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Abstract

We study the variational inequality problem (VIP) whose feasible set is defined by
infinitely many convex inequalities. It is called the semi-infinite variational inequality
problem (SIVIP). For solving SIVIP, we propose an algorithm combining an outer
approximation method with a regularization method, which solves a VIP with a finite
number of inequality constraints approximately at each iteration. It makes use of
the regularized gap function to specify a criterion for approximate solutions of such
VIPs. We establish global convergence of the proposed algorithm by assuming the
monotonicity of the problem, Slater’s condition, and the existence of a solution. We
report some numerical results to examine the efficacy of the algorithm.
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1 Introduction

The variational inequality problem (VIP), denoted by VI(S, F ), is to find a point x∗ ∈ Rn

such that
x∗ ∈ S, ⟨F (x∗), x− x∗⟩ ≥ 0 for all x ∈ S,

where S is a nonempty closed convex subset of Rn, F is a mapping from Rn into itself, and
⟨·, ·⟩ denotes the inner product in Rn. Throughout the paper, we assume that the mapping F
is continuously differentiable. The VIP has been used to study various equilibrium models in
economics, operations research, transportation and regional science. A survey of the theory,
algorithms and applications of the VIP can be found in [8, 13]. The VIP has been well
studied and a lot of algorithms are available for solving it. However, many of the existing
algorithms work practically only when S exhibits a certain tractable structure such as the
nonnegative orthant of Rn or a polyhedral set.

In this paper, we consider VI(S, F ) with S particularly defined by

S = { x ∈ Rn | g(x, t) ≤ 0 for all t ∈ T } , (1.1)

where T ⊂ Rm is a nonempty compact set with infinitely many elements and g : Rn×T → R
is a continuous function such that g(·, t) is a convex function for each fixed t ∈ T . Since there
are infinitely many constraints, the VIP with S defined by (1.1) is called the semi-infinite
variational inequality problem (SIVIP). In the remainder of this parer, we let SIVI(S, F )
denote this problem. Note that S can be expressed as

S = { x ∈ Rn | h(x) ≤ 0 } , (1.2)

where the function h : Rn → R is defined by

h(x) = max
t∈T

g(x, t). (1.3)

Despite numerous works on the VIP and the semi-infinite programming problem (SIP) [19,
22], which is the mathematical programming problem with the feasible set defined by (1.1),
the study on the theory and algorithms for solving the SIVIP is relatively recent.

Since S is defined by infinitely many inequalities, it is hard to deal with the problem
directly in practice. Then, for solving VI(S, F ) with such S, several algorithms have been
proposed on the basis of an outer approximation method. The fundamental idea underlying
the outer approximation method is to generate a sequence {xk } by solving subproblems
whose feasible sets Sk contain S and are relatively easy to deal with. Fukushima [11] intro-
duced a relaxed projection method for solving VI(S, F ) where S is defined by (1.2) with a
general convex function h. This method computes at each iteration the projection onto a
half space Sk defined by using the subdifferential of h at the current iterate xk. It has been
showed that this method is globally convergent under the strong monotonicity assumption
on F . A method with Sk replaced by a general half space separating xk from S has been
proposed by Censor and Gibali [7]. Bello Cruz and Iusem [2] provided an algorithm based
on the method in [11] and showed its global convergence under the weaker condition that
F is paramonotone [15]. Moreover, the same authors [3] presented a relaxed projection-type
method which is globally convergent under the mere monotonicity assumption on F .

For SIVI(S, F ) with S particularly defined by (1.1), there have been proposed several
methods on the basis of the outer approximation method. These methods solve VI(Sk, F )
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at each iteration k, where Sk is an outer approximation of S defined by finitely many
inequalities. Under the assumption that F is paramonotone and S is compact, Burachik et al.
[4] proposed an outer approximation scheme for solving the SIVIP. Assuming S is compact
and F is Lipschitz continuous and pseudomonotone-plus [17], implementable algorithms have
been presented in [9, 21]. Under the same assumptions, Fang et al. [10] provided an inexact
method which uses an approximate solution of VI(Sk, F ) at each iteration. They use the gap
function value as a criterion for an approximate solution, where the gap function is a merit
function for the VIP proposed by Auslender [1]. Without the compactness of S, Burachik et
al. [6] introduced a scheme combining the outer approximation method with a regularization
method, which solves VI(Sk, F k) at each iteration, where F k is an approximate mapping of
F . They proved that when F is paramonotone, a sequence of exact solutions of VI(Sk, F k)
is bounded and any of its accumulation points solves SIVI(S, F ).

We propose an algorithm for solving the SIVIP, which is an implementable version of
the regularized outer approximation scheme [6]. This method needs only an approximate
solution of VI(Sk, F k), while the scheme in [6] assumes the exact solution of VI(Sk, F k).
We use the regularized gap function [12] to specify a criterion for approximate solution
of VI(Sk, F k). Moreover, we establish global convergence of the proposed algorithm by
assuming the existence of a solution of SIVI(S, F ), Slater’s condition, and the monotonicity
of F , which is a weaker assumption on F than the paramonotonicity assumed in [6].

This paper is organized as follows. In Section 2, we review some preliminary results
concerning monotone mappings and the regularized gap function. In Section 3, we propose
an outer approximation method and show that it has global convergence under the strong
monotonicity assumption on the mapping F . In Section 4, we provide an algorithm combin-
ing the method proposed in Section 3 with a regularization method, and establish its global
convergence under the mere monotonicity assumption on the mapping F . In Section 5, we
give some numerical results to examine the efficacy of the proposed algorithm. In Section 6,
we conclude the paper with some remarks.

2 Preliminaries

In this section, we simply assume that S is a general nonempty closed convex set. For
VI(S, F ), Auslender [1] showed that the gap function f0 : Rn → R ∪ {+∞} defined by

f0(x) = sup
y∈S

⟨F (x), x− y⟩

attains its minimum on S at a solution of VI(S, F ). However, the function f0 is in general
nondifferentiable and may even fail to be finite-valued. To overcome such drawbacks of the
gap function, Fukushima [12] proposed the regularized gap function fα : Rn → R defined by

fα(x) = sup
y∈S

{
⟨F (x), x− y⟩ − 1

2
α ∥y − x∥2

}
,

where α > 0 is a parameter. This function enjoys a similar property to that of the gap
function, as shown in the following proposition.

Proposition 2.1. [12, Theorem 3.1] The function fα satisfies fα(x) ≥ 0 for all x ∈ S.
Moreover, fα(x) = 0 and x ∈ S if and only if x solves VI(S, F ). Hence x solves VI(S, F ) if
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and only if it solves the following optimization problem and fα(x) = 0:

minimize fα(x)

subject to x ∈ S.

Unlike the gap function f0, the regularized gap function fα is always finite-valued. When
the mapping F is continuously differentiable, so is fα. In addition, the function fα has some
useful properties. Several methods utilizing this function have been proposed for solving
VI(S,F) [24, 25, 26].

Recall that the mapping F : Rn → Rn is said to be monotone if

⟨F (x)− F (y), x− y⟩ ≥ 0 for any x, y ∈ Rn, (2.1)

strictly monotone on S if strict inequality holds in (2.1) whenever x ̸= y, and strongly
monotone with modulus µ > 0 if

⟨F (x)− F (y), x− y⟩ ≥ µ ∥x− y∥2 for any x, y ∈ Rn.

Clearly any strongly monotone mapping is strictly monotone, and any strictly monotone
mapping is monotone.

3 Algorithm for the strongly monotone SIVIP

In this section, we make the following assumption, which ensures that SIVI(S, F ) has the
unique solution x∗.

Assumption 3.1. The mapping F : Rn → Rn is strongly monotone with modulus µ > 0.

We propose a method for solving SIVI(S, F ) with S given by (1.1) and show its global
convergence under Assumption 3.1. The proposed algorithm consists of major iterations and
inner iterations within each major iteration. On the rth inner iteration of the kth major
iteration, a nonempty finite set T k,r ⊂ T is given. We define the set Sk,r ⊆ Rn by

Sk,r = { x ∈ Rn | g(x, t) ≤ 0 for all t ∈ T k,r } , (3.1)

and consider VI(Sk,r, F ), which is easier than SIVI(S, F ) to deal with, since Sk,r consists of
finitely many constraints. Moreover, define the function fk,r

α : Rn → R by

fk,r
α (x) = sup

y∈Sk,r

{
⟨F (x), x− y⟩ − 1

2
α ∥y − x∥2

}
, (3.2)

where α > 0. Note that the maximum on the right-hand side of (3.2) is always attained at
some point y = yk,rα (x) uniquely, that is, yk,rα (x) is the unique solution y to the quadratic
programming problem

QPk,r
α (x) : minimize

y∈Rn

1
2
α ∥y − x∥2 + ⟨F (x), y − x⟩

subject to g(y, t) ≤ 0 for all t ∈ T k,r.

Thus, the function fk,r
α can be written as

fk,r
α (x) =

⟨
F (x), x− yk,rα (x)

⟩
− 1

2
α
∥∥yk,rα (x)− x

∥∥2
.

The function fk,r
α is the regularized gap function for VI(Sk,r, F ), which is continuously dif-

ferentiable.
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Proposition 3.2. [12, Theorem 3.2] The function fk,r
α is continuously differentiable and its

gradient is given by

∇fk,r
α (x) = F (x)− [∇F (x)− αI](yk,rα (x)− x),

where ∇F (x) is the Jacobian matrix and I ∈ Rn×n is the identity matrix.

By Proposition 2.1, VI(Sk,r, F ) is equivalent to the optimization problem

minimize fk,r
α (x)

subject to x ∈ Sk,r.
(3.3)

Note that Assumption 3.1 ensures that, for every k and r, VI(Sk,r, F ) has the unique solution
x̄k,r which satisfies fk,r

α (x̄k,r) = 0 and x̄k,r ∈ Sk,r. However, since the function fk,r
α is in

general nonconvex, the optimization problem (3.3) may have stationary points which do not
minimize fk,r

α on S globally. This could be a serious drawback, since most of the existing
optimization algorithms are only able to find stationary points when applied to nonconvex
problems. Fortunately, this difficulty can completely be avoided under Assumption 3.1.

Proposition 3.3. [12, Theorem 3.3] If x is a stationary point of problem (3.3), i.e.,⟨
∇fk,r

α (x), y − x
⟩
≥ 0 for all y ∈ Sk,r,

then x is a solution of VI(Sk,r, F ).

The following proposition shows that a descent direction of fk,r
α at x can be obtained as

a byproduct of computing the value of fk,r
α (x).

Proposition 3.4. [12, Proposition 4.1] For each x ∈ Sk,r, the vector d := yk,rα (x)−x satisfies⟨
∇fk,r

α (x), d
⟩
≤ −µ ∥d∥2 . (3.4)

The next proposition shows that fk,r
α can be used as an error bound for VI(Sk,r, F ),

provided the parameter α is chosen sufficiently small.

Proposition 3.5. [26, Proposition 3.4] The function fk,r
α satisfies the inequality

fk,r
α (x) ≥

(
µ− 1

2
α

)∥∥x− x̄k,r
∥∥2

for all x ∈ Sk,r.

In the remainder of this section, we assume the following.

Assumption 3.6. The parameter α satisfies 0 < α < 2µ.

We propose the following algorithm which only requires an approximate solution xk,r of
VI(Sk,r, F ) for each k and r. In the stopping criterion of the algorithm, we use the functions
θkα : Rn → R defined by

θkα(x) = max

(
fk,r(k)
α (x),max

t∈T
g(x, t)

)
, (3.5)

where r(k) denotes the number of inner iterations within the kth major iteration.
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Algorithm 1

Step 0. Choose x0 ∈ Rn, α ∈ (0, 2µ), TOL ≥ 0 and sequences { δk } , {σk } ⊂ R++ such
that limk→∞ δk = limk→∞ σk = 0. Set k := 1.

Step 1. Obtain xk by the following procedure.

Step 1-0. Choose a nonempty finite set T k,1 ⊂ T . Set r := 1 and xk,0 := xk−1.

Step 1-1. Find an approximate solution xk,r of VI(Sk,r, F ) such that fk,r
α (xk,r) ≤ δk

and xk,r ∈ Sk,r.

Step 1-2. Find tk,r ∈ T such that g(xk,r, tk,r) > σk.

(i) If such tk,r does not exist, then set r(k) := r, xk := xk,r. Go to Step 2.

(ii) Otherwise, set T k,r+1 := T k,r ∪ { tk,r }, r := r + 1 and return to Step 1-1.

Step 2. If θkα(x
k) ≤ TOL, then output xk and stop. Otherwise, set k := k + 1 and return

to Step 1,

To find xk,r in Step 1-1, we may use the following descent method for solving (3.3). Let
PSk,r(x) denote the projection of x onto Sk,r.

Procedure 1

Step 0. Choose η ∈ (0, 1) and β ∈ (0, 1). Set z1 := PSk,r(xk,r−1) and ℓ := 1.

Step 1. Compute yk,rα (zℓ). If fk,r
α (zℓ) > δk, then go to Step 2. Otherwise, i.e., if fk,r

α (zℓ) ≤
δk, then set xk,r := zℓ and exit.

Step 2. Set zℓ+1 := zℓ + βγℓdℓ, where dℓ = yk,rα (zℓ)− zℓ and

γℓ = min { γ ∈ N ∪ { 0 } | fk,r
α (zℓ + βγdℓ) ≤ fk,r

α (zℓ)− ηβγ
∥∥dℓ∥∥2 } .

Let ℓ := ℓ+ 1 and return to Step 1.

We can obtain xk,r finitely using Procedure 1.

Proposition 3.7. Procedure 1 terminates finitely by producing xk,r for every k and r.

Proof. By Proposition 3.4, (3.4) holds with x = zℓ and d = dℓ. Hence, the result follows
from an argument similar to the proofs of [12, Theorem 4.2] and [26, Theorem 4.1].

We first show that the inner iterations within Step 1 do not repeat infinitely, which
ensures that Algorithm 1 is well defined.

Proposition 3.8. The inner iterations in Step 1 terminate finitely by producing xk for every
k.

Proof. Suppose that, on some kth iteration, Step 1 does not terminate finitely, that is, an
infinite sequence {xk,r } is generated for some k. Choose x̂ ∈ S arbitrarily and define

M := max
y∈Rn

{
⟨F (x̂), x̂− y⟩ − 1

2
α ∥y − x̂∥2

}
,

5



which is finite since the maximand is a strongly concave quadratic function of y. For any
k and r, we have M ≥ fk,r

α (x̂) by the definition of fk,r
α . It follows from x̂ ∈ S ⊆ Sk,r and

Proposition 3.5 that

fk,r
α (x̂) ≥

(
µ− 1

2
α

)∥∥x̂− x̄k,r
∥∥2

,

where x̄k,r is the unique solution of VI(Sk, F ). Hence we have

M

µ− 1
2
α

≥
∥∥x̂− x̄k,r

∥∥2
.

Moreover, we have

δk ≥ fk,r
α (xk,r) ≥

(
µ− 1

2
α

)∥∥xk,r − x̄k,r
∥∥2

,

and hence the following inequalities hold:∥∥xk,r − x̂
∥∥ ≤

∥∥xk,r − x̄k,r
∥∥+

∥∥x̄k,r − x̂
∥∥

≤

√
δk

µ− 1
2
α
+

√
M

µ− 1
2
α
, (3.6)

which implies that {xk,r } is bounded. Moreover, since T is compact, { (xk,r, tk,r) } has
at least one accumulation point. Let (xk,∞, tk,∞) be an arbitrary accumulation point of
{ (xk,r, tk,r) }, and { (xk,r, tk,r) }r∈K be a subsequence of { (xk,r, tk,r) } which converges to
(xk,∞, tk,∞). We claim that g(xk,∞, tk,r) ≤ 0 for all r ∈ K. Suppose to the contrary that
there exists r̄ ∈ K such that g(xk,∞, tk,r̄) > 0. Then, there exists a sufficiently large r̃ such
that r̃ > r̄, r̃ ∈ K and g(xk,r̃, tk,r̄) > 0 by the continuity of g. On the other hand, since
tk,r̄ ∈ T k,r̃, we have g(xk,r̃, tk,r̄) ≤ 0. This is a contradiction. Hence we have g(xk,∞, tk,r) ≤ 0
for all r ∈ K, which implies g(xk,∞, tk,∞) ≤ 0. However, it follows from g(xk,r, tk,r) > δk and
the continuity of g that g(xk,∞, tk,∞) ≥ δk > 0, which yields again a contradiction. Then the
result follows.

The following proposition validates the use of θkα in the stopping criterion of the algorithm.

Proposition 3.9. For any k, the function θkα satisfies θkα(x) ≥ 0 for all x ∈ Rn. Moreover,
θkα(x) = 0 if and only if x solves SIVI(S, F ).

Proof. Let x be an arbitrary point in Rn. If x is not contained in S, then we have
maxt∈T g(x, t) > 0. Otherwise, we have f

k,r(k)
α (x) ≥ fα(x) ≥ 0 from Proposition 2.1 and the

definitions of f
k,r(k)
α and fα. This proves the first part of the proposition. Since θkα(x) = 0

implies that fα(x) ≤ f
k,r(k)
α (x) ≤ 0 and maxt∈T g(x, t) ≤ 0, the last part of the proposition

also follows from Proposition 2.1.

By the above proposition, if the algorithm with TOL = 0 terminates at some kth major
iteration, then xk solves SIVI(S, F ). Otherwise, the algorithm generates an infinite sequence
{xk }. We next show that the sequence {xk } is bounded.

Lemma 3.10. The sequence {xk } is bounded.

Proof. The result follows from (3.6) in the proof of Proposition 3.8, since xk = xk,r(k) for
each k and limk→∞ δk = 0.
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We are ready to show global convergence of Algorithm 1 with TOL = 0, which implies
that Algorithm 1 with TOL > 0 terminates finitely.

Theorem 3.11. Let TOL = 0. Then the sequence {xk } converges to the unique solution of
SIVI(S, F ).

Proof. We suppose that the sequence is infinite, since otherwise the algorithm terminates at
a solution by Proposition 3.9. It then follows from Lemma 3.10 that {xk } is bounded and
has at least one accumulation point. Let x∞ be an arbitrary accumulation point of {xk },
and {xk }k∈K be a subsequence of {xk } which converges to x∞. By the definitions of fα and

f
k,r(k)
α ,

fα(x
k) ≤ fk,r(k)

α (xk) ≤ δk

for all k. Thus we have fα(x
∞) ≤ 0, since fα is continuous and { δk } converges to 0.

Moreover, by the construction of Algorithm 1, we have

h(xk) ≤ σk for all k ∈ N,

where h : Rn → R is defined by (1.3). This yields h(x∞) ≤ 0 by the continuity of h and
σk → 0, which implies x∞ ∈ S. Therefore by Proposition 2.1, x∞ solves SIVI(S, F ). Since
the solution of SIVI(S, F ) is unique by the strong monotonicity of F , we conclude that the
entire sequence {xk } converges to the solution of SIVI(S, F ).

4 Algorithm for the monotone SIVIP

In the previous section, under the strong monotonicity assumption on F , we have proved that
a sequence of approximate solutions of VI(Sk, F ) converges to the solution of SIVI(S, F ).
However, the strong monotonicity of F is very restrictive in practice. In this section, we
propose a method incorporating a regularization technique with the previous algorithm, and
establish its global convergence without assuming the strong monotonicity of F . Throughout
this section, we make the following assumption.

Assumption 4.1.

(i) SIVI(S, F ) has at least one solution.

(ii) The mapping F : Rn → Rn is monotone on Rn.

(iii) There exists w ∈ Rn such that h(w) = maxt∈T g(w, t) < 0 (Slater’s condition).

Let { εk } be a positive sequence converging to 0, and for each k, define F k : Rn → Rn by

F k(x) = F (x) + εk(x− w), (4.1)

where w is a Slater point as given in Assumption 4.1 (iii). Then, F k is strongly monotone
under Assumption 4.1 (ii). Let {σk } be a positive sequence converging to 0. In addition, for
each k, let Sk be a set such that S ⊆ Sk and suppose the unique solution x̄k of VI(Sk, F k)
satisfies h(x̄k) ≤ σk. Burachik et al. [6] showed that, when F is paramonotone, { x̄k }
is bounded and its accumulation point is a solution of SIVI(S, F ) if { εk } and {σk } are
chosen properly. Notice that the method in [6] needs to solve VI(Sk, F k) exactly at each
iteration, which is hardly implementable in practice. Now we propose a method which solves

7



VI(Sk, F k) only approximately at each iteration k. Moreover, we show that the poposed
algorithm is globally convergent under the mere monotonicity assumption on F , which is a
weaker assumption on F than the paramonotonicity.

The algorithm also consists of major iterations and inner iterations within each major
iteration. On the rth inner iteration of the kth major iteration, a nonempty finite set
T k,r ⊂ T is given. Let the set Sk,r ⊆ Rn be given by (3.1) and the function fk,r : Rn → R
be defined by

fk,r(x) = sup
y∈Sk,r

{⟨
F k(x), x− y

⟩
− 1

2
εk ∥y − x∥2

}
.

Note that the parameter εk is common to the regularization parameter used to define F k in
(4.1). This particular choice of the parameters enables us to ensure that the inner iterations
terminate finitely at each major iteration, see Proposition 4.2. Notice also that fk,r is the
regularized gap function for VI(Sk,r, F k) and can be written as

fk,r(x) =
⟨
F k(x), x− yk,r(x)

⟩
− 1

2
εk

∥∥yk,r(x)− x
∥∥2

,

where yk,r(x) is the unique solution y to the quadratic programming problem

QPk,r(x) : minimize
y∈Rn

1
2
εk ∥y − x∥2 +

⟨
F k(x), y − x

⟩
subject to g(y, t) ≤ 0 for all t ∈ T k,r.

The detailed steps of the regularized outer approximation method are described as follows.

Algorithm 2 (Regularized outer approximation method)

Step 0. Choose x0 ∈ Rn, a Slater point w ∈ Rn such that h(w) = maxt∈T g(w, t) < 0,
α > 0, TOL ≥ 0 and sequences { δk } , {σk } , { εk } ⊂ R++ such that limk→∞ δk =
limk→∞ σk = limk→∞ εk = 0. Set k := 1.

Step 1. Obtain xk by the following procedure.

Step 1-0. Choose a nonempty finite set T k,1 ⊂ T . Set r := 1 and xk,0 := xk−1.

Step 1-1. Find an approximate solution xk,r of VI(Sk,r, F k) such that fk,r(xk,r) ≤ δk
and xk,r ∈ Sk,r.

Step 1-2. Find tk,r such that
g(xk,r, tk,r) > σk. (4.2)

(i) If such tk,r does not exist, then set r(k) := r, xk := xk,r. Go to Step 2.

(ii) Otherwise, set T k,r+1 := T k,r ∪ { tk,r }, r := r + 1 and return to Step 1-1.

Step 2. If θkα(x
k) ≤ TOL, then output xk and stop. Otherwise, set k := k + 1 and return

to Step 1.

Recall that θkα in Step 2 is defined by (3.5). To find xk,r, we may also use Procedure 1 with
fk,r
α and yk,rα replaced by fk,r and yk,r, respectively. Then, it terminates finitely for every
k and r from Proposition 3.7. We next show that the inner iterations in Step 1 terminate
finitely.
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Proposition 4.2. The inner iterations in Step 1 terminate finitely by producing xk for every
k.

Proof. For each k, we can regard Step 1 of Algorithm 2 as Step 1 of Algorithm 1 with
µ = α = εk. Then the result follows from Proposition 3.8.

Now we are ready to state the main theorem that establishes global convergence of
Algorithm 2.

Theorem 4.3. Let TOL = 0 and parameters { δk }, {σk } and { εk } be chosen to satisfy
δk = O(εk) and σk = O(εk). Then, the following statements hold:

(i) The sequence {xk } is bounded.

(ii) Any accumulation point of {xk } solves SIVI(S, F ).

Proof. Proposition 4.2 ensures that r(k) < ∞ for each k. Define fk : Rn → R as fk :=
fk,r(k). If the algorithm terminates at some kth major iteration, then xk solves SIVI(S, F )
by Proposition 3.9. Below we suppose that the algorithm generates an infinite sequence
{xk }.

(i) There exist λ > 0 and ξ > 0 such that supk σk/εk < λ < ∞ and supk δk/εk < ξ < ∞.
By Assumption 4.1 (iii), we have h(w) ≤ −ϕ < 0 for some ϕ. Since εk → 0, we have
0 < λεk/ϕ < 1 for all k sufficiently large. Without loss of generality, we may suppose that
these inequalities hold for all k ∈ N. Define x̃k as

x̃k = xk +
λεk
ϕ

(w − xk). (4.3)

Then, we have x̃k ∈ S. In fact, by the convexity of h, we have

h(x̃k) ≤ λεk
ϕ

h(w) +

(
1− λεk

ϕ

)
h(xk)

≤ λεk
ϕ

(−ϕ) +

(
1− λεk

ϕ

)
λεk

= −λ2ε2k
ϕ

≤ 0,

where the second inequality follows from h(w) ≤ −ϕ and h(xk) ≤ σk ≤ λεk. Therefore we
have ⟨

F (x∗), x̃k − x∗⟩ ≥ 0, (4.4)

where x∗ is a solution of SIVI(S, F ). It follows from the definition of fk that

ξεk ≥ δk ≥ fk(xk) ≥
⟨
F (xk) + εk(x

k − w), xk − x∗⟩− 1

2
εk

∥∥x∗ − xk
∥∥2

,

which implies⟨
F (xk), x∗ − xk

⟩
≥ εk

{∥∥xk
∥∥2 −

⟨
w, xk − x∗⟩− ⟨

xk, x∗⟩− 1

2

(∥∥xk
∥∥2 − 2

⟨
x∗, xk

⟩
+ ∥x∗∥2

)
− ξ

}
= εk

{
1

2

∥∥xk
∥∥2 −

⟨
w, xk − x∗⟩− 1

2
∥x∗∥2 − ξ

}
. (4.5)
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Moreover, by the definition (4.3) of x̃k, we have

λεk
ϕ

⟨
F (x∗), w − xk

⟩
=

⟨
F (x∗), x̃k − xk

⟩
≥

⟨
F (x∗), x∗ − xk

⟩
≥

⟨
F (xk), x∗ − xk

⟩
, (4.6)

where the first inequality follows from (4.4), and the second inequality follows from the
monotonicity of F . Combining (4.5) with (4.6) and rearranging terms yield∥∥∥∥xk +

λ

ϕ
F (x∗)− w

∥∥∥∥2

≤ λ2

ϕ2
∥F (x∗)∥2 + ∥x∗ − w∥2 + 2ξ.

Since this inequality holds for all k, we conclude that {xk } is bounded.
(ii) Let x∞ be an arbitrary accumulation point of {xk }, and {xk }k∈K be a subsequence

of {xk } which converges to x∞. Similarly to the proof of Theorem 3.11, we have x∞ ∈ S.
For an arbitrary positive scalar ᾱ, define yᾱ ∈ S as

yᾱ = argmax
y∈S

{
⟨F (x∞), x∞ − y⟩ − 1

2
ᾱ ∥y − x∞∥2

}
.

Note that fᾱ(x
∞) = ⟨F (x∞), x∞ − yᾱ⟩− 1

2
ᾱ ∥yᾱ − x∞∥2. By the construction of Algorithm 2

and the definition of fk, we have

δk ≥ fk(xk)

≥
⟨
F (xk) + εk(x

k − w), xk − yᾱ
⟩
− 1

2
εk

∥∥yᾱ − xk
∥∥2

≥
⟨
F (xk) + εk(x

k − w), xk − yᾱ
⟩
− 1

2
(εk + ᾱ)

∥∥yᾱ − xk
∥∥2

.

It then follows from xk → x∞, δk → 0, εk → 0 and the continuity of F that

0 ≥ ⟨F (x∞), x∞ − yᾱ⟩ − 1

2
ᾱ ∥yᾱ − x∞∥2 = fᾱ(x

∞),

which implies that fᾱ(x
∞) = 0 and hence x∞ solves SIVI(S, F ) from Proposition 2.1.

5 Numerical experiments

In this section, we report some numerical results. The program was coded in MATLAB
2012b and run on a machine with Intel Core i7 3.00 GHz CPU and 4GB RAM. We observe
the convergence behavior of Algorithm 2 applied to several examples of SIVI(S, F ) that
have the following common features: The mapping F is merely monotone, and it is neither
paramonotone nor strongly monotone. The origin w = (0, 0, . . . , 0)⊤ is a Slater point. The
set T is given by T = [0, 1] ⊂ R, and the function g : Rn × T → R is given by

g(x, t) := ⟨a(t), x⟩ − b(t),

where a : T → Rn and b : T → R are continuous functions.
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Actual implementation of Algorithm 2 is carried out as follows. In Step 0, we set x0 =
(−5,−5, . . . ,−5)⊤, α = 0.1 and TOL = 10−5, and choose parameters { δk }, {σk } and { εk }
as δk = σk = 0.5k and εk = 30 · 0.5k. In Step 1-0, T k,1 is chosen as T 1,1 = { 0, 1 } and
T k,1 = T k−1,r(k−1) for each k ≥ 2. In Step 1-1, xk,r is obtained by using Procedure 1 with
η = 0.1 and β = 0.3. In Step 1-2, to find tk,r satisfying (4.2), we first choose N grid points
t̄1, t̄2, . . . , t̄N from the interval T and compute g(xk,r, t) for t = t̄1, t̄2, . . . , t̄N ∈ T . If we find
t̄ ∈ { t̄1, t̄2, . . . , t̄N } satisfying (4.2), then we set tk,r := t̄. Otherwise, we solve

maximize g(xk,r, t)

subject to t ∈ T,
(5.1)

and check whether or not the computed solution t∗ of (5.1) satisfies (4.2). To solve (5.1),
we apply Newton’s method combined with the bisection method with the starting point
t̄0 := argmax { g(xk,r, t) | t = t̄1, t̄2, . . . , t̄N }. Although there is no theoretical guarantee, in
practice we may expect to find a global maximizer of (5.1) by taking a sufficiently large N .
In these experiments, we set N = 101 and t̄i = (i− 1)/(N − 1) for i = 1, . . . , N . Moreover,
we regard g(xk, t∗) as maxt∈T g(xk, t) when computing θkα(x

k) in Step 2.

Example 1.

F (x) =

(
x2 − 1
−x1 − 1

)
, a(t) =

(
cosπt
sinπt

)
, b(t) = 1.

Note that
S = {x ∈ R2 | ∥x∥ ≤ 1 } ∪ { x ∈ R2 | −1 ≤ x1 ≤ 1, x2 ≤ 0 } .

Upon termination, the algorithm output the point x = (0.0003, 1.0000)⊤ after 15 major
iterations, while the exact solution of this problem is x∗ = (0, 1)⊤.

Example 2.

F (x) =


x2 − 23/5
−x1 + 15/2
x3
3 + x4 − 37/5

−x3 + 27/10

 , a(t) =


4t

−13t2

18t3

−9t4

 , b(t) =
4

9
.

The algorithm output the point x = (1.0003, 1.0002, 0.9998, 0.9990)⊤ after 17 major itera-
tions. The exact solution is x∗ = (1, 1, 1, 1)⊤.

Example 3.

F (x) =


ex1−1 + x2 − 6
ex2−1 − x1 − 5/3
x4 + 41/9
−x3 − 10/3
x3
5 + 8/9

 , a(t) =


4t
5t3

−10t2

13t3

−9t4

 , b(t) = 3t2 +
4

9
.

The algorithm output the point x = (1.0008, 1.0001, 1.0014, 1.0011, 1.0000)⊤ after 17 major
iterations. The exact solution is x∗ = (1, 1, 1, 1, 1)⊤.
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Example 4.

F (x) =



x2 + 395/2
−x1 − 43061/64
x4 + 6117/8
−x3 − 3371/4
x3
5 + x6 + 586

x3
6 − x5 + 32077/64

x3
7 − 2605/4


, a(t) =



−256t6

625t5

−500t4

375t3

−168t2

143t5 − 428t4

201t3 + 33t


, b(t) = 25t2 +

9

4
.

The algorithm output the point x = (0.9949, 0.9954, 0.9955, 0.9976, 0.9991, 0.9994, 0.9998)⊤

after 17 major iterations. The exact solution is x∗ = (1, 1, 1, 1, 1, 1, 1)⊤.

More detailed computational results are shown in Table 1 and Figure 1, where

ite : the number of major iterations,

rsum : the sum of r(k)’s, k = 1, 2, . . . , ite, where r(k) denotes the number of
inner iterations within the kth major iteration,

{ r(k) } : the values of r(k) for k = 1, 2, . . . , ite,

|T ite,r(ite)| : the number of elements of T ite,r(ite),

time(sec) : the CPU time in seconds.

In the column of { r(k) }, pq means that, for some k, we have r(k) = p in q consecutive
iterations, and { p1, . . . , pN̄ }q means that, for some k, r(k + iN̄ + j − 1) = pj for i =
0, 1, . . . , q− 1 and j = 1, . . . , N̄ . For example, 110, 3, { 1, 2 }2 means that r(1) = r(2) = · · · =
r(10) = 1, r(11) = 3, r(12) = 1, r(13) = 2, r(14) = 1 and r(15) = 2. Figure 1 depicts the
values of log10 θ

k
α(x

k) for k = 1, 2, . . . , ite.

Table 1: Computational results of Algorithm 2

Example ite rsum { r(k) } |T ite,r(ite)| time(sec)

1 15 22 14, 2, 14, 4, { 2, 1 }2 , 2 9 1.41

2 17 26 1, 22, 12, 2, 12, 22, 1, 24, 12 11 7.05

3 17 26 1, 22, 12, { 1, 2 }4 , 2, 1, 22 11 108.25

4 17 36 4, 1, 2, 12, 2, 3, 1, 3, 23, 3, 2, 1, 4, 2 21 194.07
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Figure 1: Behavior of Algorithm 2

6 Conclusion

For solving the semi-infinite variational inequality problem (SIVIP), we have proposed a
regularized outer approximation method. Utilizing the properties of the regularized gap
function, we have established global convergence of the algorithm by assuming the mono-
tonicity of the problem, Slater’s condition and the existence of a solution. Moreover, we have
shown the effectiveness of the proposed algorithm through numerical experiments. However,
we have to admit that the complexity of the subproblem VI(Sk,r, F k) grows

(i) as the inner iteration proceeds, since the size of the index set T k,r increases monotoni-
cally, and

(ii) as the major iteration proceeds, since the numerical instability may occur due to the
diminishing effect of the regularization parameter εk.

We may mitigate (i) by introducing a constraint dropping scheme. For the semi-infinite
programming problem (SIP), the explicit exchange algorithms [14, 18, 27] have been pro-
posed, and in particular, Okuno et al. [20] proposed an explicit exchange method combined
with a regularization method. It is an interesting subject of research to extend their scheme
to the SIVIP. To avoid (ii), proximal-type methods have been proposed for the variational
inequality problem [5, 23] and the SIP [16]. It is also an interesting future work to explore
the possibility of applying the proximal point method to the SIVIP.
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