
Master’s Thesis

Convergence analysis and acceleration of the smoothing
methods for solving extensive-form games

Guidance

Professor Nobuo Yamashita
Associate Professor Ellen Hidemi Fukuda

Keigo Habara

Department of Applied Mathematics and Physics

Graduate School of Informatics

Kyoto University

K
Y
O
T

O
UNIVER

S
IT
Y

F
O

U
N
DED

1
8

9
7

KYOTO JAPAN

February 2023

Abstract

The extensive-form game has been studied considerably in recent years. It can represent games
with multiple decision points and incomplete information, and hence it is helpful in formulating
games with uncertain inputs, such as poker. We consider an extended-form game with two players
and zero-sum, i.e., the sum of their payoffs is always zero. In such games, the problem of finding
the optimal strategy can be formulated as a bilinear saddle-point problem. This formulation
grows huge depending on the size of the game, since it has variables representing the strategies at
all decision points for each player. To solve such large-scale bilinear saddle-point problems, the
excessive gap technique (EGT), a smoothing method, has been studied. This method generates a
sequence of approximate solutions whose error is guaranteed to converge at O(1/𝑘), where 𝑘 is
the number of iterations. However, it has the disadvantage of having poor theoretical bounds on
the error related to the game size. This makes it inapplicable to large games.

Our goal is to improve the smoothing method for solving extensive-form games so that it can
be applied to large-scale games. To this end, we make two contributions in this work. First, we
slightly modify the strongly convex function used in the smoothing method in order to improve
the theoretical bounds related to the game size. Second, we propose a heuristic called centering
trick, which allows the smoothing method to be combined with other methods and consequently
accelerates the convergence in practice. As a result, we combine EGT with CFR+, a state-of-the-
art method for extensive-form games, to achieve good performance in games where conventional
smoothing methods do not perform well. The proposed smoothing method is shown to have the
potential to solve large games in practice.

Contents

1 Introduction 1

2 Preliminaries 2

3 Smoothing methods 2
3.1 Bilinear saddle-point problems . 2
3.2 Prox-functions . 3
3.3 Excessive gap technique . 3

4 Extensive-form games 5

5 Prox-function over the strategy set 6

6 Numerical experiments 11
6.1 Heuristics to accelerate the convergence of EGT 11
6.2 Results of the experiments . 12

7 Conclusions 15

A Toy instances 16
A.1 Kuhn poker . 16
A.2 Leduc Hold’em . 16

B Subproblem in the conjugate function 19

C Implementation of CFR and CFR+ 20

1 Introduction

This study concerns improving the smoothing method for solving extensive-form games with
imperfect information. An extensive-form game is a description of a game played by multiple
players, where the game state corresponds to a node in a rooted tree. The state of the game moves
down the tree according to the actions of each player, and each player receives a gain when a
leaf of the tree is reached. This game is a good model for games with information gaps between
players, such as poker, because it can represent the incomplete information. We only deal with
games in which there are two players, and the sum of their payoff is zero. It is known that in such
two-person zero-sum games, the problem of finding the optimal strategy can be formulated as a
simple minimax problem since the players do not cooperate with each other.

There are two well-known methods for solving extensive-form games: counterfactual regret
minimization (CFR) [1] and excessive gap technique (EGT) [2]. CFR is an application of re-
gret minimization, a framework used in online learning, to extensive-form games. Its variant,
CFR+ [3], was developed to solve a variant of a two-player poker game called Texas Hold’em,
which was a challenging problem in artificial intelligence [4, 5]. CFR+ is suited for analyzing
large games because the solution error is bounded linearly with the game size. However, it is
only guaranteed to converge at O

(
1/
√
𝑘

)
rate, where 𝑘 is the number of iterations. EGT is a

smoothing method for the bilinear saddle-point problem, and its application to extensive-form
games has been studied [6]. EGT is theoretically guaranteed to converge with rate O(1/𝑘), which
is faster than CFR+, but it is not suitable for solving large games. This is because the term 𝐷/𝜎,
which appears in the error bound, depends poorly on the game size. Here 𝜎 is the strong con-
vexity parameter of a function 𝑑 called prox-function used in EGT and 𝐷 := max𝒙 𝑑 (𝒙). Various
prox-functions have been proposed in the literature [6, 7, 8], with 𝐷/𝜎 being bounded by a cubic
order of the game size.

Our goal is to improve the prox-function so that EGT can be applied to large extensive-
form games. To this purpose, we make two contributions. First, we improve the bound of 𝐷/𝜎
from 𝑀3

𝑄
ln max𝐼∈I |A(𝐼) | to 𝑀2

𝑄
ln |Σ | by eliminating the first-order term of the prox-function

proposed in [8]. Here 𝑀𝑄 is the maximum value of the 𝐿1-norm among the feasible points of
the bilinear saddle-point problem, and |Σ | is the dimension of the feasible set, both of which
are bounded by the game size. Also, max𝐼∈I |A(𝐼) | is the maximum number of legal actions
at each decision point. Second, we propose a heuristic in EGT that we call the centering trick.
This trick modifies the prox-function in a way that it takes the minimum value in a temporary
solution. It is expected to improve the accuracy of the smooth approximation of the bilinear
saddle-point problem inside the EGT. This heuristic accelerates convergence in practice and can
be combined with other methods by using their solutions. Numerical experiments show that
EGT with the heuristic combined with CFR+ performs best among several methods, including
CFR+, for games of a scale where conventional EGT does not perform well. This suggests that
the proposed smoothing method is effective even for large games.

The structure of this paper is given as follows. Section 2 introduces the basics of convex-
ity analysis. Section 3 presents the bilinear saddle-point problem, the prox-function, and the
smoothing method (EGT). Section 4 introduces the extensive-form games and explains how to
transform the problem of finding the optimal strategy of the game into a problem covered by

1

EGT. In Section 5, we propose a prox-function, and we will show that it improves theoretical
convergence. Section 6 provides the centering heuristic that accelerates the convergence of EGT
in practice and confirms its performance through numerical experiments. Section 7 summarizes
our contributions.

2 Preliminaries

This section introduces the basic properties of the convex analysis used in this paper. Let us
denote R𝑛 as the 𝑛-dimentional Euclidean space and ri𝑆 as the relative interior of 𝑆 ⊂ R𝑛. We
will denote 𝒙⊤ and 𝑨⊤ as the transpose of the 𝑛-dimentional vector 𝒙 ∈ R𝑛 and the 𝑛×𝑚 matrix
𝑨 ∈ R𝑛×𝑚. For a convex compact set 𝑆 ⊂ R𝑛, let us define the conjugate function 𝑓 ∗ : R𝑛 → R
of a function 𝑓 : 𝑆 → R by

𝑓 ∗(𝝃) := max
𝒙∈𝑆

{
𝝃⊤𝒙 − 𝑓 (𝒙)

}
.

If the above maximizer is unique, then by Danskin’s theorem, 𝑓 ∗ is differentiable at 𝝃 ∈ R𝑛, and
its derivative is given by

∇ 𝑓 ∗(𝝃) = arg max
𝒙∈𝑆

{
𝝃⊤𝒙 − 𝑓 (𝒙)

}
.

3 Smoothing methods

In this section, the bilinear saddle-point problem and the prox-function are explained, followed
by an overview of EGT.

3.1 Bilinear saddle-point problems

The bilinear saddle-point problems (BSPPs), which EGT covers, are written in the following
form:

min
𝒙∈X

max
𝒚∈Y

𝒙⊤𝑨𝒚, (1)

where 𝑨 ∈ R𝑛×𝑚 is a matrix and X ⊂ R𝑛,Y ⊂ R𝑚 are convex and compact sets. The adjoint
form of the problem is given by

max
𝒚∈Y

min
𝒙∈X

𝒙⊤𝑨𝒚. (2)

By Minimax Theorem, these two problems achieve the same optimal value. In other words, the
following equation holds for the optimal solution 𝒙∗ ∈ X and 𝒚∗ ∈ Y of (1) and (2):

max
𝒚∈Y
(𝒙∗)⊤𝑨𝒚 = min

𝒙∈X
𝒙⊤𝑨𝒚∗.

The error of the pair of the solutions (�̄�, �̄�) can be defined by

Y(�̄�, �̄�) := max
𝒚∈Y

�̄�⊤𝑨𝒚 −min
𝒙∈X

𝒙⊤𝑨�̄� ≥ 0, (3)

and Y(�̄�, �̄�) = 0 if and only if �̄� and �̄� are the optimal solutions of problems (1) and (2).

2

3.2 Prox-functions

BSPPs (1), the problems covered by EGT, can be regarded as non-smooth minimization problems
because 𝑓 (𝒙) := max𝒚∈Y 𝒙⊤𝑨𝒚 is generally non-smooth. One way to 𝑓 is to consider a prox-
function which we define below.

Definition 3.1. A function 𝑑 : 𝑆 → R is called a prox-function on a convex compact set 𝑆 ⊂ R𝑛
when satisfying the following conditions:

• 𝑑 is twice differentiable in ri𝑆;

• 𝑑 is 𝜎-strongly convex in ri𝑆 with respect to some norm ∥·∥𝑆 defined on R𝑛, i.e.,

𝝃⊤∇2𝑑 (𝒙)𝝃 ≥ 𝜎∥𝝃∥2𝑆 ∀𝒙 ∈ ri𝑆,∀𝝃 ∈ R𝑛;

• min𝒙∈𝑆 𝑑 (𝒙) = 0.

For some prox-function 𝑑2 : Y → R and parameter `2 > 0, define the smoothing of 𝑓 as

𝑓`2 (𝒙) := max
𝒚∈Y

{
𝒙⊤𝑨𝒚 − `2𝑑2(𝒚)

}
(4)

= `2𝑑
∗
2
(
𝑨⊤𝒙/`2

)
.

Since 𝑑2 is strongly convex, the maximizer of (4) is unique, then 𝑑∗2 is differentiable, which in
turn shows that 𝑓`2 is also differentiable. Let 𝐷2 := max𝒚∈Y 𝑑2(𝒚). By the definition of 𝑓`2 , we
have

𝑓`2 (𝒙) ≤ 𝑓 (𝒙) ≤ 𝑓`2 (𝒙) + `2𝐷2 ∀𝒙 ∈ X, (5)

then 𝑓`2 is a good smooth approximation of 𝑓 for small `2 > 0.

3.3 Excessive gap technique

This section provides an overview of EGT. Let 𝜙(𝒚) := min𝒙∈X 𝒙⊤𝑨𝒚. For some prox-function
𝑑1 : X → R and `1 > 0, define the smooth approximation of 𝜙 similarly to (4):

𝜙`1 (𝒚) := min
𝒙∈X

{
𝒙⊤𝑨𝒚 + `1𝑑1(𝒙)

}
,

and we also have

𝜙`1 (𝒚) − `1𝐷1 ≤ 𝜙(𝒚) ∀𝒚 ∈ Y, (6)

where 𝐷1 := max𝒙∈X 𝑑1(𝒙). Here we consider the following condition, called excessive gap
condition:

𝑓`2 (𝒙) ≤ 𝜙`1 (𝒚). (7)

3

If (𝒙, 𝒚) ∈ X ×Y and `1, `2 > 0 satisfy the excessive gap condition, the error of (𝒙, 𝒚), defined
in (3), is bounded by

Y(𝒙, 𝒚) = 𝑓 (𝒙) − 𝜙(𝒚)
≤ 𝑓`2 (𝒙) − 𝜙`1 (𝒚) + `1𝐷1 + `2𝐷2

≤ `1𝐷1 + `2𝐷2,

where the first inequality follows from (5) and (6), and the second inequality is given by the
excessive gap condition (7). The central concept of EGT is to find (𝒙, 𝒚) such that the excessive
gap condition is satisfied for small `1, `2 > 0 in order to reduce Y(𝒙, 𝒚). To achieve this, the
EGT algorithm consists of two parts: initialization and shrinking.

• The initialization part: Algorithm 1 requires `1, `2 > 0 satisfying `1`2 ≥ ∥𝑨∥2/(𝜎1𝜎2),
where

∥𝑨∥ := max
∥𝒙∥X=1

max
∥𝒚 ∥Y=1

𝒙⊤𝑨𝒚

and 𝑑1, 𝑑2 must be 𝜎1, 𝜎2-strongly convex with respect to some norm ∥·∥X , ∥·∥Y , re-
spectively. Then it generates

(
𝒙0, 𝒚0) satisfying the excessive gap condition with its input

`1, `2.

• The shrinking part: Algorithm 2 requires
(
𝒙𝑘 , 𝒚𝑘

)
and `1, `2 > 0 satisfying the excessive

gap condition, and the step size 𝜏 ∈ (0, 1) with 𝜏2/(1 − 𝜏) ≤ 𝜎1𝜎2`1`2/∥𝑨∥2. Then it
generates

(
𝒙𝑘+1, 𝒚𝑘+1

)
satisfying the excessive gap condition with (1−𝜏)`1, `2, i.e. we can

shrink `1 by a factor of 1 − 𝜏. The shrinking algorithm of the `2 version can be obtained
similarly.

By using Algorithms 1 and 2 with the parameters and choices between `1 and `2 to shrink
presented in [2], the solution

(
𝒙𝑘 , 𝒚𝑘

)
generated by EGT guarantees the following convergence

result [2, Theorem 6.3]:

Y(𝒙𝑘 , 𝒚𝑘) ≤ 4∥𝑨∥
𝑘 + 1

√︂
𝐷1𝐷2
𝜎1𝜎2

. (8)

Therefore, a small ∥𝑨∥ and large values for 𝜎1/𝐷1, 𝜎2/𝐷2 which we call substantial strongly
convexity of 𝑑1, 𝑑2, are required for better convergence, with some norm ∥·∥X , ∥·∥Y . In this
paper, we only consider the 𝐿1-norm, which is desirable because ∥𝑨∥ = max𝑖, 𝑗

��𝐴𝑖 𝑗

�� does not
depend on the dimensions of X and Y. In practice, we also require that ∇𝑑∗1 and ∇𝑑∗2 are easily
computable.

Algorithm 1 Initialization
Input: `1, `2 > 0 satisfying `1`2 ≥ ∥𝑨∥2/(𝜎1𝜎2)
Output: 𝒙0, 𝒚0 satisfying the excessive gap condition (7) with `1, `2

1: �̄� ← ∇𝑑∗1 (0)
2: 𝒚0 ← ∇𝑑∗2 (𝑨

⊤�̄�/`2)
3: 𝒙0 ← ∇𝑑∗1 (∇𝑑1(�̄�) − 𝑨𝒚0/`1)

4

Algorithm 2 Shrinking (`1 version)
Input:

𝒙𝑘 , 𝒚𝑘 , `1, `2 satisfying the excessive gap condition (7)
𝜏 ∈ (0, 1) satisfying 𝜏2/(1 − 𝜏) ≤ 𝜎1𝜎2`1`2/∥𝑨∥2

Output:
𝒙𝑘+1, 𝒚𝑘+1 satisfying the excessive gap condition with (1 − 𝜏)`1, `2

1: �̄� ← ∇𝑑∗1 (−𝑨𝒚
𝑘/`1)

2: �̄� ← ∇𝑑∗2 (𝑨
⊤((1 − 𝜏)𝒙𝑘 + 𝜏�̄�)/`2)

3: 𝒚𝑘+1 ← (1 − 𝜏)𝒚𝑘 + 𝜏 �̄�
4: 𝒙𝑘+1 ← (1 − 𝜏)𝒙𝑘 + 𝜏∇𝑑∗1 (∇𝑑1(�̄�) − 𝜏

(1−𝜏)`1
𝑨�̄�)

4 Extensive-form games

An extensive-form game is a game played by 𝑁 players, which can be represented with a rooted
tree. A state of the game corresponds to a node of the tree. Moving down the tree can be done
either with the player’s actions or stochastic events (like dealing cards, etc.) and hereafter, such
stochastic events will be considered as chance player’s actions. The game ends when a leaf of the
tree is reached, and player 𝑖 = 1, . . . , 𝑁 receives a gain 𝑢𝑖 (𝑧) corresponding to the terminal node
𝑧. This paper only deals with two-person zero-sum games. That is 𝑁 = 2 and 𝑢 := −𝑢1 = 𝑢2,
where 𝑢 is a loss for player 1 and a gain for player 2.

Let 𝐻𝑖 denote the set of nodes where player 𝑖 = 1, 2 acts. Partitions of 𝐻𝑖 describe the
imperfect information of the game. Such a partition I𝑖 is called an information partition, and
each element 𝐼 ∈ I𝑖 (i.e. 𝐼 ⊂ 𝐻𝑖) is called an information set. Player 𝑖 = 1, 2 cannot distinguish
between nodes belonging to the same information set. The information partition must satisfy the
following natural constraint: all nodes belonging to the same information set must have equal
sets of legal actions. Also, in this paper, we only consider games satisfying perfect recall, i.e.,
the information partition is consistent with the assumption that each player can remember their
own past actions. See Figures 2 and 5 in Appendix A for an extensive-form game representation
of Kuhn poker and Leduc Hold’em, simplified versions of Texas Hold’em.

Assume that each player 𝑖 = 1, 2 can choose their actions probabilistically at each information
set. Let 𝜋𝑖 (𝑧) be the contribution of player 𝑖 = 1, 2, 𝑐 to the probability of reaching the terminal
node 𝑧 from the root, where 𝑐 means the chance player. Let 𝑍 be the set of terminal nodes, then
the expected value of 𝑢 is given by∑︁

𝑧∈𝑍
𝜋1(𝑧)𝜋2(𝑧)𝜋𝑐 (𝑧)𝑢(𝑧).

Each player 𝑖 = 1, 2 aims to make this expectation smaller and larger by controlling 𝜋1 and 𝜋2,
respectively. Note that 𝜋𝑐 is constant.

Now consider the feasible region of 𝜋𝑖 . Let

Σ𝑖 := {∅} ∪ {(𝐼, 𝑎) | 𝐼 ∈ I𝑖 , 𝑎 ∈ A(𝐼)},

where A(𝐼) ≠ ∅ is the set of legal actions at information set 𝐼. Furthermore, by the assumption
of perfect recall, we can define the parent function 𝑝𝑖 : I𝑖 → Σ𝑖 such that 𝑝𝑖 (𝐼) = (𝐼 ′, 𝑎) if and

5

only if 𝐼 ′ ∈ I𝑖 is the last information set visited before 𝐼 ∈ I𝑖 and the action 𝑎 ∈ A(𝐼 ′) is chosen
there, and 𝑝𝑖 (𝐼) = ∅ if and only if there is no player 𝑖’s information set that comes before 𝐼 ∈ I𝑖 .
We see that the function 𝑝𝑖 forms a tree. That is, for a set of vertices Σ𝑖 ∪I𝑖 , the graph with edges
from 𝑝𝑖 (𝐼) to 𝐼 for all 𝐼 ∈ I𝑖 and from 𝐼 to (𝐼, 𝑎) for all 𝐼 ∈ I𝑖 and 𝑎 ∈ A(𝐼) is a tree rooted at
∅. See Figures 3, 4, and 6 for this information trees in each game.

Then let us consider the following convex compact set:

𝑄𝑖 :=
𝒙 ∈ R |Σ𝑖 |

≥0

������ 𝑥∅ = 1, 𝑥𝑝𝑖 (𝐼) =
∑︁

𝑎∈A(𝐼)
𝑥𝐼,𝑎 ∀𝐼 ∈ I𝑖

, (9)

which we call the strategy set for player 𝑖. Consider mapping 𝒙 ∈ 𝑄𝑖 to a probabilistic strategy
that chooses action 𝑎 ∈ A(𝐼) at information set 𝐼 ∈ I𝑖 with the following probability:{

𝑥𝐼,𝑎/𝑥𝑝𝑖 (𝐼) , if 𝑥𝑝𝑖 (𝐼) ≠ 0,
1/|A(𝐼) |, otherwise,

which is a sufficient representation of the player 𝑖’s probabilistic strategy. Furthermore, the
contribution 𝜋𝑖 (𝑧) is given by 𝑥𝑝𝑖 (𝑧) where 𝑝𝑖 (𝑧) is a natural extension of the parent function.
That is, 𝑝𝑖 (𝑧) = (𝐼, 𝑎) if and only if 𝐼 ∈ I𝑖 is the last information set visited before 𝑧 ∈ 𝑍 and the
action 𝑎 ∈ A(𝐼) is chosen there, and 𝑝𝑖 (𝑧) = ∅ if and only if there is no player 𝑖’s information
set before 𝑧 ∈ 𝑍 .

Therefore, extensive-form games can be written as the following BSPP:

min
𝒙∈𝑄1

max
𝒚∈𝑄2

∑︁
𝑧∈𝑍

𝑥𝑝1 (𝑧) 𝑦𝑝2 (𝑧)𝜋𝑐 (𝑧)𝑢(𝑧).

As can be seen from this formulation, the matrix 𝑨 in BSPP (1), which represents an extensive-
form game, has only at most |Σ | non-zero elements. In other words, 𝑨 is sparse in most cases.

5 Prox-function over the strategy set

For solving extensive-form games with EGT, we need a prox-function defined on the convex
compact set 𝑄𝑖 , defined by (9), the strategy set of each player 𝑖 = 1, 2. To guarantee good
convergence, it is necessary to define a prox-function 𝑑𝑖 : 𝑄𝑖 → R with large substantial strong
convexity 𝜎𝑖/𝐷𝑖 .

For simplicity, we omit 𝑖 denoting the player in this section. Let 𝑀𝑄 := max𝒙∈𝑄 ∥𝒙∥1, which
represents the scale of the game. The prox-function proposed in a previous study [8] is shown
to be 1/(𝑀3

𝑄
ln max𝐼∈I |A(𝐼) |)-strongly convex substantially with respect to the 𝐿1-norm. We

propose a slightly modified version of this prox-function and show that it is 1/(𝑀2
𝑄

ln |Σ |)-
strongly convex substantially with respect to the 𝐿1-norm, which is a better guarantee for most
games.

Now we propose the prox-function 𝑑 : 𝑄 → R defined by

𝑑 (𝒙) := 𝑥∅ ln 𝑥∅ +
∑︁
𝐼∈I

∑︁
𝑎∈A(𝐼)

©«𝑤𝐼 −
∑︁

𝑝 (𝐼 ′)=(𝐼,𝑎)
𝑤𝐼 ′

ª®¬ 𝑥𝐼,𝑎 ln 𝑥𝐼,𝑎, (10)

6

where 𝑤𝐼 ∈ R is defined recursively:

𝑤𝐼 := 1 + max
𝑎∈A(𝐼)

∑︁
𝑝 (𝐼 ′)=(𝐼,𝑎)

𝑤𝐼 ′ ∀𝐼 ∈ I, (11)

and its base case is given by 𝐼 ∈ I with {𝐼 ′ ∈ I | 𝑝(𝐼 ′) = (𝐼, 𝑎)} = ∅ for all 𝑎 ∈ A(𝐼). We will
denote ln 𝑥 as the natural logarithm of 𝑥 ≥ 0 and assume 0 ln 0 = 0. Note that (10) does not satisfy
min𝒙∈𝑄 𝑑 (𝒙) = 0, the third condition for prox-function (see Definition 3.1), so 𝑑 −min𝒙∈𝑄 𝑑 (𝒙)
must be used instead. For simplicity, however, we will treat 𝑑 as a prox-function in the following.
This is because the additional constant term is not essential; it does not affect the strong convexity
or ∇𝑑∗ and only shifts 𝑑∗ by a constant.

Note that the prox-function proposed in [8] is given by

𝑑 (𝒙) +
∑︁
𝐼∈I

𝑤𝐼𝑥𝑝 (𝐼) ln |A(𝐼) |, (12)

which is shown to have a minimum value zero. We have eliminated the first-order term in (12) by
neglecting the adjustment of the minimum to zero. As a result, we succeeded in giving a better
theoretical guarantee of substantial strong convexity.

Theorem 5.1. The prox-function (10) is 1/𝑀𝑄-strongly convex with respect to the 𝐿1-norm.

Proof. This proof is the same as the proof of [8, Theorem 5]. For 𝝃 ∈ R |Σ | and 𝒙 ∈ ri𝑄, we have

𝝃⊤∇2𝑑 (𝒙)𝝃 =
(b∅)2

𝑥∅
+

∑︁
𝐼∈I

∑︁
𝑎∈A(𝐼)

©«𝑤𝐼 −
∑︁

𝑝 (𝐼 ′)=(𝐼,𝑎)
𝑤𝐼 ′

ª®¬
(
b𝐼,𝑎

)2

𝑥𝐼,𝑎

≥ (b∅)
2

𝑥∅
+

∑︁
𝐼∈I

∑︁
𝑎∈A(𝐼)

(
b𝐼,𝑎

)2

𝑥𝐼,𝑎

=
∑︁
𝑗∈Σ

(
b 𝑗

)2

𝑥 𝑗

≥

(∑
𝑗∈Σ

��b 𝑗 ��)2∑
𝑗∈Σ 𝑥 𝑗

=
∥𝝃∥21
∥𝒙∥1

≥
∥𝝃∥21
𝑀𝑄

,

where the first equality follows from (10), the second inequality comes from (11), and the fourth
inequality is true from the Cauchy-Schwarz inequality:

∑︁
𝑗∈Σ

(√
𝑥 𝑗

)2 ·
∑︁
𝑗∈Σ

(��b 𝑗 ��
√
𝑥 𝑗

)2

≥
(∑︁
𝑗∈Σ

√
𝑥 𝑗 ·

��b 𝑗 ��
√
𝑥 𝑗

)2

.

□

7

To consider the properties of the conjugate function of the prox-function 𝑑, we present the
following corollary.

Lemma 5.2. The prox-function (10) satisfies the following equation for 𝒙 ∈ ri𝑄:

𝑑 (𝒙) =
∑︁
𝐼∈I

𝑤𝐼𝑥𝑝 (𝐼)
∑︁

𝑎∈A(𝐼)

𝑥𝐼,𝑎

𝑥𝑝 (𝐼)
ln

𝑥𝐼,𝑎

𝑥𝑝 (𝐼)
.

Proof. First, note that 𝑥 𝑗 ≠ 0 for 𝑗 ∈ Σ for 𝒙 ∈ ri𝑄. Then for 𝒙 ∈ ri𝑄, we have

𝑑 (𝒙) =
∑︁
𝐼∈I

∑︁
𝑎∈A(𝐼)

©«𝑤𝐼 −
∑︁

𝑝 (𝐼 ′)=(𝐼,𝑎)
𝑤𝐼 ′

ª®¬ 𝑥𝐼,𝑎 ln 𝑥𝐼,𝑎

=
©«
∑︁
𝐼∈I

∑︁
𝑎∈A(𝐼)

𝑤𝐼𝑥𝐼,𝑎 ln 𝑥𝐼,𝑎
ª®¬ −

∑︁
𝑝 (𝐼 ′)≠∅

𝑤𝐼 ′𝑥𝑝 (𝐼 ′) ln 𝑥𝑝 (𝐼 ′)

=
∑︁
𝐼∈I

∑︁
𝑎∈A(𝐼)

𝑤𝐼𝑥𝐼,𝑎 ln 𝑥𝐼,𝑎 −
∑︁
𝐼∈I

𝑤𝐼𝑥𝑝 (𝐼) ln 𝑥𝑝 (𝐼)

=
∑︁
𝐼∈I

𝑤𝐼

©«
∑︁

𝑎∈A(𝐼)
𝑥𝐼,𝑎 ln 𝑥𝐼,𝑎

ª®¬ − 𝑥𝑝 (𝐼) ln 𝑥𝑝 (𝐼)

=
∑︁
𝐼∈I

𝑤𝐼

∑︁

𝑎∈A(𝐼)
𝑥𝐼,𝑎 ln 𝑥𝐼,𝑎 −

∑︁
𝑎∈A(𝐼)

𝑥𝐼,𝑎 ln 𝑥𝑝 (𝐼)

=
∑︁
𝐼∈I

𝑤𝐼

∑︁
𝑎∈A(𝐼)

𝑥𝐼,𝑎 ln
𝑥𝐼,𝑎

𝑥𝑝 (𝐼)

=
∑︁
𝐼∈I

𝑤𝐼𝑥𝑝 (𝐼)
∑︁

𝑎∈A(𝐼)

𝑥𝐼,𝑎

𝑥𝑝 (𝐼)
ln

𝑥𝐼,𝑎

𝑥𝑝 (𝐼)
,

where the first and third equalities follow from 𝑥∅ ln 𝑥∅ = 1 ln 1 = 0 for 𝒙 ∈ 𝑄, and the fifth
equality comes from 𝑥𝑝 (𝐼) =

∑
𝑎∈A(𝐼) 𝑥𝐼,𝑎 for 𝒙 ∈ 𝑄. □

From Lemma 5.2 and the fact that (10) is continuous in 𝑄, we have

𝑑∗(𝝃) = max
𝒙∈𝑄

{
𝝃⊤𝒙 − 𝑑 (𝒙)

}
= sup

𝒙∈ri𝑄

𝝃⊤𝒙 −
∑︁
𝐼∈I

𝑤𝐼𝑥𝑝 (𝐼)
∑︁

𝑎∈A(𝐼)

𝑥𝐼,𝑎

𝑥𝑝 (𝐼)
ln

𝑥𝐼,𝑎

𝑥𝑝 (𝐼)

. (13)

Now, choose any 𝐼 ∈ I satisfying {𝐼 ′ ∈ I | 𝑝(𝐼 ′) = (𝐼, 𝑎)} = ∅ for all 𝑎 ∈ A(𝐼), then the terms
on

(
𝑥𝐼,𝑎

)
𝑎∈A(𝐼) of the supreme (13) are given by

𝑥𝑝 (𝐼) sup
𝒛∈riΔ|A (𝐼) |

∑︁

𝑎∈A(𝐼)
b𝐼,𝑎𝑧𝑎 − 𝑤𝐼

∑︁
𝑎∈A(𝐼)

𝑧𝑎 ln 𝑧𝑎

,
8

where 𝑧𝑎 := 𝑥𝐼,𝑎/𝑥𝑝 (𝐼) and Δ𝑛 is the 𝑛-dimentional simplex. This maximization subproblem can
be solved analytically (see Appendix B). That is, the maximizer is given by

𝑧∗𝑎 :=
exp

(
b𝐼,𝑎/𝑤𝐼

)∑
𝑎′∈A(𝐼) exp

(
b𝐼,𝑎′/𝑤𝐼

) ,
which achieves the following supreme:

opt𝐼 :=
∑︁

𝑎∈A(𝐼)
b𝐼,𝑎𝑧

∗
𝑎 − 𝑤𝐼

∑︁
𝑎∈A(𝐼)

𝑧∗𝑎 ln 𝑧∗𝑎

= 𝑤𝐼 ln

∑︁
𝑎∈A(𝐼)

exp
(
b𝐼,𝑎/𝑤𝐼

).
Substituting this result to (13), the terms on

(
𝑥𝐼,𝑎

)
𝑎∈A(𝐼) disappear and opt𝐼 is added to b𝑝 (𝐼) ,

which is the coefficient of 𝑥𝑝 (𝐼) in (13).
By repeating the above operations in bottom-up order, (13) can be solved, and the total

calculation can be performed inO(|Σ |). We can also obtain∇𝑑∗(𝝃) = arg max𝒙∈𝑄 {𝝃⊤𝒙 − 𝑑 (𝒙)},
however, only the ratio 𝒛 is obtained in the above operations. Then, after solving (13), we need
to calculate ∇𝑑∗(𝝃) by multiplying 𝒛 in top-down order. See Algorithm 3 for details.

Algorithm 3 Calculating 𝑑∗(𝝃) and ∇𝑑∗(𝝃)
Input: 𝝃 ∈ R |Σ |
Output: 𝑦 = 𝑑∗(𝝃), 𝒛 = ∇𝑑∗(𝝃)

1: 𝒛 ← 0 ∈ R |Σ |
2: for 𝐼 ∈ I in bottom-up order do
3: for 𝑎 ∈ A(𝐼) do
4: b𝐼,𝑎 ← exp

(
b𝐼,𝑎/𝑤𝐼

)
5: end for
6: b𝑝 (𝐼) ← b𝑝 (𝐼) + 𝑤𝐼 ln

∑
𝑎∈A(𝐼) b𝐼,𝑎

7: for 𝑎 ∈ A(𝐼) do
8: 𝑧𝐼,𝑎 ← b𝐼,𝑎/

∑
𝑎∈A(𝐼) b𝐼,𝑎

9: end for
10: end for
11: 𝑦 ← b∅
12: 𝑧∅ ← 1
13: for 𝐼 ∈ I in top-down order do
14: for 𝑎 ∈ A(𝐼) do
15: 𝑧𝐼,𝑎 ← 𝑧𝑝 (𝐼) 𝑧𝐼,𝑎
16: end for
17: end for

Theorem 5.3. The prox-function (10) satisfies

max
𝒙∈𝑄

𝑑 (𝒙) −min
𝒙∈𝑄

𝑑 (𝒙) ≤ 𝑀𝑄 ln |Σ |.

9

Proof. Since 𝑄 ⊂ [0, 1] |Σ | and 𝑥 ln 𝑥 ≤ 0 for 𝑥 ∈ [0, 1], we have max𝒙∈𝑄 𝑑 (𝒙) ≤ 0. Then it
is sufficient to show −min𝒙∈𝑄 𝑑 (𝒙) = 𝑑∗(0) ≤ 𝑀𝑄 ln |Σ |. From the procedure for computing
𝑑∗(𝝃) presented above, we see that 𝑑∗(0) satisfies the following recursive equation:

𝑑∗(0) =
∑︁

𝑝 (𝐼)=∅
opt𝐼

opt𝐼 = 𝑤𝐼 ln

∑︁
𝑎∈A(𝐼)

exp
(∑

𝑝 (𝐼 ′)=(𝐼,𝑎) opt𝐼 ′
𝑤𝐼

) ∀𝐼 ∈ I (14)

Now define 𝛾𝐼 ∈ R recursively:

𝛾𝐼 := |A(𝐼) | +
∑︁

𝑎∈A(𝐼)

∑︁
𝑝 (𝐼 ′)=(𝐼,𝑎)

𝛾𝐼 ′ ∀𝐼 ∈ I, (15)

then let us show

opt𝐼 ≤ 𝑤𝐼 ln 𝛾𝐼 ∀𝐼 ∈ I (16)

recursively. Assume that (16) holds for 𝐼 ′ which is below 𝐼 in the sense of the rooted tree,
discussed in Section 4. Then, we have∑︁

𝑝 (𝐼 ′)=(𝐼,𝑎)
opt𝐼 ′ ≤

∑︁
𝑝 (𝐼 ′)=(𝐼,𝑎)

𝑤𝐼 ′ ln 𝛾𝐼 ′

≤ ©«1 +
∑︁

𝑝 (𝐼 ′)=(𝐼,𝑎)
𝑤𝐼 ′

ª®¬ ln ©«1 +
∑︁

𝑝 (𝐼 ′)=(𝐼,𝑎)
𝛾𝐼 ′

ª®¬
≤ 𝑤𝐼 ln ©«1 +

∑︁
𝑝 (𝐼 ′)=(𝐼,𝑎)

𝛾𝐼 ′
ª®¬,

where the first inequality follows from the assumption, and the third inequality comes from (11).
By substituting this to (14), we have

opt𝐼 ≤ 𝑤𝐼 ln

∑︁
𝑎∈A(𝐼)

©«1 +
∑︁

𝑝 (𝐼 ′)=(𝐼,𝑎)
𝛾𝐼 ′

ª®¬

= 𝑤𝐼 ln 𝛾𝐼 .

Therefore (16) is shown for all 𝐼 ∈ I. By the definition (15), we have

1 +
∑︁

𝑝 (𝐼)=∅
𝛾𝐼 = 1 +

∑︁
𝐼∈I
|A(𝐼) | = |Σ |.

By the definition of 𝑤𝐼 , we also have

1 +
∑︁

𝑝 (𝐼)=∅
𝑤𝐼 = max

𝒙∈𝑄
∥𝒙∥1 = 𝑀𝑄 .

10

Finally, we obtained the following inequality that we wanted to show.

𝑑∗(0) =
∑︁

𝑝 (𝐼)=∅
opt(𝐼)

≤
∑︁

𝑝 (𝐼)=∅
𝑤𝐼 ln 𝛾𝐼

≤ ©«1 +
∑︁

𝑝 (𝐼)=∅
𝑤𝐼

ª®¬ ln ©«1 +
∑︁

𝑝 (𝐼)=∅
𝛾𝐼

ª®¬
= 𝑀𝑄 ln |Σ |.

□

We conclude this section by proving the following theorem.

Theorem 5.4. The prox-function 𝑑 defined by (10) is 1/(𝑀2
𝑄

ln |Σ |)-strongly convex substantially,
with respect to the 𝐿1-norm. In other words, assume that 𝑑 is 𝜎-strongly convex with respect to
the 𝐿1-norm, and let 𝐷 := max𝒙∈𝑄 𝑑 (𝒙) −min𝒙∈𝑄 𝑑 (𝒙), then the following inequality holds:

𝐷

𝜎
≤ 𝑀2

𝑄 ln |Σ |.

Proof. It follows from Theorem 5.1 and Theorem 5.3. □

6 Numerical experiments

In this section, we report the results of solving extensive-form games by using the prox-function
(10) with EGT. As toy instances, we used three games, Kuhn poker, Leduc Hold’em (3 ranks),
and Leduc Hold’em (13 ranks), which we explain in detail in Appendix A. All implementations
used in the experiments are available on https://github.com/habara-k/egt-on-efg.

6.1 Heuristics to accelerate the convergence of EGT

The parameters and choices between `1 and `2 to shrink proposed in [2] guarantee the con-
vergence of (8) but are very conservative, then heuristic-based parameter selection will perform
better in most cases. First, we always use the following heuristics in [8]:

• To start with small `1 and `2, we call the initializing algorithm 1 with `1 = `2 = 10−6.
Increase `1 and `2 by 20% until the output satisfies the excessive gap condition.

• In each step, shrink the larger between `1 and `2.

• To obtain a large step size, we call the shrinking algorithm 2 with the global 𝜏, which is
initially set to 0.5 and is decreased by 50% while the output does not satisfy the excessive
gap condition.

11

See Algorithm 4 for details. In addition to these heuristics, this paper proposes a centering trick,
which is still not considered in the related literature to the best of our knowledge. For 𝒙′ ∈ ri𝑄,
we can define the following prox-function:

𝑑 (𝒙; 𝒙′) := 𝑑 (𝒙) − 𝑑 (𝒙′) − ∇𝑑 (𝒙′)⊤(𝒙 − 𝒙′),

which we call 𝒙′-centered prox-function because arg min𝒙∈𝑄 𝑑 (𝒙; 𝒙′) = 𝒙′ holds. The centering
trick uses 𝑑 (𝒙; 𝒙′) as a prox-function for EGT, where 𝒙′ is a solution obtained by some other
method. The reason for using this centered prox-function is to improve the accuracy of the
smoothing approximation 𝑓`2 (𝜙`1) in EGT. In fact, when the prox-function 𝑑2(𝑑1) takes the
minimum value 0 in the optimal solution 𝑦∗(𝑥∗) of BSPP, the minimization of 𝑓 and 𝑓`2 (the
maximization of 𝜙 and 𝜙`1) are equivalent, for any `2(`1) > 0. In addition, we show that

∇𝑑∗(𝝃; 𝒙′) := arg max
𝒙∈𝑄

{
𝝃⊤𝒙 − 𝑑 (𝒙; 𝒙′)

}
= ∇𝑑∗(𝝃 + ∇𝑑 (𝒙′)),

so the cost required for the calculation is also O(|Σ |). Numerical experiments evaluate the
performance of the centering trick.

6.2 Results of the experiments

Five methods are used: CFR [1], CFR+ [3], EGT, EGT-centering, and EGT-centering with CFR+.
EGT uses the prox-function defined in (10). In EGT-centering, the first EGT is performed in 10%
of the total steps, and the remaining 90% of the steps are performed in the second EGT using the
prox-function centered on the solution obtained from the first EGT. EGT-centering with CFR+
is a variant of EGT-centering, using CFR+ instead of the first EGT.

From Figure 1, note that EGT-centering and EGT-centering with CFR+ both use EGT and
CFR+ for the first 10% of iterations, respectively, so only the last 90% of iterations are drawn.
First, since Kuhn poker is a very small game, EGT, which is unsuitable for larger games, performs
similarly to CFR+. EGT with centering tricks using the solutions of these two methods, namely
EGT-centering and EGT-centering with CFR+, converge faster than the other methods. Second,
since Leduc Hold’em is a larger game than Kuhn poker, EGT converges worse than CFR+.
However, we see that EGT-centering performs as well as CFR+ and that EGT-centering with
CFR+ converges better than pure CFR+.

These results show that EGT combined with CFR+ by the centering trick converges faster
than pure CFR+ in large games where EGT alone performs worse than CFR+. In addition,
although we could not experiment in this paper, the results suggest that EGT with the centering
trick has the potential to further exploit the performance of CFR+ in very large games such
as those used in [4, 5]. Note that the implementations of all five methods are optimized in the
same way, resulting in EGT (including the centering trick) taking at most 2 to 3 times longer
per iteration than CFR (CFR+). Thus, although the horizontal axis in Figure 1 represents the
number of iterations, changing this to the running time (computational cost) yields almost the
same result.

12

Figure 1: Performance of the five methods for solving three games.

13

Algorithm 4 Excessive gap technique (with heuristics in [8])
1: function init()
2: `← 10−6

3: while true do
4: 𝒙, 𝒚 ← Call algorithm 1 with `1 = `2 = `.
5: if 𝑓`2 (𝒙) ≤ 𝜙`1 (𝒚) then
6: return 𝒙, 𝒚, `, `
7: end if
8: `← 1.2`
9: end while

10: end function

11: function decrease`1(𝒙, 𝒚, `1, `2, 𝜏)
12: while true do
13: �̄�, �̄� ← Call algorithm 2 with 𝒙, 𝒚, `1, `2, and 𝜏.
14: if 𝑓`2 (�̄�) ≤ 𝜙 (1−𝜏)`1 (�̄�) then
15: return �̄�, �̄�, (1 − 𝜏)`1, 𝜏

16: end if
17: 𝜏 ← 0.5𝜏
18: end while
19: end function

Output: 𝒙 ∈ 𝑄1, 𝒚 ∈ 𝑄2: solutions of EGT
20: 𝒙, 𝒚, `1, `2 ←init()
21: 𝜏 ← 0.5
22: for 𝑘 = 1, . . . , 𝑇 − 1 do
23: if `1 > `2 then
24: 𝒙, 𝒚, `1, 𝜏 ← decrease`1(𝒙, 𝒚, `1, `2, 𝜏)
25: else
26: decrease `2 similarly.
27: end if
28: end for

14

7 Conclusions

To make the smoothing method for solving extensive-form games applicable to large games,
we proposed a modified version of the prox-function used internally in the smoothing method
to improve its theoretical convergence guarantees. We also proposed a heuristic to update the
prox-function with temporary solutions, which is expected to improve the accuracy of the inter-
nal approximation of the smoothing method. Numerical experiments confirm that the smoothing
method applying the heuristic with the solution of CFR+, the state-of-the-art method for large
games, converges faster than pure CFR+. Some future works include confirming the perfor-
mance of the smoothing method when applied to larger-scale extensive-form games and proving
theoretically that the proposed heuristic improves convergence.

Acknowledgments

We thank Professor Yamashita for his great insight into our research. The centering trick proposed
in the paper is due to Professor Yamashita. I also thank Associate Professor Ellen Hidemi Fukuda
for her advice and corrections on the writing of the paper. I want to express my deepest gratitude
to both of my advisors.

References

[1] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. Regret
minimization in games with incomplete information. Advances in neural information
processing systems, 20:1729–1736, 2007.

[2] Yu Nesterov. Excessive gap technique in nonsmooth convex minimization. SIAM Journal
on Optimization, 16(1):235–249, 2005.

[3] Oskari Tammelin. Solving large imperfect information games using CFR+. arXiv preprint
arXiv:1407.5042, 2014.

[4] Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-up limit
hold’em poker is solved. Science, 347(6218):145–149, 2015.

[5] Noam Brown and Tuomas Sandholm. Superhuman AI for heads-up no-limit poker: Libratus
beats top professionals. Science, 359(6374):418–424, 2018.

[6] Samid Hoda, Andrew Gilpin, Javier Pena, and Tuomas Sandholm. Smoothing techniques
for computing Nash equilibria of sequential games. Mathematics of Operations Research,
35(2):494–512, 2010.

[7] Christian Kroer, Kevin Waugh, Fatma Kılınç-Karzan, and Tuomas Sandholm. Faster algo-
rithms for extensive-form game solving via improved smoothing functions. Mathematical
Programming, 179(1-2):385–417, 2020.

15

[8] Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Better regularization for sequen-
tial decision spaces: Fast convergence rates for Nash, correlated, and team equilibria. arXiv
preprint arXiv:2105.12954, 2021.

[9] Harold W Kuhn. A simplified two-person poker. Contributions to the Theory of Games,
1:97–103, 1950.

[10] Finnegan Southey, Michael P Bowling, Bryce Larson, Carmelo Piccione, Neil Burch, Darse
Billings, and Chris Rayner. Bayes’ bluff: Opponent modelling in poker. arXiv preprint
arXiv:1207.1411, 2012.

[11] Todd W Neller and Marc Lanctot. An introduction to counterfactual regret minimization.
In Proceedings of Model AI Assignments, The Fourth Symposium on Educational Advances
in Artificial Intelligence (EAAI-2013), volume 11, 2013.

A Toy instances

In this section, we present some well-known extensive-form games. These games are used in the
numerical experiments in Section 6.

A.1 Kuhn poker

Kuhn poker is a simple variant of Texas Hold’em proposed in [9], played with three cards, J, Q,
and K. Each player is dealt a card privately, and the game begins with each player betting 1 chip.
Player 1 is the first to act. Player 1 can either check (do nothing and pass the turn to Player 2) or
raise (bet an additional 1 chip).

(a) If player 1 raises, player 2 chooses to call (bet an additional 1 chip) or fold (surrender and
lose the 1 chip already bet); if player 2 calls, the player with the higher-ranked card wins
all chips (showdown).

(b) If player 1 checks, player 2 chooses to check (and showdown) or raise; if player 2 raises,
player 1 chooses to call or fold as in (a).

The game tree of Kuhn poker is shown in Figure 2, and its information tree of each player is
shown in Figures 3 and 4.

A.2 Leduc Hold’em

Leduc Hold’em is a simple variant of Texas Hold’em proposed in [10], played with pairs of
cards J, Q, and K, totaling six cards. The general rules are the same as in Kuhn poker, but some
differences exist.

• Each player can raise against the opponent’s raise, which is called re-raise, but cannot raise
against a re-raise.

16

Figure 2: Kuhn poker game tree. The nodes marked with “C” on a black background are played
by the chance player, and the square and circle nodes are played by player 1 and player 2. The
terminal nodes are represented by a black square with corresponding 𝑢(𝑧). The arrows correspond
to actions, and the state moves down to the pointed node. Chance player action probabilities are
given and are written on the arrows. The nodes played by player 1 and player 2 are partitioned
according to the information partition I1 = {𝐼1, . . . , 𝐼6} and I2 = {𝐽1, . . . , 𝐽6}. Each player
does not know which card is dealt to their opponent, so they cannot distinguish between nodes
belonging to the same information partition.

Figure 3: The information tree of player 1 in Kuhn poker

Figure 4: The information tree of player 2 in Kuhn poker

17

Figure 5: Leduc Hold’em game tree

Figure 6: The information tree of player 1 in Leduc Hold’em

18

• If both players check or one player calls, instead of an immediate showdown, a community
card is revealed randomly from the remaining cards, and the game is resumed only once
more.

• The winner of the showdown is the player with the same card as the community card. If
there is no such player, the player with the higher-ranked card wins. If both players have
the same cards, the game is tied (chips are divided equally).

• The betting amount of raise is 2 and 4 chips in each phase. This means that the maximum
move of chips is 1+2+2+4+4=13.

The game tree of Leduc hold’em is shown in Figure 5, and the information tree of player 1 is
shown in Figure 6. Experiments are also performed for Leduc Hold’em (13 ranks), a game in
which the number of card ranks is changed from 3 to 13.

B Subproblem in the conjugate function

Here, we will compute the analytical solution of the problem below, which is associated to our
proposed prox-function. Let us consider the following maximization problem:

max
𝒛 ∈ R𝑛>0

𝑛∑︁
𝑖=1

b𝑖𝑧𝑖 − 𝑤
𝑛∑︁
𝑖=1

𝑧𝑖 ln 𝑧𝑖

s.t.
𝑛∑︁
𝑖=1

𝑧𝑖 = 1,
(17)

where 𝑤 > 0. Lagrange function 𝐿 : R𝑛 × R→ R is defined by

𝐿 (𝒛, `) :=
𝑛∑︁
𝑖=1

b𝑖𝑧𝑖 − 𝑤
𝑛∑︁
𝑖=1

𝑧𝑖 ln 𝑧𝑖 + `
(
1 −

𝑛∑︁
𝑖=1

𝑧𝑖

)
,

and the optimal solution 𝒛∗ of (17) satisfies the following equation with some `∗ ∈ R:

𝜕𝐿

𝜕𝑧𝑖
(𝑧∗, `∗) = b𝑖 − 𝑤(1 + ln 𝑧∗𝑖) − `∗ = 0, 𝑖 = 1, . . . , 𝑛

𝜕𝐿

𝜕`
(𝑧∗, `∗) = 1 −

𝑛∑︁
𝑗=1

𝑧∗𝑖 = 0.

Eliminate `∗ from the above equation to obtain

𝑧∗𝑖 =
exp(b𝑖/𝑤)∑𝑛
𝑗=1 exp

(
b 𝑗/𝑤

) ,

19

and the optimal value is given by

𝑛∑︁
𝑖=1

b𝑖𝑧
∗
𝑖 − 𝑤

𝑛∑︁
𝑖=1

𝑧∗𝑖 ln 𝑧∗𝑖 =
𝑛∑︁
𝑖=1

b𝑖𝑧
∗
𝑖 − 𝑤

𝑛∑︁
𝑖=1

𝑧∗𝑖

(b𝑖/𝑤) − ln
𝑛∑︁
𝑗=1

exp
(
b 𝑗/𝑤

)
= 𝑤 ln

𝑛∑︁
𝑗=1

exp
(
b 𝑗/𝑤

)
.

C Implementation of CFR and CFR+

Most implementations of CFR and CFR+ employ the depth-first search of the game tree [3, 11].
This method has the advantage of greatly reducing computation time in huge games, at the
expense of accuracy, by using sampling. On the other hand, simply exploring all nodes may be
computationally inefficient. For example, in a game with multiple terminal nodes 𝑧 ∈ 𝑍 such that
the pair (𝑝1(𝑧), 𝑝2(𝑧)) is equal (see Section 4 for the definition of 𝑝1, 𝑝2), all terminal nodes are
searched at each iteration in the depth-first search type implementation, but in the BSPP type
unnecessary.

This paper presents CFR and CFR+ implementations using the BSPP representation of
the extensive-form game introduced in Section 4. These implementations are also available
on https://github.com/habara-k/egt-on-efg.

20

Algorithm 5 CFR and CFR+ (in BSPP form)
1: function prod(𝒛 ∈ R |Σ |≥0)
2: 𝒙 ← 0 ∈ R |Σ |
3: 𝑥∅ ← 1
4: for 𝐼 ∈ I in top-down order do
5: for 𝑎 ∈ A(𝐼) do
6: 𝑥𝐼,𝑎 ← 𝑥𝑝 (𝐼) 𝑧𝐼,𝑎
7: end for
8: end for
9: return 𝒙

10: end function

11: function normalize(𝒓 ∈ R |Σ |≥0)
12: 𝒛 ← 0 ∈ R |Σ |
13: for 𝐼 ∈ I do
14: if ∃𝑎 ∈ A(𝐼) s.t. 𝑟𝐼,𝑎 > 0 then
15: for 𝑎 ∈ A(𝐼) do
16: 𝑧𝐼,𝑎 ← 𝑟𝐼,𝑎/

∑
𝑎∈A(𝐼) 𝑟𝐼,𝑎

17: end for
18: else
19: for 𝑎 ∈ A(𝐼) do
20: 𝑧𝐼,𝑎 ← 1/|A(𝐼) |
21: end for
22: end if
23: end for
24: return 𝒛
25: end function

26: function regret(𝒛 ∈ R |Σ | , 𝒖 ∈ R |Σ |)
27: 𝒓 ← 0 ∈ R |Σ |
28: for 𝐼 ∈ I in bottom-up order do
29: for 𝑎 ∈ A(𝐼) do
30: 𝑟𝐼,𝑎 ← 𝑢𝐼,𝑎 −

∑
𝑎∈A(𝐼) 𝑢𝐼,𝑎𝑧𝐼,𝑎

31: end for
32: 𝑢𝑝 (𝐼) ← 𝑢𝑝 (𝐼) +

∑
𝑎∈A(𝐼) 𝑢𝐼,𝑎𝑧𝐼,𝑎

33: end for
34: return 𝒓
35: end function

21

Output: 𝒙 ∈ 𝑄1, 𝒚 ∈ 𝑄2: solutions of CFR
36: 𝒓X , 𝒓Y ← 0 ∈ R |Σ1 | , 0 ∈ R |Σ2 |

37: 𝒛X , 𝒛Y ← normalize(𝒓X), normalize(𝒓Y)
38: 𝒙1, 𝒚1 ← prod(𝒛X), prod(𝒛Y)
39: for 𝑘 = 1, . . . , 𝑇 − 1 do
40: 𝒓X ← 𝒓X + regret(𝒛X ,−𝑨𝒚𝑘)
41: 𝒓Y ← 𝒓Y + regret(𝒛Y , 𝑨⊤𝒙𝑘)
42: 𝒛X ← normalize(max(𝒓X , 0))
43: 𝒛Y ← normalize(max(𝒓Y , 0))
44: 𝒙𝑘+1 ← prod(𝒛X)
45: 𝒚𝑘+1 ← prod(𝒛Y)
46: end for
47: 𝒙, 𝒚 ← 1

𝑇

∑𝑇
𝑘=1 𝑘𝒙

𝑘 , 1
𝑇

∑𝑇
𝑘=1 𝑘 𝒚

𝑘

Output: 𝒙 ∈ 𝑄1, 𝒚 ∈ 𝑄2: solutions of CFR+
48: 𝒓X , 𝒓Y ← 0 ∈ R |Σ1 | , 0 ∈ R |Σ2 |

49: 𝒛X , 𝒛Y ← normalize(𝒓X), normalize(𝒓Y)
50: 𝒙1, 𝒚1 ← prod(𝒛X), prod(𝒛Y)
51: for 𝑘 = 1, . . . , 𝑇 − 1 do
52: 𝒓X ← max(𝒓X + regret(𝒛X ,−𝑨𝒚𝑘), 0)
53: 𝒛X ← normalize(𝒓X)
54: 𝒙𝑘+1 ← prod(𝒛X)
55: 𝒓Y ← max(𝒓Y + regret(𝒛Y , 𝑨⊤𝒙𝑘+1), 0)
56: 𝒛Y ← normalize(𝒓Y)
57: 𝒚𝑘+1 ← prod(𝒛Y)
58: end for
59: 𝒙, 𝒚 ← 2

𝑇+𝑇2
∑𝑇

𝑘=1 𝑘𝒙
𝑘 , 2

𝑇+𝑇2
∑𝑇

𝑘=1 𝑘 𝒚
𝑘

22

Master’s Thesis

Convergence analysis and acceleration of the smoothing
methods for solving extensive-form games

Guidance

Professor Nobuo Yamashita
Associate Professor Ellen Hidemi Fukuda

Keigo Habara

Department of Applied Mathematics and Physics

Graduate School of Informatics

Kyoto University

K
Y
O
T

O
UNIVER

S
IT
Y

F
O

U
N
DED

1
8

9
7

KYOTO JAPAN

February 2023

C
onvergence

analysisand
acceleration

ofthe
sm

oothing
m

ethods
forsolving

extensive-form
gam

es
K

eigo
H

abara
February

2023

Convergence analysis and acceleration of the smoothing
methods for solving extensive-form games

Keigo Habara

Abstract

The extensive-form game has been studied considerably in recent years. It can represent games
with multiple decision points and incomplete information, and hence it is helpful in formulating
games with uncertain inputs, such as poker. We consider an extended-form game with two players
and zero-sum, i.e., the sum of their payoffs is always zero. In such games, the problem of finding
the optimal strategy can be formulated as a bilinear saddle-point problem. This formulation
grows huge depending on the size of the game, since it has variables representing the strategies at
all decision points for each player. To solve such large-scale bilinear saddle-point problems, the
excessive gap technique (EGT), a smoothing method, has been studied. This method generates a
sequence of approximate solutions whose error is guaranteed to converge at O(1/𝑘), where 𝑘 is
the number of iterations. However, it has the disadvantage of having poor theoretical bounds on
the error related to the game size. This makes it inapplicable to large games.

Our goal is to improve the smoothing method for solving extensive-form games so that it can
be applied to large-scale games. To this end, we make two contributions in this work. First, we
slightly modify the strongly convex function used in the smoothing method in order to improve
the theoretical bounds related to the game size. Second, we propose a heuristic called centering
trick, which allows the smoothing method to be combined with other methods and consequently
accelerates the convergence in practice. As a result, we combine EGT with CFR+, a state-of-the-
art method for extensive-form games, to achieve good performance in games where conventional
smoothing methods do not perform well. The proposed smoothing method is shown to have the
potential to solve large games in practice.

