Class 2: Farkas' lemma and Carathéodory's theorem

In this class, we consider two well-known from convex analysis: the Farkas' lemma and the Carathéodory's theorem. Let us first define the following set:

$$K_m := \left\{ x \in \mathbb{R}^n \mid x = \sum_{i=1}^m \lambda_i a^i, \, \lambda_i \ge 0, \, i = 1, \dots, m \right\}$$
(1)

for a given set of vectors $\{a^1, \ldots, a^m\} \subset \mathbb{R}^n$. It is easy to see that K_m is a convex cone. The result below shows that for any $x \in \mathbb{R}^n$, there always exists $y \in K_m$ such that it is the nearest point in K_m to the point x. This actually shows that K_m is also a closed set.

Lemma 1. For all $x \in \mathbb{R}^n$, there exists $y \in K_m$ such that

$$\|x - y\| \le \|x - z\| \quad \text{for all } z \in K_m.$$

$$\tag{2}$$

Proof. If $x \in K_m$, then y = x is already the nearest point in K_m to x. Thus, assume that $x \notin K_m$ and let us prove the result by induction on m. The claim holds trivially when m = 1. Then, assume that the result is true when $m = \ell - 1$ for some ℓ . Defining

$$K_m^i := \{ x \in \mathbb{R}^n \mid x = \lambda_1 a_1 + \dots + \lambda_{i-1} a^{i-1} + \lambda_{i+1} a^{i+1} + \dots + \lambda_m a_m \},\$$

we can say, from assumption, that there exists y^i such that

$$||x - y^i|| \le ||x - z||$$
 for all $z \in K_m^i$. (3)

Note that $y^i \in K_m$ also holds because $K_m^i \subset K_m$ for all *i*. Now, define the following subspace of \mathbb{R}^n :

$$L_m := \left\{ x \in \mathbb{R}^n \mid x = \sum_{i=1}^m \lambda_i a^i, \, \lambda_i \in \mathbb{R}, \, i = 1, \dots, m \right\},$$

and consider the following two cases: (a) $x \in L_m$ and (b) $x \notin L_m$.

(a) Assume that $x \in L_m$ and let $z \in K_m$. We consider y as the nearest point to x among the vectors y^1, \ldots, y^m , that is,

$$||x - y|| \le ||x - y^i||$$
 for all $i = 1, \dots, m$. (4)

We will show that the inequality in (2) holds in this case. Since $x \in L_m$ and $z \in K_m$, there exist $\alpha_i \in \mathbb{R}$ and $\beta_i \geq 0$ with i = 1, ..., m, such that

$$x = \sum_{i=1}^{m} \alpha_i a^i$$
 and $z = \sum_{i=1}^{m} \beta_i a^i$.

Now, define the index set $I(x) := \{i \mid \alpha_i < 0\}$ and the scalar

$$t := \min_{j \in I(x)} \left\{ \frac{\beta_j}{\beta_j - \alpha_j} \right\}.$$

Clearly, t is well-defined because $x \notin K_m$ guarantees that I(x) is nonempty. If $j \in I(x)$, then we have $\beta_j \ge 0$ and $\beta_j - \alpha_j > \beta_j$, and thus $t \in [0, 1)$. Assume that $t = \beta_i/(\beta_i - \alpha_i)$ for some $i \in I(x)$. In this case, we have

$$t\alpha_i + (1-t)\beta_i = 0$$
 and $t\alpha_j + (1-t)\beta_j \ge 0$ for all $j \in I(x)$.

If $j \notin I(x)$, then $\alpha_j \ge 0$, and we also obtain $t\alpha_j + (1-t)\beta_j \ge 0$. Therefore, we get

$$tx + (1-t)z = t\left(\sum_{i=1}^{m} \alpha_i a^i\right) + (1-t)\left(\sum_{i=1}^{m} \beta_i a^i\right) = \sum_{i=1}^{m} \left(t\alpha_i + (1-t)\beta_i\right)a^i \in K_m^i.$$

From (3) and (4), we have

$$||x - y|| \le ||x - y^{i}|| \le ||x - (tx + (1 - t)z)|| = (1 - t)||x - z|| \le ||x - z||,$$

and the proof is complete for this case.

(b) Assume that $x \notin L_m$. If e^1, \ldots, e^p are the orthonormal basis of L_m , then we can define $x' := \langle x, e^1 \rangle e^1 + \cdots + \langle x, e^p \rangle e^p$

Clearly, $x' \in L_m$ holds. From case (b), there exists $y \in K_m$ such that

$$||x' - y|| \le ||x' - z||$$
 for all $z \in K_m$. (5)

For all $s = 1, \ldots, p$, we have

$$\langle x - x', e^s \rangle = \langle x, e^s \rangle - \langle x', e^s \rangle = \langle x, e^s \rangle - \langle x, e^s \rangle = 0$$

where the second equality holds because $\langle e^i, e^j \rangle = 0$ when $i \neq j$ and $\langle e_i, e_i \rangle = 1$ for all *i*. So, we obtain

$$\langle x - x', z \rangle = 0 \quad \text{for all } z \in L_m.$$
 (6)

Moreover, we have

$$||x - x'||^{2} + ||x' - z||^{2} = ||x||^{2} - 2\langle x', x \rangle + 2||x'||^{2} - 2\langle x', z \rangle + ||z||^{2}$$

$$= ||x||^{2} - 2\langle x', x - x' \rangle - 2\langle x, z \rangle + ||z||^{2}$$

$$= ||x - z||^{2}$$
(7)

where the second equality holds from (6), and the third one holds also from (6) and because $x' \in L_m$. Therefore, for all $z \in K_m \subseteq L_m$, we get

$$||x - y||^2 \le ||x - x'||^2 + ||x' - y||^2 < ||x - x'||^2 + ||x' - z||^2 = ||x - z||^2,$$

where the first inequality holds from the triangle inequality, the second one from (5) and the third one from (7). This means that y is the closest point of K_m from x.

Let us now consider the same set of vectors $\{a^1, \ldots, a^m\} \subset \mathbb{R}^n$ used in the definition of K_m , and define the following set:

$$C_m = \left\{ y \in \mathbb{R}^n \mid \langle y, a^i \rangle \le 0, i = 1, \dots, m \right\}.$$
(8)

Recall also that the polar cone of C_m is given by

$$C_m^{\circ} = \left\{ x \in \mathbb{R}^n \mid \langle x, y \rangle \le 0 \text{ for all } y \in C_m \right\}.$$

Lemma 2. (Farkas' Lemma) Let $\{a^1, \ldots, a^m\} \subset \mathbb{R}^n$ be a set of vectors. If K_m and C_m are defined as (1) and (8), respectively, then

$$K_m = C_m^{\circ}.$$

Proof. Let $x \in C_m^{\circ}$ and $y \in K_m$ be the nearest point of K_m to x, which exists from Lemma 1. We will first prove that

$$\langle a^j, x - y \rangle \le 0, \quad j = 1, \dots, m$$
(9)

and

$$\langle -y, x - y \rangle \le 0 \tag{10}$$

hold. Assume otherwise that (9) does not hold for some j. For sufficiently small $t \in (0, 1)$ we obtain

$$||x - (y + ta^{j})||^{2} = ||(x - y) - ta^{j}||^{2} = ||x - y||^{2} - 2t\langle a^{j}, x - y \rangle + t^{2}||a^{j}||^{2} < ||x - y||^{2}.$$

Observing that $y + ta^j \in K_m$ because K_m is a convex cone, the above inequality then contradicts the fact that y is the nearest point of K_m to x. Similarly, if we assume that (10) does not hold, then for sufficiently small $t \in (0, 1)$, we get

$$||x - (y - ty)||^{2} = ||(x - y) + ty||^{2} = ||x - y||^{2} - 2t\langle -y, x - y\rangle + t^{2}||y||^{2} < ||x - y||^{2}.$$

For such t, we also have $y - ty = (1 - t)y \in K_m$, which is a contradiction. Now, from (9), we have $x - y \in C_m$. Moreover, the definition of polar cone yields

$$\langle x, x - y \rangle \le 0.$$

This inequality, together with (10), gives

$$0 \ge \langle x, x - y \rangle + \langle -y, x - y \rangle = ||x - y||^2$$

Since the norm is always nonnegative, it means that x = y. Therefore, $x \in K_m$. Now, let us assume that $x \in K_m$. Then, there exists $\lambda_i \ge 0$ with $i = 1, \ldots, m$, such that

$$\langle x, y \rangle = \sum_{i=1}^{k} \lambda_i \langle a^i, y \rangle \le 0$$

for all $y \in C_m$. Therefore, we conclude that $x \in C_m^{\circ}$.

Definition 1. A point $x \in \mathbb{R}^n$ is a convex combination of $\{x^1, \ldots, x^m\} \subset \mathbb{R}^n$ if it can be written as

$$x = \sum_{i=1}^{m} \alpha_i x^i$$
 for some α_i with $\alpha_i \ge 0$, $i = 1, \dots, m$, and $\sum_{i=1}^{m} \alpha_i = 1$.

Definition 2. The convex hull of a set S, denoted by co S, is the smallest convex set that contains S.

As the name suggests, the convex hull $\cos S$ is always convex.

Lemma 3. Let $x \in \mathbb{R}^n$ be defined as a convex combination of $m \ge n+2$ points in \mathbb{R}^n . Then, it is possible to choose n+1 points among the m points and write x as as a convex combination of these selected points.

Proof. Let x be a convex combination of $m \ge n+2$ points x^1, \ldots, x^m , that is,

$$x = \sum_{i=1}^{m} \alpha_i x^i$$
, with $\alpha_i > 0$, $\sum_{i=1}^{m} \alpha_i = 1$.

Define y^i as $y^i := x^i - x^m$, i = 1, ..., m-1. Since $m-1 \ge n+1$, we can note that $y^1, ..., y^{m-1}$ are not linearly independent. Then, there exists $\beta_1, ..., \beta_{m-1}$ with at least one positive β_i such that

$$0 = \sum_{i=1}^{m-1} \beta_i y^i = \sum_{i=1}^{m-1} \beta_i x^i - \left(\sum_{i=1}^{m-1} \beta_i\right) x^m.$$

Defining $\beta_m := -\sum_{i=1}^{m-1} \beta_i$, we have

$$\sum_{i=1}^{m} \beta_i = 0 \quad \text{and} \quad \sum_{i=1}^{m} \beta_i x^i = \sum_{i=1}^{m-1} \beta_i x^i - \left(\sum_{i=1}^{m-1} \beta_i\right) x^m = 0.$$

Then, for all τ ,

$$x = \sum_{i=1}^{m} \alpha_i x_i - \tau \sum_{i=1}^{m} \beta_i x^i = \sum_{i=1}^{m} (\alpha_i - \tau \beta_i) x^i$$
(11)

and

$$1 = \sum_{i=1}^{m} \alpha_i - \tau \sum_{i=1}^{m} \beta_i = \sum_{i=1}^{m} (\alpha_i - \tau \beta_i)$$

hold. If

$$\bar{\tau} := \min\left\{\frac{\alpha_i}{\beta_i} \mid \beta_i > 0\right\},\$$

then there exists an index j satisfying $\beta_j > 0$ and $\alpha_j - \overline{\tau}\beta_j = 0$. Moreover, when $i \neq j$, we have

$$\alpha_i - \bar{\tau}\beta_j \ge 0.$$

Therefore, from (11), x is a convex combination of $x^1, \ldots, x^{j-1}, x^{j+1}, \ldots, x^m$. The result follows by repeating this process m = n + 1 times.

Let $S \subset \mathbb{R}^n$ and define

$$S^k := \left\{ x \in \mathbb{R}^n \mid x = \sum_{i=1}^k \alpha_i x^i, x^i \in S, \alpha_i \ge 0, \sum_{i=1}^k \alpha_i = 1 \right\}.$$

as the set of all convex combinations of k elements in S. Clearly, $S^1 \subset S^2 \subset \cdots \subset S^k \cdots$. Moreover, intuitively, we have that the convex hull of S is equivalent to the union of S^k , that is, co $S = \bigcup_{k=1}^{\infty} S^k$. The following theorem shows that we do not actually need to take k to infinity.

Theorem 1. (Carathéodory's Theorem) If $S \subset \mathbb{R}^n$, then

$$\operatorname{co} S = S^{n+1}$$

Proof. Let us first prove that $S^{n+1} \subseteq \operatorname{co} S$ by induction. Since $S^1 = S$, $S^1 \subseteq \operatorname{co} S$. Now, assume that $S^k \subseteq \operatorname{co} S$ for all $k \ge 1$. Let $x \in S^{k+1}$. Then, there exist $x^i \in S$ and α_i such that

$$x = \sum_{i=1}^{k} \alpha_i x^i + \alpha_{k+1} x^{k+1}, \alpha_i \ge 0, \sum_{i=1}^{k+1} \alpha_i = 1.$$

If $\alpha_{k+1} = 1$, we have $x \in S$ and thus $x \in \operatorname{co} S$. If $\alpha_{k+1} < 1$, we can write

$$x = (1 - \alpha_{k+1}) \left(\sum_{i=1}^{k} \frac{\alpha_i}{1 - \alpha_{k+1}} x^i \right) + \alpha_{k+1} x^{k+1}.$$

Since $\alpha_i/(1-\alpha_{k+1}) \ge 0$ and

$$\sum_{i=1}^{k} \frac{\alpha_i}{1 - \alpha_{k+1}} = \frac{1 - \alpha_{k+1}}{1 - \alpha_{k+1}} = 1$$

we obtain

$$\sum_{i=1}^{k} \frac{\alpha_i}{1 - \alpha_{k+1}} x^i \in S^k \subseteq \operatorname{co} S.$$

Because $x^{k+1} \in \operatorname{co} S$ and $\operatorname{co} S$ is convex, we conclude that $x \in \operatorname{co} S$. Therefore, $S^{n+1} \subseteq \operatorname{co} S$ holds. Now, assume that $S \subseteq S^{n+1}$ and let us first prove that S^{n+1} is convex. Observe that $S \subseteq S^{n+1}$. If $x, y \in S^{n+1}$, then there exist $x^i, y^i \in S$, and scalars α_i, β_i such that

$$x = \sum_{i=1}^{n+1} \alpha_i x^i, \alpha_i \ge 0, \sum_{i=1}^{n+1} \alpha_i = 1,$$
$$y = \sum_{i=1}^{n+1} \beta_i y^i, \beta_i \ge 0, \sum_{i=1}^{k+1} \beta_i = 1.$$

Letting $\gamma \in [0, 1]$, we also obtain

$$\gamma x + (1 - \gamma)y = \sum_{i=1}^{n+1} \gamma \alpha_i x^i + \sum_{i=1}^{n+1} (1 - \gamma)\beta_i y^i.$$

Moreover, we know that $\gamma \alpha_i \geq 0$, $(1 - \gamma)\beta_i \geq 0$ and

$$\sum_{i=1}^{n+1} \gamma \alpha_i + \sum_{i=1}^{n+1} (1-\gamma)\beta_i = 1.$$

Thus, from Lemma 3, $\gamma x + (1 - \gamma)y$ can be written as a convex combination of n + 1 elements of $\{x^i\}$ and $\{y^i\}$. This means that $\gamma x + (1 - \gamma)y \in S^{n+1}$, and so S^{n+1} is a convex set. Since co S is the smallest convex set containing S, we conclude that co $S = S^{n+1}$.

The Carathéodory's theorem is used to prove the following properties concerning cones. This result will be used for proving KKT of nonlinear programming problems.

Proposition 1. Let C and D be cones in \mathbb{R}^n . Then, the following statements hold.

- $(a) \ C \subseteq D \Rightarrow C^{\circ} \supseteq D^{\circ};$
- (b) $C^\circ = (\operatorname{co} C)^\circ$.

Proof. (a) If $y \in D^{\circ}$, from the definition of polar cone, $\langle y, x \rangle \leq 0$ for all $x \in D$. From assumption, $C \subseteq D$ holds, and so $\langle y, x \rangle \leq 0$ holds for all $x \in C$. This means that $y \in C^{\circ}$, as it was claimed.

(b) Since $C \subseteq \operatorname{co} C$, from (a), we have $C^{\circ} \supseteq (\operatorname{co} C)^{\circ}$. Thus, we just need to show that $C^{\circ} \subseteq (\operatorname{co} C)^{\circ}$. Let $y \in C^{\circ}$ and $x \in \operatorname{co} C$ be taken arbitrarily. From Theorem 1, there exist $\alpha_i \ge 0$ and $x^i \in C$, $i = 1, \ldots, n+1$ such that

$$x = \sum_{i=1}^{n+1} \alpha_i x^i.$$

Therefore, we have

$$\langle y, x \rangle = \sum_{i=1}^{n+1} \alpha_i \langle y, x^i \rangle \le 0$$

This means that $y \in (\operatorname{co} C)^{\circ}$, and the conclusion follows.

Operations Research, Advanced (G	raduate School of	Informatics, k	(yoto University)
1st part by Ellen H. Fukuda (e-mai	l: ellen(at)i.ky	oto-u.ac.jp,	where $(at) = 0$