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Class 1: Preliminaries

The first part of the class consists in the proof of the so-called Karush-Kuhn-Tucker (KKT)
conditions for a general nonlinear programming problem, with equality and inequality con-
straints. More specifically, we consider the following nonlinear programming (NLP) problem:

min f(x)
s.t. x ∈ X (NLP)

where
X :=

{
x ∈ Rn | g(x) ≤ 0, h(x) = 0

}
(1)

is the feasible set of problem (NLP). We assume that the functions f : Rn → R, g : Rn → Rm

and h : Rn → Rp are continuously differentiable. We also write g := (g1, . . . , gm) with
gi : Rn → R, i = 1, . . . ,m, and h := (h1, . . . , hp) with hj : Rn → R, j = 1, . . . , p.

To prove KKT, we need the following ingredients: (a) a necessary optimality condition
for (NLP) with normal cones characterization, (b) a property about cones and their polar,
and (c) the Farkas’ lemma. Before that, let us start with some simple notations and recall
some basic definitions.

Notations

X The Euclidean inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively.

X For any matrix A ∈ Rm×n, its transpose is denoted by A> ∈ Rn×m.

X A (column) vector x ∈ Rn with entries xi ∈ R, i = 1, . . . , n, is written as (x1, . . . , xn)>,
or simply (x1, . . . , xn). Note that we use subscripts for scalars.

X The sequence of vectors x0, x1, x2, . . . is denoted by {xk}k, or simply {xk}. Note that
we use superscripts here, to differentiate with the entries of a vector x.

X The gradient of a function r : Rn → R at x ∈ Rn is denoted by

∇r(x) :=

(
∂r(x)

∂x1
, . . . ,

∂r(x)

∂xn

)>
,

where ∂r(x)/∂xi are the partial derivatives of r for i = 1, . . . , n.

Definition 1. We say that a set S is convex if

αx+ (1− α)y ∈ S for all α ∈ [0, 1] and x, y ∈ S.

Definition 2. We say that a set K is a cone if for all x ∈ K and α ≥ 0, we have αx ∈ K.
Moreover, it is called convex cone when this cone is also convex.
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Exercise 1. Prove that K is a convex cone if and only if

αx+ βy ∈ K for all α, β ≥ 0 and x, y ∈ K.

By using Exercise 1, we can show that the set

Sn+ :=
{
A ∈ Rn×n | A is positive semidefinite

}
is a convex cone. In fact, let A,B ∈ Sn+ and α, β ≥ 0. Then, for all v, we have

v>(αA+ βB)v = αv>Av + βv>Bv ≥ 0

which means that αA+ βB ∈ Sn+.

Definition 3. Let x ∈ S be a vector with S ⊆ Rn. The tangent cone of S at x is defined by

TS(x) :=
{
y ∈ Rn

∣∣∣ y = lim
k→∞

αk(xk − x), lim
k→∞

xk = x, xk ∈ S \ {x}, αk ≥ 0, k = 0, 1, . . .
}
.

Moreover, each y ∈ TS(x) is called tangent vector of S at x.

The above tangent cone can be understood in the following sense. Consider a sequence {xk}
in S that converges to x. In this situation, we can also think in a sequence of nonnegative
scalars {αk} and define {αk(xk − x)}. If this last sequence converges to a point y, then y is
the tangent vector of S at x. We can also imagine TS(x) as a “linear approximation” of the
set S at the point x.

Proposition 1. The tangent cone TS(x) is a closed set.

Proof. Let {y`} ⊆ TS(x) be a sequence such that y` → y. We need to show that y ∈ TS(x).
We can assume without loss of generality that

‖y` − y‖ < 1

`
. (2)

From Definition 3, since y` ∈ TS(x), there exist {x`,k}k and {α`,k}k such that

y` = lim
k→∞

α`,k(x`,k − x), lim
k→∞

x`,k = x, x`,k ∈ S \ {x}, α`,k ≥ 0

for all k. Then, there exists an index k` satisfying

‖α`,k`(x
`,k` − x)− y`‖ < 1

`
and ‖x`,k` − x‖ < 1

`
. (3)

Now letting α` := α`,k` and x` := x`,k` , we have α` ≥ 0, x` ∈ S \ {x}. Also, since

‖x` − x‖ = ‖x`,k` − x‖ < 1

`
,

we obtain x` → x. From inequalities (2), (3), and the triangle inequality, we have

‖α`(x
` − x)− y‖ = ‖α`,k`(x

`,k` − x)− y‖
≤ ‖α`,k`(x

`,k` − x)− y`‖+ ‖y` − y‖

≤ 1

`
+

1

`
.

Therefore, y = lim`→∞ α`(x
` − x) and we finally conclude that y ∈ TS(x).
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Definition 4. Given a cone K, the set

K◦ :=
{
x | 〈x, y〉 ≤ 0 for all y ∈ K

}
is called the polar cone of K.

Recall that for given vectors x and y, we have 〈x, y〉 = ‖x‖ ‖y‖ cos(θ), where θ is the angle
between x and y. Thus, K◦ is simply the set of elements that make obtuse angle with every
element of K.

Exercise 2. For any cone K, prove that the polar cone K◦ is convex.

Definition 5. Let x ∈ S be a vector with S ⊆ Rn. The normal cone of S at x is defined by

NS(x) := TS(x)◦.

From Exercise 2, we observe that normal cones are always convex. For tangent cones, how-
ever, this is not necessarily true. For instance, if the set S is defined by

S =
{

(x1, x2)
∣∣∣ ((x1 + 1)2 − x2

)(
(x1 − 1)2 − x2

)
= 0
}
,

then at x = (0, 1), the cone TS(x) is not convex.

With the above definitions and remarks, we can now show the first ingredient that is necessary
to prove KKT. Recalling the optimization problem (NLP), we prove a condition that is
necessary for optimality, based on the normal cone of the feasible set (1).

Theorem 1. Let x∗ ∈ Rn be a local minimizer of problem (NLP). Then, we have

−∇f(x∗) ∈ NX(x∗). (4)

Proof. Let y ∈ TX(x∗) be an arbitrary vector. From Definitions 4 and 5, we need to prove
that 〈−∇f(x∗), y〉 ≤ 0. From Definition 3, there exist sequences {xk} and {αk} such that
xk ∈ X \ {x∗} and αk ≥ 0 for all k, with xk → x∗ and αk(xk − x∗) → y. Now, since f is
differentiable (in particular at x∗), we have

f(xk) = f(x∗) + 〈∇f(x∗), xk − x∗〉+ o(‖xk − x∗‖),

where o : [0,∞) → R is a function such that limt→0 o(t)/t = 0. Moreover, because x∗ is a
local minimizer, f(x∗) ≤ f(xk) for large enough k. From the above equality, it means that

〈∇f(x∗), xk − x∗〉+ o(‖xk − x∗‖) ≥ 0.

Using the fact that αk ≥ 0 and xk 6= x for all k, we can also write

〈∇f(x∗), αk(xk − x∗)〉+ αk‖xk − x∗‖
o(‖xk − x∗‖)
‖xk − x∗‖

≥ 0

with k large enough. Now, taking k →∞ in the above expression yields

〈∇f(x∗), y〉+ ‖y‖ · 0 ≥ 0,

and the claim holds.
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Now, assume that X = Rn, which means that (NLP) is unconstrained. In this case, for any
x ∈ Rn, we have TX(x) = Rn and NX(x) = {0}. In particular, the normal cone of X at a
local minimum x∗ is given by NX(x∗) = {0}. Thus, in this case, the condition (4) can be
written as ∇f(x∗) = 0, which is the classical first-order optimality condition for uncontrained
problems. It is then natural to use the following definition.

Definition 6. A point x ∈ X is called stationary for (NLP) if −∇f(x) ∈ NX(x).
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