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Class 2: Farkas’ lemma and Carathéodory’s theorem

In this class, we consider two well-known from convex analysis: the Farkas’ lemma and the
Carathéodory’s theorem. Let us first define the following set:

Km :=

{
x ∈ Rn

∣∣∣∣ x =

m∑
i=1

λia
i, λi ≥ 0, i = 1, . . . ,m

}
(1)

for a given set of vectors {a1, . . . , am} ⊂ Rn. It is easy to see that Km is a convex cone.
The result below shows that for any x ∈ Rn, there always exists y ∈ Km such that it is the
nearest point in Km to the point x. This actually shows that Km is also a closed set.

Lemma 1. For all x ∈ Rn, there exists y ∈ Km such that

‖x− y‖ ≤ ‖x− z‖ for all z ∈ Km. (2)

Proof. If x ∈ Km, then y = x is already the nearest point in Km to x. Thus, assume that
x /∈ Km and let us prove the result by induction on m. The claim holds trivially when m = 1.
Then, assume that the result is true when m = `− 1 for some `. Defining

Ki
m :=

{
x ∈ Rn | x = λ1a1 + · · ·+ λi−1a

i−1 + λi+1a
i+1 + · · ·+ λmam},

we can say, from assumption, that there exists yi such that

‖x− yi‖ ≤ ‖x− z‖ for all z ∈ Ki
m. (3)

Note that yi ∈ Km also holds because Ki
m ⊂ Km for all i. Now, define the following subspace

of Rn:

Lm :=

{
x ∈ Rn

∣∣∣∣ x =
m∑
i=1

λia
i, λi ∈ R, i = 1, . . . ,m

}
,

and consider the following two cases: (a) x ∈ Lm and (b) x /∈ Lm.

(a) Assume that x ∈ Lm and let z ∈ Km. We consider y as the nearest point to x among the
vectors y1, . . . , ym, that is,

‖x− y‖ ≤ ‖x− yi‖ for all i = 1, . . . ,m. (4)

We will show that the inequality in (2) holds in this case. Since x ∈ Lm and z ∈ Km, there
exist αi ∈ R and βi ≥ 0 with i = 1, . . . ,m, such that

x =

m∑
i=1

αia
i and z =

m∑
i=1

βia
i.
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Now, define the index set I(x) := {i | αi < 0} and the scalar

t := min
j∈I(x)

{
βj

βj − αj

}
.

Clearly, t is well-defined because x 6∈ Km guarantees that I(x) is nonempty. If j ∈ I(x), then
we have βj ≥ 0 and βj − αj > βj , and thus t ∈ [0, 1). Assume that t = βi/(βi − αi) for some
i ∈ I(x). In this case, we have

tαi + (1− t)βi = 0 and tαj + (1− t)βj ≥ 0 for all j ∈ I(x).

If j 6∈ I(x), then αj ≥ 0, and we also obtain tαj + (1− t)βj ≥ 0. Therefore, we get

tx+ (1− t)z = t

(
m∑
i=1

αia
i

)
+ (1− t)

(
m∑
i=1

βia
i

)
=

m∑
i=1

(
tαi + (1− t)βi

)
ai ∈ Ki

m.

From (3) and (4), we have

‖x− y‖ ≤ ‖x− yi‖ ≤ ‖x− (tx+ (1− t)z)‖ = (1− t)‖x− z‖ ≤ ‖x− z‖,

and the proof is complete for this case.

(b) Assume that x /∈ Lm. If e1, . . . , ep are the orthonormal basis of Lm, then we can define

x′ := 〈x, e1〉e1 + · · ·+ 〈x, ep〉ep

Clearly, x′ ∈ Lm holds. From case (b), there exists y ∈ Km such that

‖x′ − y‖ ≤ ‖x′ − z‖ for all z ∈ Km. (5)

For all s = 1, . . . , p, we have

〈x− x′, es〉 = 〈x, es〉 − 〈x′, es〉 = 〈x, es〉 − 〈x, es〉 = 0

where the second equality holds because 〈ei, ej〉 = 0 when i 6= j and 〈ei, ei〉 = 1 for all i. So,
we obtain

〈x− x′, z〉 = 0 for all z ∈ Lm. (6)

Moreover, we have

‖x− x′‖2 + ‖x′ − z‖2 = ‖x‖2 − 2〈x′, x〉+ 2‖x′‖2 − 2〈x′, z〉+ ‖z‖2

= ‖x‖2 − 2〈x′, x− x′〉 − 2〈x, z〉+ ‖z‖2

= ‖x− z‖2 (7)

where the second equality holds from (6), and the third one holds also from (6) and because
x′ ∈ Lm. Therefore, for all z ∈ Km ⊆ Lm, we get

‖x− y‖2 ≤ ‖x− x′‖2 + ‖x′ − y‖2 < ‖x− x′‖2 + ‖x′ − z‖2 = ‖x− z‖2,

where the first inequality holds from the triangle inequality, the second one from (5) and the
third one from (7). This means that y is the closest point of Km from x.
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Let us now consider the same set of vectors {a1, . . . , am} ⊂ Rn used in the definition of Km,
and define the following set:

Cm =
{
y ∈ Rn | 〈y, ai〉 ≤ 0, i = 1, . . . ,m

}
. (8)

Recall also that the polar cone of Cm is given by

C◦m =
{
x ∈ Rn | 〈x, y〉 ≤ 0 for all y ∈ Cm

}
.

Lemma 2. (Farkas’ Lemma) Let {a1, . . . , am} ⊂ Rn be a set of vectors. If Km and Cm are
defined as (1) and (8), respectively, then

Km = C◦m.

Proof. Let x ∈ C◦m and y ∈ Km be the nearest point of Km to x, which exists from Lemma 1.
We will first prove that

〈aj , x− y〉 ≤ 0, j = 1, . . . ,m (9)

and
〈−y, x− y〉 ≤ 0 (10)

hold. Assume otherwise that (9) does not hold for some j. For sufficiently small t ∈ (0, 1)
we obtain

‖x− (y + taj)‖2 = ‖(x− y)− taj‖2 = ‖x− y‖2 − 2t〈aj , x− y〉+ t2‖aj‖2 < ‖x− y‖2.

Observing that y+ taj ∈ Km because Km is a convex cone, the above inequalty then contra-
dicts the fact that y is the nearest point of Km to x. Similarly, if we assume that (10) does
not hold, then for sufficiently small t ∈ (0, 1), we get

‖x− (y − ty)‖2 = ‖(x− y) + ty‖2 = ‖x− y‖2 − 2t〈−y, x− y) + t2‖y‖2 < ‖x− y‖2.

For such t, we also have y − ty = (1− t)y ∈ Km, which is a contradiction.
Now, from (9), we have x− y ∈ Cm. Moreover, the definition of polar cone yields

〈x, x− y〉 ≤ 0.

This inequality, together with (10), gives

0 ≥ 〈x, x− y〉+ 〈−y, x− y〉 = ‖x− y‖2.

Since the norm is always nonnegative, it means that x = y. Therefore, x ∈ Km.
Now, let us assume that x ∈ Km. Then, there exists λi ≥ 0 with i = 1, . . . ,m, such that

〈x, y〉 =
k∑

i=1

λi〈ai, y〉 ≤ 0

for all y ∈ Cm. Therefore, we conclude that x ∈ C◦m.
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Definition 1. A point x ∈ Rn is a convex combination of {x1, . . . , xm} ⊂ Rn if it can be
written as

x =
m∑
i=1

αix
i for some αi with αi ≥ 0, i = 1, . . . ,m, and

m∑
i=1

αi = 1.

Definition 2. The convex hull of a set S, denoted by coS, is the smallest convex set that
contains S.

As the name suggests, the convex hull coS is always convex.

Lemma 3. Let x ∈ Rn be defined as a convex combination of m ≥ n + 2 points in Rn.
Then, it is possible to choose n + 1 points among the m points and write x as as a convex
combination of these selected points.

Proof. Let x be a convex combination of m ≥ n+ 2 points x1, . . . , xm, that is,

x =
m∑
i=1

αix
i, with αi > 0,

m∑
i=1

αi = 1.

Define yi as yi := xi−xm, i = 1, . . . ,m−1. Since m−1 ≥ n+1, we can note that y1, . . . , ym−1

are not linearly independent. Then, there exists β1, . . . , βm−1 with at least one positive βi
such that

0 =
m−1∑
i=1

βiy
i =

m−1∑
i=1

βix
i −

(
m−1∑
i=1

βi

)
xm.

Defining βm := −
∑m−1

i=1 βi, we have

m∑
i=1

βi = 0 and

m∑
i=1

βix
i =

m−1∑
i=1

βix
i −

(
m−1∑
i=1

βi

)
xm = 0.

Then, for all τ ,

x =

m∑
i=1

αixi − τ
m∑
i=1

βix
i =

m∑
i=1

(αi − τβi)xi (11)

and

1 =

m∑
i=1

αi − τ
m∑
i=1

βi =

m∑
i=1

(αi − τβi)

hold. If

τ̄ := min

{
αi

βi

∣∣∣∣ βi > 0

}
,

then there exists an index j satifying βj > 0 and αj − τ̄βj = 0. Moreover, when i 6= j, we
have

αi − τ̄βj ≥ 0.

Therefore, from (11), x is a convex combination of x1, . . . , xj−1, xj+1, . . . , xm. The result
follows by repeating this process m = n+ 1 times.
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Let S ⊂ Rn and define

Sk :=

{
x ∈ Rn

∣∣∣∣ x =
k∑

i=1

αix
i, xi ∈ S, αi ≥ 0,

k∑
i=1

αi = 1

}
.

as the set of all convex combinations of k elements in S. Clearly, S1 ⊂ S2 ⊂ · · · ⊂ Sk · · · .
Moreover, intuitively, we have that the convex hull of S is equivalent to the union of Sk, that
is, coS =

⋃∞
k=1 S

k. The following theorem shows that we do not actually need to take k to
infinity.

Theorem 1. (Carathéodory’s Theorem) If S ⊂ Rn, then

coS = Sn+1.

Proof. Let us first prove that Sn+1 ⊆ coS by induction. Since S1 = S, S1 ⊆ coS. Now,
assume that Sk ⊆ coS for all k ≥ 1. Let x ∈ Sk+1. Then, there exist xi ∈ S and αi such
that

x =
k∑

i=1

αix
i + αk+1x

k+1, αi ≥ 0,
k+1∑
i=1

αi = 1.

If αk+1 = 1, we have x ∈ S and thus x ∈ coS. If αk+1 < 1, we can write

x = (1− αk+1)

(
k∑

i=1

αi

1− αk+1
xi

)
+ αk+1x

k+1.

Since αi/(1− αk+1) ≥ 0 and

k∑
i=1

αi

1− αk+1
=

1− αk+1

1− αk+1
= 1,

we obtain
k∑

i=1

αi

1− αk+1
xi ∈ Sk ⊆ coS.

Because xk+1 ∈ coS and coS is convex, we conclude that x ∈ coS. Therefore, Sn+1 ⊆ coS
holds. Now, assume that S ⊆ Sn+1 and let us first prove that Sn+1 is convex. Observe that
S ⊆ Sn+1. If x, y ∈ Sn+1, then there exist xi, yi ∈ S, and scalars αi, βi such that

x =
n+1∑
i=1

αix
i, αi ≥ 0,

n+1∑
i=1

αi = 1,

y =
n+1∑
i=1

βiy
i, βi ≥ 0,

k+1∑
i=1

βi = 1.
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Letting γ ∈ [0, 1], we also obtain

γx+ (1− γ)y =
n+1∑
i=1

γαix
i +

n+1∑
i=1

(1− γ)βiy
i.

Moreover, we know that γαi ≥ 0, (1− γ)βi ≥ 0 and

n+1∑
i=1

γαi +

n+1∑
i=1

(1− γ)βi = 1.

Thus, from Lemma 3, γx+(1−γ)y can be written as a convex combination of n+1 elements
of {xi} and {yi}. This means that γx+ (1− γ)y ∈ Sn+1, and so Sn+1 is a convex set. Since
coS is the smallest convex set containing S, we conclude that coS = Sn+1.

The Carathéodory’s theorem is used to prove the following properties concerning cones. This
result will be used for proving KKT of nonlinear programming problems.

Proposition 1. Let C and D be cones in Rn. Then, the following statements hold.

(a) C ⊆ D ⇒ C◦ ⊇ D◦;

(b) C◦ = (coC)◦.

Proof. (a) If y ∈ D◦, from the definition of polar cone, 〈y, x〉 ≤ 0 for all x ∈ D. From
assumption, C ⊆ D holds, and so 〈y, x〉 ≤ 0 holds for all x ∈ C. This means that y ∈ C◦, as
it was claimed.

(b) Since C ⊆ coC, from (a), we have C◦ ⊇ (coC)◦. Thus, we just need to show that
C◦ ⊆ (coC)◦. Let y ∈ C◦ and x ∈ coC be taken arbitrarily. From Theorem 1, there exist
αi ≥ 0 and xi ∈ C, i = 1, . . . , n+ 1 such that

x =
n+1∑
i=1

αix
i.

Therefore, we have

〈y, x〉 =
n+1∑
i=1

αi〈y, xi〉 ≤ 0

This means that y ∈ (coC)◦, and the conclusion follows.
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