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Abstract

In this paper we consider both clustering and graphical modeling for given data. The
clustering is the task of grouping of the data, while the graphical modeling provides a
conditional dependence structure among variables in the data. In this paper we sup-
pose that the data obeys a mixture of normal distributions. Then, we may apply the
existing methods based on the maximum likelihood estimation, that is, the Expectation
Maximization (EM) algorithm and the L1 regularized maximum likelihood estimation.
The EM algorithm provides clusters such that each cluster obeys a single normal dis-
tribution. The L1 regularized maximum likelihood estimation finds a sparse precision
matrix whose nonzero element represents a dependency of the corresponding variables.
It assumes that the data obeys a single normal distribution. Thus we may apply it for
each cluster given by the EM algorithm. However, this procedure estimates two different
mixture distributions by two algorithms, which should be the same.

In this paper we propose a simultaneous estimation model for mixture distributions
and a sparse precision matrix from the given data. We first formulate a maximization
problem of the log likelihood function of mixture distribution with the L1 regularized
term of the precision matrix. We then propose a coordinate descent method for solving
the problem. The proposed method is a generalization of the EM algorithm. We present
some numerical results that show the validity of the proposed model.
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1 Introduction

With the developments in information science, vast amounts of information have been
flooding in society. In such a situation, we must take advantage of a large amount of
information using the data processing techniques. Thus it is important to obtain useful
information efficiently. As such techniques, there have been studied machine learning,
data mining, and a stochastic model.

In this paper we focus on clustering and graphical modeling as the data processing
technique. The clustering is the task of grouping of the data, while the graphical mod-
eling provides a conditional dependence structure among variables in the data. These
techniques are based on statistics that estimates the nature and structure of the infor-
mation source from the given data, and provide valuable knowledge on the data with
complex structure such as mixture distributions.

In this paper we consider the clustering for normal mixture distributions, which are
piled up multiple normal distributions. It assumes that what distribution observations
arise from is unknown. Then, since observations is incomplete, it is difficult to estimate
the mixture distributions by clustering .

The Expectation Maximization (EM) algorithm is the useful technique for estimat-
ing the complex distribution such as mixture distributions. The algorithm is an iterative
method for finding maximum likelihood or maximum a posteriori estimates of parame-
ters in statistical models, where the model depends on unobserved latent variables [1]. In
general,it is difficult to maximize the likelihood for margin distribution of observations
and latent variables. Thus, the EM algorithm calculates the conditional expectation of
the log-likelihood function using the current estimate for the parameters, and then max-
imize a expectation function. In practice, the objective function arising from a clustering
is usually non-convex. Fortunately the expectation function in the EM algorithm is con-
cave [2]. Therefore we can obtain the estimation for the parameters explicitly. In [4], the
EM algorithm for normal mixture distributions can be interpreted as a block coordinate
descent method. Then we can show a global convergence for the EM iterations.

In this paper we also consider the graphical modeling for investigating the depen-
dence structure among variables. By using the graphical modeling, we can visualize the
structure and obtain the essential dependency. A Graphical Gaussian Model (GGM) is
a representative example to graphical modeling. GGM describes the liner graph among
variables which obey a normal distribution. Although we describe the detail in section
2.2, the nonzero element of a precision matrix represents the dependency of correspond-
ing variables. Thus, for the graphical modeling, we need to estimate the sparsity of a
precision matrix.

The L1 regularized maximum likelihood estimation finds a sparse precision matrix
whose non-diagonal elements is partly zero. Recently, the L1 regularized maximum like-
lihood estimation has been studied intensively, and various estimation models are pro-
posed, [7, 8]. In [9], the simultaneous estimation model for multiple precision matrices
corresponding to the set of variables. However, since it is assumed that these matrices
have the same structure, this model is not appropriate for the different data set.
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In this paper we propose a simultaneous estimation model for mixture distributions
and a sparse precision matrix from the given data. We first formulate a maximization
problem of the log likelihood function of mixture distribution with the L1 regularized
term of the precision matrix. We then propose a coordinate descent method for solv-
ing the problem. The proposed method is a generalization of the EM algorithm. The
proposed model includes the following advantages.

• It enables us to provide the clusters for normal mixture distributions and estimate
the graphical model for each cluster.

• It can be Applied to the model that have the unobserved latent variable.

The log likelihood function of mixture distribution with the L1 regularized term of the
precision matrix is concave and its maximization problem is a log-determinant semidef-
inite programing. The problem is solved by interior point method or coordinate descent
method.

The remainder of the paper is organized as follows. In Section 2, we introduce the
details of the clustering for mixture distributions, the EM algorithm, and the L1 max-
imum likelihood estimation for GGM. Then we propose the simultaneous estimation
model for normal mixture distributions and sparse precision matrix, and formulate the
log-likelihood function with L1 regularized term of the precision matrix in Section 3. We
also show the global convergence for the proposed model. In Section 4, we report some
results of numerical experiments that show the validity of the proposed model. Finally,
we give concluding remark in Section 5.

2 Preliminaries

In this section, we introduce the clustering for mixture distributions by using EM algo-
rithm. We also explain normal graphical model estimation (GGM).

2.1 Mixture distributions and clustering

We first formulate the clustering for mixture distributions including latent variables.
Let z ∈ Rm be a latent vector. The latent vector z is a 1-of -m expression, where only

one variable zi in z1, ..., zm is one, and the others are zero. The latent variable indicates
which clusters each data is observed from. For example when a data x is observed from
the ith cluster, we set zi = 1 and zj = 0 (i ̸= j). Moreover, if multiple observations
x1, ..., xn are given, we may define the latent variable zk corresponding to each data xk.
Now we formulate a marginal distribution p(z) and its conditional distribution p(x|z).
In addition, p(z) is determined by mixture coefficient αi as follows.

p(zi = 1) = αi,

where αi is probability that x arise from the ith cluster. Note that α ∈ Ω, where
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Ω =

{
α = (α1, ..., αm)T :

m∑
i=1

αi = 1, αi ≥ 0, i = 1, . . . ,m

}
.

Then p(z) can be written as

p(z) =

m∏
i=1

αi
zi , (2.1)

Now we assumes that the data x obeys a normal distribution. Then, when zi = 1,
p(x|zi = 1) is given by

p(x|zi = 1) = N (x|µi,Σi).

Note that each cluster i of data corresponds to a single normal distribution N (µ⟩,±⟩)
Similar to (??p(z))), p(x|z) similarly for normal mixture distributions is given as

p(x|z) =
m∏
i=1

N (x|µi,Σi)
zi . (2.2)

Then, we can give the marginal distribution of x with (2.1) and (2.2) from the joint
distribution p(z)p(x|z).

p(x) =
∑
z

p(z)p(x|z) =
m∑
i=1

αiN (x|µi,Σi). (2.3)

Now we consider the estimation the αi, µi and Σi for i = 1, ...,m. Since the observations
are given, the mixture distributions function can be regarded as the likelihood function
about αi and random variables (µi,Σi). Thus we can write the likelihood function as

L(α, µ,Σ) =

m∑
i=1

αiN (x|µi,Σi). (2.4)

When αi is given by the maximum likelihood estimation, we can determine latent vari-
ables for each observation. Therefore we can give these observations the information of
whether they arise from which clusters. That is why it is possible to realize a clustering
for observations.

In next subsection, to estimate parameters for mixture distributions including latent
variables, we introduce the EM algorithm.

2.1.1 Expectation Maximization algorithm

The EM algorithm is a technique for parameter estimations in a statical model including
an unobserved incomplete data. Since the EM algorithm is simple, it is easy to implement.
The main iteration of the EM algorithm are described as follows.

• Formulate the log-likelihood function for the parameters if observations and its
distribution are given.

3



• Calculate the conditional expectation to the log-likelihood with the current pa-
rameter estimate (Expectation Step, E-Step).

• Find the maximizer of the conditional expectation (Maximization Step, M-Step).

Let an observed data and an unobserved latent variable be X and Z. Then p(X|θ) is
the probability distribution ofX, where θ is the parameter that represents the probability
distribution. Now we formulate the log-likelihood function for θ.

L(θ) = log p(X|θ) = log

{∑
Z

p(X, Z|θ)

}
.

When the model is the mixture distributions, we do not know which clusters data X is
observed from, and hence we cannot obtain the complete data (X,Z). Thus, We cannot
maximize the log-likelihood function L(θ) directly. Instead it assumes that the latent
variable is given, and we consider the conditional expectation to the likelihood with
the given parameter (E-Step). Moreover we obtain the maximum likelihood estimate by
maximizing the conditional expectation (M-Step).

The EM algorithm alternates the E-Step and the M-Step, and finally maximize the
log-likelihood function. The following is the detail.

E-Step
Formulate the conditional expectation.

Q(θ| θt) = Ez[L(θ) |X, θt].

M-Step
Find the maximizer θ̂ of Q(θ| θt). Update θ̂ to θt+1

2.1.2 The EM algorithm for normal mixture distributions

We explain the case when we apply EM algorithm to normal mixture distributions.
Given n independent and identically-distributed (i.i.d.) observations x1, ..., xn ∈ Rd

drawn from a d-dimensional normal distribution Ni(µi, Λi
−1), the probability density

function is given by

p(xk |α, µ,Σ) =

m∑
i=1

αipi(xk |µi,Σi), (2.5)

where α = (α1, ..., αm)T , µ = (µ1, ..., µm), Σ = (Σ1, ...,Σm). Moreover µi is a mean of
the ith cluster, and Σi is a covariance matrix, which is symmetric semidefinite.
Then we represent the joint distributions for the observations X = (x1, ..., xn) as :

P (X |α, µ,Σ) =
n∏

k=1

p(xk |α, µ,Σ). (2.6)

4



When we obtain the observations X, the log-likelihood function for the parameters µ, Σ
is given by

L(α, µ,Σ) = logP (X |α, µ,Σ)

=

n∑
k=1

log p(xk |α, µ,Σ). (2.7)

For the maximum likelihood estimation for α, µ,Σ, we formulate the following opti-
mization problem.

maximize L(α, µ,Σ)

subject to α ∈ Ω, Σi ⪰ 0, i = 1, . . . ,m.

Unfortunately it is quite difficult to solve this problem via a direct optimization
solver. Thus we can calculate the conditional expectation to the log-likelihood function
based on the given parameters αt, µt, Σt at E-Step.

Q(α, µ, Σ) = E
[
L(α, µ, Σ) | x, αt, µt, Σt

]
=

n∑
k=1

m∑
i=1

γik logαipi(xk |µi,Σi), (2.8)

where γik is defined as follows.

γtik =
αt
ipi(xk |µt

i,Σ
t
i)

p(xk |αt, µt, Σt
1, ...,Σ

t
m)

. (2.9)

At M-Step, we maximize Q(α, µ, Σ) with respect to α, µ,Σ variables. The maximizers of
Q(α, µ, Σ) are obtained via Lagrange multiplier method to each variables. Then these
maximizers can be obtained explicitly by using γtik as follows and the following is just
like at current iteration.

αt+1
i =

N t
i

n
, µt+1

i =
1

N t
i

n∑
k=1

tγik xk. (2.10)

Σt+1
i =

1

N t
i

n∑
k=1

γtik (xk − µt
i)(xk − µt

i)
T , (2.10’)

where Ni is given by

N t
i =

n∑
k=1

γtik. (2.11)

From the above, once γik is obtained, we can calculate the maximizers of Q(α, µ, Σ)
at each iteration. We describe the details of the EM algorithm.
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Algorithm 1 Choose starting parameters α0, µ0, Σ0.
Let t = 0.

Step1 At the current iteration,

E-Step compute γtik from (2.9) by (αt, µt, Σt).

M-Step Compute the next iterate parameters (αt+1, µt+1, Σt+1) from (2.10) by
obtained γtik at E-Step.

Step2 Terminate the iteration if a certain termination condition holds. Otherwise go
to Step1.

2.1.3 Another Interpretation of the EM algorithm

We can give an another interpretation [4] to the Steps of the EM algorithm for normal
mixture distributions. Then the following function is defined in [4].

D(W, α, µ, Σ) =

m∑
i=1

n∑
k=1

Wik(logWik − logαipi(xk |µi,Σi)), (2.12)

where W is a variable such that

W ∈ vM =

{
W ∈ Rmn : 0 ≤ Wik ≤ 1,

m∑
i=1

Wik = 1,

n∑
k=1

Wik > 0

}
.

By using this function, we can rewrite the steps of the EM algorithm.

Algorithm 2 Choose starting parameters α0, µ0, Σ0.
Let t = 0.

Step1 At the current iteration,

Step1-1 Let (αt, µt, Σt) be fixed. Minimize D(W, αt, µt, Σt) over W ∈ M . The
minimizer Ŵik is obtained explicitly, and is as follows:

Ŵik =
αt
ipi(xk |µt

i,Σ
t
i)

p(xk |αt, µt, Σt
1, ...,Σ

t
m)

(2.13)

Step1-2 Update Ŵik to W t+1
ik . we obtain (αt+1, µt+1, Σt+1) by minimizing D(W t+1, α, µ, Σ)

with respect to α ∈ Ω, µ, Σi ⪰ 0.

Step2 Terminate the iterate if

D(W t, αt, µt, Σt)−D(W t+1, αt+1, µt+1, Σt+1) < τ,

where τ is a positive constant.
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Here comparing (2.13) and (2.9), The right hand of (2.13) corresponds to that of
(2.9). From this fact, we see the following relation.

Remark 1 In Algorithm 1 and Algorithm 2, Ŵ from (2.13) is equivalent to γtik from
(2.9)

This means that we regard Step 1-1 as the E-Step of of determining the conditional
expectation Q(α, µ, Σ) of the complete data log-likelihood function. For a fixed W t+1

Step 1-2 is equivalent to the M-Step of maximizing Q(α, µ, Σ).
Moreover note that D(W t+1, α, µ, Σ) = −L(α, µ,Σ) when W t+1 is fixed. Thus

(αt+1, µt+1, Σt+1) are the minimizers of D(W t+1, α, µ, Σ). It follows that the step of
the EM algorithm is viewed as the step in the block coordinate descent method for
minimizing D(W, α, µ, Σ) with respect to W and α, µ, Σ. Then it is clear that

D(W t, αt−1, µt−1, Σt−1) ≤ D(W t, αt, µt, Σt)

≤ D(W t+1, αt, µt, Σt).

Note that D(W, α, µ, Σ) is convex with respect to W and α, µ, Σ, respectively.
Moreover the algorithm 2 has a global convergence property.

2.2 Graphical Gaussian model

The Graphical Gaussian Model (GGM) is a graphical interpretation of the structural
dependency among variables that obey a normal distribution. This graph structure has
edges and nodes. The edges represent the conditional dependence among the two vari-
ables, while the nodes is corresponding to variables.

The conditional independence is an index that shows the dependency among vari-
ables. It assumes that n variables R1, R2, ..., Rn obeys a single normal distribution. If the
conditional independence between Ri and Rj is satisfied, Ri is conditionally independent
of Rj for given the other variables.

Estimation of the conditional independence is equivalent to estimation of a sparse
precision matrix corresponding to variables that obeys the normal distribution. The
precision matrix is the inverse of covariance matrix, that is, Λ = Σ−1 ∈ Rd×d. The
following relation satisfied the elements of the sparse precision matrix and conditional
independence to variables is important for our study.

Definition 2.1 (Conditional independence) Suppose that n variables R1, R2, ..., Rn

obeys a single normal distribution N (µ, Λ−1). Then Ri and Rj are conditional indepen-
dent given the other variables if and only if Λij is equal to zero.

In brief, if most of variables are conditional independent, the precision matrix is sparse.
However the precision matrix estimated by the maximum likelihood estimation is usually
dense, and therefore essential dependency among variables is not clear.

In order to estimate a sparse precision matrix, the L1 regularized maximum likelihood
estimation have been proposed. This estimation is based on the following optimization
with the L1 regularized term of the precision matrix Λ.
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minimize L(Λ) + ρ ||Λ||1
subject to Λ ⪰ 0,

where ρ is a positive constant, and L(Λ) is log-likelihood function of the single normal
distribution. It assumes that observations x is given, L(Λ) is just as follows.

L(Λ) = tr(ΛΣ̂) − log det(Λ),

where Σ̂ is the sample covariance matrix. It is revealed that if a precision matrix Λ is
semidefinite symmetric, this function is convex [11]. Therefore the above L1 regularized
problem is a convex optimization.

3 Simultaneous Estimation Model

In this section, we propose the simultaneous estimation model for mixture distributions
and sparse precision matrices. We realize a clustering for mixture distributions by the
EM algorithm, and estimate these precision matrices by using the L1-regularized term.

3.1 The Proposed model

As in the previous section, given n i.i.d. observations x1, ..., xn ∈ Rd drawn from a
d-dimensional normal distribution Ni(µi, Λi

−1), the probability density function is as
follows.

pi(xk |µi,Λi
−1) =

1

(2π)
n
2 |Λi

−1|
1
2

exp

(
−1

2
(xk − µi)

TΛi(xk − µi)

)
. (3.14)

where the precision matrix Λ = Σ−1 is the inverse covariance matrix, and is symmetric
semidefinite matrix. Then a family of mixture distributions of m clusters is given by

p(xk |α, µ,Λi
−1) =

m∑
i=1

αipi(xk |µi,Λi
−1)

=

m∑
i=1

αi

(2π)
n
2 |Λi

−1|
1
2

exp

(
−1

2
(xk − µi)

TΛi(xk − µi),

)
(3.15)

where α ∈ Ω is defined before.
Moreover, from (2.7), we consider the following log-likelihood function to joint distribu-
tion for observations X = (x1, ..., xn),

L(α, µ,Λ−1
1 , ...,Λ−1

m ) = logP (X |α, µ,Λ−1
1 , ...,Λ−1

m )

=
n∑

k=1

log p(xk |α, µ,Λ−1
1 , ...,Λ−1

m ). (3.16)
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Since 1 / |Λi
−1|

1
2 = |Λi|, the left-hand can be regarded as expression as a variable Λi. In

what follows, we view (3.16) as L(α, µ,Λ1, ...,Λm) instead of L(α, µ,Λ−1
1 , ...,Λ−1

m ). There
let Λ = (Λ1, ...,Λm). Then we can rewrite

L(α, µ,Λ) =

n∑
k=1

log

{
m∑
i=1

αi|Λi|
1
2

(2π)
n
2

exp

(
−1

2
(xk − µi)

TΛi(xk − µi)

)}
. (3.17)

However, even if we maximize this likelihood function directly to estimate parameters,
precision matrices Λi(i = 1, ...,m) do not have sparsity patterns because these covariance
matrices are dense in general.

Therefore, we introduce the L1-regularized norm of precision matrix is introduced to
(3.17) so that these matrices is sparsity. By maximizing the log-likelihood function with
L1-regularized norm, we can realize a clustering for mixture distributions and estimate
the sparse precision matrix simultaneously. Then optimization problem that is based on
the L1-regularized maximum likelihood method is as follows.

(P) maximize L(α, µ,Λ)−
m∑
i=1

ρ ||Λi||1

subject to α ∈ Ω, Λi ⪰ 0, i = 1, . . . ,m,

where ρ is a nonnegative weight, and ||Λ||1 =
∑n

i=1

∑n
j=1 |Λij |. The parameter ρ controls

the trade-off between the goodness-of-fit and sparsity of Λi. As discussed in the previous
section, after calculating the conditional expectation at E-Step, we get the following
function.

Q̄(α, µ, Λ) = E

[
L(α, µ, Λ)−

m∑
i=1

ρ ||Λi||1 |X, αt, µt, Λt

]

=

n∑
k=1

m∑
i=1

γik logαipi(xk |µi,Λi)−
m∑
i=1

ρ ||Λi||1, (3.18)

where γik is the same as (2.9).
Here the following theorem gives the estimation values of parameters that are maxi-

mizers of Q̄(α, µ, Λ) at M-Step.

Theorem 3.1 The maximizers (αt+1, µt+1) of Q̄(α, µ, Λ) are given by (2.10).

Proof Since the L1-regularized term of Λi is independent of the parameters α, µ, it is
clear that αt+1 µt+1 obtained at M-Step are written as (2.10). □

Considering the above theorem, the steps of EM algorithm for (P) are rewritten as
follows.
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Algorithm 3 Choose starting parameters α0, µ0, Λ0. Let ρ = (ρ1, ρ2, . . . , ρm)T be a
given parameter. Let t = 0.

Step1 Compute γtik from (2.9) by (αt, µt, Λt).

Step2

Step2-1 Compute the next iterate parameters (αt+1, µt+1) from (2.10) by ob-
tained γtik at Step1.

Step2-2 Compute Λt+1 by solving solve the below problem for Λi ⪰ 0.

(Q′) maximize Q̄(αt+1, µt+1, Λ)

subject to Λi ⪰ 0, i = 1, . . . ,m.

Step3 Terminate the iteration if a certain termination criteria holds. Otherwise go to
Step1.

Note that the objective function of (Q’) is written as

Q̄(αt+1, µt+1, Λ) =
m∑
i=1

{
N t

i

(
log (detΛi)− tr(ΛiΣ̂i)

)
− ρ ||Λi||1

}
, (3.19)

where Σ̂ is defined by

Σ̂i =
1

N t
i

n∑
k=1

γtik (xk − µt+1
i )(xk − µt+1

i )T .

If Λi is symmetric semidefinite matrix, log (detΛi)− tr(ΛiΣ̂) in (3.19) is concave on Λi.
Moreover since the L1-regularized term is convex, we say that Q̄(α, µ,Λ) is concave with
respect to Λi. Thus by changing the sign of the objective function (3.19), we can regard
(Q’) as the convex semidefinite programming problem, and its problem has a unique
solution.

3.2 Global Convergence

Here we show the global convergence of of Algorithm 3 for the proposed model (P). We
introduce the following function that has the L1-regularized term on D(W,α, µ,Σ).

D̄(W,α, µ,Λ) =

m∑
i=1

n∑
k=1

Wik(logWik − logαipi(xk |µi,Λi)) +

m∑
i=1

ρ ||Λi||1.

By applying the block coordinate descent method to the minimization of the above
function, we can minimize D̄(W,α, µ,Λ) with respect to W and α, µ,Λ, respectively.
Then we give the following theorem.
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Theorem 3.2 Let (αt, µt, Λt) be fixed. Then the minimizer W̄ik of D̄(W, αt, µt, Λt)
over W ∈ M is given as (2.13).

Proof Note that
∑m

i=1 ρ||Λt
i||1 is regarded as a constant because Λt

i is fixed. Thus, ignor-
ing the constant term that does not depend on W , the minimization of D̄(W, αt, µt, Λt)
over W is equivalent to the minimization of D(W, αt, µt, Λt) from (2.12). □

It follows from Remark 1 that

W̄ik =
αt
ipi(xk |µt

i,Λ
t
i)

p(xk |αt, αt, µt, Λt)
.

Besides, the next theorem explains the relation between the updated parameters (αt, µt)
and D̄(W t, α, µ, Λt).

Theorem 3.3 The parameters αt+1, µt+1 by (2.10) are the minimizer of D̄(W t+1, α, µ, Λt)
with respect to α and µ, respectively.

Proof Since the L1-regularized term is not dependent of α and µ, this theorem is shown
by considering αt+1, µt+1 are optimal solutions for D(W t+1, α, µ, Λt) from (2.12). □

Now suppose that W t+1, αt, µt are fixed. Now suppose that fix (W t+1, αt, µt). Ig-
noring the constant term and substituting D̄(W, α, µ,Λ) to W t+1, αt, µt, we obtain

D̄(W t+1, αt+1, µt+1, Λ) =

m∑
i=1

{
N t

i

(
tr(ΛiΣ̂i)− log (detΛi)

)
+ ρi|||λi||1

}
.

Note that D̄(W t+1, αt+1, µt+1,Λ) is also convex with respect to Λi. Thus, as D̄(W,α, µ,Λ)
is convex function with respect to W , α, µ, and Λ, respectively. The approach by the
block coordinate descent method has global convergence properties, Algorithm 3 also
has global convergence.

4 Numerical experiment

In this section, we conduct numerical experiments to evaluate the validity of the pro-
posed model. We make sure that the precision matrix estimated by the proposed mod-
el has sparse pattern. All computations were carried out on a machine with Intel(R)
Atom(TM) 1.86GHz CPU and 2.00GB memory, and we implement all codes in MAT-
LAB8.0.0 (R2012b).

In experiments, we maximize the log-likelihood function with the L1 regularized term
of the precision matrix by applying the block coordinate descent method to Algorithm
3. Then at M-Step, we must the following problem (i = 1, ...,m) to obtain Λt+1 from
(3.19).

11



minimize tr(ΛiΣ̂i)− log (detΛi) + ρ ||Λi||1
subject to Λi ⪰ 0.

[10] shows that this problem is solved efficiently by applying interior point method. Thus
we use the same method to solve this problem.

In this paper, we first generate the observations from the sample mixture distributions
whose the parameters are µ̃i, Λ̃i (i = 1, ...,m). µ̃i ∈ Rd is a vector ((i − 1)η, 0, ..., 0)T ,
which η is a positive constant and indicates how far the centers of each cluster is. In
other words, the larger eta is, the farer the centers of each cluster are. The sample
precision matrix Λ̃i ∈ Rd×d is the sparse matrix that is generated arbitrarily. We use
k-means method to set the staring iterates α0, µ0, Λ0. Then we compute µ0 to the
observations by k-means, and we compute the covariance matrices Σ̄i(i = 1, ...,m) of
the clusters divided by k-means. There, to ensure that Λ0

i is positive definite, we set
Λ0
i = (Σ̄i + I)−1, where I is an unit matrix. Moreover given the random number to

γ0ik ∈ M , we compute α0 from (3.19). Now we compare the estimated precision matrices
Λi to the sample precision matrices Λ̃i. Then we set m = 2 so that we can compare them
easily. We also set up Λ̃1 like a arrow matrix, Λ̃2 like a tridiagonal matrix.

Experiment 1 : We conduct the experiments by changing the value of ρ. The following
figures illustrate what the nonzero elements of the precision matrices are visualized when
we set d = 20, n = 2000, η = 5. Figure 1 presents the sample precision matrices, while
Figure 2. 3. 4 present the estimated precision matrices. We note that all the estimated
matrices are the same structures as the sample precision matrices. Thus the proposed
model estimates the exact precision matrices relatively. In particular, the number of the
nonzero elements in the estimated matrices is fewer than that of the arrow matrix Λ̃1

by the L1 regularized term. However, on the other hand, the number of the nonzero
elements increases for the estimated matrices to the tridiagonal matrix Λ̃2. This shows
the effect by the parameter ρ. If the value of ρ is larger, the accuracy of estimate is
worse, while if the value is smaller, the effect of the L1 regularized term is smaller.
　

Experiment 2 : When we fix the parameter ρ = 0.1, we conduct the experiments by
changing the value of η. Then we use the same sample precision matrix on Experiment
1. The following Figure 5. 6. 7 illustrate the estimated precision matrices on η = 0, 5, 10.
We can see the same result on Figure 6. 7. There we examine the value of γ0ik that is
responsibility for xk when we set η = 5, 10. If γ0ik is 1 or 0, the observation xk belongs
to an one cluster completely. On η = 5, γ0ik is not 1 or 0 for every k = 1, ..., n, while on
η = 10, γ0ik is 1 or 0 for all k = 1, ..., n. Thus,the same result on Figure 6. 7 shows that
the clustering by EM algorithm is well on η = 5. Moreover we note that the estimated
precision matrix corresponding the arrow matrix on Figure 5 is sparser than the other
Figure 6, 7. Considering the centers of each clusters coincides when η = 0, we can see
that our estimation is well relatively. However, on any Figures, the estimated precision
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Figure 1: the sample precision matrices

Figure 2: ρ = 0.05
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Figure 3: ρ = 0.1

Figure 4: ρ = 0.3
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matrices corresponding to the tridiagonal matrix Λ̃2 are not the tridiagonal. This results
show that the more complex the sample precision matrix is, the worse the accuracy of
estimation is.

Figure 5: η = 0

Figure 6: η = 5

5 Conclusion

In this paper, we proposed the simultaneous estimation model for normal mixture dis-
tributions and the sparse precision matrix. We also show the global convergence to the

15



Figure 7: η = 10

algorithm for proposed model by applying the block coordinate descent method. More-
over we experiment for the proposed model. By changing the parameter ρ, we can see
the effect of the L1 regularized term, and by changing the position of the center of the
sample cluster, we can see the clustering for mixture distributions is well done. However,
when the sample sparse precision matrix is complex, the estimation is worse. Therefore
it is important to study more accurate estimation for the complex precision matrix. It
is also worth to try analyzing the real data with proposed model.
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Simultaneous Likelihood Estimation for Normal Mixture

Distributions and Sparse Precision Matrix

Kazuki MATSUDA

Abstract

In this paper we consider both clustering and graphical modeling for given data. The
clustering is the task of grouping of the data, while the graphical modeling provides a
conditional dependence structure among variables in the data. In this paper we sup-
pose that the data obeys a mixture of normal distributions. Then, we may apply the
existing methods based on the maximum likelihood estimation, that is, the Expectation
Maximization (EM) algorithm and the L1 regularized maximum likelihood estimation.
The EM algorithm provides clusters such that each cluster obeys a single normal dis-
tribution. The L1 regularized maximum likelihood estimation finds a sparse precision
matrix whose nonzero element represents a dependency of the corresponding variables.
It assumes that the data obeys a single normal distribution. Thus we may apply it for
each cluster given by the EM algorithm. However, this procedure estimates two different
mixture distributions by two algorithms, which should be the same.

In this paper we propose a simultaneous estimation model for mixture distributions
and a sparse precision matrix from the given data. We first formulate a maximization
problem of the log likelihood function of mixture distribution with the L1 regularized
term of the precision matrix. We then propose a coordinate descent method for solving
the problem. The proposed method is a generalization of the EM algorithm. We present
some numerical results that show the validity of the proposed model.


