
Abstract

Recently, the online optimization attracts much attention in the big data science since it is an effective

optimization tool to deal with data in real time. It is an iterative method to solve optimization problems

whose objective function f is the sum of numerous functions f t (t = 1, . . . , T). It exploits information of

a single function f t at each iteration, and hence its computational time of each iteration is much fewer

than that of the batch optimization, such as the steepest descent method.

In this paper, we consider the online convex optimization problem, where each function f t is convex.

For the problem, several gradient descent methods have been proposed. However, they still take much

time at each iteration when the number of decision variables is huge. To overcome the difficulty, we

propose a randomized block-coordinate descent method, which is an extension of Nesterov’s random

coordinate descent method for the batch convex optimization. We show that the expected value of the

regret of the proposed method is O(
√

T). In some sense, this result includes the convergence results for

the greedy projection method by Zinkevich and the random coordinate descent method by Nesterov as

special cases. We also report some numerical results for problems of the online learning with real data.

Contents

1 Introduction 1

2 Preliminaries 3

2.1 Coordinate Descent Method . 3

2.2 Online Convex Optimization Problem . 4

2.3 Proximal Gradient Method . 5

3 Randomized Block-Coordinate Descent Method 6

3.1 Algorithm . 6

3.2 Regret Analysis . 7

4 Numerical Experiment 11

4.1 Experiment with Random Data . 11

4.2 Experiment with Real Data . 12

5 Conclusion 15

1 Introduction

The big data science has attracted much attention since the evolving ICT induces us to pile huge data.

Statistics and machine learning are key tools in the big data science. They sometimes need to solve huge

optimization problems whose size is proportional to the amount of data. Moreover, some applications in

the big data science require to get an appropriate solution of the optimization problem in real time.

There are two frameworks to solve optimization problems with big data. They are the batch optimiza-

tion and the online optimization. The batch optimization solves the problems using all of the information,

that is, all data. The well known batch optimization methods are the gradient descent method and the

Newton method. On the other hand, the online optimization, which is an iterative method, gets a piece

of data one by one and uses only a few data at each iteration. It is suitable for the applications mentioned

above, because it has the following advantages.

• It uses lower memory since it needs not to store all of the data.

• Since it updates decision variables every time it gets a piece of data, it responds quickly and is

suitable to treat data in real time.

• Even if a property of upcoming data are varying, it works flexibly.

In this paper, we consider the following problem.

min
T∑

t=1

F t(x) ≡
T∑

t=1

{
f t(x) +

n∑
i=1

ri(xi)
}

, (1)

where each function f t : Rn → R (t = 1, . . . , T) is a differentiable convex function and each function

ri : R → R (i = 1, . . . , n) is a continuous convex function. The function f t represents a certain statistic

function of the tth data. Note that ri is not necessarily differentiable. The problem (1) is convex, and

it appears in statistics, signal processing, neural network, and so on. A typical example of the second

term
∑n

i=1 ri(xi) of F t is the l1 regularization and the indicator function of the box set. When ri is

the indicator function of some interval for each i, the problem (1) is essentially the convex problem with

the box constraint. On the other hand, the l1 regularization is frequently used in machine learning and

signal processing since it induces sparse solutions ignoring small noises.

For solving the problem (1), the gradient based methods are suitable for applications where a reasonable

solution is required as soon as a piece of data is obtained. For the problem (1) with the indicator function

ri, the greedy projection method [9] based on a gradient ∇f t has been proposed. For more general ri, the

proximal gradient method is very popular [4, 8]. The proximal gradient method is sometimes called the

forward-backward splitting [4]. When ri(xi) is l1 regularization term, that is ri(xi) = |xi|, the method

updates the next iteration as

xt+1
i = Sληt(x

t
i − ηt∇if

t(xt)) (t = 1, . . . , T) (i = 1, . . . , n) (2)
Sα(z) = [|z| − α]+ sgn(z) ,

1

where ηt > 0 is called a stepsize or a learning rate, [a]+ = max{0, a}, and sgn(a) is defined as follows.

sgn(a) =

1 (a > 0)
0 (a = 0)
−1 (a < 0).

It is known that the proximal gradient method has global convergence if ηt = O(1√
t
). However, when

the number of the decision variables n is large, the method would take much time at every iteration since

it updates all components of xt at each iteration.

In this paper, we extend the idea of the block-coordinate descent method to the online convex op-

timization problem. The block-coordinate descent method chooses a set of coordinates (that is to say

a block) It at each iteration t, and then, updates only the components which belong to the set It. It

does not update the other components. Therefore, it can reduce the calculation time of each iteration,

and it is effective to solve problems which have a lot of decision variables. The typical rules to choose

the block It are the cyclic rule (Gauss-Seidel rule) [6] or the randomized rule [5]. Nesterov proposed

the interesting randomized rule where the probability of choosing the block It is related with Lipschitz

constants of ∇Itf [5]. He shows that the method with the randomized rule can find a solution quickly in

comparison with that with the simple uniform distribution. However, the method is developed for the

batch optimization, hence it can not be applied directly to the problems (1) with huge T .

In this paper, we propose a randomized block-coordinate descent method for online convex optimization

problem applying the idea of Nesterov [5]. At each iteration t, the proposed method uses the information

of a single function f t only, and also updates only components corresponding to the chosen block It.

It is particularly effective in problems where almost all of the components of ∇f t(xt) are 0. Indeed, if

we choose a set It = {i |∇if
t(xt) 6= 0}, we may update only critical components in a short time. On

the other hand, the full proximal gradient method (2) updates all of the components xt
i even though

∇if
t(xt) = 0. As such an example, we present the Multi-Domain Sentiment Datase [2] in Section 4. This

dataset has the huge number of the decision variables (n = 332440), while a gradient of each function

∇f t has at most 5412 non-zero elements.

We show a kind global convergence property of the proposed method under the same conditions in [9]

and [5]. When each coordinate is chosen with probability 1, that is to say when the proposed method is

reduced to the greedy projection method, the result is the same as the regret analysis of [9]. This shows

that the result is a natural extension of [9]. In addition, we discuss how to set probabilities to get rapid

convergence as Nesterov [5] from the convergence theory.

The paper is organized as follows. In Section 2, we introduce the important concepts of the coordinate

descent method, the online convex optimization problem, and the proximal gradient method. Then, we

propose the randomized block-coordinate descent method for online convex optimization and analyze

its convergence in Section 3. In Section 4, we report some results of numerical experiments with the

some datasets, and compare the proposed method with the existing method. Finally, we give concluding

remarks in Section 5.

Throughout this paper, we use the following notations. For a vector x ∈ Rn, x′ denotes the transposed

vector of x. For a differentiable function f : Rn → R, ∇if(x) denotes the ith component of ∇f(x).

2

In a similar way, for a block I ⊆ {1, . . . , n}, ∇If(x) denotes a |I|-dimensional vector of components of

∇if(x), i ∈ I. For a vector x ∈ Rn, ‖x‖ and |x|1 are the l2-norm and l1-norm of x, respectively. In

addition, for a vector x ∈ Rn and a positive definite symmetric matrix G ∈ Rn×n, the G-norm is defined

as ‖x‖G = (
√

xT Gx).

2 Preliminaries

In this section, we introduce the block-coordinate descent method proposed by Nesterov. We also

describe basics of the online optimization problem and the proximal gradient method.

2.1 Coordinate Descent Method

Firstly, we introduce Nesterov’s random coordinate descent method [5]. For simplicity, we consider

the following unconstrained minimization problem.

min f(x) , (3)

where f : Rn → R is a differentiable convex function.

We first define blocks Jk ⊆ {1, . . . , n} (k = 1, . . . ,m), and let J = {J1, . . . , Jm} as the set of the blocks．
Then, for given xt ∈ Rn, the block-coordinate descent method chooses a block It from the set J , and

generates xt+1 as

xt+1
i =

{
xt

i − ηt
∂f(x)
∂xi

(i ∈ It)
0 (i /∈ It) ,

(4)

where ηt is a positive stepsize.

Nesterov’s random coordinate descent method [5] assumes that J is a decomposition of {1, . . . , n},
that is, Jk (k = 1, . . . ,m) satisfy

m∪
k=1

Jk = {1, . . . , n} ,

Ji ∩ Jj = φ for all i, j ∈ {1, . . . ,m} , i 6= j ,

where φ denotes the empty set. Furthermore, the method assumes that the gradient of the function f is

block-wise Lipschitz continuous, that is, there exist positive constants Lk (k = 1, . . . ,m) such that

‖∇Jk
f(x) −∇Jk

f(y)‖ ≤ Lk‖x − y‖ , ∀x, y ∈ Rn such that xi = yi for all i /∈ Jk. (5)

Then, the method chooses a block It from J randomly at each iteration t. The probability that It = Jk

is set to
qk =

Lα
k∑m

j=1 Lα
j

(k = 1, . . . ,m).

Then, the next iterate xt+1 is updated by (4) with ηt = 1
Lk

where k denotes the index of Jk chosen at

the tth iteration. Nesterov shows that the expected value of f(xt) converges to optimal value as follows.

3

Theorem 1. [5, Theorem 1] Suppose that there exists a positive number X such that ‖xt − x∗‖Λ ≤
X (t = 1, 2, . . .), where Λ ∈ Rn×n is a diagonal matrix with Λii = 1

qi
(i ∈ Jk). Then, we have

E[f(xt)] − f∗ ≤ 2
t + 4

X2,

where f∗ is an optimal value of f . 2

In this paper, we will apply the random coordinate descent method to the online convex optimization

problem (1).

2.2 Online Convex Optimization Problem

We first show a simple online algorithm for explanation.

Algorithm 1 Basic online algorithm
Input: Set the initial point x1 ∈ Rn and the initial stepsize η1 > 0

for k = 1, 2, . . . do

1. Choose tk ∈ {1, . . . , T}
2. Update xk+1 = xk − ηt∇f tk(xk).

3. Update a stepsize ηt+1.

end for

Note that k is the iteration number of the algorithm, and the algorithm generates xk+1 by using the

function f tk only. This basic framework assumes that all functions f t and the number T of functions in

advance. However, when we apply the online algorithm in real time, we may not know T . Moreover, T

might be infinity for some applications, such as the stochastic optimization. Therefore, in the following

of this paper, we suppose that T can vary, and the index of the functions tk is same as the number of

steps k, and we use the same notation t for the step and the index. It means that a new function f t is

obtained at each iteration t, and the number T of functions can get larger and larger.

When T tends to vary, the criterion for batch optimization problems can not be applied for online

algorithms. For this reason, we often use a regret of f t(xt) compared to f t(x∗) for some point x∗ as a

criterion of online algorithms.

The regret R(T) at the T step is defined as the difference of function values between the sequence

{x1, x2, . . . , xT } and a fixed optimal point x∗ ∈ argmin
∑T

t=1 F t(x), that is,

R(T) =
T∑

t=1

{
F t(xt) − F t(x∗)

}
. (6)

In general, R(T) tends to be ∞ as T → ∞. The growth rate of R(T) is useful for evaluating the

approximate solutions {xt} of an online algorithm. In particular, the growth rate is required to be less

than O(T), which implies that R(T)
T → 0 as T → ∞. Since R(T)

T denotes the average of F t(xt)−F t(x∗),

this means the average of {F t(xt)} converges to F t(x∗) in some sense.

4

Zinkevich [9] presented the regret of the greedy projection method. For simplicity, let each function ri

be the indicator function of a box set Ci = {z ∈ R | li ≤ z ≤ ui}. The method updates

xt+1 = PC(xt − ηt∇f t(xt)) ,

where PC(・) denotes a projection onto the box set C = C1 ×C2 × . . . , Cn, and ηt > 0 is a stepsize. The

regret of the method is given in the following theorem.

Theorem 2. [9, Theorem 1] Let ηt = c√
t

with a constant c > 0. Then, the regret R(T) of the greedy

projection method satisfies

R(T) ≤
√

T

2c
X2 +

c(2
√

T − 1)
2

G2 , (7)

where X = maxx,y∈C ‖x − y‖，G = maxx∈C,t∈1,...,T ‖∇f t(x)‖. 2

Since the order of the regret of the greedy projection method is O(
√

T) from (7), we have R(T)
T =

O(1√
T

).

2.3 Proximal Gradient Method

In this section, we consider the following problem.

min f(x) +
n∑

i=1

ri(xi) , (8)

where f is a convex function. When the function f(x) =
∑T

t=1 f t(x), the problem (8) is reduced to the

problem (1).

The batch type proximal gradient method [1, 7] for the problem (8) updates the variable xt+1 by

solving the following subproblem.

xt+1 ∈ argmin
x

{
f(xt) + 〈x − xt,∇f(xt)〉 +

1
ηt

d(x, xt) +
n∑

i=1

ri(xi)
}

, (9)

where ηt > 0 denotes a stepsize, and the function d : Rn × Rn → R is the Bregman function d(y, z) =

ψ(y)−ψ(z)−〈∇ψ(z), y− z〉 with a differentiable strongly convex function ψ : Rn → R. In the following,

we set d(y, z) = 1
2‖y − z‖2 for simplicity．

The subproblem (9) can be decomposed into the following n subproblem since
∑n

i=1 ri(xi) is separable

and f(xt) is constant.

xt+1
i ∈ argmin

xi

{
〈xi − xt

i,∇if(xt)〉 +
1

2ηt
(xi − xt

i)
2 + ri(xi)

}
(i = 1, . . . , n). (10)

When we use the l1 regularization function, that is, ri(xi) = λ|xi| with a positive constant λ, the update

rule (10) can be written as
xt+1

i = Sληt(x
t
i − ηt∇if(xt)) ,

where Sα : R → R is defined by
Sα(z) = [|z| − α]+ sgn(z).

5

The following property is related to the subproblem (10), and it is important for convergence analysis

of the proximal gradient method [3]. This property is known as 3-Point Property, and we will use it for

regret analysis of the proposed method in Section 3.2.

Lemma 1. [3, Lemma 3.2] For any proper lsc convex function Ψ : R → R, any a ∈ R, positive constant

δ and a+ = argmin
c

{Ψ(c) + δ(a − c)2}, the following inequality holds.

Ψ(b) ≥ Ψ(a+) + δ(a+ − a)2 + δ(b − a+)2 − δ(b − a)2 ∀b ∈ domΨ.

2

3 Randomized Block-Coordinate Descent Method

In this section, we propose the randomized block-coordinate descent method for the online convex

optimization problem (1). It is based on the random coordinate descent method presented in Section

2.1. Furthermore, we give a bound of the regret of the proposed algorithm.

3.1 Algorithm

Let Jk ⊆ {1, . . . , n} (k = 1, . . . ,m), and let J = {J1, . . . , Jm}. Note that the each block Jk can have

intersection of other blocks. We apply the block coordinate descent method to the problem (1). For

given xt and a coordinate block It, the next iterate is updated by

xt+1
i =

argmin
xi

{
〈xi − xt

i,∇if
t(xt)〉 + 1

2γtβi
‖xi − xt

i‖2 + ri(xi)
}

(i ∈ It)

xt
i (i /∈ It) ,

where γtβi correspond to the stepsize ηt. Note that the parameter γt depends on an iteration t, and the

parameter βi depends on a coordinate i, which allows us to have a different stepsize for each coordinate.

Now, we describe the proposed method.

Algorithm 2 Randomized Block-Coordinate Descent Method
Input: Set coordinate blocks Jk ⊆ {1, . . . , n} (k = 1, . . . ,m), probabilities qk (k = 1, . . . ,m) of choosing

the block Jk, stepsizes βi (i = 1, . . . , n) and γ1, and the initial point x1 ∈ Rn.

for t = 1, 2, . . . do

1. Choose It ∈ {J1, . . . , Jm} with probabilities q1, . . . , qm.

2. Update xt+1 as follows.

xt+1
i =

argmin
xi

{
〈xi − xt

i,∇if
t(xt) + 1

2γtβi
‖xi − xt

i‖2 + ri(xi)
}

(i ∈ It)

xt
i (i /∈ It).

(11)

3. Update a stepsize γt+1.

end for

6

3.2 Regret Analysis

In this subsection, we give a bound of the regret of Algorithm 2. Since Algorithm 2 uses random

elements for updating, the sequence {xt} is stochastic variables. Therefore, we evaluate the expected

value of the regret.

Recall that the probability of It = Jk at each iteration is qk. Thus, the probability pi that the ith

coordinate is updated is given by
pi =

∑
i∈Jk

qk (i = 1, . . . , n).

Now, we require the following assumption on pi.

Assumption 1. The probability pi > 0 for i = 1, . . . , n.

If pi = 0, then the ith coordinate is not updated by the algorithm 2. Thus, Assumption 1 is quite

natural. We use the following notations for the subsequent discussion. Let B be a diagonal matrix

consisting of the stepsizes βi (i = 1, . . . , n), that is,

B =

β1 0

β2

. . .
0 βn

 .

Similarly, let D be a diagonal matrix consisting of the probabilities pi (i = 1, . . . , n), that is,

D =

p1 0

p2

. . .
0 pn

 .

Note that the both matrix B and D are symmetric positive definite.

We first show the following key inequality from 3-Point Property (Lemma 1).

Lemma 2. Suppose that Assumption 1 holds．For a given xt, let xt+1 be the point generated by Algorithm

2. Then, for any x ∈ Rn, we have

ri(xi) + 〈xi − xt
i,∇if

t(xt)〉

≥ ri(xt
i) +

1
pi

E(ri(xt+1
i)) − 1

pi
ri(xt

i)

+
1
pi
〈E(xt+1

i) − xt
i,∇if

t(xt)〉 +
1

2γtβipi
E((xt+1

i − xt
i)

2)

+
1

2γtβipi
E((xi − xt+1

i)2) − 1
2γtβipi

(xt
i − xi)2 (i = 1, . . . , n). (12)

Proof. Firstly, note that only xt+1 is a stochastic variable in this lemma.

Suppose that the ith coordinate is chosen at the iteration t, and x̄t+1
i is updated by (11), that is

x̄t+1
i = argmin

xi

{
f t(xt) + λri(xi) + 〈xi − xt

i,∇if(xt)〉 +
1

2γtβi
(xi − xt

i)
2
}

.

7

Letting Ψ(xi) = ri(xi) + 〈xi − xt
i,∇if(xt)〉 and δ = 1

2γtβi
in Lemma 1, we have

ri(xi) + 〈xi − xt
i,∇if

t(xt)〉
≥ ri(x̄t+1

i) + 〈x̄t+1
i − xt

i,∇if(xt+1)〉

+
1

2γtβi
(x̄t+1

i − xt
i)

2 +
1

2γtβi
(xi − x̄t+1

i)2 − 1
2γtβi

(xi − xt
i)

2. (13)

Since the coordinate i is chosen in accordance with the probability pi, the expected value of xt+1
i is

written as
E(xt+1

i) = pix̄
t+1
i − (1 − pi)xt

i.

Similarly, we have

〈E(xt+1
i) − xt

i,∇if
t〉 = pi〈x̄t+1

i − xt
i,∇if

t(xt)〉 ,

E(ri(xt+1
i)) = piri(x̄t+1

i) + (1 − pi)ri(xt
i) ,

E((xt+1
i − xi)2) = pi(x̄t+1

i − xi)2 + (1 − pi)(xt
i − xi)2 ,

E((xt+1
i − xt

i)
2) = pi(x̄t+1

i − xt
i)

2.

Since pi 6= 0 by Assumption 1, they are rewritten as

〈x̄t+1
i − xt

i,∇if
t(xt)〉 =

1
pi
〈E(xt+1

i) − xt
i,∇if

t〉

ri(x̄t+1
i) =

1
pi

E(ri(xt+1
i) − 1

pi
ri(xt

i) + ri(xt
i)

(x̄t+1
i − xi)2 =

1
pi

E((xt+1
i − xi)2) −

1
pi

(xt
i − xi)2 + (xt

i − xi)2

(x̄t+1
i − xt

i)
2 =

1
pi

E((xt+1
i − xi)2).

Substituting these equations into the inequality (13), we obtain

ri(xi) + 〈xi − xt
i,∇if

t(xt)〉

≥ ri(xt
i) +

1
pi

E(ri(xt+1
i)) − 1

pi
ri(xt

i) +
1
pi
〈E(xt+1

i) − xt
i,∇if

t(xt)〉

+
1

2γtβipi
E((xt+1

i − xt
i)

2) +
1

2γtβipi
E((xi − xt+1

i)2) − 1
2γtβipi

(xt
i − xi)2 ,

which is the desired inequality. 2

Using this lemma, we get an important property of Algorithm 2.

Proposition 1. Suppose that Assumption 1 holds．For a given xt, let xt+1 be the point generated by

Algorithm 2. Then, for any x ∈ Rn, we have

F t(xt) − F t(x)

≤
n∑

i=1

1
pi

ri(xt
i) − E(

n∑
i=1

1
pi

ri(xt+1
i))

+
1

2γt
‖x − xt‖2

D−1B−1 −
1

2γt
E(‖x − xt+1‖2

D−1B−1) +
γt

2
‖∇f t(xt)‖2

D−1B−1 . (14)

8

Proof. Summing up the inequality (12) in Lemma 2 for i and adding a constant f t(xt) to both sides, we

have

f t(xt) +
n∑

i=1

ri(xi) + 〈x − xt,∇f t(xt)〉

≥ f t(xt) +
n∑

i=1

ri(xt
i) + E(

n∑
i=1

1
pi

ri(xt+1
i)) −

n∑
i=1

1
pi

ri(xt
i) + 〈E(xt+1) − xt, D−1∇f t(xt)〉

+
1

2γt
E(‖xt+1 − xt‖2

D−1B−1) +
1

2γt
E(‖x − xt+1‖2

D−1B−1) −
1

2γt
‖x − xt‖2

D−1B−1 . (15)

Since the function f t is convex, we have

f t(x) +
n∑

i=1

ri(xi) ≥ f t(xt) +
n∑

i=1

ri(xi) + 〈x − xt,∇f t(xt)〉. (16)

Moreover, the fifth and sixth terms in the right hand side of (15) are

〈E(xt+1) − xt, D−1∇f t(xt)〉 +
1

2γt
E(‖xt+1 − xt‖2

D−1B−1)

= E

(
〈xt+1 − xt, D−1∇f t(xt)〉 +

1
2γt

‖xt+1 − xt‖2
D−1B−1

)
= E

(
1
2

∥∥∥∥ 1
√

γt
B− 1

2 (xt+1 − xt) +
√

γtB
1
2∇f t(xt)

∥∥∥∥2

D−1

− γt

2
‖∇f t(xt)‖2

D−1B

)
≥ −γt

2
‖∇f t(xt)‖2

D−1B . (17)

It follows from (15) - (17) that

f t(x) +
n∑

i=1

ri(xi)

≥ f t(xt) +
n∑

i=1

ri(xi) + 〈x − xt,∇f t(xt)〉　

≥ f t(xt) +
n∑

i=1

ri(xt
i) + E(

n∑
i=1

1
pi

ri(xt+1
i)) −

n∑
i=1

1
pi

ri(xt
i) + 〈E(xt+1) − xt, D−1∇f t(xt)〉

+
1

2γt
E(‖xt+1 − xt‖2

D−1B−1) +
1

2γt
E(‖x − xt+1‖2

D−1B−1) −
1

2γt
‖x − xt‖2

D−1B−1

≥ f t(xt) +
n∑

i=1

ri(xt
i) + E(

n∑
i=1

1
pi

ri(xt+1
i)) −

n∑
i=1

1
pi

ri(xt
i)

−γt

2
‖∇f t(xt)‖2

D−1B +
1

2γt
E(‖x − xt+1‖2

D−1B−1) −
1

2γt
‖x − xt‖2

D−1B−1 .

Therefore, we get the following inequality.

F t(xt) − F t(x)

≤
n∑

i=1

1
pi

ri(xt
i) − E(

n∑
i=1

1
pi

ri(xt+1
i))

+
1

2γt
‖x − xt‖2

D−1B−1 −
1

2γt
E(‖x − xt+1‖2

D−1B−1) +
γt

2
‖∇f t(xt)‖2

D−1B .

2

9

Using this proposition, we directly get a bound of the regret of Algorithm 2.

Theorem 3. Suppose that Assumption 1 holds. Suppose also that there exist a positive constant G and

X such that ‖∇f t(x)‖D−1B ≤ G (t = 1, . . . , T) for any x ∈ Rn and ‖xt − x∗‖D−1B−1 ≤ X (t = 1, . . . , T).

If γt = c√
t
(c > 0), then the expected value of the regret of Algorithm 2 satisfies

E[R(T)] ≤
n∑

i=1

1
pi

ri(x1
i) +

√
T

2c
X2 +

c(2
√

T − 1)
2

G2. (18)

Proof. For t ≥ 2, the sequence {xt} generated by Algorithm 2 depends on the sequence of the stochastic

variables ξt = {I1, . . . , It−1}. We define Eξt(x
t) as the expected value of xt with the stochastic variables

ξt. Then, for t = 1, . . . , T , we get the following inequality by Proposition 1.

Eξt(F
t(xt)) − F t(x∗)

≤ Eξt

(n∑
i=1

1
pi

ri(xt
i)

)
− Eξt+1

(n∑
i=1

1
pi

ri(xt+1
i)

)
+

1
2γt

Eξt(‖x∗ − xt‖2
D−1B−1) −

1
2γt

Eξt+1(‖x∗ − xt+1‖2
D−1B−1) +

γt

2
Eξt‖∇f t(xt)‖2

D−1B .

Summing the inequalities, we have

E[R(T)] =
T∑

t=1

{
Eξt(F

t(xt)) − F t(x∗)
}

≤
T∑

t=1

{
Eξt

(n∑
i=1

1
pi

ri(xt
i)

)
− Eξt+1

(n∑
i=1

1
pi

ri(xt+1
i)

)
+

1
2γt

Eξt(‖x∗ − xt‖2
D−1B−1) −

1
2γt

Eξt+1(‖x∗ − xt+1‖2
D−1B−1) +

γt

2
Eξt‖∇f t(xt)‖2

D−1B

}
=

n∑
i=1

1
pi

ri(x1
i) − EξT+1

(n∑
i=1

1
pi

(ri(xT+1
i)

)
+

1
2γ1

‖x − x1‖2
D−1B−1 −

1
2γT

EξT+1(‖x − xT+1‖2
D−1B−1)

+
T∑

t=2

{(1
2γt

− 1
2γt−1

)
Eξt(‖xt − x∗‖2

D−1B−1)
}

+
T∑

t=1

γt

2
Eξt(‖∇f t(xt)‖2

D−1B)

≤
n∑

i=1

1
pi

ri(x1
i) +

1
2γT

X2 +
T∑

t=1

γt

2
G2.

Since γT = c√
T

and
∑T

t=1 γt ≤ c(2
√

T − 1), we get

E[R(T)] ≤
n∑

i=1

1
pi

ri(x1
i) +

√
T

2c
X2 +

c(2
√

T − 1)
2

G2.

2

Theorem 3 shows that the expected value of the regret of Algorithm 2 has O(
√

T) bound under the

appropriate condition on the stepsize. Therefore, E[R(T)]
T = O(1√

T
). Theorem 3 is more general than

Theorem 2 of the greedy projection method. The reason is as follows. Set pi = 1 (i = 1, . . . , n) and

10

βi = 1 (i = 1, . . . , n). Then, Algorithm 2 is reduced to the greedy projection method. Moreover, the

matrix D and B are equivalent to the unit matrix I, and hence ‖・‖D−1B−1 = ‖・‖D−1B = ‖・‖. Then,

the formula (18) accords with the formula (7) in Theorem 2.

Theorem 3 induces the relation between the regret bound of the algorithm 2 and confidence level.

Using Markov inequality and Theorem 3, we immediately get the next corollary．

Corollary 1. Suppose that Assumption 1 holds. Suppose also that there exist a positive constant G and

X such that ‖∇f t(x)‖D−1B ≤ G (t = 1, . . . , T) for any x ∈ Rn and ‖xt − x∗‖D−1B−1 ≤ X (t = 1, . . . , T).

For any confidence level 0 < ρ < 1, if γt = c√
t
(c > 0), the regret of Algorithm 2 satisfies the following

inequality at least 1 − ρ probability.

R(T) ≤ 1
ρ

{ n∑
i=1

1
pi

ri(x1
i) +

√
T

2c
X2 +

c(2
√

T − 1)
2

G2
}

.

2

4 Numerical Experiment

In this section, we report some numerical results. We compare the proposed method with the existing

proximal gradient method in terms of their regrets with respect to the calculation time and the number

of iterate. All computations were carried out on a machine with Intel(R)Core(TM)2Quad 2.83GHz CPU

and 4.00 GB memory, and we implement all codes in MATLAB7.6.0(R2008a).

4.1 Experiment with Random Data

We apply the proposed method and the existing proximal gradient method to the least square prob-

lem. The test problems are generated as follows. We first generate 1000 data (ak, bk) ∈ R100×1 (k =

1, . . . , 1000) randomly. We choose the x∗
i ∈ (−1√

n
, 1√

n
) (i = 1, . . . , n) and ak

i ∈ (−1√
n
, 1√

n
) (i = 1, . . . , n) (k =

1, . . . , 1000) from the uniform distribution. Using x∗ and ak, we decide bk with some noises as follows.

bk =

{
(ak)′x∗ (k mod 100) 6= 0
2(ak)′x∗ (k mod 100) = 0

(k = 1, . . . , 1000).

Then, the least square problem is described as follows.

min
T∑

t=1

(ãt)′x − b̃t)2 , (19)

where ãt = ah(t) and b̃t = bh(t) with h(t) = (t mod 1000) + 1. We can treat the large number T of

functions from 1000 date.

We solved the problem (19) by the proposed method and the proximal gradient method. We applied

the following rule of choosing the block It at each iteration. First, we choose the blocksize of It from 10,

30, 50. The block It is randomly chosen so that the blocksize is fulfilled. We also set the initial stepsize

η1 = 10 and the initial point x1 = 0 for all of the methods.

11

Since it is time consuming to calculate the regret R(T) at each iteration, we use the following function

to evaluate the sequence {x1, . . . , xT } generated by the algorithms.

R̂(T) =
T∑

t=1

((ah(t))′xt − bh(t))2.

Figure 1 illustrates the result. It shows that the proposed method converges without relation to

blocksize and the method requires fewer iterations to converge when the blocksize is large. Therefore, if

the calculation time is proportional to the blocksize, the proposed method is useful to get an approximate

solution in real time.

Figure 1 Comparison the proposed method with the existing method on the problem (19).

4.2 Experiment with Real Data

We consider the online learning with the Multi-Domain Sentiment Dataset [2]. This dataset consists

of product reviews taken from Amazon.com for many product types. In this experiment, we used the

samples in the books domain in the Multi-Domain Sentiment Dataset. The books domain has K = 4465

samples. For k = 1, . . . ,K, each sample has the input ak ∈ Rn and the output bk ∈ {−1, 1}. The input

ak consists of the frequency of the features (words or phrases) that the kth review contains. The output

bk means whether the kth review is positive (with rating ☆ 4 or ☆ 5) or negative (with rating ☆ 2 or ☆
1). The dimension n of a corresponds to all the features in the books domain and it is 332440. The input

ak has at most 5412 (at least 11) non-zero elements, and it has 228 non-zero elements on the average.

12

For the online learning, we set the objective function as the Logistic loss function f t(x) = log(1 +

exp(−bt〈at, x〉)) with l2 regularization. The problem to solve is as follows.

min
x

T∑
t=1

{
log(1 + exp(−b̃t〈ãt), x〉)) +

λ

2
‖x‖2

}
, (20)

where ãt = ah(t) and b̃t = bh(t) with h(t) = (t mod K) + 1, and λ > 0 is the weight parameter for the

l2 regularization term. Here, we set λ = 1. Similarly to the previous subsection, we give the stepsize

ηt = η1√
t

and the initial point x1 = 0, and we define the function R̂(T) as follows.

R̂(T) =
T∑

t=1

{
log(1 + exp(−b̃t〈ãt, xt〉)) +

λ

2
‖xt‖2

}
. (21)

We set the block It for the proposed method as follows. First, note that the input vector ak is very

sparse, and the sparsity induces ∇if
t(xt) = 0 for almost i. Thus, we set a high probability to choose

It = {i | ãt
i 6= 0}. However, this choosing rule does not match the convergence theory if the probability

that choose the complement Īt is very low or 0. For this reason, we should also update xĪt
with high

probability. However, it takes much time since |Īt| is very large. Therefore, here, we apply the following

heuristics (Algorithm 3).

After xIt
is updated for many times (t1, t2, . . . , tm), we update xĪt

(t = t1, . . . , tm) simultaniously. From

the special structure of the proximal gradient method, it takes only O(n) to update xĪt
(t = t1, . . . , tm).

4.2.1 Sensitivity Experiments

Firstly, we investigate the effect of the initial stepsize η1. We solve the problem (20) by the proposed

method with each initial stepsize η1 ∈ {0.1, 0.05, 0.01, 0.001}. We experiment for an hour, and the results

are illustrated in Figure 2. It shows that the proposed method performs well when we choose the initial

stepsize η1 = 0.01.

4.2.2 Comparison with the existing proximal gradient method

We solve the problem (20) by the proposed method and the proximal gradient method. We choose the

initial stepsize η1 = 0.01 in accordance with the result of the previous experiment. We experiment for

an hour, and the results are illustrated in Figure 3 and Figure 4.

We plot the value F (T)
T in Figure 3. Although the value of the proposed method is slightly larger

than that of the existing method, they are almost equivalent. This result shows that the choosing rule

is successful and the proposed method updates the critical components accurately.

Figure 4 illustrates a behavior of F (T)
T per calculation time. It indicates that the proposed method

return the appropriate solution quickly. Although the existing method takes about 12 seconds per K

iterations, the proposed method takes about 1.1 seconds per K iterations. This result means that the

proposed method is suitable for the case required to get some appropriate solution in real time.

13

Figure 2 Sensitivity of the proposed method to initial stepsize on solving the problem (20).

Figure 3 Comparison of the proposed method with the proximal gradient method by F (T)
T

and iterations

14

Algorithm 3 Heuristics for the l2 regularized online learning
Input: Set the initial vector x1 = 0, the initial stepsize η1 > 0, and the initial vector z1 = 0 and the

initial value Γ1 = 0 to accumulate stepsizes.

for t = 1, 2, . . . do

1. Choose a random number at ∈ {1, . . . ,K}
if at 6= K then

2. Choose It = {i |xh(t)
i 6= 0}.

3. Update wt+1 and zt+1 as follows.

wt+1
i =

{
1

1+ληt
wt − ηt

1+ληt
∇if

t(wt) (i ∈ It)
wt

i (i /∈ It) ,

zt+1
i =

{
zt
i + ηt (i ∈ It)

zt
i (i /∈ It)

Γt+1 = Γt + ηt

4. Update a stepsize ηt+1 = η1√
t
.

else

2. Update wt+1 as follows.

wt+1
i =

1
1 + λ(Γt − zt

i)
wt

i (i = 1, . . . , n)

3. Set zt+1 = 0 and Γt+1 = 0.

4. Update a stepsize ηt+1 = η1√
t
.

end if

end for

5 Conclusion

In this paper, we proposed the randomized block-coordinate descent method based on Nesterov’s

random coordinate descent method for online convex optimization problem. We also proved that the

bound of E[R(T)]
T is O(1√

T
), and this result includes the result of the existing methods. Moreover,

we experiment on the problem which have the large number of decision variables n. By choosing an

appropriate block, the proposed method quickly returns an approximate solution. This result illustrates

that the proposed method is useful for huge data in real time.

Since the proposed method is very sensitive to the initial stepsize, it is important to analyze various

stepsize rules for future research. Moreover, it is also worth to try analyizing the proposed method with

the cyclic choosing rule.

Acknowledgements

First of all, I would like to express my sincere appreciation to Associate Professor Nobuo Yamashita

15

Figure 4 Comparison of the proposed method with the proximal gradient method by F (T)
T

and

calculation time

for his kind guidance and suggestion. Although I sometimes troubled to him by my faults, he always

supported me kindly. I am deeply indebted to Professor Masao Fukushima for his invaluable useful

advice. His support always encouraged me to study. I am also grateful to Assistant Professor Shunsuke

Hayashi for his numerous comments and encouragement. In addition, I also deeply thank all members

of Fukushima Laboratory for their encouragements. Finally, I specially thank my family and my friends

for their constant support.

References

[1] D. P. Bertsekas, Nonlinear Programming, 2nd edition, Athena Scientific, Belmont, 1999.

[2] J. Blitzer, M. Dredze and F. Pereira, Biographies, Bollywood, Boom-Boxes and Blenders: Domain

Adaptation for Sentiment Classification, In Proceedings of the 45th Annual Meeting of the Associa-

tion of Computational Linguistics, pp. 440 - 447, 2007.

[3] G. Chen and M. Teboulle, Convergence Analysis of a Proximal-Like Minimization Algorithm Using

Bregman Functions, SIAM Journal on Optimization, Vol. 3, No. 3, pp. 538 - 543, 1993.

[4] J. Duchi and Y. Singer, Efficient Online and Batch Learning Using Forward Backward Splitting,

Journal of Machine Learning Research, Vol. 10, pp. 2899 - 2934, 2009.

[5] Y. Nesterov, Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problem, SIAM

Journal on Optimization, Vol. 22, No. 2, pp. 341 - 362, 2012.

[6] P. Tseng, Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization,

16

SIAM Journal on Optimization, Vol. 109, No. 3, pp. 475 - 494, 2001.

[7] P. Tseng, Approximation Accuracy, Gradient Methods, and Error Bound for Structured Convex

Optimization, Mathematical Programming, Vol. 125, No. 2, pp. 263 - 295, 2010.

[8] L. Xiao, Dual Averaging Methods for Regularized Stochastic Learning and Online Optimization,

Journal of Machine Learning Research, Vol. 11, pp. 2543 - 2596, 2010.

[9] M. Zinkevich, Online Convex Programming and Generalized Infinitesimal Gradient Ascent, In Pro-

ceedings 20th International Conference on Machine Learning, pp. 928 - 936, 2003.

17

