Abstract

In this paper, we consider the quasi-Newton methods for the large scale unconstrained minimization
problem. The conventional quasi-Newton methods such as the BFGS and DFP methods are not applica-
ble to large scale problems since they use a dense approximate Hessian of the objective function. The true
Hessian in large scale problems is usually sparse. Recently a method taking advantage of this sparsity
has been proposed as the Matrix Completion Quasi-Newton (MCQN) Method. The MCQN method uses
an approximate matrix of the inverse of the Hessian, and it is implemented with fewer space complex-
ities when the true Hessian is sparse. However, the MCQN method converges slowly when an initial
approximate matrix is not given appropriately. In addition, it cannot be applied if the true Hessian is
dense.

To overcome the aboveftlculties, we propose the tridiagonal MCQN update in which the approximate
Hessian is limited to be only tridiagonal. Because of this limitation, the memory to store the approximate
Hessian i90(n). However, when the true Hessian is not tridiagonal, the fast convergence is not guaran-
teed. Therefore, we combine the LBFGS and the tridiagonal MCQN methods. From several numerical
experiments, we discuss thifextiveness of the proposed method.
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1 Introduction
In the present paper, we consider the following unconstrained minimization problem.

min f(x)

1.1
subjectto xe R @D

Throughout the paper, it is assumed thas twice continuously dferentiable, and is huge.

For solving the unconstrained minimization problem, there exist several useful solution methods, in-
cluding the steepest descent method, the Newton and quasi-Newton methods, and the conjugate gradient
method [11]. The quasi-Newton method, in particular the BFGS method, is widely used, because it is
easy to implement and has good convergence properties. The quasi-Newton method generates a sequence
{X«} with using an approximate matrB of the Hessiarv?f (x,) at thek-th iteratex,. The approximate
HessianBy is usually generated by the BFGS and DFP update formulas [4, 6]. Since the quasi-Newton
method with the BFGS update converges superlinearly under some mild assumptions, it can obtain a solu-
tion of (1.1) with the relatively small number of iterations. However, the DFP and BFGS updates usually
generate dense approximate Hessians, and therefore it re@@irdsime and space complexities at each
iteration. Thus we cannot apply the quasi-Newton method to large scale problems. To overcome this
difficulty, the Limited memory BFGS (LBFGS) method [10] and the Matrix Completion quasi-Newton
(MCQN) method [12] has been proposed.

The LBFGS method was proposed by Nocedal [10] in 1980. It constructs an approximate Hessian by
using a few vector pairs and a diagonal matrix. Therefore, it can reduce the time and space complexities
per iteration &ectively. However, because of the lack of the full informationror n matrix, only
linear convergence is guaranteed [9]. Furthermore, this method converges very slowly for ill-conditioned
problems.

The HessiarV2f(x) in large scale problems is usually sparse. The MCQN method takes advantage
of this sparsity to update the approximate mattx of V2f(x)™* [12]. In the MCQN method, as a
first step, some elements corresponding to nonzero elements of the true Hessian, that)ig, for
(i,j) e E:= {(i, i) | (sz(x))ij # 0 for some x R”}, are updated by using the existing quasi-Newton
updates, such as the BFGS and DFP updates. As a second step, we consider a maximum-determinant
positive definite matrix completion of the matrk.,, with the elementsHy.1)ij, (i, j) € E fixed. Then
we adopt the maximum determinant matrix as the next approximate nihtrix Throughout this paper,

a graphG = (V,E) with V = {1,...,n} is called as a sparse graph. If the gr&pfs a chordal graph, the
approximate matri¥y. 1 is given as a product of sparse matrices explicitly [7]. However, the sparse graph

is not necessarily chordal. In such cases, the approximate nifirixis updated by a sdt instead of

E, whereF is an extension oE and its corresponding sparse grdpk (V, F) is chordal. If the Hessian

is sparse, then the MCQN method requires lower space and time complexities than those for the existing
quasi-Newton methods. Theoretically, the MCQN method has nice convergence properties. In particular,
itis shown that a sequence generated by the MCQN method has a local and superlinear convergence under
the same assumptions of the DFP method. However eW&ft (i) is sparseF| may be much larger than

|E|]. Moreover, if the true Hessian is dense, thihis almostn®. Therefore, it makes no sense to apply

this method to problems which do not have the sparsity. Furthermore, if the initial approximate matrix
Ho is not given appropriately, the generated sequence converges to an optimal solution very slowly. We
will explain the details of the slow convergence in Section 3.



To overcome the abovefticulties of the MCQN method, in the present paper, we propose a method
that combines the LBFGS and the MCQN methods. The proposed method is based on three ideas. As
the first idea, the approximate Hessin= lel by the MCQN update is limited to be only tridiagonal,
that is, the seF is given as- = {(i, j)| li — j| < 1}. Then the grapks = (V, F) is chordal, and hence, the
time and space complexities per iteration of the MCQN update itlie O(n). This method is called
as a Tri-MCQN method. As mentioned above, the approximate matrix updated by MCQN is sometimes
inappropriate. Then the generated sequence might converge to an optimal solution slowly. As the second
idea, we also apply the full BFGS updates as well as Tri-MCQN. We construdt-tihepproximate
matrix Hy by applying the Tri-MCQN update untik(~ m)-th iteration and by the existing BFGS update
after the remindemiterations, that is, fromk— m+ 1)-th tok-th iteration. The lasintimes BFGS updates
are implemented by the LBFGS update withvector pairs. Note that the usual LBFGS constructs an
approximate matrix with the initial matriklc_m = y; s«/y; Ykl . Therefore the second idea is regarded as
a change of this initial diagonal matrbt,_n, for the matrix updated by Tri-MCQN. As a consequence,
the approximate Hessian of the proposed method is expected to be better than that of the LBFGS update.
However, we discussed in Section 3, if the initial approximate madgxs far from the inverse of the
true Hessiarv?f (xo), the method based on the first and the second ideas may be worse than the LBFGS.
Therefore, as the third idea, if a search direction calculatedidthy the above two ideas is not suitable,
we perform a restart, that is, we discard the current méigix, updated by the Tri-MCQN method and
set an initial matrix again. In Section 4, we give concrete criteria on the restart.

The present paper is organized as follows. In Section 2, the existing quasi-Newton methods are intro-
duced, and these advantages and disadvantages are discussed. In Section 3, we present an example of a
problem in which a sequence updated by the MCQN method converges very slowly. In Section 4, in or-
der to overcome the disadvantages of the existing methods, the method which combines the LBFGS and
the MCQN is proposed. In Section 5, a number of numerical experiments for large scale unconstrained
problems are presented. We make some concluding remarks in Section 6.

2 The existing quasi-Newton Methods

In this section, we describe the existing quasi-Newton methods, and discuss about these advantages
and disadvantages.

2.1 Quasi-Newton Methods

The quasi-Newton method generates a sequeqgby using the approximate Hessian of the objection
function f. Throughout the rest of this pap& denotes an approximate Hessiarvéf (x,). An inverse
of the approximate HessidBy is denoted byHy = B;l. Usually, we suppose th&; andHy are positive
definite. The quasi-Newton method adopts a search diredtigiven by

dk = —Hka(Xk). (2.1)

WhenHy is positive definitedy is a descent direction of. Thus, we can choose a stepsize so as to
satisfy the following Wolfe conditions.

f (X + adh) < F(x) + E1aV T (%) T, 2.2)



szf(Xk)Tdk < V(X + adk)Tdk, (2.3)

whereéy, & are constants such thak0é; < & < 1.
Using the directiortk and the stepsizey, the next iterate,; is given by

Xier1 = Xic + .

The matrixHy is updated by some formulae in each iteration. We will discuss the formulae later. A
general form of the quasi-Newton method is described as follows.

\
The quasi-Newton method

Step 0: Choose an initial poinkg and an initial symmetric positive definite matitidg € R™". Set
k=0.

D

Step 1: If X, satisfies the termination criterion, outpytas an optimal solution and stop. Otherwis
go to Step 2.

Step 2: Obtain the search directiaiy = —HyV f ().

Step 3: Choose the step sizg, satisfying the Wolfe conditions (2.2) and (2.3), and sgh =
Xk + akdk.

Step 4: UpdateHy,; by some quasi-Newton update formulae.

Step 5: Setk := k+ 1 and go to Step 1.
\ J

For the rapid convergence, we usually enforce the médgix to satisfy the following secant condition.

Hicr 1Yk = Sc (2.4)

where
S = Xi+1l — Xk (2.5)
Y = VI(Xr1) = VF(X). (2.6)

There are various update methodsHyfthat satisfy the secant condition (2.4). Among them, BFGS
and DFP are well-known.
The DFP update adopts a solution of the following problerilas.

ming  w(H PHH, ?)

subjectto Hyy = s 2.7)
H=HT
H >0,

wherey : R™" — Ris a strictly convex function defined agA) = trace(A) — Indet(A). Moreover,
H > 0 (H > 0) means that is positive semidefinite (positive definite) . WhElp is positive definite and
the conditions yi > 0 is satisfied, the optimal solutidh®"P of the problem (2.7) is unique, and given by

_ H(HW)" | S

Hel = Hg :
ket Y HiYk Se Yk



The BFGS update is similar to the DFP update. The next maﬁﬁés is a solution of the problem
(2.7) whereHy, H, sc andyy are replaced wittBy, B, yx and s, respectively. The inverse (B‘Effs is
given by

BFGS _
Hk+l = Hy

_ Honest + sdHyd” (1+ yIHkyk) S 2.8)

S Yk Sk ) Sk

Even if the true HessiaW? f () is sparse, the approximate HessBig; = HE+11 updated by DFP and
BFGS becomes dense. Therefore, those updates re@nfmemory to store the matri®,; or Hy,1,
and then these update formulas cannot be used for large scale problems.

2.2 Limited memory BFGS method

In order to overcome the disadvantage of the quasi-Newton method, the LBFGS method is proposed
by Nocedal in 1980. Unlike the BFGS method which stores a dense matrix, the LBFGS method stores
only a few vector pairs and a diagonal matrix. It never explicitly forms or stores a full matrix. Instead, it
maintains a history of the past updatesxpindV f (x¢). Therefore, the time and space complexities per
iteration are cut down dramatically. The essential idea of LBFGS is described as follows.

First, note that the BFGS formula (2.8) at thh update is written as

Hi = Vi_jHic1Vie + T, (2.9)
where . .
Vi S
VST B . I
SYi SYi

Using the formula (2) recurrently from thk £ m)-th iteration, we have

He = (MemVieme - Vie2Vike1) T Hicm (ViemVieme - - - Vie2Vie)
+ (VicmeaViemez -+ - VicaVie1) " Teem (Vieme Viems2 -« - VieaVier) + - - -

+ (Vie2Vie1) T Tz (V2 Vi) + Vil TeeaVie + T

HereHy_n, is the approximate Hessian at tHe-{ m)-th iteration. The matriHy_n, is dense in general.
The LBFGS method replaces the dense mattix,, with some diagonal matriklg_m. Usually we use
HY . given by

3 (2.10)

HO = ,
YV

wherel is the unit matrix.

A product of some vectaw € R" andHy is calculated by using vectossy; (i =k-m,..., k- 1) and
HEﬁm without a explicit calculation oHy. Therefore, only & vectors and the diagonal matrblfﬁm is
required to implement the algorithm. Thus, the time and space complexities of the LBFGS method per
iteration arédD(mn), which are much lower than those of the usual BFGS method. On the other hand, only
linear convergence is guaranteed for the LBFGS method, because little information of the true Hessian
can be included in the approximate matrix whans small. Actually, it is reported that the LBFGS
converges slowly for ill-conditioned problems. However, when an accurate solution is not required, the
LBFGS method is very practical.



2.3 Matrix Completion quasi-Newton Method

We describe the MCQN method, and its advantages and disadvantages.

The Hessiarv2f of the large scale problem is usually sparse. Then, it is better to use a sparse matrix
with the same sparse structureVsif (x) as an approximate Hessian. Thus we add a sparsity constraint to
the problem (2.7) of DFP.

ming W(H PHH, ?)

subjectto Hyy = s
H=HT (2.11)
H>0

(H™)ij =0 (i, ¢F,

whereF 2 E := {(i, il [sz(x)]ij # 0 for some xe R'}. Here we assume that (1),i) € F,i =
1,2,...,n (2)(,]j) € F = (j,i) € F. Itis desirable to choose asF ~ E.

Unfortunately, an optimal solution of the problem (2.11) cannot be obtained explicitly. Therefore, the
MCOQN adopts an approximate solutibfy,; obtained by the following algorithm.

~
The MCQN method

3

Step 1: Obtain a partial matri>€|—Tk+1)ij ,¥(i, j) € F using the existing quasi-Newton updates fro
Hy.

Step 2: Obtain a solutiorHy,, of the following problem Witl(I-Tk+1)ij ,(i, j) € F as the given con-

stants. . .
miny Y(H, 2HH, ?)
subjectto Hij = (Hi), V(i) € F
- (2.12)
H>0
(HL); =0 v(i,j) ¢ F
g J

The problem (2.12) replaces the secant conditibpp = s¢ of the problem (2.11) by the constraints
Hi; = ("Tk+1)i,- ,Y(i, j) € F. Thus, the update matridy,, is regarded as a kind of approximate solution of
(2.11). In the rest of this sectiohly, is simply written asH.

The problem (2.12) still appears to befdiult to solve. However, iF satisfies the following condition,
then the solution is given explicitly [7].

(The chordal conditiopAn undirected graplé = (V, lﬂ with a vertex seV = {1,...,n} and an
edge sefE = {F\ @i,i)]i=1,...,n}is achordal graph.

It is desirable to choosE = E for fully exploiting the sparse pattern of the problem. However, the
sparse grapls = (V, Ej of the Hessian is not necessarily chordal. Therefore, it is proposed to usk a set
satisfyingF 2 E andthe chordal condition

Next, whenF satisfieghe chordal conditiopwe see that the solution of the problem (2.12) is expressed
as a product of sparse matrices. L&t} be a set of maximum cliques of the chordal grémﬂ. Then



families{S;} and{U,} are defined as
S, =G\ (C1UC2U---UC), r=1,...,1

U, :=Crn(Cr+1UC,+2U~~C|), r=1,...,1,

wherel is the number of the maximum cliques. Note that Ul_,S, andS; n Sj = 0. We can thus
obtain a perfect elimination ordering [7] of the vertices, in which the vertic& are given consecutive
numbers for each. Let P denote a permutation matrix corresponding to the ordering. Then, the solution
of the problem (2.12) is given as follows.

R (I N T [T L2

where the matrices®*Y andD®*D are given by

1 i=]
— _1 J— . .
[L'('k+l)]ij - [(Hurur) Hu,s,],, (,)) e Uy xS (2.14)
i]
0 otherwise
forr=212,...,1-1,and
k+1
D(S:—Sl)
pk+1)
pDk+1) — S2S2 . (2.15)
(k+1)
DS|E|
with

Hsrsr r=1.

- — = 1
DD _ { Hs.s, — Hs,u, (Hu,u,) Hys r<l-1
SS, =

Note thatHy,; is calculated by using onIyTij,V(i, j) € F. Moreover, if|F| is small, the matrices
LEM), r=1,...,1 are sparse lower triangle matrices @¥*? is a block diagonal matrix.

The MCQN method requires lower space and time complexities than the quasi-Newton method. More-
over, it is shown that any sequence generated by the MCQN update converges locally and superlin-
early under the same assumptions of the DFP update [12]. The MCQN can be implemented with
only (Hy)ij,V(i, j) € F. Then its space complexity 9(|F|) and the time complexity per iteration is
O(Z!_,IC/[%). On the other hand, when we implement it withJ;;, ¥(i, j) € F and (Hiu,u,) "1 =
1,2,...,1 -1, the space complexity of the MCQN updatedgF| + =, |U,|?) and the time complexity
per iteration isO(Z,_,|C; |?).

The MCQN method requires an additional work to construct theé $eim the se€ of the true Hessian
[1]. In addition, depending on the problems, the siz& dfecomes large comparedio Furthermore, if
the initial approximate matrix is not given appropriately, the generated sequence converges to the optimal
solution very slowly. In the next section, we describe such an example.

3 An example where the MCQN method converges slowly

The MCQN method sometimes converges slowly as compared to the LBFGS method. In this section,
we present a simple example where such a situation actually occurs.



The main reason for the slow convergence of the MCQN method is that it does not exploit the informa-
tion on the elements of,(j) ¢ F. EachH;j, (i, j) € F of the MCQN with the BFGS update in the second
step is given as

Vi) eF 3.2)

HEFCS = (Hy); +( 1 (YK)THKYK) s - (Hiyii(s9)j + (S (Hiyi)j

SYk o (SPw)? S¢ Yk
In general, the numerators of the second and third terms in (3.1) are very small in comparison with their
denominator. Although the pure BFGS also has the same circumstance, the total sum of the changes of
the pure BFGS update is

n

ZT:ZH: |(Hi)ij — HEFS = Z Z

n
i=1 j=1

>

( 1 (YK)THKYK) o _ (Hdi(8d; + (S9i(Hiyi)

S Yk " (SgYK)? . S Yk

which is not so small. On the other hand, the total sum of the changes of the MCQN is often small.
This happens because the elemaﬂ§§65, (i,j) ¢ F are not used, and are given as a solution of the
maximum-determinant positive definite matrix completion.

To see this, consider the unconstrained minimization problefipof= > | xi2/2. Letxg=(1,...,1)"
andHg = 61 whereé is some small constant. Then the next iterate is givemas (1-6,...,1-0)".
Moreover,so = (=6,...,=6)", Yo = (=6,...,—0)7, Hoyo = (-62,...,—-6%)" andsjyo = né?. Therefore,
the BFGS update is given by

(H )BFGS _ o+
Lij - 1
n

0
n

1
n

51>

i=]j

SinceE = {(i, j) |i = j}, we have Hy)i; = O, i # j. Moreover, whers is small andn is large, the
diagonal elements dfl remain small during lots of iterations. As a resdlt= —HV f (x) is also small,
and hencéx,1 — X/l is small. Therefore, if the MCQN method is applied to this problem Wigh= 61,
a lot of iterations are needed.

4 The proposed method

One of the drawbacks of the LBFGS method is that the convergence could be slow if the initial approx-
imate Hessiatd?  is not appropriate. For the MCQN method, there exist the following problems.

¢ An additional work is required to obtain the chordal extentioof E.

e There is no dierence between the MCQN and the usual quasi-Newton method for a problem that
has a dense Hessian.

e The convergence may be slow if the initial approximate matrix is not appropriate.

In order to overcome such flliculties, we propose a method that combines the LBFGS and MCQN
method. The proposed method is based on the following three ideas.

(1)Restriction of the approximate HessianBy to be tridiagonal
If the HessiarV?2 f(x) is tridiagonal, the corresponding sparse grapiEj is already chordal. Then,



as discussed in detail below, the time and space complexities per iteration of the MCQRavih
O(n). Therefore, even if the Hessian is not tridiagonal, we enf&ice ngl by the MCQON to be
tridiagonal, that isF = {(i, j) | i — j| < 1}. In the rest of this paper, this MCQN method is called

as the Tridiagonal MCQN (Tri-MCQN) method. The approximate Hessian updated by this method
is written asH™.

The sparse graph corresponding to the tridiagonal matrix is a chain graph as in Figure 1. The chain
graph is chordal.

;Yo

Figure 1: The tridiagonal matrix and the chain graph

The number of maximal cliques of the chain grapmis 1, and the maximal cliques af&
{rrr+1},r=1...,n=-1. ThenS; ={r}, r=1,...,n—-2Sp1={n=-1n}, U, ={r+ 1} Or =
1,...,n=2, Uy_1 =0. Thereforel,.1 =1,andL,, r =1,...,n— 2 are given by

1 i=j
[Li]ij = *‘Tr+1,r/|‘T(r+1),(r+1) (iL,))=@+1Lr)
0 otherwise

Furthermorep; is given by

— — 2 —
Dr — Hr,r - (Hr,ril) /H(r+1),(r+l) r<n-2
HSr,Sr r=n-1

Consequently, iﬂ—Tiyi, i =1,....,nand I—THU, i =1,...,n-1 are stored, each, and D, are
obtained inO(1). Therefore, the time complexity 3(n). Note that the matriHy is used only
whendy = —HV f(x) andHyyk are calculated. Therefore, we do not need to sktwexplicitly.

We only need to storeHy)ij, V(i, j) € F, and update these elements in each iteration, whete
{(,))1i <], li=jl <1} In practical,Hxw, which is a product oHy and some vectaw € R", is

computed as follows, wher{);j, V(i, j) € F is stored.

First note that the produéiyw is written as
KT KT K17 K K)p (K
Hew = [LY] [L9] -+ [L] DLY, -+ LYY w.

Then the vectoHyw = wy -1 is obtained by calculating this equation from right sidewas=
L(lk)Pw, wy = L(zk)wl, L W = LfE)lwl—z, w = DWw_1, Wy = [LI(E)l]Twl’ cee, Wil =
PT[L9]" wara.

Consequently, the time complexity of the Tri-MCQN metho®(s).

(2)Applying the pure BFGS update from the k — m)-th iteration
When the approximate Hessian by the Tri-MCQN update is far from the true Hessian, the MCQN

10



method may converge slowly. Then, thé¢h approximate Hessiaty is updated by the Tri-MCQN
update until kK — m)-th iterate, and by the pure BFGS update after the remindierates, that

is, from k — m+ 1)-th tok-th iterate. The lasi times BFGS updates are implemented by the
LBFGS update withm vector pairs. We will give an appropriate by means of some numerical
experiments in Section 4. The update idea of some method is described in Figure 2. Tri-MCQN-B
means a method containing the idea (1) and (2).

(k —m)-th
iteration
|| BFGS ||
BFGS BFGS BFGS BFGS BFGS BFGS
HO‘)H]_‘)HZ"“) kam —}---*)kalHHk

|| LBFGS ||
S ;— Yk BFGS BFGS BFGS

@naﬁonis@ T Il — -+ — Hp_1 — Hg
Y Yk

|| Tri-MCQN ||

TriMCQN TriMCQN TriMCQN TriMCQN TriMCQN TriMCQN
Hy=— H, — Hy -~ Hy oy | = .- =5 H,_ 1 = H,
||T1‘i—MCQN—B ||
TriMCQN TriMCQN TriMCQN BFGS BFGS BFGS
Hg-)Hl—)HQ"‘ Hy. wm *)"'*)Hk_lﬂHk

Figure 2: The dierences between the proposed method and the existing quasi-Newton methods

(3)Restart of the initial approximate matrix
The Tri-MCQN-B method converges fast, if the true Hessian of the problem is tridiagonal and
the approximate Hessian is close to the true Hessian. However, if the approximate Hessian is far
from the true Hessian, the convergence may be slow because of the reason described in Section 3.
Therefore, to overcome thisflculty, if a search directiody is not suitable, we perform a restart,
that is, we discard the current matii" and set an initial matrix again.

As the restart condition, we propose the following conditions with the stepgiamd the search
directiondy.

11



a I

The restart condition
Let 8, @min, @max C1, C2 be positive constants satisfyidge (0, 1), amin < @max @andc; < c;. If
all the following conditions (4.1), (4.2) and (4.3) are not satisfied, then we replagewith
Vi Yk
sfyk l.
min <a< max (41)
S Yk S Yk
c VEx)I < lddll < € V(% 4.2
2y; k|| (Xl < l1dl] 1y;yk|| (Xl (4.2)
—-dTV£(x
k—(k) > (4.3)
llAl 11V F (Il
- J

We explainthe restart conditiong4.1), (4.2) and (4.3). The condition (4.3) guarantees that an
angle between the search direction and the gradient of the objective function is always larger than
some constand. If this angle is sfficiently large, the global convergence is guaranteed. The
conditions (4.1) and (4.2) guarantees that the search diredtitnscaled well. In general, when

the search direction is appropriate for the Newton-type methods, the stepsmest be 1. For this
reason, if the condition (4.1) is not satisfied within, emax ~ 1, dk would be bad. Additionally,

even if the stepsize is 1, the convergence is slow wlaglh is very small. The condition (4.2)
guarantees thatl|| is within the appropriate magnitude. Sin¢®&,f(x)|| depends on the problem
scale, we comparfd|| with a product of||Vf(x)ll and s y«k/y, Yk. Note that this is equivalent

to compare|dy/| with a search directiors; yi/y, YV f () of the Barzilai-Borwein (BB) method

[5]. Consequently, the global convergence of the proposed method with the restart is guaranteed
under the same conditions as the BB method. Moreover, if conditions (4.1), (4.2) are satisfied, the
Tri-MCQN method is adopted, so the faster convergence than the BB method and LBFGS method
is expected.

We present the concrete update algorithm consisting of these three ideas below. Note that the proposed
update corresponds &tep 4in the quasi-Newton algorithm in Section 2.

12



: N
The proposed update

Let ax anddy be the stepsize and the search direction akttreiteration, respectively. Lgb be a
counter related to the restart.

Step 4-1: If k = 0 or the restart condition does not hold, theniset0, H" = ;‘152 l.
0

Step 4-2: Set the k — m)-th approximate matrix as follows.
olf p>m, setHm=H" .
olf k>m p<m, setHm= S

elf k<m p<m,setHy = X1,

|
=

Step 4-3: ObtainHy,; from Hy_n, by the BFGS update as follows.
e If k> mandp > m, obtainHy,; by Hi.mand &,Vyi),i =k-m,... k.
e If k< mandp < m, obtainHy,; byHpand ,vi),i = 1,...,k.
o If k> mandp < m, obtainHy,1 by He-mand &,yi),i = 1,...,p.

Step 4-4: If p > m, obtainH" | by the MCQN update withd" andscm, y-m. Setp = p+ 1.
\ %

We explain this update algorithn&tep 4-1corresponds to the idea (3). tHe restart conditioris not
satisfied, i.e., any (4.1), (4.2) and (4.3) are not satisfied, then wg sd} and perform a restart, that is,
we discard the current matridy_, and set an initial matrix a: :it |. Steps 4-2and4-3 correspond to
the idea (2). The Tri-MCQN update is used unkil{ m)-th iterate, and the BFGS update is used from
(k — m+ 1)-th tok-th iterate to construct thieth approximate HessiaHy. Step 4-4corresponds to the
idea (1). The updates of Hessian by the MCQN are limited to only the tridiagonal elements.

5 Numerical experiments

In this section, numerical results are reported for the proposed method, as well as for the LBFGS
method. All algorithms were coded in MATLAB 7.4, and run on a machine with 3.2GHz Pentium 4
CPU and 3.2GB memory. In each experiment, benchmark problems were chosen from CUTEr [8]. In
the Tri-MCQN method, the partial matrb?ij,v(i, j) € F is updated by the BFGS formula. We employ
IVf(x)ll < n10~° as the termination criterion. If the number of outer iterations exceeds 50000, then we
terminated all methods as failing. The Wolfe conditions (2.2), (2.3) are used to obtain the stepsize. Note
that CUTEr contains problems for which the LBFGS method can obtain a solution within the small num-
ber of iteration. The proposed method isftieetive for such problems. Therefore, in all the experiments,
the LBFGS method has been executed until the first 20 iterations, and after that, the proposed method
starts. Moreover, the LBFGS method stores 5 vector pairs. The Numerical results are shown in Tables
2-6. In the tables, " means the dimension number. "nf’ means the valu@Vof|| at the last iteration.

"ite” means the number of the iteration. "eval” means the number of the function evaluation.

We will compare algorithms by using the distribution function proposed in [3]. We denote a set of
solvers asS, and a set of problems that can be solved by all methods &s Ps. We also denote a
measure for evaluation required to solve a probfeby a solvers ast, s, and the best, s for eachp as
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t,ie,ty = min{tp’S |se S}. The distribution functiorF$ () for a methods s defined by

[{pePsitys <t
[Ps|

FS() = cT> 1 (5.1)
The algorithm whosé=$(7) is close to 1 is considered to be superior to the other algorithnSs im
addition, the algorithm whosES(r) reach to 1 rapidly with increased value ofis considered to be
more stable than the other algorithms. We redgkdas the number of iterations and the number of the
function evaluations. We call the graph whose vertical and abscissa axeg(ay@andr, respectively, as
performance profile.

5.1 Experiments for the parameters in the restart condition

We investigate behaviors of the proposed method by varying the paramgietrmax C1, C in the
restart condition We sets = 108 and examine 16 combinations of parameters listed in Table 1. The
"p 0" is benchmark in Table 1. We vary the each parameter on the basis of the "p 0”. The results are
given in Figures 3 - 18. In the figures, the abscissa axis represents the rate of the Tri-MCQN update over
iterations, that is,

_ The number of the Tri-MCQN update
" The number of the total iteratiors20’

r
Note that we subtract 20 from the denominator, because we have used the LBFGS method for the first
iterations. The vertical axis represents how fast the proposed method is. We use

o The number of iterates of the proposed method
2~ "The number of iterates of the LBFGS method

as the measure. The each point in the figure denotes the results for each problem. Note that the results
of the problems solved within 20 iterations are plotted at (0,1). From graphs, we can obserffedhe e
tiveness of the each parameter combinations. When the higher Tri-MCQN rate implies that the proposed
method is faster than the LBFGS methdtk restart conditions effective.

Overall, if the parameters are chosen appropriatbly,restart conditiorappears £ective. First, we
investigateamin. If amin is small, the results are not good from Figures 4-6. The adoption of the small
stepsize may mean the inappropriate construction of the approximate Hessian. Second, the results are
rarely diferent among some varieties @fax. Third, whenc; = 1.5 or 2,the restart conditiorhas been
rarely satisfied. Therefore, we cannot regard this parameter as the best candidate. In the;cageasf
10, although the restart condition is sometimes satisfied, the results are not good. This means that even if
ldk/| generated by the MCQN update is much larger t%wf(xk)n, dk is not bad. Finally, we observe
Cy. If ¢y is small, the results are not good compared;te= 1. This means that even if the stepsize is
1, the proposed method converges slowly for the didggis small. Next, we choose the characteristic
combinations of parameters from Table 1, and observe the performance profile in Figures 19 and 20.
From this figure, we can see thattife restart conditioris not used, the convergence becomes slow
depending on a problem. Consequently, we conclude that the paramgtet 1, amax = 0, C1 = 0,
¢z = 0.7 are the best, and we conduct the next experiments with this parameter.
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Table 1: The list of parameters

‘ ‘ @min ‘ @max ‘ C1 ‘ C2 ‘
poO 1 00 00 1
pl 0 00 00 1
p2 | 05 00 00 1
p3 0.7 00 o0 1
p4 1 1 00 1
p5 1 2 00 1
p6 1 5 00 1
p7 1 10 00 1
p8 1 o 15| 1
p9 1 00 2 1
p 10 1 00 5 1
pll 1 00 10 1
p 12 1 00 00 0
p13 1 ] o | 0.1
p 14 1 00 o | 0.5
p 15 1 00 oo | 0.7
1 o
o . . .
1iz + 2 ¥ 25
y * ¢ . .
o8 . ¥ . 15
i o, se 10 ¢
0: + I . o 5 * @ * e o :":Q 9
Figure 3: p O, &min, @max C1. C2) = (1, 0, 0, 1) Figure 4: p 1, €&min» @max C1, C2) = (0, 00, 00, 1)
T 2]
& j P
2 . s
15 r 4
* * 3
1 »—0—"—0—079’7 .
05 * “i ‘ 1 ,,_Q_Q‘O_._.T‘,_.#T.—‘;
* % o
o . . g 0 - : ; : 9
Figure 5: p 2, &min, @max C1, C2) = (0.5, 00, 00, 1) Figure 6: p 3, ¢min, @max C1, C2) = (0.7, 00, 00, 1)
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Figure 11: p 8, &min, @max C1, C2) = (1, 00, 1.5,1)
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Figure 13: p 10, &min, @max C1, C2) = (1, 0,5,1)
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Figure 10: p 7, &min» @max C1,C2) = (1,10, 00, 1)
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Figure 14: p 11, &min, @max C1, C2) = (1, 00,10, 1)
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Figure 20: The performance profile of the function evaluation for the parameters in the restart condition

5.2 Experiment for the parameterm

The results of the proposed method with sevarat 0, 2, 5, 10 are shown. The distribution function
(5.1) for the numerical results is shown in Figures 21 and r22= 0 means that the only Tri-MCQN
update is used from 20th iterate to termination. In the case of0, if the approximate Hessian is not
good, the convergence may become slow. In fact, everbé&comes larger than & = 0 doesn’t reach
top. The case ah = 5 seems to be appropriate for the benchmark problems. From Figures 21 and 22, we
see that the case af = 2 is unstable. This is because this case exploits the small number of the stored
vector pairs to construct the approximate matrix. This means the lack of the information.
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Figure 21: The performance profile of the number of iterations for the parameter
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Figure 22: The performance profile of the number of function evaluations for the parameter

5.3 Experiment comparing the proposed method with the LBFGS method

In this section, the proposed method is compared with the LBFGS method by using (5.1). We adopt p
15 as the parameter tie restart conditionThe result is shown in Figures 23 and 24. Despite the value
of 7, the proposed method is always upper than the LBFGS method and reaches top rapidly. Therefore,
even if this method is inferior to the LBFGS method for some problem, the degree of loss is within 1.4
times roughly. Furthermore, if the proposed method solves the problems for which the LBFGS method
requires a lot of iterates, the optimal solution is obtained faster. In the Table 2, the LBFGS requires a lot
of iterates for TRIDIA. TRIDIA is a problem defined as follows [8].

f(¥) = (x - 1 + Zn: i(x1—2x)% X =(1,...,1)".
i—2

It is known that TRIDIA is ill-conditioned, and the LBFGS requires lots of iterates to solve it. From this
experiment, it is shown that the proposed methodfsctive for such problems.
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6 Concluding remarks

In this paper, we proposed the method which combines the tridiagonal MCQN method and the LBFGS
method. The numerical results suggest that the proposed method is very promising.

Only unconstrained minimization problems were considered in the paper. The extension of the LBFGS
method to problems with bound constrained is proposed in [2]. Using the similar idea, we may extend
the proposed method to such problems.
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Table 2: The LBFGS method

Problem | n | method | nf | ite [ eval | time |
ARWHEAD 5000 | LBFGS | 2.01E-05 9 28 5.000E-02
BROYDN7D 5000 | LBFGS | 4.29E-05| 7080 7609 7.937E-01

BRYBND 5000 | LBFGS | 4.61E-05 23 42 1.200E-01
CHAINWOO 4000 | LBFGS | 3.34E-05| 388 547 1.190E&-00

COSINE 10000 | LBFGS | 2.06E-05 9 21 9.000E-02
CRAGGLVY 5000 | LBFGS | 4.92E-05 76 115 4.300E-01
DIXMAANA 3000 | LBFGS | 2.17E-06 9 14 2.000E-02
DIXMAANB 3000 | LBFGS | 2.02E-06 9 14 2.000E-02
DIXMAANC 3000 | LBFGS | 1.51E-05 9 15 2.000E-02
DIXMAAND 3000 | LBFGS | 1.06E-05 9 17 2.000E-02

DIXMAANE 3000 | LBFGS | 2.10E-05| 180 198 3.300E-01

DIXMAANF 3000 | LBFGS | 2.21E-05| 159 173 2.800E-01

DIXMAANG 3000 | LBFGS | 2.99E-05| 185 205 3.300E-01

DIXMAANH 3000 | LBFGS | 2.41E-05| 122 139 2.500E-01

DIXMAANI 3000 | LBFGS | 2.88E-05| 277 298 5.700E-01

DIXMAANJ 3000 | LBFGS | 2.42E-05| 214 229 3.500E-01

DIXMAANL 3000 | LBFGS | 2.96E-05| 166 191 3.300E-01

DIXON3DQ | 10000 | LBFGS | 9.15E-05| 9627 | 10338 | 3.024E-01

DQDRTIC 5000 | LBFGS | 1.69E-05| 18 34 6.000E-02
DQRTIC 5000 | LBFGS | 3.86E-05| 47 97 1.200E-01
EDENSCH 2000 | LBFGS | 1.06E-05| 25 41 6.000E-02
EG2 1000 | LBFGS | 7.29E-07 4 14 1.000E-02
ENGVAL1 5000 | LBFGS | 9.59E-06| 25 39 8.000E-02
EXTROSNB | 1000 | LBFGS | 9.56E-06| 33 55 5.000E-02
FLETCHCR | 1000 | LBFGS | 3.68E-06| 61 83 8.000E-02

FMINSRF2 5625 | LBFGS | 5.60E-05| 277 298 9.000E-01

GENHUMPS | 5000 | LBFGS | 2.47E-05| 6837 | 11473 | 4.102E-01

LIARWHD 5000 | LBFGS | 3.77E-07| 17 40 7.000E-02
MOREBV 5000 | LBFGS | 4.92E-05| 15 22 4.000E-02
NONCVXU2 | 5000 | LBFGS | 4.60E-05| 9650 | 10343 | 3.013E-01
NONDIA 5000 | LBFGS | 2.58E-06| 34 69 1.500E-01

NONDQUAR | 5000 | LBFGS | 4.42E-05| 850 1120 | 1.670E-00

PENALTY1 1000 | LBFGS | 6.98E-06| 93 164 9.000E-02

POWELLSG | 5000 | LBFGS | 4.41E-06| 47 76 1.000E-01

QUARTC 5000 | LBFGS | 3.86E-05| 47 97 1.200E-01
SCHMVETT | 5000 | LBFGS | 4.81E-05| 36 49 2.400E-01
SPARSINE | 5000 | LBFGS | 8.13E-02| 50000 | 56240 | 2.956E+02
SPARSQUR | 10000 | LBFGS | 9.96E-05| 33 68 3.500E-01
SROSENBR | 5000 | LBFGS | 1.31E-06| 16 34 3.000E-02
TESTQUAD | 5000 | LBFGS | 1.07E-04| 50000 | 316815 | 2.792E+02
TQUARTIC 5000 | LBFGS | 3.76E-05| 19 36 5.000E-02

TRIDIA 5000 | LBFGS | 4.94E-05| 1441 1839 | 3.070E-00

WOODS 4000 | LBFGS | 3.01E-05| 30 60 8.000E-02
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Table 3: The proposed methoa & 0)

[ Problem | n nf | ite | eval [ time [ LBFGS ] Tri-MCQN |
ARWHEAD 5000 | 2.00E-05 9 28 7.40E-01 9 0
BROYDN7D 5000 | 4.90E-05| 4594 26187 1.14E+03 20 4574

BRYBND 5000 | 4.90E-05 54 209 7.26E+00 20 34
CHAINWOO | 4000 | 3.80E-05| 666 7019 1.08E+02 20 646
COSINE 10000 | 2.10E-05 9 21 1.48E+00 9 0
CRAGGLVY 5000 | 1.55E-04 | 50000 | 2245301 | 1.77E+04 20 49980
DIXMAANA 3000 | 2.00E-06 9 14 4.40E-01 9 0
DIXMAANB 3000 | 2.00E-06 9 14 4.50E-01 9 0
DIXMAANC 3000 | 1.50E-05 9 15 4.30E-01 9 0
DIXMAAND 3000 | 1.10E-05 9 17 4.40E-01 9 0
DIXMAANE 3000 | 1.50E-05 69 74 7.16E+00 20 49
DIXMAANF 3000 | 2.50E-05 68 74 5.46E+00 20 48
DIXMAANG 3000 | 3.00E-05 70 80 5.65E+00 20 50
DIXMAANH 3000 | 2.70E-05 58 66 4.53E+00 20 38
DIXMAANI 3000 | 3.00E-05 184 189 2.18E+01 20 164
DIXMAANJ 3000 | 2.80E-05 116 124 1.24E+01 20 96
DIXMAANL 3000 | 3.00E-05 79 90 8.64E+00 20 59
DIXON3DQ | 10000 | 2.80E-05 | 10011 15010 3.53E+03 20 9991
DQDRTIC 5000 | 1.70E-05 18 34 1.45E+00 18 0
DQRTIC 5000 | 5.00E-05| 288 405 5.74E+01 20 268
EDENSCH 2000 | 1.80E-05 28 71 1.18E+00 20 8
EG2 1000 | 1.00E-06 4 14 8.00E-02 4 0
ENGVAL1 5000 | 4.80E-05 33 172 4.70E+00 20 13
EXTROSNB 1000 | 9.00E-06 71 555 2.83E+00 20 51
FLETCHCR 1000 | 7.00E-06 100 843 3.14E+00 20 80
FMINSRF2 5625 | 5.60E-05| 7078 14250 1.51E+03 20 7058
GENHUMPS | 5000 | 2.08E+01 | 50000 | 844598 | 1.27E+04 20 49980
LIARWHD 5000 | 0.00E+00 17 40 1.38E+00 17 0
MOREBV 5000 | 4.90E-05 15 22 1.20E+00 15 0
NONCVXU2 | 5000 | 9.08E-02 | 50000 | 257934 | 9.84E+03 20 49980
NONDIA 5000 | 4.10E-05| 7029 190694 | 1.76E+03 20 7009
NONDQUAR | 5000 | 4.90E-05| 315 397 4.82E+01 20 295
PENALTY1 1000 | 1.00E-05| 2808 8314 1.05E+02 20 2788
POWELLSG | 5000 | 4.80E-05| 4275 22006 8.09E+02 20 4255
QUARTC 5000 | 5.00E-05| 288 405 5.68E+01 20 268
SCHMVETT | 5000 | 3.80E-05 39 136 5.05E+00 20 19
SPARSINE 5000 | 1.45E+00 | 50000 | 807685 | 1.28E+04 20 49980
SPARSQUR | 10000 | 9.80E-05| 108 150 4.08E+01 20 88
SROSENBR | 5000 | 1.00E-06 16 34 1.28E+00 16 0
TESTQUAD 5000 | 4.90E-05| 9711 166893 | 1.96E+03 20 9691
TQUARTIC 5000 | 3.80E-05 19 36 1.52E+00 19 0
TRIDIA 5000 | 4.00E-05| 491 7.38E+03 | 5.54E+01 20 471
WOODS 4000 | 3.80E-05 | 1477 13389 2.49E+02 20 1457
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Table 4: The proposed methoah & 2)

[ Problem | n | nf | ite | eval [ time [ LBFGS]| Tri-MCQON |
ARWHEAD 5000 | 2.00E-05 9 28 5.10E-01 9 0
BROYDN7D | 5000 | 4.20E-05| 6227 | 7195 | 9.53E+02 1389 3409

BRYBND 5000 | 2.10E-05 25 44 2.11E+00 20 5
CHAINWOO | 4000 | 3.50E-05| 288 348 3.65E+01 48 240
COSINE 10000 | 2.10E-05 9 21 5.60E-01 9 0
CRAGGLVY 5000 NaN 62 6400 FFFFF 27 35
DIXMAANA 3000 | 2.00E-06 9 14 3.00E-01 9 0
DIXMAANB 3000 | 2.00E-06 9 14 2.00E-01 9 0
DIXMAANC 3000 | 1.50E-05 9 15 2.60E-01 9 0
DIXMAAND 3000 | 1.10E-05 9 17 3.50E-01 9 0
DIXMAANE 3000 | 2.70E-05 78 83 8.15E+00 20 58
DIXMAANF 3000 | 2.00E-05 62 68 6.31E+00 20 42
DIXMAANG 3000 | 2.70E-05 88 99 8.62E+00 25 63
DIXMAANH 3000 | 2.50E-05 59 67 4.34E+00 20 39
DIXMAANI 3000 | 3.00E-05 115 120 9.77E+00 20 95
DIXMAANJ 3000 | 2.60E-05 75 83 5.90E+00 21 54
DIXMAANL 3000 | 2.00E-05 76 88 5.86E+00 23 53
DIXON3DQ | 10000 | 2.80E-05 | 10189 | 10194 | 3.63E+03 20 10169
DQDRTIC 5000 | 1.70E-05 18 34 1.07E+00 18 0
DQRTIC 5000 | 4.90E-05 62 113 6.56E+00 29 33
EDENSCH 2000 | 8.00E-06 26 42 8.10E-01 22 4

EG2 1000 | 1.00E-06 4 14 4.00E-02 4 0
ENGVAL1 5000 | 8.00E-06 25 38 1.55E+00 20 5
EXTROSNB 1000 | 1.00E-05 33 54 8.00E-01 21 12
FLETCHCR 1000 | 8.00E-06 50 72 1.24E+00 24 26
FMINSRF2 5625 | 5.20E-05 606 642 1.25E+02 80 526
GENHUMPS | 5000 | 2.10E-05| 8694 | 11873 | 1.33E+03 2313 6381
LIARWHD 5000 | 0.00E+00 17 40 1.08E+00 17 0
MOREBV 5000 | 4.90E-05 15 22 8.70E-01 15 0
NONCVXU2 | 5000 | 5.76E-04 | 50000 | 52123 | 9.12E+03 3244 46756
NONDIA 5000 | 4.70E-05 243 1100 | 3.51E+01 87 156
NONDQUAR | 5000 | 4.80E-05| 651 726 1.16E+02 92 559
PENALTY1 1000 | 8.00E-06 99 207 1.66E+00 58 41
POWELLSG | 5000 | 4.20E-05 129 162 1.58E+01 35 94
QUARTC 5000 | 4.90E-05 62 113 8.74E+00 29 33
SCHMVETT | 5000 | 3.60E-05 37 47 3.64E+00 22 15
SPARSINE 5000 | 4.92E-01 | 50000 | 51111 | 9.31E+03 2150 47850
SPARSQUR | 10000 | 7.90E-05 37 73 6.26E+00 24 13
SROSENBR | 5000 | 1.00E-06 16 34 8.20E-01 16 0
TESTQUAD 5000 | 4.90E-05 836 988 1.45E+02 50 786
TQUARTIC 5000 | 3.80E-05 19 36 1.42E+00 19 0
TRIDIA 5000 | 4.30E-05| 206 239 3.92E+01 24 182
WOODS 4000 | 3.00E-05 113 147 1.41E+01 37 76
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Table 5: The proposed methoa & 5)

|

Problem [ n | nf | ite | eval [ time [ LBFGS]| Tri-MCQON |
ARWHEAD 5000 | 2.00E-05 9 28 3.00E-01 9 0
BROYDN7D 5000 | 4.50E-05| 6704 | 7443 | 8.47E+02 2957 3747

BRYBND 5000 | 4.90E-05 27 46 2.10E+00 20 7
CHAINWOO | 4000 | 3.80E-05| 275 337 3.73E+01 73 202

COSINE 10000 | 2.10E-05 9 21 1.00E-01 9 0
CRAGGLVY 5000 | 4.80E-05 61 90 7.38E+00 20 41
DIXMAANA 3000 | 2.00E-06 9 14 1.80E-01 9 0
DIXMAANB 3000 | 2.00E-06 9 14 7.00E-02 9 0
DIXMAANC 3000 | 1.50E-05 9 15 9.00E-02 9 0
DIXMAAND 3000 | 1.10E-05 9 17 1.80E-01 9 0
DIXMAANE 3000 | 2.00E-05 87 93 6.89E+00 25 62
DIXMAANF 3000 | 2.90E-05 75 81 6.90E+00 20 55
DIXMAANG 3000 | 2.90E-05 79 89 6.33E+00 24 55
DIXMAANH 3000 | 2.50E-05 88 100 | 5.32E+00 40 48
DIXMAANI 3000 | 2.80E-05 154 159 1.81E+01 20 134
DIXMAANJ 3000 | 2.30E-05 90 102 5.45E+00 44 46
DIXMAANL 3000 | 2.60E-05 75 86 8.46E+00 20 55
DIXON3DQ | 10000 | 9.40E-05 | 10133 | 10140 | 4.07E+03 29 10104
DQDRTIC 5000 | 1.70E-05 18 34 6.60E-01 18 0

DQRTIC 5000 | 4.80E-05 60 111 7.04E+00 32 28
EDENSCH 2000 | 1.10E-05 25 41 4.00E-01 25 0

EG2 1000 | 1.00E-06 4 14 1.00E-02 4 0

ENGVAL1 5000 | 4.50E-05 27 90 1.25E+00 22 5
EXTROSNB 1000 | 8.00E-06 35 56 7.40E-01 20 15
FLETCHCR 1000 | 9.00E-06 47 69 8.30E-01 29 18
FMINSRF2 5625 | 5.60E-05 288 323 3.18E+01 153 135
GENHUMPS | 5000 | 2.70E-05 | 5653 | 10498 | 5.01E+02 3477 2176
LIARWHD 5000 | 0.00E+00 17 40 9.10E-01 17 0
MOREBV 5000 | 4.90E-05 15 22 6.30E-01 15 0
NONCVXU2 | 5000 | 4.50E-05| 9916 | 12348 | 4.80E+02 7866 2050

NONDIA 5000 | 5.00E-05 40 85 1.19E+00 38 2
NONDQUAR | 5000 | 4.90E-05| 565 680 | 7.09E+01 200 365
PENALTY1 1000 | 2.00E-06 95 186 1.48E+00 72 23
POWELLSG | 5000 | 2.50E-05 47 72 3.47E+00 31 16

QUARTC 5000 | 4.80E-05 60 111 5.96E+00 32 28
SCHMVETT | 5000 | 3.60E-05 31 44 1.35E+00 29 2
SPARSINE 5000 | 8.98E-02 | 50000 | 55103 | 6.54E+03 | 19163 30837
SPARSQUR | 10000 | 3.80E-05 37 75 2.74E+00 32 5
SROSENBR | 5000 | 1.00E-06 16 34 5.50E-01 16 0
TESTQUAD 5000 | 3.20E-05 616 742 1.28E+02 53 563
TQUARTIC 5000 | 3.80E-05 19 36 6.50E-01 19 0

TRIDIA 5000 | 4.90E-05 219 255 2.94E+01 36 183

WOODS 4000 | 1.80E-05 41 67 2.04E+00 31 10
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Table 6: The proposed methaa & 10)

Problem [ n | nf | ite | eval [ time [ LBFGS]| Tri-MCQON |
ARWHEAD 5000 | 2.00E-05 9 28 5.00E-02 9 0
BROYDN7D | 5000 | 4.90E-05| 9577 | 18370 | 1.89E+02 9538 39

BRYBND 5000 | 4.20E-05 23 42 3.70E-01 23 0
CHAINWOO | 4000 | 4.00E-05 343 435 2.62E+01 194 149

COSINE 10000 | 2.10E-05 9 21 9.00E-02 9 0
CRAGGLVY 5000 | 4.60E-05 68 101 3.07E+00 52 16
DIXMAANA 3000 | 2.00E-06 9 14 2.00E-02 9 0
DIXMAANB 3000 | 2.00E-06 9 14 2.00E-02 9 0
DIXMAANC 3000 | 1.50E-05 9 15 2.00E-02 9 0
DIXMAAND 3000 | 1.10E-05 9 17 3.00E-02 9 0
DIXMAANE 3000 | 2.50E-05 95 103 5.86E+00 44 51
DIXMAANF 3000 | 2.40E-05 79 85 7.24E+00 25 54
DIXMAANG 3000 | 2.70E-05 94 111 4.10E+00 64 30
DIXMAANH 3000 | 2.10E-05 90 100 | 5.22E+00 37 53
DIXMAANI 3000 | 2.90E-05 127 132 1.01E+01 24 103
DIXMAANJ 3000 | 2.90E-05 97 108 5.56E+00 44 53
DIXMAANL 3000 | 2.90E-05 75 86 7.62E+00 20 55
DIXON3DQ | 10000 | 9.80E-05 | 10386 | 10398 | 3.73E+03 57 10329
DQDRTIC 5000 | 1.70E-05 18 34 7.00E-02 18 0

DQRTIC 5000 | 3.80E-05 85 136 | 1.69E+00 80

EDENSCH 2000 | 8.00E-06 25 41 1.90E-01 25

ENGVAL1 5000 | 1.90E-05 31 115 2.10E-01 31

5
0
EG2 1000 | 1.00E-06 4 14 1.00E-02 4 0
0
5

EXTROSNB | 1000 | 9.00E-06 35 57 2.50E-01 30

FLETCHCR | 1000 | 9.00E-06 58 90 5.30E-01 48 10
FMINSRF2 5625 | 5.40E-05| 351 387 | 2.22E+01 233 118
GENHUMPS | 5000 | 4.60E-05| 11140 | 33890 | 4.89E+02 | 9412 1728
LIARWHD 5000 | 0.00E+-00 17 40 4.70E-01 17 0
MOREBV 5000 | 4.90E-05 15 22 2.10E-01 15 0
NONCVXU2 | 5000 | 4.20E-05 | 13946 | 15994 | 4.17E+02 | 12095 1851
NONDIA 5000 | 2.00E-06 51 101 | 4.50E-01 51 0
NONDQUAR | 5000 | 4.30E-05| 623 826 | 2.93E01 449 174

PENALTY1 1000 | 2.00E-06 | 239 452 7.00E-01 235 4
POWELLSG | 5000 | 5.00E-06 53 87 3.40E-01 52 1
QUARTC 5000 | 3.80E-05 85 136 | 1.69E+00 80 5
SCHMVETT | 5000 | 3.60E-05 31 41 2.00E+00 20 11

SPARSINE | 5000 | 5.87E-02 | 50000 | 56902 | 1.84E+03 | 42196 7804
SPARSQUR | 10000 | 2.40E-05 44 81 5.20E-01 44 0
SROSENBR | 5000 | 1.00E-06 16 34 1.30E-01 16 0
TESTQUAD | 5000 | 4.60E-05| 464 506 | 9.15E+01 26 438
TQUARTIC 5000 | 3.80E-05 19 36 7.00E-02 19 0
TRIDIA 5000 | 4.30E-05| 225 262 | 2.77E+01 51 174
WOODS 4000 | 3.00E-05 36 61 2.70E-01 35 1

27



