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Class 2: Farkas’ lemma and Carathéodory’s theorem

In this class, we consider two well-known from convex analysis: the Farkas’ lemma and the
Carathéodory’s theorem. Let us first define the following set:

m
Km::{xERn x:Z)\iai,)\iZO,izl,...,m} (1)
i=1
for a given set of vectors {al,...,a™} C R™. It is easy to see that K,, is a convex cone.

The result below shows that for any x € R™, there always exists y € K,,, such that it is the
nearest point in K, to the point x. This actually shows that K,, is also a closed set.

Lemma 1. For all x € R", there exists y € K, such that
lz—yll <llz—z|| forall z€ K. 2)

Proof. If x € K, then y = x is already the nearest point in K,, to z. Thus, assume that
x ¢ K, and let us prove the result by induction on m. The claim holds trivially when m = 1.
Then, assume that the result is true when m = £ — 1 for some ¢. Defining

Kl,o={zeR"|z=X a1+ -+ N_1a" "+ Npa™ + -+ Apanm ),
we can say, from assumption, that there exists y* such that
|z —y'|| < |z —z|| forall ze K. (3)

Note that y* € K, also holds because K! C K,, for all i. Now, define the following subspace
of R™:

L,, = {:BER"

m
."L‘:Z)\iai, )\¢ER,i:1,...,m},

i=1

and consider the following two cases: (a) € Ly, and (b) x ¢ Ly,.

(a) Assume that © € L, and let z € K,,. We consider y as the nearest point to z among the
vectors y!, ..., y™, that is,

|z -yl < ||z —y'|| foralli=1,...,m. (4)

We will show that the inequality in (2) holds in this case. Since = € L,, and z € K,,, there
exist a; € R and §; > 0 with 4 = 1,...,m, such that

m m
T = E o0 and oz = E Bia'.
i=1 =1



Now, define the index set I(z) := {i | a; < 0} and the scalar

t := min { B }
jel(x) Bj — Oy

Clearly, t is well-defined because = ¢ K, guarantees that I(x) is nonempty. If j € I(z), then
we have 5; > 0 and §; — a; > f;, and thus ¢ € [0,1). Assume that ¢t = §;/(8; — c;) for some
i € I(x). In this case, we have

ta; +(1—t)8; =0 and ta;+(1—t)3; >0 forall jel(x).
If j € I(x), then a; > 0, and we also obtain ta; + (1 —t)3; > 0. Therefore, we get

tr+(1—t)z=t (i aiai> +(1—1) <i @-al) = i (to; + (1 —t)B;)a’ € K.

i=1 i=1
From (3) and (4), we have
lz =yl < llz = ' < llz = (tz + (1= t)2)| = (1 = )|z — 2| < [l — =],

and the proof is complete for this case.

(b) Assume that x ¢ Ly,. If e, ... eP are the orthonormal basis of L,,, then we can define
a' = (z,etel + -+ (x, el )eP
Clearly, 2’ € L,, holds. From case (b), there exists y € K,,, such that
2" —y|| < ||lz' — 2| for all z € K,,. (5)
For all s=1,...,p, we have
(x — 2 e®) = (z,e®) — (2, e°) = (x,€°) — (x,e®) =0

where the second equality holds because (¢!, e’) = 0 when i # j and (e;, e;) = 1 for all i. So,
we obtain

(x—2',2) =0 forall z € Ly, (6)
Moreover, we have
lz — 2" + |2’ = 21> = [|l=l® = 2{z’, 2) + 2l[2"|]* - 2(’, 2) + [|2]?
= |z|® - 2(a’,z — 2') — 2(z, 2) + ||2|]?
lz — 2|12 (7)

where the second equality holds from (6), and the third one holds also from (6) and because
2’ € Ly,. Therefore, for all z € K,;, C L,,, we get

lz = yll* < flo = 2" + [l = yl® < o = 2/I* + [l — 2|* = = — 2%,

where the first inequality holds from the triangle inequality, the second one from (5) and the
third one from (7). This means that y is the closest point of K, from z. O



Let us now consider the same set of vectors {a',...,a™} C R™ used in the definition of K,,,
and define the following set:

Cm:{yGR"|<y,ai>§0,i:1,...,m}. (8)
Recall also that the polar cone of Cy, is given by
Cr,={z€R" | (z,y) <0 forally € Cp}.

Lemma 2. (Farkas’ Lemma) Let {a!,...,a™} C R™ be a set of vectors. If K, and C,, are
defined as (1) and (8), respectively, then

Ko = C2,.

Proof. Let x € C, and y € K, be the nearest point of K, to x, which exists from Lemma 1.
We will first prove that ‘
(@, x—y) <0, j=1,....,m 9)

and
(—y,z—y) <0 (10)

hold. Assume otherwise that (9) does not hold for some j. For sufficiently small ¢ € (0,1)
we obtain

lz = (y +ta!)|I* = |(z — y) — t’ |* = || — y* = 2t{a’,x — y) + ]}’ ||* < || — y|>.

Observing that y +ta’ € K,, because K,, is a convex cone, the above inequalty then contra-
dicts the fact that y is the nearest point of K, to x. Similarly, if we assume that (10) does
not hold, then for sufficiently small ¢t € (0,1), we get

lz = (y = t)* = (@ = y) + tyl* = o — y|* = 2t(~y, 2 —y) + [ly[* < ||l= — y|*.

For such ¢, we also have y — ty = (1 — t)y € K,,,, which is a contradiction.
Now, from (9), we have x — y € C,,,. Moreover, the definition of polar cone yields

(x,z —y) <0.
This inequality, together with (10), gives
0> (z,2 —y) + (~y,x —y) = |« —y[*.

Since the norm is always nonnegative, it means that x = y. Therefore, x € K,,.
Now, let us assume that x € K,,. Then, there exists \; > 0 with ¢ = 1,...,m, such that

k
(T,y) =Y Xila',y) <0
i=1
for all y € C),. Therefore, we conclude that z € Cf,. O



Definition 1. A point x € R™ is a convex combination of {z!,... 2™} C R™ if it can be
written as

m m
T = g a;xt for some «; with a; >0, i =1,...,m, and E a; = 1.
i=1 =1

Definition 2. The convex hull of a set S, denoted by coS, is the smallest conver set that
contains S.

As the name suggests, the convex hull co S is always convex.

Lemma 3. Let x € R" be defined as a convex combination of m > n + 2 points in R™.
Then, it is possible to choose n + 1 points among the m points and write x as as a convex
combination of these selected points.

Proof. Let = be a convex combination of m > n + 2 points z!,...,z™, that is,
m ) m
T = Zai:z:’, with «; > 0, ZO‘" =1.
i=1 i=1
Define y* as ¢’ := 2'—a™,i=1,...,m—1. Since m—1 > n+1, we can note that y*,...,y™ !
are not linearly independent. Then, there exists f1,..., Bn—1 with at least one positive 3;
such that
m—1 m—1 m—1
0= S by =3 (z @) o
i=1 i=1 =1
Defining 3, := — Z;’;l i, we have
m m m—1 m—1
S0 ma o= Sant (Sa) e -0
i=1 i=1 i=1 i=1
Then, for all 7,
m m m
T = Z T — TZﬁix’ = Z(ai —76;)x" (11)
i=1 i=1 i=1
and
m m m
L=> ai=r Bi=) (ai=75)
i=1 i=1 i=1
hold. If
_ . Q;
T = mln{ Bi >0},
Bi

then there exists an index j satifying §; > 0 and o; — 73; = 0. Moreover, when i # j, we
have

oy — 77_5]‘ > 0.
Therefore, from (11), x is a convex combination of z!,... 2/~ 9+ . 2™  The result
follows by repeating this process m = n + 1 times. O



Let S € R™ and define

Sk .= {xERn

k k
iL':ZOéiiL‘i,l‘i €S, q; ZO,Z% = 1}.

i=1 i=1

as the set of all convex combinations of k elements in S. Clearly, S* ¢ S2 c --- c SF....
Moreover, intuitively, we have that the convex hull of S is equivalent to the union of S*, that
is, coS = Urey S*. The following theorem shows that we do not actually need to take k to
infinity.

Theorem 1. (Carathéodory’s Theorem) If S C R", then
coS = St

Proof. Let us first prove that S"t! C coS by induction. Since S' = S, S' C coS. Now,
assume that S¥ C co S for all k > 1. Let € S¥*1. Then, there exist 2' € S and «; such

that
k k+1

T = g o +ak+1xk+1,ai >0, g a; = 1.
i=1 i=1

If a1 =1, we have x € S and thus x € co S. If apy1 < 1, we can write
k

o .
x=(1—ags1) (Z Zaﬂ) + ozt

l—«o
— k41

Since a;/(1 — ag41) > 0 and
k

Z (o7} _1_06]6+1:1’

—l-apr  1—opp

we obtain i
o »
21711‘1 €SFCcos.
-1 - Opt1
Because zFt! € co S and coS is convex, we conclude that z € coS. Therefore, St C co S

holds. Now, assume that S C S”*! and let us first prove that S"*! is convex. Observe that
S C SnHLIf x,y € S™TL, then there exist ¢, 3" € S, and scalars o, 8; such that

n+1 n+1

T = g aizvz,aiZ(),g o; =1,
i=1 i=1
ntl k+1

y=> B Bi>0> B=1
i=1 i=1



Letting v € [0, 1], we also obtain

n+1 A n+1 ‘
v+ L=y =Y yoar' + Y (1 —7)8iy".
=1 =1

Moreover, we know that ya; > 0, (1 —~)8; > 0 and

n+1 n+1

Doty (1= =1.
=1 =1

Thus, from Lemma 3, vz + (1 —~)y can be written as a convex combination of n+ 1 elements
of {z*} and {y'}. This means that vz + (1 — )y € S"*!, and so S"*! is a convex set. Since
co S is the smallest convex set containing S, we conclude that co .S = S"t1, O

The Carathéodory’s theorem is used to prove the following properties concerning cones. This
result will be used for proving KKT of nonlinear programming problems.

Proposition 1. Let C and D be cones in R™. Then, the following statements hold.
(a) CC D= C°2D°
(b) C° = (coC)°.

Proof. (a) If y € D°, from the definition of polar cone, (y,z) < 0 for all z € D. From
assumption, C' C D holds, and so (y,z) < 0 holds for all z € C'. This means that y € C°, as
it was claimed.

(b) Since C' C coC, from (a), we have C° O (coC)°. Thus, we just need to show that
C° C (coC)°. Let y € C° and x € coC be taken arbitrarily. From Theorem 1, there exist
a;>0and 2* € C,i=1,...,n+ 1 such that

n+1

T = E o; b
=1

Therefore, we have
n+1

(y, ) =) aily,2’) <0
i=1

This means that y € (co(C)°, and the conclusion follows. O
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