS 2.41E-05 122 139 2.500E-01
DIXMAANI 3000 LBFGS 2.88E-05 277 298 5.700E-01
DIXMAANJ 3000 LBFGS 2.42E-05 214 229 3.500E-01
DIXMAANL 3000 LBFGS 2.96E-05 166 191 3.300E-01
DIXON3DQ 10000 LBFGS 9.15E-05 9627 10338 3.024E+01
DQDRTIC 5000 LBFGS 1.69E-05 18 34 6.000E-02
DQRTIC 5000 LBFGS 3.86E-05 47 97 1.200E-01

EDENSCH 2000 LBFGS 1.06E-05 25 41 6.000E-02
EG2 1000 LBFGS 7.29E-07 4 14 1.000E-02

ENGVAL1 5000 LBFGS 9.59E-06 25 39 8.000E-02
EXTROSNB 1000 LBFGS 9.56E-06 33 55 5.000E-02
FLETCHCR 1000 LBFGS 3.68E-06 61 83 8.000E-02
FMINSRF2 5625 LBFGS 5.60E-05 277 298 9.000E-01

GENHUMPS 5000 LBFGS 2.47E-05 6837 11473 4.102E+01
LIARWHD 5000 LBFGS 3.77E-07 17 40 7.000E-02
MOREBV 5000 LBFGS 4.92E-05 15 22 4.000E-02

NONCVXU2 5000 LBFGS 4.60E-05 9650 10343 3.013E+01
NONDIA 5000 LBFGS 2.58E-06 34 69 1.500E-01

NONDQUAR 5000 LBFGS 4.42E-05 850 1120 1.670E+00
PENALTY1 1000 LBFGS 6.98E-06 93 164 9.000E-02
POWELLSG 5000 LBFGS 4.41E-06 47 76 1.000E-01

QUARTC 5000 LBFGS 3.86E-05 47 97 1.200E-01
SCHMVETT 5000 LBFGS 4.81E-05 36 49 2.400E-01
SPARSINE 5000 LBFGS 8.13E-02 50000 56240 2.956E+02
SPARSQUR 10000 LBFGS 9.96E-05 33 68 3.500E-01
SROSENBR 5000 LBFGS 1.31E-06 16 34 3.000E-02
TESTQUAD 5000 LBFGS 1.07E-04 50000 316815 2.792E+02
TQUARTIC 5000 LBFGS 3.76E-05 19 36 5.000E-02

TRIDIA 5000 LBFGS 4.94E-05 1441 1839 3.070E+00
WOODS 4000 LBFGS 3.01E-05 30 60 8.000E-02

23

Table 3: The proposed method (m= 0)

Problem n nf ite eval time LBFGS Tri-MCQN

ARWHEAD 5000 2.00E-05 9 28 7.40E-01 9 0
BROYDN7D 5000 4.90E-05 4594 26187 1.14E+03 20 4574

BRYBND 5000 4.90E-05 54 209 7.26E+00 20 34
CHAINWOO 4000 3.80E-05 666 7019 1.08E+02 20 646

COSINE 10000 2.10E-05 9 21 1.48E+00 9 0
CRAGGLVY 5000 1.55E-04 50000 2245301 1.77E+04 20 49980
DIXMAANA 3000 2.00E-06 9 14 4.40E-01 9 0
DIXMAANB 3000 2.00E-06 9 14 4.50E-01 9 0
DIXMAANC 3000 1.50E-05 9 15 4.30E-01 9 0
DIXMAAND 3000 1.10E-05 9 17 4.40E-01 9 0
DIXMAANE 3000 1.50E-05 69 74 7.16E+00 20 49
DIXMAANF 3000 2.50E-05 68 74 5.46E+00 20 48
DIXMAANG 3000 3.00E-05 70 80 5.65E+00 20 50
DIXMAANH 3000 2.70E-05 58 66 4.53E+00 20 38
DIXMAANI 3000 3.00E-05 184 189 2.18E+01 20 164
DIXMAANJ 3000 2.80E-05 116 124 1.24E+01 20 96
DIXMAANL 3000 3.00E-05 79 90 8.64E+00 20 59
DIXON3DQ 10000 2.80E-05 10011 15010 3.53E+03 20 9991
DQDRTIC 5000 1.70E-05 18 34 1.45E+00 18 0
DQRTIC 5000 5.00E-05 288 405 5.74E+01 20 268

EDENSCH 2000 1.80E-05 28 71 1.18E+00 20 8
EG2 1000 1.00E-06 4 14 8.00E-02 4 0

ENGVAL1 5000 4.80E-05 33 172 4.70E+00 20 13
EXTROSNB 1000 9.00E-06 71 555 2.83E+00 20 51
FLETCHCR 1000 7.00E-06 100 843 3.14E+00 20 80
FMINSRF2 5625 5.60E-05 7078 14250 1.51E+03 20 7058

GENHUMPS 5000 2.08E+01 50000 844598 1.27E+04 20 49980
LIARWHD 5000 0.00E+00 17 40 1.38E+00 17 0
MOREBV 5000 4.90E-05 15 22 1.20E+00 15 0

NONCVXU2 5000 9.08E-02 50000 257934 9.84E+03 20 49980
NONDIA 5000 4.10E-05 7029 190694 1.76E+03 20 7009

NONDQUAR 5000 4.90E-05 315 397 4.82E+01 20 295
PENALTY1 1000 1.00E-05 2808 8314 1.05E+02 20 2788
POWELLSG 5000 4.80E-05 4275 22006 8.09E+02 20 4255

QUARTC 5000 5.00E-05 288 405 5.68E+01 20 268
SCHMVETT 5000 3.80E-05 39 136 5.05E+00 20 19
SPARSINE 5000 1.45E+00 50000 807685 1.28E+04 20 49980
SPARSQUR 10000 9.80E-05 108 150 4.08E+01 20 88
SROSENBR 5000 1.00E-06 16 34 1.28E+00 16 0
TESTQUAD 5000 4.90E-05 9711 166893 1.96E+03 20 9691
TQUARTIC 5000 3.80E-05 19 36 1.52E+00 19 0

TRIDIA 5000 4.00E-05 491 7.38E+03 5.54E+01 20 471
WOODS 4000 3.80E-05 1477 13389 2.49E+02 20 1457

24

Table 4: The proposed method (m= 2)

Problem n nf ite eval time LBFGS Tri-MCQN

ARWHEAD 5000 2.00E-05 9 28 5.10E-01 9 0
BROYDN7D 5000 4.20E-05 6227 7195 9.53E+02 1389 3409

BRYBND 5000 2.10E-05 25 44 2.11E+00 20 5
CHAINWOO 4000 3.50E-05 288 348 3.65E+01 48 240

COSINE 10000 2.10E-05 9 21 5.60E-01 9 0
CRAGGLVY 5000 NaN 62 6400 FFFFF 27 35
DIXMAANA 3000 2.00E-06 9 14 3.00E-01 9 0
DIXMAANB 3000 2.00E-06 9 14 2.00E-01 9 0
DIXMAANC 3000 1.50E-05 9 15 2.60E-01 9 0
DIXMAAND 3000 1.10E-05 9 17 3.50E-01 9 0
DIXMAANE 3000 2.70E-05 78 83 8.15E+00 20 58
DIXMAANF 3000 2.00E-05 62 68 6.31E+00 20 42
DIXMAANG 3000 2.70E-05 88 99 8.62E+00 25 63
DIXMAANH 3000 2.50E-05 59 67 4.34E+00 20 39
DIXMAANI 3000 3.00E-05 115 120 9.77E+00 20 95
DIXMAANJ 3000 2.60E-05 75 83 5.90E+00 21 54
DIXMAANL 3000 2.00E-05 76 88 5.86E+00 23 53
DIXON3DQ 10000 2.80E-05 10189 10194 3.63E+03 20 10169
DQDRTIC 5000 1.70E-05 18 34 1.07E+00 18 0
DQRTIC 5000 4.90E-05 62 113 6.56E+00 29 33

EDENSCH 2000 8.00E-06 26 42 8.10E-01 22 4
EG2 1000 1.00E-06 4 14 4.00E-02 4 0

ENGVAL1 5000 8.00E-06 25 38 1.55E+00 20 5
EXTROSNB 1000 1.00E-05 33 54 8.00E-01 21 12
FLETCHCR 1000 8.00E-06 50 72 1.24E+00 24 26
FMINSRF2 5625 5.20E-05 606 642 1.25E+02 80 526

GENHUMPS 5000 2.10E-05 8694 11873 1.33E+03 2313 6381
LIARWHD 5000 0.00E+00 17 40 1.08E+00 17 0
MOREBV 5000 4.90E-05 15 22 8.70E-01 15 0

NONCVXU2 5000 5.76E-04 50000 52123 9.12E+03 3244 46756
NONDIA 5000 4.70E-05 243 1100 3.51E+01 87 156

NONDQUAR 5000 4.80E-05 651 726 1.16E+02 92 559
PENALTY1 1000 8.00E-06 99 207 1.66E+00 58 41
POWELLSG 5000 4.20E-05 129 162 1.58E+01 35 94

QUARTC 5000 4.90E-05 62 113 8.74E+00 29 33
SCHMVETT 5000 3.60E-05 37 47 3.64E+00 22 15
SPARSINE 5000 4.92E-01 50000 51111 9.31E+03 2150 47850
SPARSQUR 10000 7.90E-05 37 73 6.26E+00 24 13
SROSENBR 5000 1.00E-06 16 34 8.20E-01 16 0
TESTQUAD 5000 4.90E-05 836 988 1.45E+02 50 786
TQUARTIC 5000 3.80E-05 19 36 1.42E+00 19 0

TRIDIA 5000 4.30E-05 206 239 3.92E+01 24 182
WOODS 4000 3.00E-05 113 147 1.41E+01 37 76

25

Table 5: The proposed method (m= 5)

Problem n nf ite eval time LBFGS Tri-MCQN

ARWHEAD 5000 2.00E-05 9 28 3.00E-01 9 0
BROYDN7D 5000 4.50E-05 6704 7443 8.47E+02 2957 3747

BRYBND 5000 4.90E-05 27 46 2.10E+00 20 7
CHAINWOO 4000 3.80E-05 275 337 3.73E+01 73 202

COSINE 10000 2.10E-05 9 21 1.00E-01 9 0
CRAGGLVY 5000 4.80E-05 61 90 7.38E+00 20 41
DIXMAANA 3000 2.00E-06 9 14 1.80E-01 9 0
DIXMAANB 3000 2.00E-06 9 14 7.00E-02 9 0
DIXMAANC 3000 1.50E-05 9 15 9.00E-02 9 0
DIXMAAND 3000 1.10E-05 9 17 1.80E-01 9 0
DIXMAANE 3000 2.00E-05 87 93 6.89E+00 25 62
DIXMAANF 3000 2.90E-05 75 81 6.90E+00 20 55
DIXMAANG 3000 2.90E-05 79 89 6.33E+00 24 55
DIXMAANH 3000 2.50E-05 88 100 5.32E+00 40 48
DIXMAANI 3000 2.80E-05 154 159 1.81E+01 20 134
DIXMAANJ 3000 2.30E-05 90 102 5.45E+00 44 46
DIXMAANL 3000 2.60E-05 75 86 8.46E+00 20 55
DIXON3DQ 10000 9.40E-05 10133 10140 4.07E+03 29 10104
DQDRTIC 5000 1.70E-05 18 34 6.60E-01 18 0
DQRTIC 5000 4.80E-05 60 111 7.04E+00 32 28

EDENSCH 2000 1.10E-05 25 41 4.00E-01 25 0
EG2 1000 1.00E-06 4 14 1.00E-02 4 0

ENGVAL1 5000 4.50E-05 27 90 1.25E+00 22 5
EXTROSNB 1000 8.00E-06 35 56 7.40E-01 20 15
FLETCHCR 1000 9.00E-06 47 69 8.30E-01 29 18
FMINSRF2 5625 5.60E-05 288 323 3.18E+01 153 135

GENHUMPS 5000 2.70E-05 5653 10498 5.01E+02 3477 2176
LIARWHD 5000 0.00E+00 17 40 9.10E-01 17 0
MOREBV 5000 4.90E-05 15 22 6.30E-01 15 0

NONCVXU2 5000 4.50E-05 9916 12348 4.80E+02 7866 2050
NONDIA 5000 5.00E-05 40 85 1.19E+00 38 2

NONDQUAR 5000 4.90E-05 565 680 7.09E+01 200 365
PENALTY1 1000 2.00E-06 95 186 1.48E+00 72 23
POWELLSG 5000 2.50E-05 47 72 3.47E+00 31 16

QUARTC 5000 4.80E-05 60 111 5.96E+00 32 28
SCHMVETT 5000 3.60E-05 31 44 1.35E+00 29 2
SPARSINE 5000 8.98E-02 50000 55103 6.54E+03 19163 30837
SPARSQUR 10000 3.80E-05 37 75 2.74E+00 32 5
SROSENBR 5000 1.00E-06 16 34 5.50E-01 16 0
TESTQUAD 5000 3.20E-05 616 742 1.28E+02 53 563
TQUARTIC 5000 3.80E-05 19 36 6.50E-01 19 0

TRIDIA 5000 4.90E-05 219 255 2.94E+01 36 183
WOODS 4000 1.80E-05 41 67 2.04E+00 31 10

26

Table 6: The proposed method (m= 10)

Problem n nf ite eval time LBFGS Tri-MCQN

ARWHEAD 5000 2.00E-05 9 28 5.00E-02 9 0
BROYDN7D 5000 4.90E-05 9577 18370 1.89E+02 9538 39

BRYBND 5000 4.20E-05 23 42 3.70E-01 23 0
CHAINWOO 4000 4.00E-05 343 435 2.62E+01 194 149

COSINE 10000 2.10E-05 9 21 9.00E-02 9 0
CRAGGLVY 5000 4.60E-05 68 101 3.07E+00 52 16
DIXMAANA 3000 2.00E-06 9 14 2.00E-02 9 0
DIXMAANB 3000 2.00E-06 9 14 2.00E-02 9 0
DIXMAANC 3000 1.50E-05 9 15 2.00E-02 9 0
DIXMAAND 3000 1.10E-05 9 17 3.00E-02 9 0
DIXMAANE 3000 2.50E-05 95 103 5.86E+00 44 51
DIXMAANF 3000 2.40E-05 79 85 7.24E+00 25 54
DIXMAANG 3000 2.70E-05 94 111 4.10E+00 64 30
DIXMAANH 3000 2.10E-05 90 100 5.22E+00 37 53
DIXMAANI 3000 2.90E-05 127 132 1.01E+01 24 103
DIXMAANJ 3000 2.90E-05 97 108 5.56E+00 44 53
DIXMAANL 3000 2.90E-05 75 86 7.62E+00 20 55
DIXON3DQ 10000 9.80E-05 10386 10398 3.73E+03 57 10329
DQDRTIC 5000 1.70E-05 18 34 7.00E-02 18 0
DQRTIC 5000 3.80E-05 85 136 1.69E+00 80 5

EDENSCH 2000 8.00E-06 25 41 1.90E-01 25 0
EG2 1000 1.00E-06 4 14 1.00E-02 4 0

ENGVAL1 5000 1.90E-05 31 115 2.10E-01 31 0
EXTROSNB 1000 9.00E-06 35 57 2.50E-01 30 5
FLETCHCR 1000 9.00E-06 58 90 5.30E-01 48 10
FMINSRF2 5625 5.40E-05 351 387 2.22E+01 233 118

GENHUMPS 5000 4.60E-05 11140 33890 4.89E+02 9412 1728
LIARWHD 5000 0.00E+00 17 40 4.70E-01 17 0
MOREBV 5000 4.90E-05 15 22 2.10E-01 15 0

NONCVXU2 5000 4.20E-05 13946 15994 4.17E+02 12095 1851
NONDIA 5000 2.00E-06 51 101 4.50E-01 51 0

NONDQUAR 5000 4.30E-05 623 826 2.93E+01 449 174
PENALTY1 1000 2.00E-06 239 452 7.00E-01 235 4
POWELLSG 5000 5.00E-06 53 87 3.40E-01 52 1

QUARTC 5000 3.80E-05 85 136 1.69E+00 80 5
SCHMVETT 5000 3.60E-05 31 41 2.00E+00 20 11
SPARSINE 5000 5.87E-02 50000 56902 1.84E+03 42196 7804
SPARSQUR 10000 2.40E-05 44 81 5.20E-01 44 0
SROSENBR 5000 1.00E-06 16 34 1.30E-01 16 0
TESTQUAD 5000 4.60E-05 464 506 9.15E+01 26 438
TQUARTIC 5000 3.80E-05 19 36 7.00E-02 19 0

TRIDIA 5000 4.30E-05 225 262 2.77E+01 51 174
WOODS 4000 3.00E-05 36 61 2.70E-01 35 1

27

