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Abstract

Many descent algorithms for multiobjective optimization have been developed in the
last two decades. However, differently from the scalar-valued optimization case, there
exist few results related to the existence or the boundedness of Pareto optimal solutions.
Moreover, studies about the convergence rates of these algorithms are still insufficient.
In this paper, we first present two new merit functions for nonlinear multiobjective op-
timization, which extend the one defined for linear multiobjective optimization. These
functions return zero at the solutions of the original problem and strictly positive values
otherwise. Furthermore, by examining the properties of these merit functions, we show
sufficient conditions for the existence of weakly Pareto optimal solutions, and for the
boundedness of Pareto optimal sets. Finally, by using these functions, we analyze the
convergence rates of the recently proposed multiobjective proximal gradient methods.
We show that both methods with and without line searches have sublinear rate of con-
vergence for non-convex and convex cases. We also prove that the algorithm without line
searches converges linearly in the strongly convex case.
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1 Introduction

Multiobjective optimization consists in minimizing (or maximizing) several objective
functions at once. In this paper, we consider the following constrained multiobjective
optimization problem:

min F(z) )

st. x €S, (L)
where F: S — R™ is a vector-valued functions with F = (F,...,F,)", S € R"
is a nonempty closed convex set and T denotes transpose. We assume each F; is a
function from R"™ to R. Usually, this problem does not have a single point that minimizes
all objective functions at once, so we use the concept of Pareto optimality. A point is
called Pareto optimal, if there does not exist another point with the same or smaller
objective function values, and with at least one objective function value being strictly
smaller. Many algorithms for getting Pareto optimal solutions have been developed [7],
but the research related to the existence or the boundedness of Pareto optimal set is still
insufficient.

To clarify the properties of the Pareto solutions, we consider merit functions, that
is, scalar-valued functions that return zero at the solutions of the original problems and
strictly positive values otherwise. Merit functions for linear multiobjective optimiza-
tion are proposed in [8]. Afterwards, linearized merit functions for convex multiobjective
optimization [4] are also considered, and they are shown to be error bounds when the ob-
jective functions are strongly convex. In this paper, we propose nonlinear merit functions
for nonlinear multiobjective optimization and prove that they are error bounds under
strong convexity. Moreover, we propose a regularized and partially linearized merit func-
tion that can be used if each objective function is written as a sum of non-differentiable
function and differentiable one.

Furthermore, we analyze convergence rates of multiobjective proximal gradient meth-
ods, proposed in [9]. The research about convergence rate analyses for multiobjective
descent methods are relatively new. In [6], they analyze the rate of convergence of mul-
tiobjective gradient descent methods [5]. Their results seem to be appropriate since they
are similar to the results of single-objective cases, but the metrics of the analyses are
dependent on the gradient descent, so we cannot analyze other descent-type algorithms
in the same manner. In this paper, by adopting the merit functions as the metrics, we
enable any algorithms to be compared with others.

The outline of this paper is as follows. We define some basic notions and Pareto
optimality in Sect. 2. In Sect. 3, we propose new merit functions for multiobjective
optimization and present some of their properties. By using these properties, we show
a condition for the existence and boundedness of the (weakly) Pareto optimal solutions
in Sect. 4. In Sect. 5, we analyze the convergence rates of the multiobjective proximal
gradient methods, and we conclude this paper in Sect. 6.



2 Preliminaries

We first present some notions that will be used in this paper. Let us denote by R the
set of real numbers and by N that of positive integers. We use the symbol || - || for the
Euclidean norm in R™. The notation v < v (u < v) means that u; < v; (u; < v;) for all
i €{1,...,m}. Moreover, we call

h td) — h
b (z;d) := lim (@ + td) (z)
t\0 t

the directional derivative of h: S — RU{oo} at x in the direction d. Note that h'(z;d) =
Vh(z)"d when h is differentiable at 2, where Vh(z) stands for the gradient of h at .
The following well-known lemma shows a non-decreasing property when h is convex.

Lemma 2.1. Assume that h: S — R U {co} is a conver function and let x € S
and x +d € S. Then, the function h: (0,1] — R defined by

h(z + ad) — h(x)

is non-decreasing. In particular, it follows that

h(z + ad) — h(x)

h(z +d) — h(x) > for all o € (0,1].

Proof. Tt follows immediately from [3, Section 4.3]. O

Now, we introduce the concept of optimality for the multiobjective optimization
problem (1). Recall that z* € S is Pareto optimal, if there is no x € S such that
F(x) < F(x*) and F(x) # F(x*). Likewise, 2* € S is weakly Pareto optimal, if there
does not exist x € S such that F(z) < F(z*). It is known that Pareto optimal points
are always weakly Pareto optimal, and the converse is not always true. We also say that
Z € S is Pareto stationary, if and only if,

max F/(Z;z—2) >0 forall z€S.
ie{l,...,m}

We state below the relation among the three concepts of Pareto optimality.
Lemma 2.2. The following three statements hold.
1. If x € S is weakly Pareto optimal for (1), then x is Pareto stationary.

2. Let every component F; of F' be convex. If x € S is Pareto stationary for (1), then
x 1s weakly Pareto optimal.

3. Let every component F; of F be strictly conver. If x € S is Pareto stationary
for (1), then x is Pareto optimal.

Proof. Tt is clear from [9, Lemma 2.2]. O



3 Merit functions for multiobjective optimization

In this section, we propose some merit functions for nonlinear multiobjective optimiza-
tion. A function is called merit function associated to an optimization problem if it
returns zero at their solutions and strictly positive values otherwise.

3.1 A simple merit function

First, we propose a nonlinear merit function w: S — R U {oco} as follows:

w(x) = sup _min {F( )= Fi(y)}, (2)
yesie{l,..,m

which is an extension of the one proposed in [8] for linear multiobjective optimization.
The next theorem shows the basic property of this merit function.

Theorem 3.1. Let w be defined by (2). Then, for allx € S, we have w(zx) > 0. Moreover,
x € S is weakly Pareto optimal for (1) if and only if w(x) = 0.

Proof. By the definition (2) of w, we get

w(x) > ZE{rlr,urT }{F( xz)— Fi(z)} =0 forallzeS. (3)

Now, assume that w(z) = 0. It follows from (2) that

sup min {Fi(z) - Fi(y)} =0 < mln {F( )—Fi(y)} <O0foralyels,
yes i€{l,...,m} 1e{1,..

which is equivalent to the existence of i € {1,...,m} such that
Fi(z) — Fi(y) <0Oforally € S.
In other words, there does not exist y € .S such that
Fi(z) — Fi(y) >0forallie{1,...,m}.
Therefore, 2 € S is weakly Pareto optimal if and only if w(z) = 0. O
Now, we consider the following single-objective optimization problem:

min  w(x) )
st. xes.

If the global optimal solution z* of (4) exists and satisfies w(xz*) > 0, then x* is not

weakly Pareto optimal from Theorem 3.1. However, as shown in the next theorem, the

global solutions of (4) are always weakly Pareto optimal for (1). Before showing this, we

need the following basic result.



Lemma 3.1. Let G;: S — R and H;: S — R be upper and lower semicontinuous,
respectively, for all i € {1,...,m}. Then, we have

sup min Gi(x) —sup min H;(z) <sup max [G;(x)— H;(z)].
ves ie{l, .m} ves i€{1,...m} ves ill,...m}

Proof. Let f: S — R and g: S — R be upper semicontinuous. Then, it follows that

sup(f(x) + g(x)) < sup £(x) + sup g(x).
z€eS yes z€S

Now, define h: S — R as h := f 4+ ¢g. Then, we obtain

sup h(z) — sup f(z) < sup(h(z) — f(z)).

TES zES €S
Substituting h(z) = mineqi . my Gi(z) and f(x) = min j,41,. my Hi(x) into the above
inequality, we get

su min G;(x) —su min  H;(z) <su min G;(x)— min H;(x
ves i {Tom) i(@) ves i {Tom) . )_meg ie{L,...m} (@) i€{1,....m} (@)

Now, let j, € argmin H;(z). Then, we obtain
ie{1,...,m}

in  Hy(z) = H; (2).
e fin () ja ()

This yields

su min G;(x) — su min H;(z) <su min G;(z) — H; (z
xegie{lr"vm} Z( ) Cbegie{lr"vm} Z( )_ CEEE ie{lz'--vm} ’L( ) JZ( )

< sup[Gij, (v) — Hj, ()

<sup max [Gi(z)— H;(x)],
xeS ie{l,...,m}

where the second and third inequalties come from the definition of the minimum and
the maximum. ]

Theorem 3.2. Let w be defined by (2). If z* € S is global optimal for (4), then x* is
weakly Pareto optimal for (1).

Proof. Let * € S be a global optimal solution of (4). Then, for all z € S, we have



w(z*) < w(z). This gives

0 < w(z) —w(z)

=sup min {Fi(z) = Fi(y)} —sup _min {Fi(27) = Fi(y)}
yESIE{L m} yES’LG{L UL

<sup max {(Fi(z )*Fz’(y))*(Fi(i*)*Fi(y))}
yes i€{l,...,m}

= x| {Fi(z) — Fi(a") },

where the first equality comes from the definition (2) of w, and Lemma 3.1 yields the
second inequality. Therefore, = is weakly Pareto optimal for (1) by definition. O

Since the objective function of (4) is generally non-convex, the problem (4) does not
necessarily have global optimal solutions. However, we can prove that every stationary
point of (4) is Pareto stationary for (1).

Theorem 3.3. Let w be defined by (2) and assume that there exists a directional deriva-
tive F/(z;z —x) for alli € {1,...,m} and x,z € S. If w also has an lower Dini deriva-
tive w' (x;z — ) for all x,z € S and is stationary for (4), that is,

w (z;2—x) >0 forall z€S, (5)
then x is Pareto stationary for (1).

Proof. Let x € S be stationary for (4). By the definition (2) of w, we see that for all
z €8S,

w' (32 — )

1
= liminf — [su min {Fj(x+t(z —=x F; —su min {F; F;
pint ¢ |sup_min {F(z+1(z ) = ()} -sup_min {F(z) ~ F(y)

1
<h1trr§1(1)1f n sggle{rﬁa{( }{(Fz(w +t(z —x)) — Fi(y)} — {Fi(z) — Fi(y))}

=liminf max Fiettle—2)) - Fl(x),
N0 ie{l,..,m} t

where the definition of the lower Dini derivative yields the first equality, and the inequal-
ity follows from Lemma 3.1. Now, define h: S - R U {c0} as

h(z) == max Fi(z +1(z —z)) - Fz(l’)
ie{l,...,m} t

'The lower Dini derivative of h: S — R U {co} at = in the direction d is defined as

h(x + td) — h(z) '

h” (z;d) == liminf
N0 t



Since h is continuous, we have

F; t(z—2z)) - F,
w' (z;z—x)= max liminf i@ +t(z — ) i(z)
ie{l,...m} t\0 t
= Fl (e —
e i(z32 — o),
where the second equality comes from the definition of Dini derivative. Therefore, by (5)
we get

max F/(x;z—x) >0 forall z €S,
ie{1,...,m}

which shows that z is Pareto stationary for (1). O

Before introducing some properties of the merit function w, we define the level-
boundedness of scalar-valued and vector-valued functions.

Definition 3.1. A function f: S — R is called level-bounded if the level set Qy(a) ==
{z € §| f(z) < a} is bounded for all « € R. Similarly, a vector-valued function F': S —
R™ is level-bounded if the level set Qp(¢) = {x € S | F(z) < (} is bounded for
all{ € R™.

Note that if F;: S — R is level-bounded for all ¢ € {1,...,m}, then a vector-valued
function F == (F}, ..., Fy,) ! is also level-bounded, but the reverse is not necessarily true.
Note also that for m = 1, this definition coincides with the level-boundedness for scalar-
valued functions. Now, we state below a sufficient condition for the level-boundedness of
the merit function w.

Theorem 3.4. Let w be defined by (2). If F; is level-bounded for all i € {1,...,m},
them w s also level-bounded.

Proof. Suppose, contrary to our claim, that w is not level-bounded. Then, there ex-
ists & € R such that {x € S | w(x) < a} is not bounded. By the definition (2) of w, the
inequality w(z) < a can be written as

sup min {Fi(z) — Fi(y)} < a.
yeSs ie{l,...,m}

This implies for some fixed z € S that there exists j € {1,...,m} such that
Fi() < Fj(2) +
Therefore, it follows that
m
{zeS|w) <ol C | J{zeS|Fx) < Fiz)+al
j=1

Since F; is level-bounded for all i € {1,...,m}, the right-hand side must be bounded,
which contradicts the unboundedness of the left-hand side. O



As indicated by the following example, even if F' is level-bounded, w is not necessarily
level-bounded.

Example 3.1. Consider the bi-objective function F: R — R? with each component
given by
Fi(z) =22 Fy(z) =0.

Then, the merit function w defined by (2) is written as

w(z) = Slelgmin{Fl(w) — Fi(y), Fa(z) — Fa(y)}

= sup min{ (2% — y?),0} = 0.
yeR

On the other hand, F is level-bounded because lim| ;o F1(2) = +00.

Next, we show an error bound property of the merit function (2) when each F; is
strongly convex.

Theorem 3.5. Let w be defined by (2). Assume that F; is strongly convex with modu-
lus p; >0 for alli € {1,...,m}. Then, we have

w(z) > gdis‘c{x,X*}2 for all x € S,
where = minegy oy pi, dist{z, X*} == min{flz —y|| |y € X*} and X* == {z € S |

x 1s (weakly) Pareto stationary for (1)}.
Proof. By the definition (2), we have

wz)=sup_min{Fi(z) - Fi(y))
yGSiE{l,...,m}

— —inf Fi(y) — Fi(2)}. 6
ére‘sl-eﬁl,??fm}{ (y) — Fi(x)} (6)

Since F; is strongly convex, there exists a unique y} € S that attains infimum in (6).
Now, let Z,(y) = {j € {1,...,m} | maxjeq1 . m{Fi(y) — Fi(z)} = Fj(y) — Fj(x)} for all
y € S. The optimality condition of (6) and the strong convexity of F; yield

0€dy, max (Fi(y) - Fix)} = conv(0F(u5) | i € T(u5)).

where the symbol 0 stands for the subdifferential and the operator conv denotes the
convex hull. Thus, there exist n; € 0F;(y;) and \; > 0 with ¢ € Z(y}) such that

Z )\ﬂ]z‘ = O, Z >\i = 1. (7)

i€Z(y3) 1€Z(y3)

Therefore, it follows that

w(z) = Fi(x) — Fi(yy) for all i € Z,.(y}).



Since Fj is strongly convex with modulus p;, we have
K -
w(z) = Fy(x) = Fy(yy) > i (x —y3) + 5 llz = il for all i € Z(y}).

Multiplying the above inequality by A; and summing them up for i € Z,(y}), we get

> aw@ = Y el - un) + Bl - )2

i€Zs (y%) i€z (y3)

= Y My ®)

i€Zx(y3)

W
> Lz — g2

where (7) shows the equalities, and the second inequality follows from the definition of
w1 and A;. On the other hand, the definition of y yields

omae (A - B} € max (F(y) - F) forallyes

This means that

Fj(yy) — Fj(z) < glax {Fi(y) — Fi(z)} for all y € S and all j € {1,...,m}.
eql,...,

Thus, there exists ¢ € Z,(y) such that
Fi(yy) < Fi(y) forallyes,

which shows that y} is weakly Pareto stationary for (1) for any x, that is, yi € X*.
Therefore, we obtain ||z — y%||? > dist{z, X*}? for all € S, which, combined with (8),
gives the assertion of the theorem. O

3.2 A regularized and partially linearized merit function

Let us now consider that each component F; of the objective function F' of (1) is defined
by

FZ(.I) = fl(.I)‘i‘gz(l'), 1€ {1,...,m}, (9)
where f;: S — R is continuously differentiable and g;: S — RU{oo} is closed, proper and

convex. Now, we propose a partially linearized and regularized merit function ug: S — R
as follows:

ug(r) = max min {Vfi(:E)T(ZL' —y) + gi(z) — gi(y) — gHz‘ - yHQ} , (10)

yeSs ie{l,...,m}

where ¢ > 0 is a given constant. When ¢g; = 0, uy(x) given in (10) corresponds to
the regularized and linearized merit function proposed in [4]. Note that there exists



a unique y; € S that attains the maximum because the objective function in (10) is
strongly concave with respect to y. Before stating the property of wg, we recall the
so-called descent lemma.

Lemma 3.2. [2, Proposition A.24] Let h: R — R be a continuously differentiable
function. If Vh is Lipschitz continuous with Lipschitz constant L, then we have

h(y) ~ hia) < Vh(e) Ty —2) + £y

The next proposition makes a connection among the merit function u,, with ¢ > 0,
and w defined in (2).

Proposition 3.1. Let w and u; be defined by (2) and (10), respectively. Then, the
following statements follows.

1. For all x € S, uy(z) > 0. Moreover, x € S is Pareto stationary if and only
if ug(z) = 0.

2. Suppose that for all i € {1,...,m}, Vf; is Lipschitz continuous with Lipschitz
constant L; > 0 and let Liyax == maX;c(1,.. m} Li. Then, we have

w(zx) > ur,, () foralxes.

3. Assume that f; has a convexity parameter p; > 0 for all i € {1,...,m}, and
let == min;egq ) pi- Then, we get

u(x) > w(x) forallz e S.

4. Forallx € S and £ > 0, it follows that

min {1,1/¢} ui(x) < up(x) < max{1,1/0} ui(x).

Proof. 1. By the definition (10) of us, we have

u@) 2 min_ {Vfi(xf(a: — )+ aia) i) = g o - "“’”2} -

The latter statement follows immediately from [9, Lemma 3.2].

2. Since V f; is Lipschitz continuous with Lipschitz constant L;, Lemma 3.2 yields
T Li 2
fily) = fi(x) <V f(z) (y —x) + 5”9 — x|

9



By the definition of L.y, we have

Fla) — Fly) > V(@) (@~ 9) — 2y

Therefore, we immediately get w(z) > ur,,,. (x) for all z € S by the definitions of w and

uLmax °

3. The convexity of f; with parameter p; gives

Vi) (@ —y) = 5l =yl = fila) = fily),

so it is clear that w,(z) > w(x) for all z € S.

4. As mentioned above, for every ¢ > 0 there exists a unique y; that attains the
maximum in the definition (10) of uy. Therefore, when ¢ < 1 we have

ug(z)

= min AVA@ =0 + (o) i) - gllo — i1}
— i VAT (=) + o) - i) - 5 16~ )1

lie{l,...m}

< 2ie{q}}%}m}{Vfi(:v)T(f(:v—yzf)) +gi(x) — gi (& — Uz — y7)) —% Hﬁ(x_y;;)H?}

1
S Zul (l’),

where the first inequality follows from the convexity of g; and the second inequality
comes from the definition (10) of u;. On the other hand, when ¢ > 1 we get

we) = _min {9H@) @ -0 +ailo) - D) - 5llo —i1?}

ie{l,...,m}

. * * 1 *
> _ain (VAT ) + i) - 0) — 5lle i}
ie{l,....,m} 2

> min {wxm—ymgi(x)—gz-<yg>—||:s—yg||2}
ie{l,...,m} 2
= uy(x).

The above two inequalities imply uy(z) < max{1,1/¢} ui(z). Moreover, we can prove
ug(z) < max{1,1/¢}ui(x) in the same manner. O

10



4 Existence and boundedness of the Pareto solutions

In this section, we provide sufficient conditions for the existence of weakly Pareto optimal
solutions, and for the boundedness of Pareto optimal sets. First, we show a theorem about
the existence of weakly Pareto optimal solutions.

Theorem 4.1. If F is continuous and level-bounded, then (1) has a weakly Pareto
optimal solution.

Proof. Let F be continuous and level-bounded. Then the level set Qp(a) =
{r eS| Fi(zx) <aforallie{l,...,m}} is bounded for all « € R. Now, we have

Qp(a)={z eS| . max Fj(z) < a} = Qnax, £, (),

1,....m

so max; F; is also level-bounded. Moreover, since F' is continuous, max; F; is also con-
tinuous. Thus, the problem

min max Fj(x)
€{1,...,m}
st. zeS

has a global optimal solution x*. This gives

max Fi(z") < max Fij(z) foralzels,
ie{1,...,m} ie{l,...,m}

which means that z* is weakly Pareto optimal for (1). O

The boundedness condition of Pareto optimal sets follows immediately from Theo-
rem 3.5, and by assuming strong convexity of the objectives.

Theorem 4.2. If F; is strongly convex for all i € {1,...,m}, then the (weakly) Pareto
optimal set of (1) is bounded.

5 Convergence rate of multiobjective proximal gradient
methods

In this section, we analyze the convergence rate of multiobjective proximal gradient
methods proposed in [9]. They are applicable to (1), if the problem is unconstrained,
that is, S = R", and each component of the objective function is defined by (9). In
addition, we assume that Vf; is Lipschitz continuous with Lipschitz constant L; and
let Liax = max;e(1,.. m) Li. We consider two types of proximal gradient methods, with
and without line searches. Both algorithms generate some sequence {z*} iteratively with
the following procedure:
AR I I L)

11



where ¢, > 0 is a step size and d* is a search direction. At every iteration k, we define

the search direction d* by solving
k . Coe
d” = argmin [ (d) + =||d||*] ,
deRn 2

where ¢ > 0 is a given constant and the function ¢, : R™ — R is defined by

be(d) = max {Vfi(:v)deLgi(ijd)—gi(ﬂc)}.

ie{l,....,m}

Note that we have P
by (d¥) + §HdkH2 = —ug(2"),

(11)

(12)

(13)

where uy(z*) is defined by (10). From now on, we suppose that an infinite sequence of

iterates is generated. The next result shows an important property of ;.

Lemma 5.1. [9, Lemma 4.1] Let {d*} be generated by a multiobjective prozimal gradient

methods and recall the definition (12) of 1,. Then, we have

Yo (d¥) < —L||dF|? for all k.

5.1 Proximal gradient methods with line searches

In this section, we analyze the convergence rates of the algorithms with line searches.

(a) The non-convex case

First, we suppose that f; is non-convex for all i € {1,...,m}. To keep the paper self-

contained, we first recall the algorithm with line searches.

Algorithm 5.1 (Proximal gradient method with line searches).

Step 1: Choose £ >0, p € (0,1), £ € (0,1), 2° € R"™ and set k = 0.

Step 2: Compute d* by solving subproblem d* = argmin [y« (d) + 5||d||%].
deR™

Step 3: If d* = 0, then stop.

Step 4: Compute the step length ty, € (0,1] as the mazimum of

Tp={t=¢|j €N, Fi(a" + t,d") < Fi(a") + tepp(d¥), i = 1,...

Step 5: Set ¢t == xF +t,d*, k =k + 1, and go to Step 2.

To begin with, we show the existence of a uniform lower bound on the step size tj.

12



Lemma 5.2. In Algorithm 5.1 the step size ty, satisfies the following inequality for every

iteration k:
2((1 —p)t 1}

Lmax

tr > tmin = min {

Proof. If t;, = 1, then the claim is clear. Thus, we suppose that t; < 1. By the definition
of t in Step 4 of Algorithm 5.1, there exists ¢ € {1,...,m} such that

{Fi(fﬂk + & Mpd®) — Fy(a?) > € pptp,n (d) (14)

0< &ty <1.
On the other hand, it follows by the definition (12) of 1, that

Yo (d¥) >V fi(a®) Td* + gi(2* + dF) — gi(a)
- E RV fi(2R)TdY + gi(aF + €71 d”) — gi(a)
- 7y,
Fy(a* + ¢ pd¥) — Fy(a®) — L& Ltpd®|2/2 (15)
1,
_ Fl(xk + ffltkdk) — Fl(xk) L;

-1 k12
— —& ti||d
f_ltk 9 § k’H || ’

>

where the second inequality comes from the convexity of g; and Lemma 2.1, and the
third one follows from the Lipschitz continuity of V f; and Lemma 3.2. From (14) and
(15), we have

Fy(xF + ¢ 1tpdb) — Fy(2F) _ ﬂf_lt a2 < le(xk + M dP) — Fy(2F)
&1ty 2> p £ty ‘

Thus, we get
1— pFZ($k + f_ltk;dk) - FZ($k)
Ey, '

L; _
ety <
Applying (15) again gives

L; _ 1-— L; _
St < L () + Sl ?).

It follows from Lemma 5.1 that

Li _ 1 —p L; _
L G R T
p 2
which is equivalent to
2(1—p)t
tk > M

L&t

13



Therefore, using the definition of L., we conclude that

25(1—/)){1}'

L max

tr > tmin = min {

O
The next theorem shows that Algorithm 5.1 has a convergence rate of order 1/k.

Theorem 5.1. Suppose that there exists some nonempty set J C {1,...,m} such that
if i € J then F; is has a lower bound Fl-min. Let F™" := max;c 7 Fimin and Fy'®* ==
MaX;e(1,. m} F;(20). Then, the Algorithm 5.1 generates a sequence {x*} such that

. Fénax _ Fmin
. 7y < '
Ogrjnglilfl (@) < tminpk min{1,1/¢}

Proof. Let i € J. By the definition of ¢; in Step 4 of Algorithm 5.1 it follows that

Fi(a® + t,d) — Fy(a®) < typoe(d¥)
Lty p
= —typug(a®) — =5 d"|?

< _tkpue(l‘k)’
where the equality follows from (13). Therefore, we have

Fi(z") = Fi(2" + trd") > trpug(z”)
= tminpue('xk)a
where the second inequality comes from Lemma 5.2. Adding up the above inequality
from k=0 to k =k — 1, we obtain
k—1

Fy(a®) = Fy(@* ! 4t d"") > tuinp ) uo(a!)
j=0
> tminpl% min ug(a:j).
0<j<k—1

From the statement 4 of Proposition 3.1, we conclude that

] ) Fomax _ Fmin
min  uy(2’) < — .
0<j<k—1 tminpk min{1,1/¢}

14



(b) The convex and strongly convex cases

When f; is convex or strongly convex for all ¢ € {1,...,m}, we can modify the Armijo
condition and use alternatively a sufficient decrease condition (see (16)). Then, the al-
gorithm is described as follows:

Algorithm 5.2 (Proximal gradient method with line searches (convex case)).
Step 1: Choose £ >0, v € (0,1), € €(0,1), 2° € R™ and set k := 0.

Step 2: Compute d* by solving subproblem d* = argmin [, (d) + %||d||2]
deR™

Step 3: If d* = 0, then stop.

Step 4: Compute the step length ti, € (0,1] as the mazimum of

A
2

i=1,...,m}

Tp = {t=¢|jeN, Fy(z® + td*) < Fi(z*) + t i (d¥) + = ||d"||?,

(16)

Step 5: Set ¢t == zF +t,d*, k =k + 1, and go to Step 2.
We can easily see that the step size has a lower bound in each iteration.

Lemma 5.3. In Algorithm 5.2, the step size tj, satisfies the following inequality for every

iteration k: '
tr > tmin = min {5’7, 1} .

Lmax
Proof. Since V f; is Lipschitz continuous with the Lipschitz constant L;, we have for
all t € (0, (v0)/ L],
L;
Fi(a* +1d") = Fi(a*) <tV fi(a*) d* + gi(a® +td") — gi(2®) + 1"
L;
<t (sz-(xk)Tdk + gi(zF +d¥) — gi(a:k)> + ?thkHQ

L k12
—||td
5 e

<ty (d¥) +
14
< W (d¥) + 2t

where the second inequality follows from the convexity of g; and the third one comes
from the definition (12) of 1,. Therefore, the condition (16) are satisfied for all t €
(0, (7€) / Limax)- By the definition of ¢; in Step 3 of Algorithm 5.2, we get

.t
> .
tk_mm{L , 1

max

15



Next, we prove the following lemma, which is the key to analyze the convergence
rate of the method in the convex and strongly convex cases.

Lemma 5.4. Let f; and g; have convexity parameters pu; € R and v; € R, respectively,
and write i = Miliegy  py fi and v = mingeqy ) Vi- Then, Algorithm 5.2 generates
a sequence {x*} such that for all z € R",

Z)\k< 2k E(m))
E — ‘min
< —i_yz(tmm) <H;L'k _ xH2 — ka-l-l — xHQ) _ ngk _ xHQ _ ngkJ,-l . xH2

— (1 tuan) (Vs (@) + (£ 5) 1*12)

where )\f satisfies the following conditions:

There exists n; € dgi(z* + d*) such that Z NV fi(aF) 4+ m) +4d* =0, (17)

i=1
zmjxf =1, M>0 (z € ka(d’f)) . A= (z ¢ ka(dk)> , (18)
=1
where
To(d) = {i € {1,...,m} | ¢u(d) = Vfi(x) "d+ gi(x + d) — gi(z)}. (19)

Proof. By the definition of #; in Step 3 of Algorithm 5.2, it follows that for all ¢ €
{1,...,m},
k+1 k Ky, YL ko
Fi(@77) < Fi(a") + tethyr (d7) + T”d [
Since v < 1, we get

il

Fi(a*h) < Fy(a) + trappn (d°) + - [|d"]|*.

Now, the convexity of f; with modulus p; € R yields that for all x € R”,

FH) < Fi(e) + VAT — o)~ Bk — o) 4 gie) - i)
+ tyatye () + 0¥
Fi(x) + Vi) T — ) Bt — 2l + ) — gi(a)
byt () + S0

where the second inequality follows from the definition of p. Multiplying by AF and

16



summing for all 7 € {1,...,m}, we have

<N (VAN T@H = 2) = Fllat — 2l + giah) - gula)

ti.l
e (d) + Hd’“H2>

-3 (vmk%k k=) = Bl — 2P + e + d°) — gi(a)
(TR A+ gl + d) — () + () + L ||dk|2)

s

Mo (TAR)T @ 4+ ¥ = )+ il + ) — gu(a))

=1

— (L= ti)thpr(d¥) =

tké
Foa)?

p K
Sz 5 ld" 1%,

2

where the second equality follows from (18) and (19). Now, let ; € dg;(z* + d*). Then,
from the convexity of g; with modulus v; € R we get

Z)\k ( 2k +1) Fz(@)

T .
<ZA’“ [(sz +m) (% +d* —z) — %ka—f-dk—xHQ

Koy ke tl ok
§||$ —z|* + ||d [

f: (Vfl +17¢)T(a:k+dk—x)

— (1=t (d*) —

V4
(1=t () — e,

Ellet — | = Zlla* + d* — |2 +

where the definition of v and (18) yield the second inequality. Now, the condition (17)

17



gives

Z)\k < 2k E(x))
<- f(dk) (x +d* - x) — (1= tg) e (d*) —

v (794
= glla® +d* ) + =

Ry ok
Sllz* —z)?

2

< — )T (o +tud" @) — 00 =) |2 = (1 = )b (@) = S0k — 2]
v til
= 5 (" + tud® — ]2+ 21 = t)(d") (@ + trd® — 2) + (1 = te)?|a*)?) + = |a¥|

" v
— (C+v(1 = te)(@)T (2" + trdt — ) = B2k — )2 = ||t — 2

(0 s (@) — (1) (24 2 a4 L0

C+v(l—t
<= I (o ) T(0®) + 7)o = ol = St —

— (1 —tk) (wmk(dk) + (g+ %) HdkHz) .

Finally, the definition of ¢,y yields

Z )\k ( k+1 E-(a:))

14 ~ ‘min
s+§t> (e = ol = #+ —a)?) - &

= (1= tmin) (ka (d*) + (z n %) ||dk|]2) ,

k Vi k
l2* — x> - Sllz ||

where the second inequality comes from (17). O

The next theorem shows that the proximal gradient method in the convex case de-
scribed in Algorithm 5.2 has a convergence rate of order 1/k.

Theorem 5.2. Suppose that there exists some nonempty set J C {1,...,m} such that
if i € J then F; is has a lower bound Fl-min. Let F™" := max;c 7 Fimin and Fy'®* =
MaX;e(1,.. m} F;(2°). Let F; be convex for all i € {1,...,m}. If the level set Qp(x°) =
{r € R" | F(z) < F(z%)} is bounded, then Algorithm 5.2 generates a sequence {x*}
such that R
k
w@) S g

where R = £Sup,cq, ;0 |7 — O + (1 — i) [2(FE — FWIR) — (0 E?;Ol ld¥)|?] < oo

18



Proof. From Lemma 5.4, we have for all z € R",

m

DA (Bt - Fi(w))

<
2tmin

(Il = 2l = 1"+ = 2]2) = (1 = tin) (150" + €112

Adding up the above inequality from j = 0 to j = k — 1, we obtain

l
<
2tmin

k—1
(H‘TO—I’H2— "xk—13||2) 1_trmn Z ¢axﬂ dj +€de|| )
7=0

From the condition (16) of the step size t, we have for all p € J

k—1 m ' ‘
> M (Fi(a?) - Fi(x))
7=0 i=1
A (B - Ba)
< 7 = 2[|* = (1 — tmin) = R
Urmin 2 2
7=0
k—1 ;
l Fy(z7t) — F £ .
< Hl,O _xHQ o (1 tmin) < P('r ) p(x ) ||d]||2>
2tmin T tmm 2
7=0
k—1
t 0 2 Fp@?k) - Fp(afo) ¢ 2
= — —(1- min 5 dj
sl = o = (1 = ) | ) L S5 )
7=0
Fénax _ fmin / k—1 ‘
<o ll2" = 2* + (1 = toin) — P
min min —
7=0
; k—1
[max _ pmin /¢ )
<ol —2)? + (1 = tmin) | —2—— Sl
2t min tmin 2] -0

where the third inequality follows from the definition of ¢y,;,. Let 5\?—1 =

Then it follows that

i ¢ 1—

S M k.

> Ot (Fi(gjk) — E(m)) < 20— ]+

P ~ 2tmink

19
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Since 5\2‘7_1 >0,%0, 5\?_1 =1, we see that

i k-1
e 1 _ t . FHlaX _ len E .
. F2®) — F >< 0_ 124 min 0 _72 412
ze{rlr}u?m} ( 1(%’ ) l(x) = 2tmink H.%' .%'H k tmin 2 =0 H ”

Taking the supremum in the level set Qp(2°) yields

R
i Fi(z*) — F; < .
e _min(Fe) - B@) £ 5

Now, Lemma 5.1 and (16) imply that {F;(z*)} is decreasing, so we conclude that

R
k

< .
w(x ) - 2tmink

5.2 Proximal gradient methods without line searches

When we set £ > L,.x, we can fix the step size ¢ = 1 for each iteration k. The algorithm
without line searches is described as follows:

Algorithm 5.3 (The proximal gradient method without line searches).

Step 1: Choose £ > Lyax/2, ° € R™ and set k == 0.

Step 2: Compute d* by solving subproblem d* = argmin [@ka (d) + %||d||2]
deR™

Step 3: If d* = 0, then stop.

Step 4: Set zFt1 == zF +d* k:=k+1, and go to Step 2.

(a) The non-convex case

First, we analyze the convergence rate when f; is non-convex for all 7 € {1,...,m}. The
next theorem shows that Algorithm 5.3 has a convergence rate of order 1/k.

Theorem 5.3. Suppose that there exists some nonempty set J C {1,...,m} such that
if i € J then F; has a lower bound F™. Let F™" = max;ey F;"" and Fy"*™* =
Max;c (1, m} F;(20). Then, the Algorithm 5.3 generates a sequence {x*} such that

. ) Fmax _ prmin
min  wu(27) < —9 .
0<yj<k—1 k:min{l,—L1 }

20



Proof. Let i € J. From the Lipschitz continuity of V f;, we have

L;
Fy(a"h) — Fy(a¥) < V£i(a¥) Td" + gi(a™t) — ga(2) + EHdkH2
Ly,

< VL) T+ () - gu(ah) + T
Lmax
< max {vmx’“fd’“ T gl - gilat) + udkw}
ie{1,...,m} 2
= —ug,,, (zF)
< —min {1, }m(ax’“),

where the equality follows from the definition (10) of ur, ., and the last inequality comes
from the statement 3 of Proposition 3.1. Adding up the above inequality from k = 0
to k = k — 1 yields that

k—1
i 1
Fy(zF) — Fy(a°) < —2{1, }ul(xk)
k=0 LmaX
. 1 . ,
< —kminq1l,—— 3% min uy(2’).
Lax ) o<k<i—1
Thus, we get )
Fmax _ len
min  wu(2F) < —2 .
0<k<k-1 k min {1, %}

(b) The convex and strongly convex cases

We start with proving the following lemma. Note that we add an assumption £ > Ly ax.

Lemma 5.5. Let f; and g; have convexity parameters u; € R and v; € R, respectively,
and write = Mile(y  my fi and V= milegy m) Vie If € > Liax, then for allx € R™
it follows that

m

>k (R - Fi@) <

=1

N~

v
(lle* = 2l = 2"+t = 2)?) =212+t 2= 2"~ ?,
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where )\f satisfies the following conditions:

There exists n; € dg;(z" + d¥) such that Z NV fi(aF) 4+ m) + £d* =0, (20)

=1
- k _ k . k k_ ) i
;)\Z LMz (ieZu@), A=0 (i¢Zud), (21)

where

To(d) = {i € {1,...,m} | ¢u(d) = Vfi(x) "d + gi(w + d) — gi()}.
Proof. Since € > Lpyax, V f; is Lipschitz continuous with Lipschitz constant ¢ for each i €
{1,...,m}. Therefore, from Lemma 3.2 we have
14
Fy(a*h) = Fi(a") < Vi(a) 1@ = 2%) + gi(a") — gi(a®) + §||dk||2-
Let 1; € 0g;(z* + d*). The convexity of f; with modulus u; gives

Fy(a") — Fy(x)

<VAEH) (@8 =) = Bl — o) + gi(a") - gi(a)

l
+ Vfi(SUk)T(JJk+1 . xk) +gi(xk+1) . gz(xk) + 5||dk||2
l
S VA TR+ d —2) + gilat + ) — i)~ Bl — ol P

a
2

14

k 2
¥ — x| 5

12
<Vfia" (@ +d* —2) oy (@* +d" —2) - 2"+ — 2|® + §|ldkll2,
where the equality follows from the definition of ;1 and the fact that z*+1 = 2% 4+ d*, and
the last inequality comes from the convexity of g;. Multiplying the above inequality by

A and summing for all i € {1,...,m}, we obtain

[

k(B (5 — Fy(x
IAZ(FA )~ F())

7

NE

<) N (Vfi(l‘k)T(l’k +d* —2) +n (2" +d* — )
1=1
CByk o2 Yook o2, Lk 2)
St =l = 2 — a2l + S|
14
= — U(d") (" + & —2) = Lot — ] = St — a]? + 5[l
l I v
= — 5 (27" — @) +1d*)?) = Sla* — @) - S0k - a)?
2 2 2
L
=5 (2% =2l = o+ = 2]]?) = Zlla* — 2|2 = Zl|a*+" — 2],

22



where (20) and (21) give the first inequality. O

The next theorem shows that the proximal gradient method without line search
described in Algorithm 5.3 has a convergence rate of order 1/k in the convex case.

Theorem 5.4. Let F; be convex for alli € {1,...,m}. If the level set Qp(2°) == {x € S |

F(z) < F(z%)} is bounded and £ > L.y, then Algorithm 5.3 generates a sequence {z*}
such that

)

52| =

w(zk) <
where R = (SUP,eq(z0) [l — 20| < oo.

Proof. From Lemma 5.5, we have for all z € R"
- l
SN (B = Fi(@) < 5 (lle® = 2l = 25+ - 2]?).
i=1

Adding up the above inequality from j = 0 to j = k — 1, we obtain

k—1 m
j L
>N (REHH = F@) < 5 (Ja° - al? - 254~ a]?)
j=1 i=1
l
< ino — .

Let \i 1= Z?;& )\g /k. Then, it follows that
SUE k Co 2
> N (FGh) - F@) < 5 lla® - o
i=1

Since AP > 0,37 A =1, we see that

Taking the supremum in the level set Qp(,0y yields
sup (Fy(zF) — Fl(x)) <

xEQF(IO

Since {F;(z%)} is decreasing, we have
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Moreover, if we assume strong convexity, then Algorithm 5.3 converges linearly.

Theorem 5.5. Let f; and g; have convexity parameters u; € R and v; € R, respectively,
and write p = Milie(y  my K and V= MmiNiegy oy Vie If £ > Liax, then there exists a
Pareto optimal point x* € R™ such that for all iteration k,

k+1_$*”§ C—p

k *
]

2

Thus, we have

Proof. Because each Fj is strongly convex, {2*} has an accumulation point z* € R™.
Note that z* is a Pareto optimal point [9, Lemma 2.2 and Theorem 4.2]. Now, from
Lemma 5.5, we have

m

L
>k (Rt - Fi@h) < 5 (2" — o) = 254! = 2)?) =Z 12 —al 2 o ~a|%.
=1

Since the left hand side is nonnegative because of Lemma 5.1 and (16), we obtain

l 7 v
0.< 5 (lo* =22 = 2"+ —al?) = Zlla* — all? = Z)la**! —all%,

okt a7 < 4o~ .

which is equivalent to

6 Conclusion

We proposed two new merit functions and clarified the associate properties of error
bounds and level-boundedness. By using them, we showed a sufficient condition on the
existence and boundedness of the weakly Pareto optimal set. Moreover, by considering
these merit functions we analyzed the convergence rates of proximal gradient methods.
We showed that the algorithms have convergence rates of order 1/k, 1/k, and r* for
some 1 € (0,1), respectively for non-convex, convex and strongly convex cases.

In single-objective optimization, for convex cases we can obtain convergence rate
of O(1/k?) with accelerated methods such as [1]. For future research, we may consider
extending these topics to multiobjective optimization.
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Abstract

Many descent algorithms for multiobjective optimization have been developed in the
last two decades. However, differently from the scalar-valued optimization case, there
exist few results related to the existence or the boundedness of Pareto optimal solutions.
Moreover, studies about the convergence rates of these algorithms are still insufficient.
In this paper, we first present two new merit functions for nonlinear multiobjective op-
timization, which extend the one defined for linear multiobjective optimization. These
functions return zero at the solutions of the original problem and strictly positive values
otherwise. Furthermore, by examining the properties of these merit functions, we show
sufficient conditions for the existence of weakly Pareto optimal solutions, and for the
boundedness of Pareto optimal sets. Finally, by using these functions, we analyze the
convergence rates of the recently proposed multiobjective proximal gradient methods.
We show that both methods with and without line searches have sublinear rate of con-
vergence for non-convex and convex cases. We also prove that the algorithm without line
searches converges linearly in the strongly convex case.



