
Master’s Thesis

An exchange method with refined subproblems for

convex semi-infinite programming problems

Guidance

Associate Professor Nobuo YAMASHITA

Kensuke GOMOTO

Department of Applied Mathematics and Physics

Graduate School of Informatics

Kyoto University

K
Y
O
T

O
UNIVER

S
IT
Y

F
O

U
N
DED

1
8

9
7

KYOTO JAPAN

February 2014

Abstract

The semi-infinite programming problem (SIP) is an optimization problem with an in-

finite number of constraints in a finite dimensional space. The SIP has been studied

extensively so far, since a lot of practical problems in various fields such as physics,

economics, and engineering can be formulated as the SIPs. The exchange method is one

of the most useful algorithms for solving the SIP, and it has been developed by many

researchers. In this paper, we focus on the convex SIPs and propose a new exchange

method for solving them. While the traditional exchange method solves a sequence of

the relaxed problems with finitely many constraints that are selected from the original

constraints, our method solves a sequence of semi-infinite programs relaxing the original

SIP. These relaxed problems can be solved efficiently by transforming them into cer-

tain optimization problems with finitely many constraints. Moreover, under some mild

assumptions, they approximate the original SIP more precisely than the finite relaxed

problems in the traditional exchange method. We also establish global convergence of

the proposed method under strict convexity assumption on the objective function, and

examine its efficiency through some numerical experiences.

Contents

1 Introduction 1

2 Preliminaries 2

3 Algorithm 4

4 Global convergence 6

5 Implementation issues 9

5.1 How to solve the subproblems . 10

5.2 How to determine the Lipschitz constant 11

6 Numerical experiments 12

7 Conclusion 17

1 Introduction

The semi-infinite programming problem (SIP) is an optimization problem with a finite

dimensional variable x ∈ Rn and an infinite number of inequality constraints. The SIP

has been studied extensively so far since there are a lot of applications such as Chebyshev

approximation in mathematics, optimal control and trajectory control in engineerings,

air/water pollution control problem, and production planning, etc. Also, from the 1960s,

there have been many theoretical studies such as the optimality condition and duality

theorem [9].

In this paper, we focus on the following convex SIP:

SIP : minimize
x∈X

f(x)

subject to g(x, t) ≤ 0 ∀t ∈ T, (1.1)

where X ⊆ Rn is a compact convex set, T ⊆ Rm is a nonempty compact set of the

form T = {t ∈ Rm|At ≤ b} with A ∈ Rl×m and b ∈ Rl, f : Rn → R is a function

differentiable and convex over X, and g : Rn×T → R is a function differentiable for any

(x, t) ∈ X × T and convex with respect to x. Since t plays a role of index in a finitely

constrained optimization problem, t and T are called index and index set, respectively.

Many algorithms for solving SIP have been studied so far. Among them, the dis-

cretization method and the exchange methods are well known methods, both of which

require to solve finitely approximated subproblems in each iteration. The discretization

method generates a sequence of index sets {Tk} ⊆ T satisfying |Tk| < ∞, T0 ⊂ T1 ⊂
T2 ⊂ · · · ⊂ T and limk→∞ dist (Tk, T) = 01. Then, in each iteration k, it solves the

finitely approximated subproblem with respect to Tk to obtain the optimum xk, so that

xk converges to the original SIP optimum as k goes infinity [7, 10, 11]. On the other

hand, the exchange method generates the sequence converging to the SIP optimum by

exchanging an index belonging to Tk by another index belonging to T \ Tk [1, 4, 5, 6].

Unlike the discretization method, the computational cost for each subproblem does not

become very large, since |Tk| is bounded even when k → ∞.

In this paper, we propose an exchange algorithm in which each subproblem is gener-

ated by means of the first order approximation with respect to t. Although the subprob-

lems are still SIPs, they can be transformed into the problems with a finite number of

constraints equivalently. Moreover, if ∇tg is Lipschitzian, then each subproblem approxi-

mates the original SIP more precisely than the existing exchange methods. Consequently,

we can expect that our method finds the optimal solution in a lower number of iterations.

1For two sets S and T with S ⊂ T , the distance from S to T is defined as dist (S, T) =

supt∈T infs∈S ∥s− t∥.

1

This paper is organized as follows. In Section 2, we give some mathematical pre-

liminaries that will be useful in the subsequent analyses. In Section 3, we propose an

algorithm and mention some properties. In Section 4, we show the global convergence of

the algorithm under some assumptions. In Section 5, we provide some techniques how to

solve each subproblem and how to treat the constant necessary for the numerical experi-

ments. In Section 6, we give some numerical results relevant to Chebyshev approximation

problem. Finally in Section 7, we conclude the paper with some remarks.

2 Preliminaries

In this section, we give some preliminaries that will be useful in the subsequent sections.

We first define the closedness, properness and convexity of functions.

Definition 2.1 For a given function f : Rn → (−∞,∞], we denote the effective domain

of f by dom f := {x ∈ Rn | f(x) < ∞}. Then we say that

i. the function f is proper if domf ̸= ∅;

ii. the function f is closed if f is lower semicontinuous;

iii. the function f is convex if

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for any θ ∈ [0, 1] and (x, y) ∈ Rn × Rn.

Then, we have the following proposition on the level set.

Proposition 2.1 [8, Corollary 8.7.1] Let f be a proper closed convex function. Suppose

that there exists an α ∈ R such that the level set {x ∈ Rn | f(x) ≤ α} is compact. Then

{x ∈ Rn | f(x) ≤ β} is compact for any β ∈ R if it is nonempty.

Next, we give the following two propositions which concern the convexity and differ-

entiability of a function defined as a maximum of finitely or infinitely many functions.

Proposition 2.2 Let T ⊆ Rm be a nonempty compact set, and g : Rn × T → R be a

function such that g(·, t) is convex for any fixed t ∈ T . Then, the function g defined by

g(x) := supt∈T g(x, t) is convex.

Proof It suffices to show that

g(θx+ (1− θ)y) ≤ θg(x) + (1− θ)g(y)

2

for any θ ∈ [0, 1] and (x, y) ∈ Rn × Rn. Then we have

θg(x) + (1− θ)g(y)− g(θx+ (1− θ)y)

= θ sup
t∈T

g(x, t) + (1− θ) sup
t∈T

g(y, t)− sup
t∈T

g(θx+ (1− θ)y, t)

≥ sup
t∈T

{θg(x, t) + (1− θ)g(y, t)} − sup
t∈T

g(θx+ (1− θ)y, t)

≥ 0,

where the last inequality follows from the convexity of g(·, t).

Proposition 2.3 [3, Theorem10.2.1] Let T ⊆ Rm be a nonempty compact set, and

d : Rn × T → R be a function such that d(·, t) is continuously differentiable for any fixed

t ∈ T . Suppose that argmaxt∈T d(x, t) is a singleton, say t̄(x), for any x ∈ Rn. Then, the

function d defined by d(x) := maxt∈T d(x, t) is differentiable and

∇d(x) = ∇xd(x, t̄(x)).

The next proposition shows that the property of a function whose gradient is Lips-

chitz continuous.

Proposition 2.4 Let h : Rm → R be a continuously differentiable function such that

∇h is Lipschitz continuous. Then, we have

h(t1) +∇h(t1)
⊤t2 −

L

2
∥t2∥2 ≤ h(t1 + t2), ∀t1, t2 ∈ Rm

for any (t1, t2) ∈ Rm × Rm, where L is the Lipschitz constant for ∇h.

Proof Fix t1 and t2 arbitrarily, and let p(s) = h(t1 + st2) for s ∈ R. Then we have
dp
ds (s) = ∇h(t1 + st2)

⊤t2. Thus,

h(t1) +∇h(t1)
⊤t2 − h(t1 + t2) = p(0) +∇h(t1)

⊤t2 − p(1)

= −
∫ 1

0

dp

ds
(s)ds+∇h(t1)

⊤t2

= −
∫ 1

0
∇h(t1 + st2)

⊤t2ds+∇h(t1)
⊤t2

= −
∫ 1

0
(∇h(t1 + st2)−∇h(t1))

⊤t2ds

≤
∫ 1

0
∥∇h(t1 + st2)−∇h(t1)∥∥t2∥ds

≤
∫ 1

0
Ls∥t2∥2ds = L∥t2∥2

∫ 1

0
sds =

1

2
L∥t2∥2.

This completes the proof.

3

3 Algorithm

In this section, we propose a new exchange algorithm. Let

E := {t̄1, t̄2, . . . , t̄p} (3.1)

be a finite subset of T . In the existing exchange method, each subproblem was of the

form 　

minimize
x∈X

f(x)

subject to g(x, t̄1) ≤ 0, (3.2)

...

g(x, t̄p) ≤ 0.

On the other hand, we solve the following subproblem at each iteration:

minimize
x∈X

f(x)

NLP(E) subject to g(x, t̄1) +∇tg(x, t̄
1)⊤(t− t̄1)− L

2
∥t− t̄1∥2 ≤ 0 (∀t ∈ T),

...

g(x, t̄p) +∇tg(x, t̄
p)⊤(t− t̄p)− L

2
∥t− t̄p∥2 ≤ 0 (∀t ∈ T),

where L ∈ R is the Lipschitz constant of ∇tg(x, ·) for an arbitrarily fixed x, i.e.,

∥∇tg(x, t1)−∇tg(x, t2)∥ ≤ L∥t1 − t2∥ (3.3)

for any t1, t2 ∈ T × T and x ∈ X. Then, for

F̃ (E) := {feasible region of NLP(E)}, (3.4)

F (E) := {feasible region of problem (3.2)}, (3.5)

F (T) := {feasible region of SIP(1.1)}, (3.6)

we have the following proposition.

Proposition 3.1 Let E ⊆ T be an arbitrary finite subset as in (3.1). Let F̃ (E), F (E),

and F (T) be defined as (3.4)-(3.6), respectively. Then, we have

F (T) ⊆ F̃ (E) ⊆ F (E).

Proof From Proposition 2.4, we have

g(x, t̄i) +∇tg(x, t̄
i)⊤(t− t̄i)− L

2
∥t− t̄i∥2 ≤ g(x, t) (3.7)

4

for each i = 1, . . . , p and t ∈ T . Hence, we have F (T) ⊆ F̃ (E). On the other hand, we

have F̃ (E) ⊆ F (E) since

g(x, t̄i) = g(x, t̄i) +∇tg(x, t̄
i)⊤(t̄i − t̄i)− L

2
∥t̄i − t̄i∥2 ≤ 0,

for any x ∈ F̃ (E) and t̄i ∈ E, where the inequality is due to t̄i ∈ E ⊆ T . This completes

the proof.

This proposition implies that NLP(E) approximates the original SIP more precisely

than existing exchange methods, and therefore we can expect that our method finds the

original SIP optimum more rapidly than existing exchange methods. One may think that

NLP(E) is as difficult as (1.1) since NLP(E) still has an infinite number of inequality

constraints. However, NLP(E) can be transformed into an optimization problem with a

finite number of constraints equivalently by using the duality theory for the quadratic

programs. We provide the transformation techniques in the subsequent section.

The details of the algorithm are as follows.

Algorithm 3.1

Step 0: Set k := 0. Choose a finite subset T 0 ⊂ T . Let {γk} be a positive sequence such

that limk→∞ γk = 0, and L be the Lipschitz constant satisfying (3.3).

Step 1: Obtain xk and T k by the following steps.

Step 1-0: Set r := 0, E0 := T k, and solve NLP(E0) to obtain the optimum v0.

Step 1-1: Find a trnew such that g(vr, trnew) > γk. If such a trnew does not exist,

then let xk+1 = vr, T k+1 = Er, and go to Step 2. Otherwise, let E
r+1

=

Er ∪ {PT (t+
1
L∇tg(v

r, t)) | t ∈ Er} ∪ {trnew} and go to Step 1-2.

Step 1-2: Solve NLP(E
r+1

) to obtain its optimum vr+1 and the corresponding

Lagrange multiplier λr+1.

Step 1-3: Let Er+1 := {t̄ ∈ E
r+1 |λr+1

t̄
̸= 0}. Set r := r+1 and return to Step 1-1.

Step 2: If γk is sufficiency small, then terminate. Otherwise, set k = k + 1 and return

to Step 1

In Step 1-1, PT (·) denotes the projection onto the index set T , i.e.,

PT (s) := argmin
t∈T

∥s− t∥.

Notice that we add not only trnew but also {PT (t+
1
L∇tg(v

r, t)) | t ∈ Er} to Er. This is

because PT (t+
1
L∇tg(v

r, t)) is more desirable than t in the sense that PT (t+
1
L∇tg(v

r, t))

5

is obtained by means of the steepest ascent method with respect to t for a fixed vr. In

Step 1-3, λr+1
t̄

denotes the Lagrange multiplier corresponding to the constraint of the

index t̄. Here, we remove inactive indices whose Lagrange multipliers are zero. In the

subsequent convergence analysis, we omit the termination condition in Step 2, so that

the algorithm may generate an infinite sequence.

4 Global convergence

In this section, we show that the sequence generated by Algorithm 3.1 converges to the

SIP optimum. To this end, we make the following assumption.

Assumption 4.1 (i) Function f is strictly convex.

(ii) For an arbitrarily fixed t ∈ T , g(·, t) is Lipschitz continuous, that is, there exists a

constant M > 0 such that

∥g(x, t)− g(y, t)∥ ≤ M∥x− y∥

for any (x, y) ∈ Rn × Rn.

(iii) For an arbitrarily fixed x ∈ X, ∇tg(x, ·) is Lipschitz continuous, that is, there exits

a constant L > 0 such that

∥∇tg(x, t1)−∇tg(x, t2)∥ ≤ L∥t1 − t2∥

for any (t1, t2) ∈ T × T .

(iv) Function

gt̄(x) := max
t∈T

{
g(x, t̄) +∇tg(x, t̄)

⊤(t− t̄)− L

2
∥t− t̄∥2

}
(4.1)

is convex for any t̄ ∈ Er.

(v) {vr} is bounded for each k.

Notice that assumptions (ii) and (iv) hold when g is affine with respect to x, and (v)

holds when f is strongly convex. Moreover, by using the function gt̄ defined by (4.1),

NLP(E) can be rewritten equivalently as

minimize
x∈X

f(x)

NLP(E) subject to gt̄1(x) ≤ 0,

...

gt̄p(x) ≤ 0,

6

when E ∈ T is given by (3.1).

Under Assumptions 4.1, we show the global convergence of Algorithm 3.1. First, we

provide the following proposition stating the differentiability of function gt̄.

Proposition 4.1 For any t̄ ∈ Er, the function gt̄ defined by (4.1) is differentiable.

Proof Since ĝ(x, t) := g(x, t̄) +∇tg(x, t̄)
⊤(t− t̄)− L

2 ∥t− t̄∥2 is strongly concave with

respect to t, we have that argmaxt∈T ĝ(x, t) is a singleton. Hence, by Proposition 2.3

ĝ(x, t) is differentiable with respect to x.

The following proposition states that the distance between vr and vr+1 does not tend

to zero during the inner iterations in Step1.

Proposition 4.2 Suppose that Assumption 4.1 holds. Then, there exists an M > 0 such

that

∥vr+1 − vr∥ ≥ γk
M

(4.2)

for any r ≥ 0 and k ≥ 0.

Proof Fix k arbitrarily. From Assumption 4.1(ii), there exists a positive number

Mk > 0 such that

∥g(vr+1, t)− g(vr, t)∥ ≤ Mk∥vr+1 − vr∥ (4.3)

for any t ∈ T and r. Moreover, since it follows g(vr, trnew) > γk and g(vr+1, trnew) ≤ 0

from Steps 1-1 and 1-2, respectively, we have

∥g(vr+1, trnew)− g(vr, trnew)∥ ≥ γk. (4.4)

From (4.3) and (4.4),

γk ≤ ∥g(vr+1, trnew)− g(vr, trnew)∥ ≤ Mk∥vr+1 − vr∥,

that is,

∥vr+1 − vr∥ ≥ γk
Mk

.

Letting M := maxk Mk, we have (4.2).

Next, we show that the inner iterations of Step 1 terminate finitely.

Theorem 4.1 Suppose that Assumption 4.1 holds. Then, the inner iteration in Step 1

of Algorithm 4.1 terminates finitely for each k.

7

Proof Suppose, for contradiction, that the inner iteration does not terminate finitely

for some k. Since {vr} is bounded by Assumption 4.1 (v), there exist accumulation points

v∗ and v∗∗ of {vr} such that vrj → v∗ and vrj+1 → v∗∗ as j → ∞. Moreover, we must

have v∗ ̸= v∗∗ from Proposition 4.2. Since gt̄ is differentiable by Proposition 4.1 and vr

solves NLP(E
r
), we have the following KKT conditions:

∇f(vr) +
∑
t̄∈Er

λr
t̄∇gt̄(v

r) = 0,

λr
t̄ ≥ 0, gt̄(v

r) ≤ 0, λr
t̄gt̄(v

r) = 0 (t̄ ∈ E
r
), (4.5)

where λr
t̄ is the Lagrange multiplier. Now, let us denote the optimal values of (1.1) and

NLP(E) by V (T) and V (E), respectively. Then, from Step 1-3, we have V (Er+1) =

V (E
r+1

)．Also we have V (E
r+1

) ≥ V (Er) since E
r+1 ⊆ Er. Consequently, we have

V (E0) ≤ V (E
1
) = V (E1) ≤ · · · ≤ V (Er) ≤ V (E

r+1
) = V (Er+1) ≤ . . . ≤ V (T) < ∞,

i.e.,

f(v1) ≤ f(v2) ≤ . . . ≤ V (T) < ∞,

Let Fr := f(vr+1)− f(vr)−∇f(vr)⊤(vr+1 − vr)．Then, we have

f(vr+1)− f(vr) = Fr −∇f(vr)⊤(vr+1 − vr)

= Fr −

∑
t̄∈Er

λr
t̄∇gt̄(x)

⊤

(vr+1 − vr)

≥ Fr −
∑
t̄∈Er

{
λr
t̄ (gt̄(v

r+1)− gt̄(v
r))

}
= Fr −

∑
t̄∈Er

λr
t̄gt̄(v

r+1)

= Fr −
∑
t̄∈Er

λr
t̄gt̄(v

r+1)−
∑

t̄∈Er\Er

λr
t̄gt̄(v

r+1)

≥ Fr ≥ 0.

where the first inequality follows from Assumption 4.1 (iv) and the third equality follows

from (4.5). In addition, the second inequality holds since Er ⊆ E
r+1

and λr
t̄ = 0 for any

t̄ ∈ E
r \Er.

Therefore, we have

0 = lim
r→∞

Fr = lim
j→∞

Frj = f(v∗∗)− f(v∗)−∇f(v∗)⊤(v∗∗ − v∗).

However, this contradicts the strictly convexity of f since v∗ ̸= v∗∗. Hence, the inner

iterations of Step 1 must terminate finitely for each k.

The next theorem shows the global convergence of Algorithm 3.1 .

8

Theorem 4.2 Suppose that Assumption 4.1 holds. Let x∗ be the optimum of SIP(1.1),

and {xk} be the sequence generated by Algorithm 3.1. Then, we have

lim
k→∞

xk = x∗.

Proof First, we show that {xk} is bounded. Let X(γ) := {x ∈ Rn | g(x, t) ≤ γ, ∀t ∈
T},Λ := {x ∈ Rn | f(x) ≤ f(x∗)}, and γ̄ := maxk≥0 γk. Since xk+1 ∈ Λ ∩X(γk) ⊆ Λ ∩
X(γ̄), it suffices to show that Λ∩X(γ) is bounded for any γ. Let h(x) := maxt∈T g(x, t).

Then,

X(γ) = {x ∈ Rn |h(x) ≤ γ}.

Since T is compact and g(x, t) is continuous, h(x) < ∞. Moreover, h is a proper closed

convex function since g(·, t) is convex and continuous from Proposition 2.2. Let h̄ : Rn →
(−∞,+∞] be defined as

h̄(x) :=

{
h(x) (x ∈ Λ)

∞ (x /∈ Λ).

Then, h̄ is also a proper closed convex function since Λ is convex. Thus we have

Λ ∩X(γ) = {x ∈ Rn | h̄(x) ≤ γ},

i.e., Λ∩X(γ) is a level set of function h̄. Notice that L∩X(0) = {x∗} since f is strictly

convex. Hence, by Proposition 2.1, L ∩X(γ) is compact for any γ.

Next, we show that limk→∞ xk = x∗. Let x be any accumulation point of {xk}. Then,
there exists a subsequence {xkj} ⊆ {xk} such that limj→∞ xkj = x. For any j and t ∈ T ,

we have g(xkj , t) ≤ γkj and f(xkj) ≤ f(x∗). Thus, by letting j → ∞, we have

g(x, t) ≤ 0 (∀t ∈ T), (4.6)

f(x) ≤ f(x∗), (4.7)

from the continuity of f and g. Since (4.6) implies the feasibility of x, we must have

f(x) ≥ f(x∗), which together with (4.7) implies f(x) = f(x∗). Therefore, x also solves

(1.1). Since f is strictly convex, we must have x = x∗. We thus have limk→∞ xk = x∗.

5 Implementation issues

In this section, we state some technical issues on implementing the proposed algorithm.

Especially, we provide some techniques for solving NLP(E0) and NLP(E
r+1

) in Step 1,

and how to choose L in Step 0 appropriately.

9

5.1 How to solve the subproblems

In this section, we show how to solve the subproblems NLP(E0), and NLP(E
r+1

) in Step

1. We note that it depends on whether or not the projection PT (·) in Step 1-1 can be

calculated explicitly.

We first consider the case where we have the explicit expression of PT . Let E ⊆ T

be an arbitrary finite set given as in (3.1). Then, for each i = 1, 2, . . . , p, we have

argmax
t∈T

{
g(x, t̄i) +∇tg(x, t̄

i)⊤(t− t̄i)− L

2
∥t− t̄i∥2

}
= PT

(
t̄i +

1

L
∇tg(x, t̄

i)

)
.

Thus NLP(E) can be cast as the following optimization problem with a finite number

of constraints:

minimize
x∈X

f(x)

subject to g(x, t̄i) +∇tg(x, t̄
i)⊤

(
PT

(
t̄i +

1

L
∇tg(x, t̄

i)

)
− t̄i

)
(5.1)

− L

2

∥∥∥∥PT

(
t̄i +

1

L
∇tg(x, t̄

i)

)
− t̄i

∥∥∥∥2 ≤ 0 (i = 1, 2, . . . , p).

For example, when T is represented by means of box constraints, the projection PT is

represented explicitly, and the above problem can be solved by an existing algorithm.

We next consider the case where PT cannot be calculated explicitly. Let E ⊆ T be

an arbitrary finite set given as in (3.1). Fix i ∈ {1, 2, . . . , p} and x ∈ X arbitrarily. Then,

the dual problem of

maximize g(x, t̄i) +∇tg(x, t̄
i)⊤(t− t̄i)− L

2
∥t− t̄i∥2 (5.2)

subject to t ∈ T = {t ∈ Rm |At ≤ b}

can be represented as

minimize
η∈Rl

1

2L
∥qt̄i(x, η)∥2 − rt̄i(x, η) (5.3)

subject to η ≥ 0,

where,

qt̄i(x, η) := −Lt̄i −∇tg(x, t̄
i) +A⊤η,

rt̄i(x, η) := ∇tg(x, t̄
i)⊤t̄i +

L

2
∥t̄i∥2 − g(x, t̄i)− b⊤η.

10

[2, Section 5.2.4]. Since the strong duality holds between (5.2) and (5.3), NLP(E) can

be rewritten equivalently as

minimize
x

f(x)

subject to min

{
1

2L
∥qt̄i(x, η)∥2 − rt̄i(x, η)|η ≥ 0

}
≤ 0 (i = 1, 2, . . . , p),

which is also equivalent to the following optimization problem with a finite number of

constraints:

minimize
x,η1,...,ηp

f(x)

subject to
1

2L
∥qt̄i(x, ηi)∥2 − rt̄i(x, η

i) ≤ 0, ηi ≥ 0 (i = 1, 2, . . . , p).

This is a convex programming problem with convex quadratic constraints if g(·, t) is

affine. Hence, it can be solved effectively by means of the interior point method.

5.2 How to determine the Lipschitz constant

Although Algorithm 3.1 requires the Lipschitz constant L satisfying (3.3), it is not easy

to find it in general. Alternatively, we set the value of Lt̄ for each t̄ ∈ Er respectively

and increase the value of Lt̄ in each inner iteration so that the following inequality holds

for each t̄ ∈ Er:

g(vr, t̄) ≤ g

(
vr, PT

(
t̄+

1

Lt̄
∇tg(v

r, t̄)

))
. (5.4)

Notice that (5.4) automatically holds when Lt̄ (t̄ ∈ Er) is the Lipschitz constant since

we have

g(vr, t̄) ≤ max
t∈T

{
g(vr, t̄) +∇tg(v

r, t̄)⊤(t− t̄)− Lt̄

2
∥t− t̄∥2

}
and

max
t∈T

{
g(vr, t̄) +∇tg(v

r, t̄)⊤(t− t̄)− Lt̄

2
∥t− t̄∥2

}
≤ g

(
vr, PT

(
t̄+

1

Lt̄
∇tg(v

r, t̄)

))
,

where the second inequality follows from (3.7) with E := Er, x := vr and t := PT (t̄ +
1
Lt̄
∇tg(v

r, t̄)). Note that, even if (5.4) is satisfied in each iteration, the output of the

algorithm may not be the optimum of the original SIP, since the property (3.3) may not

hold. In such a case, we may restart the algorithm with letting Lt̄ be a larger value, and

the initial index set T 0 be equal to Er obtained in the final iteration.

11

6 Numerical experiments

In this section, we implement Algorithm 3.1 and report some numerical results. The pro-

gram is coded in Matlab 7.4.0(R2007a) and run on a machine with an Inter(R)Core(TM)2

Duo E6850 3.00GHz CPU and 3GB RAM. For the sake of comparison, we also imple-

ment another exchange-type method named Exchange 2, in which we update the finite

index set as E
r+1

= E
r ∪ {trnew} and solve a sequence of finitely relaxed problems (3.2)

instead of NLP(E) in Step 1.

Test problem

As a test problem, we consider a semi-infinite program derived from the Chebyshev

approximation problem. Given a function h : R → R, one of the typical Chebyshev

approximation problem is to determine the coefficients (x1, x2, . . . , xn−1)
⊤ ∈ Rn−1 such

that
∑n−1

i=1 xit
i ≈ h(t) over a compact set T (⊆ R), where ti denotes the i-th power of

t ∈ R. This can be naturally reformulated as

min
x∈Rn

max
t∈T

∣∣∣∣∣h(t)−
n−1∑
i=1

xit
i

∣∣∣∣∣ .
By using an auxiliary variable xn ∈ R, the above problem can be transformed into the

following semi-infinite program with two linear semi-infinite constrains:

minimize
(x1,x2,...,xn)⊤∈Rn

xn

subject to

n−1∑
i=1

xit
i−1 − h(t) ≤ xn (t ∈ T), (6.1)

−
n−1∑
i=1

xit
i−1 + h(t) ≤ xn (t ∈ T).

In the experiment, we actually solve the above SIP with the following specific data:

n = 9, T = [−5, 5],

and

h(t) =


t+ 5

6π (t ≤ 5
6π),

sin(t+ 5
6π) (−5

6π < t ≤ 0),
1
2(1 +

√
3−

√
3 exp(t)) (0 < t ≤ 2),

5t2 − 1
2(40 +

√
3 exp(2))t+ 1

2(1 +
√
3 +

√
3 exp(2)) (t > 2).

12

Details of implementation

The actual implementation of Algorithm 3.1 and Exchange 2 are carried out as follows. In

Step 0, we set the initial index set T 0 as T 0 = {−5+ 5
4q}q=0,1,...,8. In Steps 1-0 and 1-2 of

Algorithm 3.1, we solve NLP(E) of the form (5.1) with PT (s) := med(−5, s, 5). For solv-

ing NLP(E) and the finite relaxed problem (3.2), we make use of fmincon solver in Matlab

Optimization Toolbox. In Step 1-1, if we cannot find trnew satisfying g(vr, trnew) > γk, then

we have to check the nonnegativity of maxt∈T (g(v
r, t)− γk). For solving maxt∈T g(vr, t),

we first choose grid points t̄i := −5 + (i − 1)/1000 (i = 1, . . . , 10001) from the index

set T and let tmax ∈ argmax1≤i≤10001 g(v
r, t̄i). Then we further set 10000 grid points

in [tmax − 1/10000, tmax + 1/10000], and find the maximum of g(vr, t) for those 10000

points.

We next explain how to determine the value of L in NLP(Er). Let Er ⊆ T be an

arbitrary finite set given as in (3.1). Fix i ∈ {1, 2, . . . , p} and x ∈ X arbitrarily. Let

{Lr
i }r≥−1 (i = 1, 2, . . . , p) be a sequence of positive numbers satisfying Lr+1

i = 2p
r
iLr

i

where pri ≥ 0 is the smallest integer such that

g(vr, t̄i) ≤ g

(
vr, PT

(
t̄i +

1

2p
r
iLr

i

∇tg(v
r, t̄i)

))
(6.2)

for each t̄i ∈ Er. We then set L = Lr
i (i = 1, 2, . . . , p) in the r-th iteration of Step 1.

Experiment 1

In the first experiment, we set γ0 = 10−5, trnew ∈ argmaxt∈T g(vr, t) and various value

of L−1
i (i = 1, 2, . . . , 9) defined in (6.2). Then we run Exchange 2 and Algorithm 3.1 for

solving SIP(6.1). The obtained results are shown in Table 1 and Table 2 where

optval: the objective functional value of SIP(6.1) in the final iteration;

max g: the value of maxt∈T g(vr, t) in the final iteration;

iter: the number of inner iterations in Step 1;

time(sec): computational time in seconds;

Algorithm 3.1(M): Algorithm 3.1 with L−1
i = M for all i.

Tfin: the r-th index set Er in the final iteration.

13

We also give Figures 1 and 2 showing how the objective functional value for SIP(6.1)

and maxt∈T g(vr, t) vary as the inner iteration proceeds in the exchange method and

Algorithm 3.1 with L−1
i = 20 for all i. From the tables, we can observe that Exchange 2

and Algorithm 3.1 with L−1
i = 20 and 100 find an optimum of SIP (6.1) successfully2.

However, Algorithm 3.1 with L−1
i = 10 fails to attain the optimum although it obtains

a feasible point such that maxt∈T g(vr, t) = 8.01× 10−7. This fact means that the value

of L is smaller than the value of Lipschitz constant. From Figs. 1 and 2, we can also

observe that Algorithm 3.1 finds the optimal solution in a lower number of iterations than

Exchange 2. This may represent that NLP(Er) approximates SIP(6.1) more precisely

than the finite relaxed problem (3.2).

Algorithm optval max g time(sec) iter

Exchange 2 0.465 1.58 × 10−6 17.5 20

Algorithm 3.1(20) 0.465 2.26 × 10−6 14.6 16

Algorithm 3.1(10) 0.504 8.01 × 10−7 9.33 10

Algorithm 3.1(100) 0.465 7.07 × 10−6 16.6 18

Table 1: comparison of the exchange method and Algorithm 3.1 (Experiment 1)

Algorithm Tfin

Exchange 2 {−4.56,−3.29,−1.57, 0.150, 0.153, 1.59, 2.41, 3.59, 4.61, 5}
Algorithm 3.1(20) {−4.56,−3.29,−1.57, 0.154, 1.59, 2.41, 3.60, 4.61, 5}
Algorithm 3.1(10) {−4.85,−3.53,−1.70, 0.093, 1.58, 2.44, 3.69, 5}
Algorithm 3.1(100) {−4.56,−3.30,−1.57, 0.150, 1.59, 2.41, 3.59, 4.61, 5}

Table 2: the index set obtained for the two methods (Experiment 1)

2We can observe that the regular exchange method can find the optimal value since the output

solution obtained by the regular exchange method satisfies the feasibility of SIP fully. Then, we can

observe that Algorithm 3.1(20,100) also finds the optimal solution since the output solution obtained by

Algorithm 3.1(20,100) is feasible and the optimal value obtained by Algorithm 3.1(20,100) coincides the

optimal value obtained by the exchange method.

14

Fig. 1: the optimal value for two methods

Fig. 2: max g for two methods

Experiment 2

In Experiment 1, we choose trnew such that trnew ∈ argmaxt∈T g(vr, t). However, to solve

maxt∈T g(vr, t), it often requires a high computational cost especially when T has a high

dimension. In this experiment, we consider other choices of trnew. Specifically, we select

trnew as follows: we first choose N grid points t̄i = −5 + 10i/N (i = 0, 1, . . . , N) from the

index set T and compute g(vr, t) for t = t̄1, t̄2, . . . , t̄N ∈ T . If we find a t̄ ∈ {t̄1, t̄2, . . . , t̄N}
such that g(vr, t̄) > γk, then we set trnew := t̄. We run Algorithm 3.1 and Exchange 2

with L−1
i = 20 for all i and various choices of N . The results are shown in Tables 3 and

4 where

15

Algorithm 3.1(N = M): Algorithm 3.1 with N = M ;

Exchange 2(N = M): Exchange 2 with N = M .

We also give Figures 3 and 4 showing how the objective function value for SIP (6.1)

and maxt∈T g(vr, t) vary as the inner iteration proceeds in Exchange 2 and Algorithm 3.1

with L−1
i = 20. From the tables, we can observe that Algorithm 3.1 with N = 1000, 10

and 100 succeed in obtaining an optimum of SIP (6.1). On the other hand, Exchange

2 cannot find an optimum within the time limit. Also, from the figures, we can observe

that Algorithm 3.1 converges rapidly at first, but it converges slowly from the middle.

Algorithm optval max g time(sec) iter

Exchange 2(N = 100) 0.465 4.97 ×10−3 fail fail

Algorithm 3.1(N = 1000) 0.465 7.97 ×10−6 16.0 18

Algorithm 3.1(N = 100) 0.465 9.05 ×10−6 56.2 67

Algorithm 3.1(N = 10) 0.465 9.69 ×10−6 89.0 106

Table 3: comparison of the exchange method and Algorithm 3.1 (Experiment 2)

Algorithm Tfin

Exchange 2(N = 100) {−4.6,−3.3,−1.6, 0.2, 1.6, 2.4, 3.6, 4.6, 5}
Algorithm 3.1(N = 1000) {−4.56,−3.29,−1.57, 0.151, 1.59, 2.41, 3.60, 4.61, 5}
Algorithm 3.1(N = 100) {−4.56,−3.29,−1.57, 0.157, 1.59, 2.41, 3.59, 4.61, 5}
Algorithm 3.1(N = 10) {−4.56,−3.29,−1.57, 0.150, 1.59, 2.41, 3.59, 4.61, 5}

Table 4: the index set obtained for the two methods (Experiment 2)

16

Fig. 3: the optimal value for two methods

Fig. 4: max g for two methods

7 Conclusion

In this paper, we proposed the new algorithm for solving semi-infinite programming

problems, and showed its convergence property under some assumptions. We also ap-

plied the algorithm to certain Chebyshev approximation problems and observed that

the algorithm finds the SIP optimum efficiently. However, there still remain some future

works. First, it is desired to relax the assumption that were used for the convergence

analysis. Also, it is important to consider better techniques of how to choose the constant

17

L when the Lipschitz constant is unknown.

Acknowledgments

First of all, I would like to express my sincere appreciation to Associate Professor Nobuo

Yamashita for his useful advice. Although I sometimes troubled to him by my faults, he

always helped me kindly. I would like to tender my acknowledgment to Shunsuke Hayashi

and Takayuki Okuno. They corrected my thesis and gave me helpful comments. I am

also grateful to Assistant Professor Ellen Hidemi Fukuda for her numerous comments.

Finally, I would like to thank all members of Yamashita Laboratory, my friends and my

family for their tremendous support.

References

[1] B. Betro, An accelerated central cutting plane algorithm for linear semi-infinite

programming, Mathematical Programming, 101 (2004), pp. 479–495.

[2] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press

(2004).

[3] F. Facchinel and J. S. Pang, Finite-Dimensional Variational Inequalities and Com-

plementarity Problems, Vol. 2, Springer, (2003).

[4] S. Hayashi and S. Y. Wu, An explicit exchange algorithm for linear semi-infinite

programming problems with second-order cone constraints, SIAM Journal on Op-

timization, 20 (2009), pp. 1527–1546.

[5] K. O. Kortanek and H. No, A central cutting plane algorithm for convex semi-infinite

programming problems, SIAM Journal on Optimization, 3 (1993), pp. 901–918.

[6] T. Okuno, S. Hayashi and M. Fukushima, A regularized explicit exchange method

for semi-infinite programs with an infinite number of conic constraints, SIAM Jour-

nal on Optimization, 22 (2012), pp. 1009–1028.

[7] E. Polak, Optimization: Algorithms and Consistent Approximations, Springer,

(1997).

[8] R.T. Rockafellar, Convex Analysis, Princeton University Press (1970).

[9] A. Shapiro, Semi-infinite programming, duality, discretization and optimality con-

ditions, Optimization 58 (2009), pp. 133–161.

[10] G. Still, Discretization in semi-infinite programming: the rate of convergence, Math-

ematical Programming 91 (2001), pp. 53–69.

18

[11] K. L. Teo and X. Q. Yang and L. S. Jennings, Computational discretization al-

gorithms for functional inequality constrained optimization, Annals of Operations

Research 28 (2000), pp. 215–234.

19

Master’s Thesis

An exchange method with refined subproblems for

convex semi-infinite programming problems

Guidance

Associate Professor Nobuo YAMASHITA

Kensuke GOMOTO

Department of Applied Mathematics and Physics

Graduate School of Informatics

Kyoto University

K
Y
O
T

O
UNIVER

S
IT
Y

F
O

U
N
DED

1
8

9
7

KYOTO JAPAN

February 2014

A
n
ex
ch
an

ge
m
eth

o
d
w
ith

refi
n
ed

su
b
p
rob

lem
s
for

con
vex

sem
i-in

fi
n
ite

p
rogram

m
in
g
p
rob

lem
s

K
en
su
ke

G
O
M
O
T
O

F
eb
ru
ary

2014

An exchange method with refined subproblems for

convex semi-infinite programming problems

Kensuke GOMOTO

Abstract

The semi-infinite programming problem (SIP) is an optimization problem with an in-

finite number of constraints in a finite dimensional space. The SIP has been studied

extensively so far, since a lot of practical problems in various fields such as physics,

economics, and engineering can be formulated as the SIPs. The exchange method is one

of the most useful algorithms for solving the SIP, and it has been developed by many

researchers. In this paper, we focus on the convex SIPs and propose a new exchange

method for solving them. While the traditional exchange method solves a sequence of

the relaxed problems with finitely many constraints that are selected from the original

constraints, our method solves a sequence of semi-infinite programs relaxing the original

SIP. These relaxed problems can be solved efficiently by transforming them into cer-

tain optimization problems with finitely many constraints. Moreover, under some mild

assumptions, they approximate the original SIP more precisely than the finite relaxed

problems in the traditional exchange method. We also establish global convergence of

the proposed method under strict convexity assumption on the objective function, and

examine its efficiency through some numerical experiences.

