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Abstract

Many descent algorithms for multiobjective optimization have been developed in the
last two decades. However, differently from the scalar-valued optimization case, there
exist few results related to the existence or the boundedness of Pareto optimal solutions.
Moreover, studies about the convergence rates of these algorithms are still insufficient.
In this paper, we first present two new merit functions for nonlinear multiobjective op-
timization, which extend the one defined for linear multiobjective optimization. These
functions return zero at the solutions of the original problem and strictly positive values
otherwise. Furthermore, by examining the properties of these merit functions, we show
sufficient conditions for the existence of weakly Pareto optimal solutions, and for the
boundedness of Pareto optimal sets. Finally, by using these functions, we analyze the
convergence rates of the recently proposed multiobjective proximal gradient methods.
We show that both methods with and without line searches have sublinear rate of con-
vergence for non-convex and convex cases. We also prove that the algorithm without line
searches converges linearly in the strongly convex case.
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1 Introduction

Multiobjective optimization consists in minimizing (or maximizing) several objective
functions at once. In this paper, we consider the following constrained multiobjective
optimization problem:

min F (x)

s.t. x ∈ S,
(1)

where F : S → Rm is a vector-valued functions with F := (F1, . . . , Fm)⊤, S ⊆ Rn

is a nonempty closed convex set and ⊤ denotes transpose. We assume each Fi is a
function from Rn to R. Usually, this problem does not have a single point that minimizes
all objective functions at once, so we use the concept of Pareto optimality. A point is
called Pareto optimal, if there does not exist another point with the same or smaller
objective function values, and with at least one objective function value being strictly
smaller. Many algorithms for getting Pareto optimal solutions have been developed [7],
but the research related to the existence or the boundedness of Pareto optimal set is still
insufficient.

To clarify the properties of the Pareto solutions, we consider merit functions, that
is, scalar-valued functions that return zero at the solutions of the original problems and
strictly positive values otherwise. Merit functions for linear multiobjective optimiza-
tion are proposed in [8]. Afterwards, linearized merit functions for convex multiobjective
optimization [4] are also considered, and they are shown to be error bounds when the ob-
jective functions are strongly convex. In this paper, we propose nonlinear merit functions
for nonlinear multiobjective optimization and prove that they are error bounds under
strong convexity. Moreover, we propose a regularized and partially linearized merit func-
tion that can be used if each objective function is written as a sum of non-differentiable
function and differentiable one.

Furthermore, we analyze convergence rates of multiobjective proximal gradient meth-
ods, proposed in [9]. The research about convergence rate analyses for multiobjective
descent methods are relatively new. In [6], they analyze the rate of convergence of mul-
tiobjective gradient descent methods [5]. Their results seem to be appropriate since they
are similar to the results of single-objective cases, but the metrics of the analyses are
dependent on the gradient descent, so we cannot analyze other descent-type algorithms
in the same manner. In this paper, by adopting the merit functions as the metrics, we
enable any algorithms to be compared with others.

The outline of this paper is as follows. We define some basic notions and Pareto
optimality in Sect. 2. In Sect. 3, we propose new merit functions for multiobjective
optimization and present some of their properties. By using these properties, we show
a condition for the existence and boundedness of the (weakly) Pareto optimal solutions
in Sect. 4. In Sect. 5, we analyze the convergence rates of the multiobjective proximal
gradient methods, and we conclude this paper in Sect. 6.
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2 Preliminaries

We first present some notions that will be used in this paper. Let us denote by R the
set of real numbers and by N that of positive integers. We use the symbol ∥ · ∥ for the
Euclidean norm in Rn. The notation u ≤ v (u < v) means that ui ≤ vi (ui < vi) for all
i ∈ {1, . . . ,m}. Moreover, we call

h′(x; d) := lim
t↘0

h(x+ td)− h(x)

t

the directional derivative of h : S → R∪{∞} at x in the direction d. Note that h′(x; d) =
∇h(x)⊤d when h is differentiable at x, where ∇h(x) stands for the gradient of h at x.
The following well-known lemma shows a non-decreasing property when h is convex.

Lemma 2.1. Assume that h : S → R ∪ {∞} is a convex function and let x ∈ S
and x+ d ∈ S. Then, the function h̃ : (0, 1] → R defined by

h̃(α) :=
h(x+ αd)− h(x)

α

is non-decreasing. In particular, it follows that

h(x+ d)− h(x) ≥ h(x+ αd)− h(x)

α
for all α ∈ (0, 1].

Proof. It follows immediately from [3, Section 4.3].

Now, we introduce the concept of optimality for the multiobjective optimization
problem (1). Recall that x∗ ∈ S is Pareto optimal, if there is no x ∈ S such that
F (x) ≤ F (x∗) and F (x) ̸= F (x∗). Likewise, x∗ ∈ S is weakly Pareto optimal, if there
does not exist x ∈ S such that F (x) < F (x∗). It is known that Pareto optimal points
are always weakly Pareto optimal, and the converse is not always true. We also say that
x̄ ∈ S is Pareto stationary, if and only if,

max
i∈{1,...,m}

F ′
i (x̄; z − x̄) ≥ 0 for all z ∈ S.

We state below the relation among the three concepts of Pareto optimality.

Lemma 2.2. The following three statements hold.

1. If x ∈ S is weakly Pareto optimal for (1), then x is Pareto stationary.

2. Let every component Fi of F be convex. If x ∈ S is Pareto stationary for (1), then
x is weakly Pareto optimal.

3. Let every component Fi of F be strictly convex. If x ∈ S is Pareto stationary
for (1), then x is Pareto optimal.

Proof. It is clear from [9, Lemma 2.2].
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3 Merit functions for multiobjective optimization

In this section, we propose some merit functions for nonlinear multiobjective optimiza-
tion. A function is called merit function associated to an optimization problem if it
returns zero at their solutions and strictly positive values otherwise.

3.1 A simple merit function

First, we propose a nonlinear merit function w : S → R ∪ {∞} as follows:

w(x) := sup
y∈S

min
i∈{1,...,m}

{Fi(x)− Fi(y)}, (2)

which is an extension of the one proposed in [8] for linear multiobjective optimization.
The next theorem shows the basic property of this merit function.

Theorem 3.1. Let w be defined by (2). Then, for all x ∈ S, we have w(x) ≥ 0. Moreover,
x ∈ S is weakly Pareto optimal for (1) if and only if w(x) = 0.

Proof. By the definition (2) of w, we get

w(x) ≥ min
i∈{1,...,m}

{Fi(x)− Fi(x)} = 0 for all x ∈ S. (3)

Now, assume that w(x) = 0. It follows from (2) that

sup
y∈S

min
i∈{1,...,m}

{Fi(x)− Fi(y)} = 0 ⇐⇒ min
i∈{1,...,m}

{Fi(x)− Fi(y)} ≤ 0 for all y ∈ S,

which is equivalent to the existence of i ∈ {1, . . . ,m} such that

Fi(x)− Fi(y) ≤ 0 for all y ∈ S.

In other words, there does not exist y ∈ S such that

Fi(x)− Fi(y) > 0 for all i ∈ {1, . . . ,m}.

Therefore, x ∈ S is weakly Pareto optimal if and only if w(x) = 0.

Now, we consider the following single-objective optimization problem:

min w(x)

s.t. x ∈ S.
(4)

If the global optimal solution x∗ of (4) exists and satisfies w(x∗) > 0, then x∗ is not
weakly Pareto optimal from Theorem 3.1. However, as shown in the next theorem, the
global solutions of (4) are always weakly Pareto optimal for (1). Before showing this, we
need the following basic result.

3



Lemma 3.1. Let Gi : S → R and Hi : S → R be upper and lower semicontinuous,
respectively, for all i ∈ {1, . . . ,m}. Then, we have

sup
x∈S

min
i∈{1,...,m}

Gi(x)− sup
x∈S

min
i∈{1,...,m}

Hi(x) ≤ sup
x∈S

max
i∈{1,...,m}

[Gi(x)−Hi(x)].

Proof. Let f : S → R and g : S → R be upper semicontinuous. Then, it follows that

sup
x∈S

(f(x) + g(x)) ≤ sup
y∈S

f(x) + sup
x∈S

g(x).

Now, define h : S → R as h := f + g. Then, we obtain

sup
x∈S

h(x)− sup
x∈S

f(x) ≤ sup
x∈S

(h(x)− f(x)).

Substituting h(x) = mini∈{1,...,m}Gi(x) and f(x) = mini in{1,...,m}Hi(x) into the above
inequality, we get

sup
x∈S

min
i∈{1,...,m}

Gi(x)− sup
x∈S

min
i∈{1,...,m}

Hi(x) ≤ sup
x∈S

[
min

i∈{1,...,m}
Gi(x)− min

i∈{1,...,m}
Hi(x)

]
.

Now, let jx ∈ argmin
i∈{1,...,m}

Hi(x). Then, we obtain

min
i∈{1,...,m}

Hi(x) = Hjx(x).

This yields

sup
x∈S

min
i∈{1,...,m}

Gi(x)− sup
x∈S

min
i∈{1,...,m}

Hi(x) ≤ sup
x∈S

[
min

i∈{1,...,m}
Gi(x)−Hjx(x)

]
≤ sup

x∈S
[Gjx(x)−Hjx(x)]

≤ sup
x∈S

max
i∈{1,...,m}

[Gi(x)−Hi(x)] ,

where the second and third inequalties come from the definition of the minimum and
the maximum.

Theorem 3.2. Let w be defined by (2). If x∗ ∈ S is global optimal for (4), then x∗ is
weakly Pareto optimal for (1).

Proof. Let x∗ ∈ S be a global optimal solution of (4). Then, for all z ∈ S, we have
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w(x∗) ≤ w(z). This gives

0 ≤ w(z)− w(x∗)

= sup
y∈S

min
i∈{1,...,m}

{Fi(z)− Fi(y)} − sup
y∈S

min
i∈{1,...,m}

{Fi(x
∗)− Fi(y)}

≤ sup
y∈S

max
i∈{1,...,m}

{(Fi(z)− Fi(y))− (Fi(x
∗)− Fi(y))}

= max
i∈{1,...,m}

{Fi(z)− Fi(x
∗)},

where the first equality comes from the definition (2) of w, and Lemma 3.1 yields the
second inequality. Therefore, x is weakly Pareto optimal for (1) by definition.

Since the objective function of (4) is generally non-convex, the problem (4) does not
necessarily have global optimal solutions. However, we can prove that every stationary
point of (4) is Pareto stationary for (1).

Theorem 3.3. Let w be defined by (2) and assume that there exists a directional deriva-
tive F ′

i (x; z − x) for all i ∈ {1, . . . ,m} and x, z ∈ S. If w also has an lower Dini deriva-
tive1 w′

−(x; z − x) for all x, z ∈ S and is stationary for (4), that is,

w′
−(x; z − x) ≥ 0 for all z ∈ S, (5)

then x is Pareto stationary for (1).

Proof. Let x ∈ S be stationary for (4). By the definition (2) of w, we see that for all
z ∈ S,

w′
−(x; z − x)

= liminf
t↘0

1

t

[
sup
y∈S

min
i∈{1,...,m}

{Fi(x+ t(z − x))− Fi(y)}− sup
y∈S

min
i∈{1,...,m}

{Fi(x)− Fi(y)}

]
≤ liminf

t↘0

1

t
sup
y∈S

max
i∈{1,...,m}

{(Fi(x+ t(z − x))− Fi(y)} − {Fi(x)− Fi(y))}

= liminf
t↘0

max
i∈{1,...,m}

Fi(x+ t(z − x))− Fi(x)

t
,

where the definition of the lower Dini derivative yields the first equality, and the inequal-
ity follows from Lemma 3.1. Now, define h : S → R ∪ {∞} as

h(x) := max
i∈{1,...,m}

Fi(x+ t(z − x))− Fi(x)

t
.

1The lower Dini derivative of h : S → R ∪ {∞} at x in the direction d is defined as

h′
−(x; d) := liminf

t↘0

h(x+ td)− h(x)

t
.
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Since h is continuous, we have

w′
−(x; z − x) = max

i∈{1,...,m}
liminf
t↘0

Fi(x+ t(z − x))− Fi(x)

t

= max
i∈{1,...,m}

F ′
i (x; z − x),

where the second equality comes from the definition of Dini derivative. Therefore, by (5)
we get

max
i∈{1,...,m}

F ′
i (x; z − x) ≥ 0 for all z ∈ S,

which shows that x is Pareto stationary for (1).

Before introducing some properties of the merit function w, we define the level-
boundedness of scalar-valued and vector-valued functions.

Definition 3.1. A function f : S → R is called level-bounded if the level set Ωf (α) :=
{x ∈ S | f(x) ≤ α} is bounded for all α ∈ R. Similarly, a vector-valued function F : S →
Rm is level-bounded if the level set ΩF (ζ) := {x ∈ S | F (x) ≤ ζ} is bounded for
all ζ ∈ Rm.

Note that if Fi : S → R is level-bounded for all i ∈ {1, . . . ,m}, then a vector-valued
function F := (F1, . . . , Fm)⊤ is also level-bounded, but the reverse is not necessarily true.
Note also that for m = 1, this definition coincides with the level-boundedness for scalar-
valued functions. Now, we state below a sufficient condition for the level-boundedness of
the merit function w.

Theorem 3.4. Let w be defined by (2). If Fi is level-bounded for all i ∈ {1, . . . ,m},
them w is also level-bounded.

Proof. Suppose, contrary to our claim, that w is not level-bounded. Then, there ex-
ists α ∈ R such that {x ∈ S | w(x) ≤ α} is not bounded. By the definition (2) of w, the
inequality w(x) ≤ α can be written as

sup
y∈S

min
i∈{1,...,m}

{Fi(x)− Fi(y)} ≤ α.

This implies for some fixed z ∈ S that there exists j ∈ {1, . . . ,m} such that

Fj(x) ≤ Fj(z) + α.

Therefore, it follows that

{x ∈ S | w(x) ≤ α} ⊆
m∪
j=1

{x ∈ S | Fj(x) ≤ Fj(z) + α}.

Since Fi is level-bounded for all i ∈ {1, . . . ,m}, the right-hand side must be bounded,
which contradicts the unboundedness of the left-hand side.
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As indicated by the following example, even if F is level-bounded, w is not necessarily
level-bounded.

Example 3.1. Consider the bi-objective function F : R → R2 with each component
given by

F1(x) := x2, F2(x) := 0.

Then, the merit function w defined by (2) is written as

w(x) = sup
y∈R

min{F1(x)− F1(y), F2(x)− F2(y)}

= sup
y∈R

min{(x2 − y2), 0} = 0.

On the other hand, F is level-bounded because lim∥z∥→∞ F1(x) = +∞.

Next, we show an error bound property of the merit function (2) when each Fi is
strongly convex.

Theorem 3.5. Let w be defined by (2). Assume that Fi is strongly convex with modu-
lus µi > 0 for all i ∈ {1, . . . ,m}. Then, we have

w(x) ≥ µ

2
dist{x,X∗}2 for all x ∈ S,

where µ := mini∈{1,...,m} µi, dist{x,X∗} := min{∥x − y∥ | y ∈ X∗} and X∗ := {x ∈ S |
x is (weakly) Pareto stationary for (1)}.

Proof. By the definition (2), we have

w(x) = sup
y∈S

min
i∈{1,...,m}

{Fi(x)− Fi(y)}

= − inf
y∈S

max
i∈{1,...,m}

{Fi(y)− Fi(x)}. (6)

Since Fi is strongly convex, there exists a unique y∗x ∈ S that attains infimum in (6).
Now, let Ix(y) := {j ∈ {1, . . . ,m} | maxi∈{1,...,m}{Fi(y)−Fi(x)} = Fj(y)−Fj(x)} for all
y ∈ S. The optimality condition of (6) and the strong convexity of Fi yield

0 ∈ ∂y∗x max
i∈{1,...,m}

{Fi(y
∗
x)− Fi(x)} = conv{∂Fi(y

∗
x) | i ∈ Ix(y∗x)},

where the symbol ∂ stands for the subdifferential and the operator conv denotes the
convex hull. Thus, there exist ηi ∈ ∂Fi(y

∗
x) and λi ≥ 0 with i ∈ I(y∗x) such that∑

i∈Ix(y∗x)

λiηi = 0,
∑

i∈Ix(y∗x)

λi = 1. (7)

Therefore, it follows that

w(x) = Fi(x)− Fi(y
∗
x) for all i ∈ Ix(y∗x).

7



Since Fi is strongly convex with modulus µi, we have

w(x) = Fi(x)− Fi(y
∗
x) ≥ η⊤i (x− y∗x) +

µi
2
∥x− y∗x∥2 for all i ∈ I(y∗x).

Multiplying the above inequality by λi and summing them up for i ∈ Ix(y∗x), we get

w(x) =
∑

i∈Ix(y∗x)

λiw(x) ≥
∑

i∈Ix(y∗x)

λi

{
η⊤i (x− y∗x) +

µi
2
∥x− y∗x∥2

}
=

∑
i∈Ix(y∗x)

λiµi
2

∥x− y∗x∥2

≥ µ

2
∥x− y∗x∥2,

(8)

where (7) shows the equalities, and the second inequality follows from the definition of
µ and λi. On the other hand, the definition of y∗x yields

max
i∈{1,...,m}

{Fi(y
∗
x)− Fi(x)} ≤ max

i∈{1,...,m}
{Fi(y)− Fi(x)} for all y ∈ S.

This means that

Fj(y
∗
x)− Fj(x) ≤ max

i∈{1,...,m}
{Fi(y)− Fi(x)} for all y ∈ S and all j ∈ {1, . . . ,m}.

Thus, there exists i ∈ Ix(y) such that

Fi(y
∗
x) ≤ Fi(y) for all y ∈ S,

which shows that y∗x is weakly Pareto stationary for (1) for any x, that is, y∗x ∈ X∗.
Therefore, we obtain ∥x− y∗x∥2 ≥ dist{x,X∗}2 for all x ∈ S, which, combined with (8),
gives the assertion of the theorem.

3.2 A regularized and partially linearized merit function

Let us now consider that each component Fi of the objective function F of (1) is defined
by

Fi(x) := fi(x) + gi(x), i ∈ {1, . . . ,m}, (9)

where fi : S → R is continuously differentiable and gi : S → R∪{∞} is closed, proper and
convex. Now, we propose a partially linearized and regularized merit function uℓ : S → R
as follows:

uℓ(x) := max
y∈S

min
i∈{1,...,m}

{
∇fi(x)⊤(x− y) + gi(x)− gi(y)−

ℓ

2
∥x− y∥2

}
, (10)

where ℓ ≥ 0 is a given constant. When gi = 0, uℓ(x) given in (10) corresponds to
the regularized and linearized merit function proposed in [4]. Note that there exists
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a unique y∗ℓ ∈ S that attains the maximum because the objective function in (10) is
strongly concave with respect to y. Before stating the property of uℓ, we recall the
so-called descent lemma.

Lemma 3.2. [2, Proposition A.24] Let h : Rn → R be a continuously differentiable
function. If ∇h is Lipschitz continuous with Lipschitz constant L, then we have

h(y)− h(x) ≤ ∇h(x)⊤(y − x) +
L

2
∥y − x∥2.

The next proposition makes a connection among the merit function uℓ, with ℓ ≥ 0,
and w defined in (2).

Proposition 3.1. Let w and uℓ be defined by (2) and (10), respectively. Then, the
following statements follows.

1. For all x ∈ S, uℓ(x) ≥ 0. Moreover, x ∈ S is Pareto stationary if and only
if uℓ(x) = 0.

2. Suppose that for all i ∈ {1, . . . ,m}, ∇fi is Lipschitz continuous with Lipschitz
constant Li > 0 and let Lmax := maxi∈{1,...,m} Li. Then, we have

w(x) ≥ uLmax(x) for all x ∈ S.

3. Assume that fi has a convexity parameter µi ≥ 0 for all i ∈ {1, . . . ,m}, and
let µ := mini∈{1,...,m} µi. Then, we get

uµ(x) ≥ w(x) for all x ∈ S.

4. For all x ∈ S and ℓ > 0, it follows that

min {1, 1/ℓ}u1(x) ≤ uℓ(x) ≤ max {1, 1/ℓ}u1(x).

Proof. 1. By the definition (10) of uℓ, we have

uℓ(x) ≥ min
i∈{1,...,m}

{
∇fi(x)⊤(x− x) + gi(x)− gi(y)−

ℓ

2
∥x− x∥2

}
= 0.

The latter statement follows immediately from [9, Lemma 3.2].

2. Since ∇fi is Lipschitz continuous with Lipschitz constant Li, Lemma 3.2 yields

fi(y)− fi(x) ≤ ∇f(x)⊤(y − x) +
Li

2
∥y − x∥2.

9



By the definition of Lmax, we have

fi(x)− fi(y) ≥ ∇f(x)⊤(x− y)− Lmax

2
∥x− y∥2.

Therefore, we immediately get w(x) ≥ uLmax(x) for all x ∈ S by the definitions of w and
uLmax .

3. The convexity of fi with parameter µi gives

∇fi(x)⊤(x− y)− µi
2
∥x− y∥2 ≥ fi(x)− fi(y),

so it is clear that uµ(x) ≥ w(x) for all x ∈ S.

4. As mentioned above, for every ℓ > 0 there exists a unique y∗ℓ that attains the
maximum in the definition (10) of uℓ. Therefore, when ℓ < 1 we have

uℓ(x)

= min
i∈{1,...,m}

{
∇fi(x)⊤(x−y∗ℓ ) + gi(x)− gi(y

∗
ℓ )−

ℓ

2
∥x− y∗ℓ ∥2

}
=

1

ℓ
min

i∈{1,...,m}

{
∇fi(x)⊤ (ℓ(x−y∗ℓ )) + ℓ(gi(x)− gi(y

∗
ℓ ))−

1

2
∥ℓ(x− y∗ℓ )∥

2

}
≤ 1

ℓ
min

i∈{1,...,m}

{
∇fi(x)⊤ (ℓ(x−y∗ℓ ))+gi(x)−gi (x− ℓ(x− y∗ℓ ))−

1

2
∥ℓ(x−y∗ℓ )∥

2

}
≤ 1

ℓ
u1(x),

where the first inequality follows from the convexity of gi and the second inequality
comes from the definition (10) of u1. On the other hand, when ℓ ≥ 1 we get

u1(x) = min
i∈{1,...,m}

{
∇fi(x)⊤(x− y∗1) + gi(x)− gi(y

∗
1)−

1

2
∥x− y∗1∥2

}
≥ min

i∈{1,...,m}

{
∇fi(x)⊤(x− y∗ℓ ) + gi(x)− gi(y

∗
ℓ )−

1

2
∥x− y∗ℓ ∥2

}
≥ min

i∈{1,...,m}

{
∇fi(x)⊤(x− y∗ℓ ) + gi(x)− gi(y

∗
ℓ )−

ℓ

2
∥x− y∗ℓ ∥2

}
= uℓ(x).

The above two inequalities imply uℓ(x) ≤ max {1, 1/ℓ}u1(x). Moreover, we can prove
uℓ(x) ≤ max {1, 1/ℓ}u1(x) in the same manner.
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4 Existence and boundedness of the Pareto solutions

In this section, we provide sufficient conditions for the existence of weakly Pareto optimal
solutions, and for the boundedness of Pareto optimal sets. First, we show a theorem about
the existence of weakly Pareto optimal solutions.

Theorem 4.1. If F is continuous and level-bounded, then (1) has a weakly Pareto
optimal solution.

Proof. Let F be continuous and level-bounded. Then the level set ΩF (α) :=
{x ∈ S | Fi(x) ≤ α for all i ∈ {1, . . . ,m}} is bounded for all α ∈ R. Now, we have

ΩF (α) = {x ∈ S | max
i∈{1,...,m}

Fi(x) ≤ α} = Ωmaxi Fi(α),

so maxi Fi is also level-bounded. Moreover, since F is continuous, maxi Fi is also con-
tinuous. Thus, the problem

min max
i∈{1,...,m}

Fi(x)

s.t. x ∈ S

has a global optimal solution x∗. This gives

max
i∈{1,...,m}

Fi(x
∗) ≤ max

i∈{1,...,m}
Fi(x) for all x ∈ S,

which means that x∗ is weakly Pareto optimal for (1).

The boundedness condition of Pareto optimal sets follows immediately from Theo-
rem 3.5, and by assuming strong convexity of the objectives.

Theorem 4.2. If Fi is strongly convex for all i ∈ {1, . . . ,m}, then the (weakly) Pareto
optimal set of (1) is bounded.

5 Convergence rate of multiobjective proximal gradient
methods

In this section, we analyze the convergence rate of multiobjective proximal gradient
methods proposed in [9]. They are applicable to (1), if the problem is unconstrained,
that is, S = Rn, and each component of the objective function is defined by (9). In
addition, we assume that ∇fi is Lipschitz continuous with Lipschitz constant Li and
let Lmax := maxi∈{1,...,m} Li. We consider two types of proximal gradient methods, with

and without line searches. Both algorithms generate some sequence {xk} iteratively with
the following procedure:

xk+1 := xk + tkd
k,

11



where tk > 0 is a step size and dk is a search direction. At every iteration k, we define
the search direction dk by solving

dk = argmin
d∈Rn

[
ψxk(d) +

ℓ

2
∥d∥2

]
, (11)

where ℓ > 0 is a given constant and the function ψx : R
n → R is defined by

ψx(d) := max
i∈{1,...,m}

{
∇fi(x)⊤d+ gi(x+ d)− gi(x)

}
. (12)

Note that we have

ψxk(dk) +
ℓ

2
∥dk∥2 = −uℓ(xk), (13)

where uℓ(x
k) is defined by (10). From now on, we suppose that an infinite sequence of

iterates is generated. The next result shows an important property of ψx.

Lemma 5.1. [9, Lemma 4.1] Let {dk} be generated by a multiobjective proximal gradient
methods and recall the definition (12) of ψx. Then, we have

ψxk(dk) ≤ −ℓ∥dk∥2 for all k.

5.1 Proximal gradient methods with line searches

In this section, we analyze the convergence rates of the algorithms with line searches.

(a) The non-convex case

First, we suppose that fi is non-convex for all i ∈ {1, . . . ,m}. To keep the paper self-
contained, we first recall the algorithm with line searches.

Algorithm 5.1 (Proximal gradient method with line searches).

Step 1: Choose ℓ > 0, ρ ∈ (0, 1), ξ ∈ (0, 1), x0 ∈ Rn and set k := 0.

Step 2: Compute dk by solving subproblem dk = argmin
d∈Rn

[
ψxk(d) + ℓ

2∥d∥
2
]
.

Step 3: If dk = 0, then stop.

Step 4: Compute the step length tk ∈ (0, 1] as the maximum of

Tk := {t = ξj | j ∈ N, Fi(x
k + tkd

k) ≤ Fi(x
k) + tkρψxk(dk), i = 1, . . . ,m}

Step 5: Set xk+1 := xk + tkd
k, k := k + 1, and go to Step 2.

To begin with, we show the existence of a uniform lower bound on the step size tk.

12



Lemma 5.2. In Algorithm 5.1 the step size tk satisfies the following inequality for every
iteration k:

tk ≥ tmin := min

{
2ξ(1− ρ)ℓ

Lmax
, 1

}
.

Proof. If tk = 1, then the claim is clear. Thus, we suppose that tk < 1. By the definition
of tk in Step 4 of Algorithm 5.1, there exists i ∈ {1, . . . ,m} such that{

Fi(x
k + ξ−1tkd

k)− Fi(x
k) > ξ−1tkρψxk(dk)

0 < ξ−1tk ≤ 1.
(14)

On the other hand, it follows by the definition (12) of ψx that

ψxk(dk) ≥ ∇fi(xk)⊤dk + gi(x
k + dk)− gi(x

k)

≥ ξ−1tk∇fi(xk)⊤dk + gi(x
k + ξ−1tkd

k)− gi(x
k)

ξ−1tk

≥ Fi(x
k + ξ−1tkd

k)− Fi(x
k)− Li∥ξ−1tkd

k∥2/2
ξ−1tk

=
Fi(x

k + ξ−1tkd
k)− Fi(x

k)

ξ−1tk
− Li

2
ξ−1tk∥dk∥2,

(15)

where the second inequality comes from the convexity of gi and Lemma 2.1, and the
third one follows from the Lipschitz continuity of ∇fi and Lemma 3.2. From (14) and
(15), we have

Fi(x
k + ξ−1tkd

k)− Fi(x
k)

ξ−1tk
− Li

2
ξ−1tk∥dk∥2 <

1

ρ

Fi(x
k + ξ−1tkd

k)− Fi(x
k)

ξ−1tk
.

Thus, we get

−Li

2
ξ−1tk∥dk∥2 <

1− ρ

ρ

Fi(x
k + ξ−1tkd

k)− Fi(x
k)

ξ−1tk
.

Applying (15) again gives

−Li

2
ξ−1tk∥dk∥2 <

1− ρ

ρ

(
ψxk(dk) +

Li

2
ξ−1tk∥dk∥2

)
.

It follows from Lemma 5.1 that

−Li

2
ξ−1tk∥dk∥2 <

1− ρ

ρ

(
−ℓ∥dk∥2 + Li

2
ξ−1tk∥dk∥2

)
,

which is equivalent to

tk >
2(1− ρ)ℓ

Liξ−1
.

13



Therefore, using the definition of Lmax, we conclude that

tk ≥ tmin := min

{
2ξ(1− ρ)ℓ

Lmax
, 1

}
.

The next theorem shows that Algorithm 5.1 has a convergence rate of order 1/k.

Theorem 5.1. Suppose that there exists some nonempty set J ⊆ {1, . . . ,m} such that
if i ∈ J then Fi is has a lower bound Fmin

i . Let Fmin := maxi∈J F
min
i and Fmax

0 :=
maxi∈{1,...,m} Fi(x

0). Then, the Algorithm 5.1 generates a sequence {xk} such that

min
0≤j≤k−1

u1(x
j) ≤ Fmax

0 − Fmin

tminρkmin{1, 1/ℓ}
.

Proof. Let i ∈ J . By the definition of tk in Step 4 of Algorithm 5.1 it follows that

Fi(x
k + tkd

k)− Fi(x
k) ≤ tkρψxk(dk)

= −tkρuℓ(xk)−
ℓtkρ

2
∥dk∥2

≤ −tkρuℓ(xk),

where the equality follows from (13). Therefore, we have

Fi(x
k)− Fi(x

k + tkd
k) ≥ tkρuℓ(x

k)

≥ tminρuℓ(x
k),

where the second inequality comes from Lemma 5.2. Adding up the above inequality
from k = 0 to k = k̃ − 1, we obtain

Fi(x
0)− Fi(x

k̃−1 + tk̃−1d
k̃−1) ≥ tminρ

k̃−1∑
j=0

u0(x
j)

≥ tminρk̃ min
0≤j≤k̃−1

uℓ(x
j).

From the statement 4 of Proposition 3.1, we conclude that

min
0≤j≤k̃−1

u1(x
j) ≤ Fmax

0 − Fmin

tminρk̃min{1, 1/ℓ}
.

14



(b) The convex and strongly convex cases

When fi is convex or strongly convex for all i ∈ {1, . . . ,m}, we can modify the Armijo
condition and use alternatively a sufficient decrease condition (see (16)). Then, the al-
gorithm is described as follows:

Algorithm 5.2 (Proximal gradient method with line searches (convex case)).

Step 1: Choose ℓ > 0, γ ∈ (0, 1), ξ ∈ (0, 1), x0 ∈ Rn and set k := 0.

Step 2: Compute dk by solving subproblem dk = argmin
d∈Rn

[
ψxk(d) + ℓ

2∥d∥
2
]
.

Step 3: If dk = 0, then stop.

Step 4: Compute the step length tk ∈ (0, 1] as the maximum of

Tk := {t = ξj | j ∈ N, Fi(x
k + tdk) ≤ Fi(x

k) + tψxk(dk) +
γtℓ

2
∥dk∥2,

i = 1, . . . ,m}
(16)

Step 5: Set xk+1 := xk + tkd
k, k := k + 1, and go to Step 2.

We can easily see that the step size has a lower bound in each iteration.

Lemma 5.3. In Algorithm 5.2, the step size tk satisfies the following inequality for every
iteration k:

tk ≥ tmin := min

{
ξγℓ

Lmax
, 1

}
.

Proof. Since ∇fi is Lipschitz continuous with the Lipschitz constant Li, we have for
all t ∈ (0, (γℓ)/Li],

Fi(x
k + tdk)− Fi(x

k) ≤ t∇fi(xk)⊤dk + gi(x
k + tdk)− gi(x

k) +
Li

2
∥tdk∥2

≤ t
(
∇fi(xk)⊤dk + gi(x

k + dk)− gi(x
k)
)
+
Li

2
∥tdk∥2

≤ tψxk(dk) +
Li

2
∥tdk∥2

≤ tψxk(dk) +
γℓ

2t
∥tdk∥2,

where the second inequality follows from the convexity of gi and the third one comes
from the definition (12) of ψx. Therefore, the condition (16) are satisfied for all t ∈
(0, (γℓ)/Lmax]. By the definition of tk in Step 3 of Algorithm 5.2, we get

tk ≥ min

{
ξγℓ

Lmax
, 1

}
.
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Next, we prove the following lemma, which is the key to analyze the convergence
rate of the method in the convex and strongly convex cases.

Lemma 5.4. Let fi and gi have convexity parameters µi ∈ R and νi ∈ R, respectively,
and write µ := mini∈{1,...,m} µi and ν := mini∈{1,...,m} νi. Then, Algorithm 5.2 generates

a sequence {xk} such that for all x ∈ Rn,

m∑
i=1

λki

(
Fi(x

k+1)− Fi(x)
)

≤ ℓ+ ν(1− tmin)

2tmin

(
∥xk − x∥2 − ∥xk+1 − x∥2

)
− µ

2
∥xk − x∥2 − ν

2
∥xk+1 − x∥2

− (1− tmin)
(
ψxk(dk) +

(
ℓ+

ν

2

)
∥dk∥2

)
,

where λki satisfies the following conditions:
There exists ηi ∈ ∂gi(x

k + dk) such that
m∑
i=1

λki (∇fi(xk) + ηi) + ℓdk = 0, (17)

m∑
i=1

λki = 1, λki ≥ 0
(
i ∈ Ixk(dk)

)
, λki = 0

(
i /∈ Ixk(dk)

)
, (18)

where
Ix(d) := {i ∈ {1, . . . ,m} | ψx(d) = ∇fi(x)⊤d+ gi(x+ d)− gi(x)}. (19)

Proof. By the definition of tk in Step 3 of Algorithm 5.2, it follows that for all i ∈
{1, . . . ,m},

Fi(x
k+1) ≤ Fi(x

k) + tkψxk(dk) +
γtkℓ

2
∥dk∥2.

Since γ < 1, we get

Fi(x
k+1) ≤ Fi(x

k) + tkψxk(dk) +
tkℓ

2
∥dk∥2.

Now, the convexity of fi with modulus µi ∈ R yields that for all x ∈ Rn,

Fi(x
k+1) ≤ Fi(x) +∇fi(xk)⊤(xk − x)− µi

2
∥xk − x∥2 + gi(x

k)− gi(x)

+ tkψxk(dk) +
tkℓ

2
∥dk∥2

≤ Fi(x) +∇fi(xk)⊤(xk − x)− µ

2
∥xk − x∥2 + gi(x

k)− gi(x)

+ tkψxk(dk) +
tkℓ

2
∥dk∥2,

where the second inequality follows from the definition of µ. Multiplying by λki and
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summing for all i ∈ {1, . . . ,m}, we have

m∑
i=1

λki

(
Fi(x

k+1)− Fi(x)
)

≤
m∑
i=1

λki

(
∇fi(xk)⊤(xk − x)− µ

2
∥xk − x∥2 + gi(x

k)− gi(x)

+tkψxk(dk) +
tkℓ

2
∥dk∥2

)
=

m∑
i=1

λki

(
∇fi(xk)⊤(xk + dk − x)− µ

2
∥xk − x∥2 + gi(x

k + dk)− gi(x)

−
(
∇fi(xk)⊤dk + gi(x

k + dk)− gi(x
k)
)
+ tkψxk(dk) +

tkℓ

2
∥dk∥2

)

=

m∑
i=1

λki

(
∇fi(xk)⊤(xk + dk − x) + gi(x

k + dk)− gi(x)
)

− (1− tk)ψxk(dk)−
µ

2
∥xk − x∥2 + tkℓ

2
∥dk∥2,

where the second equality follows from (18) and (19). Now, let ηi ∈ ∂gi(x
k + dk). Then,

from the convexity of gi with modulus νi ∈ R we get

m∑
i=1

λki

(
Fi(x

k+1)− Fi(x)
)

≤
m∑
i=1

λki

[(
∇fi(xk) + ηi

)⊤
(xk + dk − x)− νi

2
∥xk + dk − x∥2

]
− (1− tk)ψxk(dk)−

µ

2
∥xk − x∥2 + tkℓ

2
∥dk∥2

≤
m∑
i=1

λki

(
∇fi(xk) + ηi

)⊤
(xk + dk − x)

− (1− tk)ψxk(dk)−
µ

2
∥xk − x∥2 − ν

2
∥xk + dk − x∥2 + tkℓ

2
∥dk∥2,

where the definition of ν and (18) yield the second inequality. Now, the condition (17)
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gives

m∑
i=1

λki

(
Fi(x

k+1)− Fi(x)
)

≤− ℓ(dk)⊤
(
xk + dk − x

)
− (1− tk)ψxk(dk)−

µ

2
∥xk − x∥2

− ν

2
∥xk + dk − x∥2 + tkℓ

2
∥dk∥2

≤− ℓ(dk)⊤
(
xk + tkd

k − x
)
− ℓ(1− tk)∥dk∥2 − (1− tk)ψxk(dk)−

µ

2
∥xk − x∥2

− ν

2

(
∥xk + tkd

k − x∥2 + 2(1− tk)(d
k)⊤(xk + tkd

k − x) + (1− tk)
2∥dk∥2

)
+
tkℓ

2
∥dk∥2

≤− (ℓ+ ν(1− tk))(d
k)⊤

(
xk + tkd

k − x
)
− µ

2
∥xk − x∥2 − ν

2
∥xk+1 − x∥2

− (1− tk)ψxk(dk)− (1− tk)
(
ℓ+

ν

2

)
∥dk∥2 + tk(ℓ+ ν(1− tk))

2
∥dk∥2

≤− ℓ+ ν(1− tk)

2tk

(
2(xk − x)⊤(tkd

k) + ∥tkdk∥2
)
− µ

2
∥xk − x∥2 − ν

2
∥xk+1 − x∥2

− (1− tk)
(
ψxk(dk) +

(
ℓ+

ν

2

)
∥dk∥2

)
.

Finally, the definition of tmin yields

m∑
i=1

λki

(
Fi(x

k+1)− Fi(x)
)

≤ℓ+ ν(1− tmin)

2tmin

(
∥xk − x∥2 − ∥xk+1 − x∥2

)
− µ

2
∥xk − x∥2 − ν

2
∥xk+1 − x∥2

− (1− tmin)
(
ψxk(dk) +

(
ℓ+

ν

2

)
∥dk∥2

)
.

where the second inequality comes from (17).

The next theorem shows that the proximal gradient method in the convex case de-
scribed in Algorithm 5.2 has a convergence rate of order 1/k.

Theorem 5.2. Suppose that there exists some nonempty set J ⊆ {1, . . . ,m} such that
if i ∈ J then Fi is has a lower bound Fmin

i . Let Fmin := maxi∈J F
min
i and Fmax

0 :=
maxi∈{1,...,m} Fi(x

0). Let Fi be convex for all i ∈ {1, . . . ,m}. If the level set ΩF (x
0) :=

{x ∈ Rn | F (x) ≤ F (x0)} is bounded, then Algorithm 5.2 generates a sequence {xk}
such that

w(xk) ≤ R

2tmink
,

where R := ℓ supx∈ΩF (x0) ∥x−x0∥+(1− tmin)[2(F
max
0 −Fmin)− ℓtmin

∑k−1
j=0 ∥dk∥2] <∞.
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Proof. From Lemma 5.4, we have for all x ∈ Rn,

m∑
i=1

λki
(
Fi(x

j+1)− Fi(x)
)

≤ ℓ

2tmin

(
∥xk − x∥2 − ∥xk+1 − x∥2

)
− (1− tmin)

(
ψxk(dk) + ℓ∥dk∥2

)
.

Adding up the above inequality from j = 0 to j = k − 1, we obtain

k−1∑
j=0

m∑
i=1

λji
(
Fi(x

j)− Fi(x)
)

≤ ℓ

2tmin

(
∥x0 − x∥2 − ∥xk − x∥2

)
− (1− tmin)

k−1∑
j=0

(
ψxj (dj) + ℓ∥dj∥2

)
.

From the condition (16) of the step size tk, we have for all p ∈ J

k−1∑
j=0

m∑
i=1

λji
(
Fi(x

j)− Fi(x)
)

≤ ℓ

2tmin
∥x0 − x∥2 − (1− tmin)

k−1∑
j=0

(
Fp(x

j+1)− Fp(x
j)

tj
+
ℓ

2
∥dj∥2

)

≤ ℓ

2tmin
∥x0 − x∥2 − (1− tmin)

k−1∑
j=0

(
Fp(x

j+1)− Fp(x
j)

tmin
+
ℓ

2
∥dj∥2

)

=
ℓ

2tmin
∥x0 − x∥2 − (1− tmin)

Fp(x
k)− Fp(x

0)

tmin
+
ℓ

2

k−1∑
j=0

∥dj∥2


≤ ℓ

2tmin
∥x0 − x∥2 + (1− tmin)

Fmax
0 − Fmin

p

tmin
− ℓ

2

k−1∑
j=0

∥dj∥2


≤ ℓ

2tmin
∥x0 − x∥2 + (1− tmin)

Fmax
0 − Fmin

tmin
− ℓ

2

k−1∑
j=0

∥dj∥2
 .

where the third inequality follows from the definition of tmin. Let λ̄
k−1
i :=

∑k−1
j=0 λ

j
i/k.

Then it follows that

m∑
i=1

λ̄k−1
i

(
Fi(x

k)− Fi(x)
)
≤ ℓ

2tmink
∥x0−x∥2+1− tmin

k

Fmax
0 − Fmin

tmin
− ℓ

2

k−1∑
j=0

∥dj∥2
 .
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Since λ̄k−1
i ≥ 0,

∑m
i=1 λ̄

k−1
i = 1, we see that

min
i∈{1,...,m}

(
Fi(x

k)− Fi(x)
)
≤ ℓ

2tmink
∥x0−x∥2+1− tmin

k

Fmax
0 − Fmin

tmin
− ℓ

2

k−1∑
j=0

∥dj∥2
 .

Taking the supremum in the level set ΩF (x
0) yields

sup
x∈ΩF (x0)

min
i∈{1,...,m}

(
Fi(x

k)− Fi(x)
)
≤ R

2tmink
.

Now, Lemma 5.1 and (16) imply that {Fi(x
k)} is decreasing, so we conclude that

w(xk) ≤ R

2tmink
.

5.2 Proximal gradient methods without line searches

When we set ℓ > Lmax, we can fix the step size tk = 1 for each iteration k. The algorithm
without line searches is described as follows:

Algorithm 5.3 (The proximal gradient method without line searches).

Step 1: Choose ℓ > Lmax/2, x
0 ∈ Rn and set k := 0.

Step 2: Compute dk by solving subproblem dk = argmin
d∈Rn

[
ψxk(d) + ℓ

2∥d∥
2
]
.

Step 3: If dk = 0, then stop.

Step 4: Set xk+1 := xk + dk, k := k + 1, and go to Step 2.

(a) The non-convex case

First, we analyze the convergence rate when fi is non-convex for all i ∈ {1, . . . ,m}. The
next theorem shows that Algorithm 5.3 has a convergence rate of order 1/k.

Theorem 5.3. Suppose that there exists some nonempty set J ⊆ {1, . . . ,m} such that
if i ∈ J then Fi has a lower bound Fmin

i . Let Fmin := maxi∈J F
min
i and Fmax

0 :=
maxi∈{1,...,m} Fi(x

0). Then, the Algorithm 5.3 generates a sequence {xk} such that

min
0≤j≤k−1

u1(x
j) ≤ Fmax

0 − Fmin

kmin
{
1, 1

Lmax

} .
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Proof. Let i ∈ J . From the Lipschitz continuity of ∇fi, we have

Fi(x
k+1)− Fi(x

k) ≤ ∇fi(xk)⊤dk + gi(x
k+1)− gi(x

k) +
Li

2
∥dk∥2

≤ ∇fi(xk)⊤dk + gi(x
k+1)− gi(x

k) +
Lmax

2
∥dk∥2

≤ max
i∈{1,...,m}

{
∇fi(xk)⊤dk + gi(x

k+1)− gi(x
k) +

Lmax

2
∥dk∥2

}
= −uLmax(x

k)

≤ −min

{
1,

1

Lmax

}
u1(x

k),

where the equality follows from the definition (10) of uLmax , and the last inequality comes
from the statement 3 of Proposition 3.1. Adding up the above inequality from k = 0
to k = k̃ − 1 yields that

Fi(x
k̃)− Fi(x

0) ≤ −
k̃−1∑
k=0

{
1,

1

Lmax

}
u1(x

k)

≤ −k̃min

{
1,

1

Lmax

}
min

0≤k≤k̃−1
u1(x

j).

Thus, we get

min
0≤k≤k̃−1

u1(x
k) ≤ Fmax

0 − Fmin

k̃min
{
1, 1

Lmax

} .

(b) The convex and strongly convex cases

We start with proving the following lemma. Note that we add an assumption ℓ > Lmax.

Lemma 5.5. Let fi and gi have convexity parameters µi ∈ R and νi ∈ R, respectively,
and write µ := mini∈{1,...,m} µi and ν := mini∈{1,...,m} νi. If ℓ > Lmax, then for all x ∈ Rn

it follows that

m∑
i=1

λki

(
Fi(x

k+1)− Fi(x)
)
≤ ℓ

2

(
∥xk − x∥2 − ∥xk+1 − x∥2

)
− ν

2
∥xk+1−x∥2− µ

2
∥xk−x∥2,
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where λki satisfies the following conditions:
There exists ηi ∈ ∂gi(x

k + dk) such that
m∑
i=1

λki (∇fi(xk) + ηi) + ℓdk = 0, (20)

m∑
i=1

λki = 1, λki ≥ 0
(
i ∈ Ixk(dk)

)
, λki = 0

(
i /∈ Ixk(dk)

)
, (21)

where
Ix(d) := {i ∈ {1, . . . ,m} | ψx(d) = ∇fi(x)⊤d+ gi(x+ d)− gi(x)}.

Proof. Since ℓ > Lmax, ∇fi is Lipschitz continuous with Lipschitz constant ℓ for each i ∈
{1, . . . ,m}. Therefore, from Lemma 3.2 we have

Fi(x
k+1)− Fi(x

k) ≤ ∇fi(xk)⊤(xk+1 − xk) + gi(x
k+1)− gi(x

k) +
ℓ

2
∥dk∥2.

Let ηi ∈ ∂gi(x
k + dk). The convexity of fi with modulus µi gives

Fi(x
k+1)− Fi(x)

≤∇fi(xk)⊤(xk − x)− µi
2
∥xk − x∥2 + gi(x

k)− gi(x)

+∇fi(xk)⊤(xk+1 − xk) + gi(x
k+1)− gi(x

k) +
ℓ

2
∥dk∥2

≤∇fi(xk)⊤(xk + dk − x) + gi(x
k + dk)− gi(x)−

µ

2
∥xk − x∥2 + ℓ

2
∥dk∥2

≤∇fi(xk)⊤(xk + dk − x) + η⊤i (x
k + dk − x)− µ

2
∥xk − x∥2 − ν

2
∥xk+1 − x∥2 + ℓ

2
∥dk∥2,

where the equality follows from the definition of µ and the fact that xk+1 = xk+dk, and
the last inequality comes from the convexity of gi. Multiplying the above inequality by
λki and summing for all i ∈ {1, . . . ,m}, we obtain

m∑
i=1

λki

(
Fi(x

k+1)− Fi(x)
)

≤
m∑
i=1

λki

(
∇fi(xk)⊤(xk + dk − x) + η⊤i (x

k + dk − x)

− µ

2
∥xk − x∥2 − ν

2
∥xk+1 − x∥2 + ℓ

2
∥dk∥2

)
=− ℓ(dk)⊤(xk + dk − x)− µ

2
∥xk − x∥2 − ν

2
∥xk+1 − x∥2 + ℓ

2
∥dk∥2

=− ℓ

2

(
2(dk)⊤(xk − x) + ∥dk∥2

)
− µ

2
∥xk − x∥2 − ν

2
∥xk+1 − x∥2

=
ℓ

2

(
∥xk − x∥2 − ∥xk+1 − x∥2

)
− µ

2
∥xk − x∥2 − ν

2
∥xk+1 − x∥2,
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where (20) and (21) give the first inequality.

The next theorem shows that the proximal gradient method without line search
described in Algorithm 5.3 has a convergence rate of order 1/k in the convex case.

Theorem 5.4. Let Fi be convex for all i ∈ {1, . . . ,m}. If the level set ΩF (x
0) := {x ∈ S |

F (x) ≤ F (x0)} is bounded and ℓ > Lmax, then Algorithm 5.3 generates a sequence {xk}
such that

w(xk) ≤ R̃

2k
,

where R̃ := ℓ supx∈ΩF (x0) ∥x− x0∥ <∞.

Proof. From Lemma 5.5, we have for all x ∈ Rn

m∑
i=1

λki

(
Fi(x

k+1)− Fi(x)
)
≤ ℓ

2

(
∥xk − x∥2 − ∥xk+1 − x∥2

)
.

Adding up the above inequality from j = 0 to j = k − 1, we obtain

k−1∑
j=1

m∑
i=1

λji

(
Fi(x

k+1)− Fi(x)
)
≤ ℓ

2

(
∥x0 − x∥2 − ∥xk+1 − x∥2

)
≤ ℓ

2
∥x0 − x∥2.

Let λ̄k−1
i :=

∑k−1
j=0 λ

j
i/k. Then, it follows that

m∑
i=1

λ̄k−1
i

(
Fi(x

k)− Fi(x)
)
≤ ℓ

2k
∥x0 − x∥2.

Since λ̄k−1
i ≥ 0,

∑m
i=1 λ̄

k−1
i = 1, we see that

min
i∈{1,...,m}

(
Fi(x

k)− Fi(x)
)
≤ ℓ

2k
∥x0 − x∥2.

Taking the supremum in the level set ΩF (x0) yields

sup
x∈ΩF (x0

(
Fi(x

k)− Fi(x)
)
≤ R̃

2k
.

Since {Fi(x
k)} is decreasing, we have

w(xk) ≤ R̃

2k
.
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Moreover, if we assume strong convexity, then Algorithm 5.3 converges linearly.

Theorem 5.5. Let fi and gi have convexity parameters µi ∈ R and νi ∈ R, respectively,
and write µ := mini∈{1,...,m} µi and ν := mini∈{1,...,m} νi. If ℓ > Lmax, then there exists a
Pareto optimal point x∗ ∈ Rn such that for all iteration k,

∥xk+1 − x∗∥ ≤
√
ℓ− µ

ℓ+ ν
∥xk − x∗∥.

Thus, we have

∥xk − x∗∥ ≤

(√
ℓ− µ

ℓ+ ν

)k

∥x0 − x∗∥.

Proof. Because each Fi is strongly convex, {xk} has an accumulation point x∗ ∈ Rn.
Note that x∗ is a Pareto optimal point [9, Lemma 2.2 and Theorem 4.2]. Now, from
Lemma 5.5, we have

m∑
i=1

λki

(
Fi(x

k+1)− Fi(x
∗)
)
≤ ℓ

2

(
∥xk − x∥2 − ∥xk+1 − x∥2

)
−µ
2
∥xk−x∥2−ν

2
∥xk+1−x∥2.

Since the left hand side is nonnegative because of Lemma 5.1 and (16), we obtain

0 ≤ ℓ

2

(
∥xk − x∥2 − ∥xk+1 − x∥2

)
− µ

2
∥xk − x∥2 − ν

2
∥xk+1 − x∥2,

which is equivalent to

∥xk+1 − x∗∥ ≤
√
ℓ− µ

ℓ+ ν
∥xk − x∗∥.

6 Conclusion

We proposed two new merit functions and clarified the associate properties of error
bounds and level-boundedness. By using them, we showed a sufficient condition on the
existence and boundedness of the weakly Pareto optimal set. Moreover, by considering
these merit functions we analyzed the convergence rates of proximal gradient methods.
We showed that the algorithms have convergence rates of order 1/k, 1/k, and rk for
some r ∈ (0, 1), respectively for non-convex, convex and strongly convex cases.

In single-objective optimization, for convex cases we can obtain convergence rate
of O(1/k2) with accelerated methods such as [1]. For future research, we may consider
extending these topics to multiobjective optimization.
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Abstract

Many descent algorithms for multiobjective optimization have been developed in the
last two decades. However, differently from the scalar-valued optimization case, there
exist few results related to the existence or the boundedness of Pareto optimal solutions.
Moreover, studies about the convergence rates of these algorithms are still insufficient.
In this paper, we first present two new merit functions for nonlinear multiobjective op-
timization, which extend the one defined for linear multiobjective optimization. These
functions return zero at the solutions of the original problem and strictly positive values
otherwise. Furthermore, by examining the properties of these merit functions, we show
sufficient conditions for the existence of weakly Pareto optimal solutions, and for the
boundedness of Pareto optimal sets. Finally, by using these functions, we analyze the
convergence rates of the recently proposed multiobjective proximal gradient methods.
We show that both methods with and without line searches have sublinear rate of con-
vergence for non-convex and convex cases. We also prove that the algorithm without line
searches converges linearly in the strongly convex case.


