Class 1: Preliminaries

The first part of the class consists in the proof of the so-called Karush-Kuhn-Tucker (KKT) conditions for a general nonlinear programming problem, with equality and inequality constraints. More specifically, we consider the following nonlinear programming (NLP) problem:

$$
\begin{align*}
\min & f(x) \tag{NLP}\\
\text { s.t. } & x \in X
\end{align*}
$$

where

$$
\begin{equation*}
X:=\left\{x \in \mathbb{R}^{n} \mid g(x) \leq 0, h(x)=0\right\} \tag{1}
\end{equation*}
$$

is the feasible set of problem (NLP). We assume that the functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ are continuously differentiable. We also write $g:=\left(g_{1}, \ldots, g_{m}\right)$ with $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, i=1, \ldots, m$, and $h:=\left(h_{1}, \ldots, h_{p}\right)$ with $h_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}, j=1, \ldots, p$.

To prove KKT, we need the following ingredients: (a) a necessary optimality condition for (NLP) with normal cones characterization, (b) a property about cones and their polar, and (c) the Farkas' lemma. Before that, let us start with some simple notations and recall some basic definitions.

Notations

\checkmark The Euclidean inner product and norm are denoted by $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$, respectively.
\checkmark For any matrix $A \in \mathbb{R}^{m \times n}$, its transpose is denoted by $A^{\top} \in \mathbb{R}^{n \times m}$.
\checkmark A (column) vector $x \in \mathbb{R}^{n}$ with entries $x_{i} \in \mathbb{R}, i=1, \ldots, n$, is written as $\left(x_{1}, \ldots, x_{n}\right)^{\top}$, or simply $\left(x_{1}, \ldots, x_{n}\right)$. Note that we use subscripts for scalars.
\checkmark The sequence of vectors $x^{0}, x^{1}, x^{2}, \ldots$ is denoted by $\left\{x^{k}\right\}_{k}$, or simply $\left\{x^{k}\right\}$. Note that we use superscripts here, to differentiate with the entries of a vector x.
\checkmark The gradient of a function $r: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at $x \in \mathbb{R}^{n}$ is denoted by

$$
\nabla r(x):=\left(\frac{\partial r(x)}{\partial x_{1}}, \ldots, \frac{\partial r(x)}{\partial x_{n}}\right)^{\top}
$$

where $\partial r(x) / \partial x_{i}$ are the partial derivatives of r for $i=1, \ldots, n$.
Definition 1. We say that a set S is convex if

$$
\alpha x+(1-\alpha) y \in S \quad \text { for all } \alpha \in[0,1] \text { and } x, y \in S
$$

Definition 2. We say that a set K is a cone if for all $x \in K$ and $\alpha \geq 0$, we have $\alpha x \in K$. Moreover, it is called convex cone when this cone is also convex.

Exercise 1. Prove that K is a convex cone if and only if

$$
\alpha x+\beta y \in K \quad \text { for all } \alpha, \beta \geq 0 \text { and } x, y \in K
$$

By using Exercise 1, we can show that the set

$$
\mathbb{S}_{+}^{n}:=\left\{A \in \mathbb{R}^{n \times n} \mid A \text { is positive semidefinite }\right\}
$$

is a convex cone. In fact, let $A, B \in \mathbb{S}_{+}^{n}$ and $\alpha, \beta \geq 0$. Then, for all v, we have

$$
v^{\top}(\alpha A+\beta B) v=\alpha v^{\top} A v+\beta v^{\top} B v \geq 0
$$

which means that $\alpha A+\beta B \in \mathbb{S}_{+}^{n}$.
Definition 3. Let $x \in S$ be a vector with $S \subseteq \mathbb{R}^{n}$. The tangent cone of S at x is defined by

$$
T_{S}(x):=\left\{y \in \mathbb{R}^{n} \mid y=\lim _{k \rightarrow \infty} \alpha_{k}\left(x^{k}-x\right), \lim _{k \rightarrow \infty} x^{k}=x, x^{k} \in S \backslash\{x\}, \alpha_{k} \geq 0, k=0,1, \ldots\right\} .
$$

Moreover, each $y \in T_{S}(x)$ is called tangent vector of S at x.
The above tangent cone can be understood in the following sense. Consider a sequence $\left\{x^{k}\right\}$ in S that converges to x. In this situation, we can also think in a sequence of nonnegative scalars $\left\{\alpha_{k}\right\}$ and define $\left\{\alpha_{k}\left(x^{k}-x\right)\right\}$. If this last sequence converges to a point y, then y is the tangent vector of S at x. We can also imagine $T_{S}(x)$ as a "linear approximation" of the set S at the point x.
Proposition 1. The tangent cone $T_{S}(x)$ is a closed set.
Proof. Let $\left\{y^{\ell}\right\} \subseteq T_{S}(x)$ be a sequence such that $y^{\ell} \rightarrow y$. We need to show that $y \in T_{S}(x)$. We can assume without loss of generality that

$$
\begin{equation*}
\left\|y^{\ell}-y\right\|<\frac{1}{\ell} . \tag{2}
\end{equation*}
$$

From Definition 3, since $y^{\ell} \in T_{S}(x)$, there exist $\left\{x^{\ell, k}\right\}_{k}$ and $\left\{\alpha_{\ell, k}\right\}_{k}$ such that

$$
y^{\ell}=\lim _{k \rightarrow \infty} \alpha_{\ell, k}\left(x^{\ell, k}-x\right), \quad \lim _{k \rightarrow \infty} x^{\ell, k}=x, \quad x^{\ell, k} \in S \backslash\{x\}, \quad \alpha_{\ell, k} \geq 0
$$

for all k. Then, there exists an index k_{ℓ} satisfying

$$
\begin{equation*}
\left\|\alpha_{\ell, k_{\ell}}\left(x^{\ell, k_{\ell}}-x\right)-y^{\ell}\right\|<\frac{1}{\ell} \quad \text { and } \quad\left\|x^{\ell, k_{\ell}}-x\right\|<\frac{1}{\ell} . \tag{3}
\end{equation*}
$$

Now letting $\alpha_{\ell}:=\alpha_{\ell, k_{\ell}}$ and $x^{\ell}:=x^{\ell, k_{\ell}}$, we have $\alpha_{\ell} \geq 0, x^{\ell} \in S \backslash\{x\}$. Also, since

$$
\left\|x^{\ell}-x\right\|=\left\|x^{\ell, k_{\ell}}-x\right\|<\frac{1}{\ell}
$$

we obtain $x^{\ell} \rightarrow x$. From inequalities (2), (3), and the triangle inequality, we have

$$
\begin{aligned}
\left\|\alpha_{\ell}\left(x^{\ell}-x\right)-y\right\| & =\left\|\alpha_{\ell, k_{\ell}}\left(x^{\ell, k_{\ell}}-x\right)-y\right\| \\
& \leq\left\|\alpha_{\ell, k_{\ell}}\left(x^{\ell, k_{\ell}}-x\right)-y^{\ell}\right\|+\left\|y^{\ell}-y\right\| \\
& \leq \frac{1}{\ell}+\frac{1}{\ell} .
\end{aligned}
$$

Therefore, $y=\lim _{\ell \rightarrow \infty} \alpha_{\ell}\left(x^{\ell}-x\right)$ and we finally conclude that $y \in T_{S}(x)$.

Definition 4. Given a cone K, the set

$$
K^{\circ}:=\{x \mid\langle x, y\rangle \leq 0 \text { for all } y \in K\}
$$

is called the polar cone of K.
Recall that for given vectors x and y, we have $\langle x, y\rangle=\|x\|\|y\| \cos (\theta)$, where θ is the angle between x and y. Thus, K° is simply the set of elements that make obtuse angle with every element of K.

Exercise 2. For any cone K, prove that the polar cone K° is convex.
Definition 5. Let $x \in S$ be a vector with $S \subseteq \mathbb{R}^{n}$. The normal cone of S at x is defined by

$$
N_{S}(x):=T_{S}(x)^{\circ} .
$$

From Exercise 2, we observe that normal cones are always convex. For tangent cones, however, this is not necessarily true. For instance, if the set S is defined by

$$
S=\left\{\left(x_{1}, x_{2}\right) \mid\left(\left(x_{1}+1\right)^{2}-x_{2}\right)\left(\left(x_{1}-1\right)^{2}-x_{2}\right)=0\right\}
$$

then at $x=(0,1)$, the cone $T_{S}(x)$ is not convex.
With the above definitions and remarks, we can now show the first ingredient that is necessary to prove KKT. Recalling the optimization problem (NLP), we prove a condition that is necessary for optimality, based on the normal cone of the feasible set (1).

Theorem 1. Let $x^{*} \in \mathbb{R}^{n}$ be a local minimizer of problem (NLP). Then, we have

$$
\begin{equation*}
-\nabla f\left(x^{*}\right) \in N_{X}\left(x^{*}\right) \tag{4}
\end{equation*}
$$

Proof. Let $y \in T_{X}\left(x^{*}\right)$ be an arbitrary vector. From Definitions 4 and 5 , we need to prove that $\left\langle-\nabla f\left(x^{*}\right), y\right\rangle \leq 0$. From Definition 3, there exist sequences $\left\{x^{k}\right\}$ and $\left\{\alpha_{k}\right\}$ such that $x^{k} \in X \backslash\left\{x^{*}\right\}$ and $\alpha_{k} \geq 0$ for all k, with $x^{k} \rightarrow x^{*}$ and $\alpha_{k}\left(x^{k}-x^{*}\right) \rightarrow y$. Now, since f is differentiable (in particular at x^{*}), we have

$$
f\left(x^{k}\right)=f\left(x^{*}\right)+\left\langle\nabla f\left(x^{*}\right), x^{k}-x^{*}\right\rangle+o\left(\left\|x^{k}-x^{*}\right\|\right),
$$

where $o:[0, \infty) \rightarrow \mathbb{R}$ is a function such that $\lim _{t \rightarrow 0} o(t) / t=0$. Moreover, because x^{*} is a local minimizer, $f\left(x^{*}\right) \leq f\left(x^{k}\right)$ for large enough k. From the above equality, it means that

$$
\left\langle\nabla f\left(x^{*}\right), x^{k}-x^{*}\right\rangle+o\left(\left\|x^{k}-x^{*}\right\|\right) \geq 0 .
$$

Using the fact that $\alpha_{k} \geq 0$ and $x^{k} \neq x$ for all k, we can also write

$$
\left\langle\nabla f\left(x^{*}\right), \alpha_{k}\left(x^{k}-x^{*}\right)\right\rangle+\alpha_{k}\left\|x^{k}-x^{*}\right\| \frac{o\left(\left\|x^{k}-x^{*}\right\|\right)}{\left\|x^{k}-x^{*}\right\|} \geq 0
$$

with k large enough. Now, taking $k \rightarrow \infty$ in the above expression yields

$$
\left\langle\nabla f\left(x^{*}\right), y\right\rangle+\|y\| \cdot 0 \geq 0,
$$

and the claim holds.

Now, assume that $X=\mathbb{R}^{n}$, which means that (NLP) is unconstrained. In this case, for any $x \in \mathbb{R}^{n}$, we have $T_{X}(x)=\mathbb{R}^{n}$ and $N_{X}(x)=\{0\}$. In particular, the normal cone of X at a local minimum x^{*} is given by $N_{X}\left(x^{*}\right)=\{0\}$. Thus, in this case, the condition (4) can be written as $\nabla f\left(x^{*}\right)=0$, which is the classical first-order optimality condition for uncontrained problems. It is then natural to use the following definition.

Definition 6. A point $x \in X$ is called stationary for (NLP) if $-\nabla f(x) \in N_{X}(x)$.

Operations Research, Advanced (Graduate School of Informatics, Kyoto University)
1st part by Ellen H. Fukuda (e-mail: ellen(at)i.kyoto-u.ac.jp, where (at) $=\mathbb{@}$)

