## Class 2: Farkas' lemma and Carathéodory's theorem

In this class, we consider two well-known from convex analysis: the Farkas' lemma and the Carathéodory's theorem. Let us first define the following set:

$$
\begin{equation*}
K_{m}:=\left\{x \in \mathbb{R}^{n} \mid x=\sum_{i=1}^{m} \lambda_{i} a^{i}, \lambda_{i} \geq 0, i=1, \ldots, m\right\} \tag{1}
\end{equation*}
$$

for a given set of vectors $\left\{a^{1}, \ldots, a^{m}\right\} \subset \mathbb{R}^{n}$. It is easy to see that $K_{m}$ is a convex cone. The result below shows that for any $x \in \mathbb{R}^{n}$, there always exists $y \in K_{m}$ such that it is the nearest point in $K_{m}$ to the point $x$. This actually shows that $K_{m}$ is also a closed set.

Lemma 1. For all $x \in \mathbb{R}^{n}$, there exists $y \in K_{m}$ such that

$$
\begin{equation*}
\|x-y\| \leq\|x-z\| \quad \text { for all } z \in K_{m} . \tag{2}
\end{equation*}
$$

Proof. If $x \in K_{m}$, then $y=x$ is already the nearest point in $K_{m}$ to $x$. Thus, assume that $x \notin K_{m}$ and let us prove the result by induction on $m$. The claim holds trivially when $m=1$. Then, assume that the result is true when $m=\ell-1$ for some $\ell$. Defining

$$
K_{m}^{i}:=\left\{x \in \mathbb{R}^{n} \mid x=\lambda_{1} a_{1}+\cdots+\lambda_{i-1} a^{i-1}+\lambda_{i+1} a^{i+1}+\cdots+\lambda_{m} a_{m}\right\}
$$

we can say, from assumption, that there exists $y^{i}$ such that

$$
\begin{equation*}
\left\|x-y^{i}\right\| \leq\|x-z\| \quad \text { for all } z \in K_{m}^{i} \tag{3}
\end{equation*}
$$

Note that $y^{i} \in K_{m}$ also holds because $K_{m}^{i} \subset K_{m}$ for all $i$. Now, define the following subspace of $\mathbb{R}^{n}$ :

$$
L_{m}:=\left\{x \in \mathbb{R}^{n} \mid x=\sum_{i=1}^{m} \lambda_{i} a^{i}, \lambda_{i} \in \mathbb{R}, i=1, \ldots, m\right\},
$$

and consider the following two cases: (a) $x \in L_{m}$ and (b) $x \notin L_{m}$.
(a) Assume that $x \in L_{m}$ and let $z \in K_{m}$. We consider $y$ as the nearest point to $x$ among the vectors $y^{1}, \ldots, y^{m}$, that is,

$$
\begin{equation*}
\|x-y\| \leq\left\|x-y^{i}\right\| \quad \text { for all } i=1, \ldots, m \text {. } \tag{4}
\end{equation*}
$$

We will show that the inequality in (2) holds in this case. Since $x \in L_{m}$ and $z \in K_{m}$, there exist $\alpha_{i} \in \mathbb{R}$ and $\beta_{i} \geq 0$ with $i=1, \ldots, m$, such that

$$
x=\sum_{i=1}^{m} \alpha_{i} a^{i} \quad \text { and } \quad z=\sum_{i=1}^{m} \beta_{i} a^{i} .
$$

Now, define the index set $I(x):=\left\{i \mid \alpha_{i}<0\right\}$ and the scalar

$$
t:=\min _{j \in I(x)}\left\{\frac{\beta_{j}}{\beta_{j}-\alpha_{j}}\right\}
$$

Clearly, $t$ is well-defined because $x \notin K_{m}$ guarantees that $I(x)$ is nonempty. If $j \in I(x)$, then we have $\beta_{j} \geq 0$ and $\beta_{j}-\alpha_{j}>\beta_{j}$, and thus $t \in[0,1)$. Assume that $t=\beta_{i} /\left(\beta_{i}-\alpha_{i}\right)$ for some $i \in I(x)$. In this case, we have

$$
t \alpha_{i}+(1-t) \beta_{i}=0 \quad \text { and } \quad t \alpha_{j}+(1-t) \beta_{j} \geq 0 \quad \text { for all } j \in I(x)
$$

If $j \notin I(x)$, then $\alpha_{j} \geq 0$, and we also obtain $t \alpha_{j}+(1-t) \beta_{j} \geq 0$. Therefore, we get

$$
t x+(1-t) z=t\left(\sum_{i=1}^{m} \alpha_{i} a^{i}\right)+(1-t)\left(\sum_{i=1}^{m} \beta_{i} a^{i}\right)=\sum_{i=1}^{m}\left(t \alpha_{i}+(1-t) \beta_{i}\right) a^{i} \in K_{m}^{i}
$$

From (3) and (4), we have

$$
\|x-y\| \leq\left\|x-y^{i}\right\| \leq\|x-(t x+(1-t) z)\|=(1-t)\|x-z\| \leq\|x-z\|
$$

and the proof is complete for this case.
(b) Assume that $x \notin L_{m}$. If $e^{1}, \ldots, e^{p}$ are the orthonormal basis of $L_{m}$, then we can define

$$
x^{\prime}:=\left\langle x, e^{1}\right\rangle e^{1}+\cdots+\left\langle x, e^{p}\right\rangle e^{p}
$$

Clearly, $x^{\prime} \in L_{m}$ holds. From case (b), there exists $y \in K_{m}$ such that

$$
\begin{equation*}
\left\|x^{\prime}-y\right\| \leq\left\|x^{\prime}-z\right\| \quad \text { for all } z \in K_{m} \tag{5}
\end{equation*}
$$

For all $s=1, \ldots, p$, we have

$$
\left\langle x-x^{\prime}, e^{s}\right\rangle=\left\langle x, e^{s}\right\rangle-\left\langle x^{\prime}, e^{s}\right\rangle=\left\langle x, e^{s}\right\rangle-\left\langle x, e^{s}\right\rangle=0
$$

where the second equality holds because $\left\langle e^{i}, e^{j}\right\rangle=0$ when $i \neq j$ and $\left\langle e_{i}, e_{i}\right\rangle=1$ for all $i$. So, we obtain

$$
\begin{equation*}
\left\langle x-x^{\prime}, z\right\rangle=0 \quad \text { for all } z \in L_{m} \tag{6}
\end{equation*}
$$

Moreover, we have

$$
\begin{align*}
\left\|x-x^{\prime}\right\|^{2}+\left\|x^{\prime}-z\right\|^{2} & =\|x\|^{2}-2\left\langle x^{\prime}, x\right\rangle+2\left\|x^{\prime}\right\|^{2}-2\left\langle x^{\prime}, z\right\rangle+\|z\|^{2} \\
& =\|x\|^{2}-2\left\langle x^{\prime}, x-x^{\prime}\right\rangle-2\langle x, z\rangle+\|z\|^{2} \\
& =\|x-z\|^{2} \tag{7}
\end{align*}
$$

where the second equality holds from (6), and the third one holds also from (6) and because $x^{\prime} \in L_{m}$. Therefore, for all $z \in K_{m} \subseteq L_{m}$, we get

$$
\|x-y\|^{2} \leq\left\|x-x^{\prime}\right\|^{2}+\left\|x^{\prime}-y\right\|^{2}<\left\|x-x^{\prime}\right\|^{2}+\left\|x^{\prime}-z\right\|^{2}=\|x-z\|^{2}
$$

where the first inequality holds from the triangle inequality, the second one from (5) and the third one from (7). This means that $y$ is the closest point of $K_{m}$ from $x$.

Let us now consider the same set of vectors $\left\{a^{1}, \ldots, a^{m}\right\} \subset \mathbb{R}^{n}$ used in the definition of $K_{m}$, and define the following set:

$$
\begin{equation*}
C_{m}=\left\{y \in \mathbb{R}^{n} \mid\left\langle y, a^{i}\right\rangle \leq 0, i=1, \ldots, m\right\} . \tag{8}
\end{equation*}
$$

Recall also that the polar cone of $C_{m}$ is given by

$$
C_{m}^{\circ}=\left\{x \in \mathbb{R}^{n} \mid\langle x, y\rangle \leq 0 \text { for all } y \in C_{m}\right\} .
$$

Lemma 2. (Farkas' Lemma) Let $\left\{a^{1}, \ldots, a^{m}\right\} \subset \mathbb{R}^{n}$ be a set of vectors. If $K_{m}$ and $C_{m}$ are defined as (1) and (8), respectively, then

$$
K_{m}=C_{m}^{\circ} .
$$

Proof. Let $x \in C_{m}^{\circ}$ and $y \in K_{m}$ be the nearest point of $K_{m}$ to $x$, which exists from Lemma 1. We will first prove that

$$
\begin{equation*}
\left\langle a^{j}, x-y\right\rangle \leq 0, \quad j=1, \ldots, m \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle-y, x-y\rangle \leq 0 \tag{10}
\end{equation*}
$$

hold. Assume otherwise that (9) does not hold for some $j$. For sufficiently small $t \in(0,1)$ we obtain

$$
\left\|x-\left(y+t a^{j}\right)\right\|^{2}=\left\|(x-y)-t a^{j}\right\|^{2}=\|x-y\|^{2}-2 t\left\langle a^{j}, x-y\right\rangle+t^{2}\left\|a^{j}\right\|^{2}<\|x-y\|^{2} .
$$

Observing that $y+t a^{j} \in K_{m}$ because $K_{m}$ is a convex cone, the above inequalty then contradicts the fact that $y$ is the nearest point of $K_{m}$ to $x$. Similarly, if we assume that (10) does not hold, then for sufficiently small $t \in(0,1)$, we get

$$
\|x-(y-t y)\|^{2}=\|(x-y)+t y\|^{2}=\|x-y\|^{2}-2 t\langle-y, x-y)+t^{2}\|y\|^{2}<\|x-y\|^{2} .
$$

For such $t$, we also have $y-t y=(1-t) y \in K_{m}$, which is a contradiction.
Now, from (9), we have $x-y \in C_{m}$. Moreover, the definition of polar cone yields

$$
\langle x, x-y\rangle \leq 0 .
$$

This inequality, together with (10), gives

$$
0 \geq\langle x, x-y\rangle+\langle-y, x-y\rangle=\|x-y\|^{2} .
$$

Since the norm is always nonnegative, it means that $x=y$. Therefore, $x \in K_{m}$.
Now, let us assume that $x \in K_{m}$. Then, there exists $\lambda_{i} \geq 0$ with $i=1, \ldots, m$, such that

$$
\langle x, y\rangle=\sum_{i=1}^{k} \lambda_{i}\left\langle a^{i}, y\right\rangle \leq 0
$$

for all $y \in C_{m}$. Therefore, we conclude that $x \in C_{m}^{\circ}$.

Definition 1. A point $x \in \mathbb{R}^{n}$ is a convex combination of $\left\{x^{1}, \ldots, x^{m}\right\} \subset \mathbb{R}^{n}$ if it can be written as

$$
x=\sum_{i=1}^{m} \alpha_{i} x^{i} \quad \text { for some } \alpha_{i} \text { with } \alpha_{i} \geq 0, i=1, \ldots, m, \text { and } \sum_{i=1}^{m} \alpha_{i}=1
$$

Definition 2. The convex hull of a set $S$, denoted by co $S$, is the smallest convex set that contains $S$.

As the name suggests, the convex hull co $S$ is always convex.
Lemma 3. Let $x \in \mathbb{R}^{n}$ be defined as a convex combination of $m \geq n+2$ points in $\mathbb{R}^{n}$. Then, it is possible to choose $n+1$ points among the $m$ points and write $x$ as as a convex combination of these selected points.

Proof. Let $x$ be a convex combination of $m \geq n+2$ points $x^{1}, \ldots, x^{m}$, that is,

$$
x=\sum_{i=1}^{m} \alpha_{i} x^{i}, \quad \text { with } \quad \alpha_{i}>0, \quad \sum_{i=1}^{m} \alpha_{i}=1 .
$$

Define $y^{i}$ as $y^{i}:=x^{i}-x^{m}, i=1, \ldots, m-1$. Since $m-1 \geq n+1$, we can note that $y^{1}, \ldots, y^{m-1}$ are not linearly independent. Then, there exists $\beta_{1}, \ldots, \beta_{m-1}$ with at least one positive $\beta_{i}$ such that

$$
0=\sum_{i=1}^{m-1} \beta_{i} y^{i}=\sum_{i=1}^{m-1} \beta_{i} x^{i}-\left(\sum_{i=1}^{m-1} \beta_{i}\right) x^{m}
$$

Defining $\beta_{m}:=-\sum_{i=1}^{m-1} \beta_{i}$, we have

$$
\sum_{i=1}^{m} \beta_{i}=0 \quad \text { and } \quad \sum_{i=1}^{m} \beta_{i} x^{i}=\sum_{i=1}^{m-1} \beta_{i} x^{i}-\left(\sum_{i=1}^{m-1} \beta_{i}\right) x^{m}=0
$$

Then, for all $\tau$,

$$
\begin{equation*}
x=\sum_{i=1}^{m} \alpha_{i} x_{i}-\tau \sum_{i=1}^{m} \beta_{i} x^{i}=\sum_{i=1}^{m}\left(\alpha_{i}-\tau \beta_{i}\right) x^{i} \tag{11}
\end{equation*}
$$

and

$$
1=\sum_{i=1}^{m} \alpha_{i}-\tau \sum_{i=1}^{m} \beta_{i}=\sum_{i=1}^{m}\left(\alpha_{i}-\tau \beta_{i}\right)
$$

hold. If

$$
\bar{\tau}:=\min \left\{\left.\frac{\alpha_{i}}{\beta_{i}} \right\rvert\, \beta_{i}>0\right\},
$$

then there exists an index $j$ satifying $\beta_{j}>0$ and $\alpha_{j}-\bar{\tau} \beta_{j}=0$. Moreover, when $i \neq j$, we have

$$
\alpha_{i}-\bar{\tau} \beta_{j} \geq 0
$$

Therefore, from (11), $x$ is a convex combination of $x^{1}, \ldots, x^{j-1}, x^{j+1}, \ldots, x^{m}$. The result follows by repeating this process $m=n+1$ times.

Let $S \subset \mathbb{R}^{n}$ and define

$$
S^{k}:=\left\{x \in \mathbb{R}^{n} \mid x=\sum_{i=1}^{k} \alpha_{i} x^{i}, x^{i} \in S, \alpha_{i} \geq 0, \sum_{i=1}^{k} \alpha_{i}=1\right\} .
$$

as the set of all convex combinations of $k$ elements in $S$. Clearly, $S^{1} \subset S^{2} \subset \cdots \subset S^{k} \cdots$. Moreover, intuitively, we have that the convex hull of $S$ is equivalent to the union of $S^{k}$, that is, $\operatorname{co} S=\bigcup_{k=1}^{\infty} S^{k}$. The following theorem shows that we do not actually need to take $k$ to infinity.

Theorem 1. (Carathéodory's Theorem) If $S \subset \mathbb{R}^{n}$, then

$$
\operatorname{co} S=S^{n+1}
$$

Proof. Let us first prove that $S^{n+1} \subseteq \operatorname{co} S$ by induction. Since $S^{1}=S, S^{1} \subseteq \operatorname{co} S$. Now, assume that $S^{k} \subseteq \operatorname{co} S$ for all $k \geq 1$. Let $x \in S^{k+1}$. Then, there exist $x^{i} \in S$ and $\alpha_{i}$ such that

$$
x=\sum_{i=1}^{k} \alpha_{i} x^{i}+\alpha_{k+1} x^{k+1}, \alpha_{i} \geq 0, \sum_{i=1}^{k+1} \alpha_{i}=1 .
$$

If $\alpha_{k+1}=1$, we have $x \in S$ and thus $x \in \operatorname{co} S$. If $\alpha_{k+1}<1$, we can write

$$
x=\left(1-\alpha_{k+1}\right)\left(\sum_{i=1}^{k} \frac{\alpha_{i}}{1-\alpha_{k+1}} x^{i}\right)+\alpha_{k+1} x^{k+1} .
$$

Since $\alpha_{i} /\left(1-\alpha_{k+1}\right) \geq 0$ and

$$
\sum_{i=1}^{k} \frac{\alpha_{i}}{1-\alpha_{k+1}}=\frac{1-\alpha_{k+1}}{1-\alpha_{k+1}}=1
$$

we obtain

$$
\sum_{i=1}^{k} \frac{\alpha_{i}}{1-\alpha_{k+1}} x^{i} \in S^{k} \subseteq \operatorname{co} S
$$

Because $x^{k+1} \in \operatorname{co} S$ and $\operatorname{co} S$ is convex, we conclude that $x \in \operatorname{co} S$. Therefore, $S^{n+1} \subseteq \operatorname{co} S$ holds. Now, assume that $S \subseteq S^{n+1}$ and let us first prove that $S^{n+1}$ is convex. Observe that $S \subseteq S^{n+1}$. If $x, y \in S^{n+1}$, then there exist $x^{i}, y^{i} \in S$, and scalars $\alpha_{i}, \beta_{i}$ such that

$$
\begin{aligned}
x & =\sum_{i=1}^{n+1} \alpha_{i} x^{i}, \alpha_{i} \geq 0, \sum_{i=1}^{n+1} \alpha_{i}=1 \\
y & =\sum_{i=1}^{n+1} \beta_{i} y^{i}, \beta_{i} \geq 0, \sum_{i=1}^{k+1} \beta_{i}=1 .
\end{aligned}
$$

Letting $\gamma \in[0,1]$, we also obtain

$$
\gamma x+(1-\gamma) y=\sum_{i=1}^{n+1} \gamma \alpha_{i} x^{i}+\sum_{i=1}^{n+1}(1-\gamma) \beta_{i} y^{i}
$$

Moreover, we know that $\gamma \alpha_{i} \geq 0,(1-\gamma) \beta_{i} \geq 0$ and

$$
\sum_{i=1}^{n+1} \gamma \alpha_{i}+\sum_{i=1}^{n+1}(1-\gamma) \beta_{i}=1
$$

Thus, from Lemma 3, $\gamma x+(1-\gamma) y$ can be written as a convex combination of $n+1$ elements of $\left\{x^{i}\right\}$ and $\left\{y^{i}\right\}$. This means that $\gamma x+(1-\gamma) y \in S^{n+1}$, and so $S^{n+1}$ is a convex set. Since co $S$ is the smallest convex set containing $S$, we conclude that $\operatorname{co} S=S^{n+1}$.

The Carathéodory's theorem is used to prove the following properties concerning cones. This result will be used for proving KKT of nonlinear programming problems.

Proposition 1. Let $C$ and $D$ be cones in $\mathbb{R}^{n}$. Then, the following statements hold.
(a) $C \subseteq D \Rightarrow C^{\circ} \supseteq D^{\circ}$;
(b) $C^{\circ}=(\operatorname{co} C)^{\circ}$.

Proof. (a) If $y \in D^{\circ}$, from the definition of polar cone, $\langle y, x\rangle \leq 0$ for all $x \in D$. From assumption, $C \subseteq D$ holds, and so $\langle y, x\rangle \leq 0$ holds for all $x \in C$. This means that $y \in C^{\circ}$, as it was claimed.
(b) Since $C \subseteq$ co $C$, from (a), we have $C^{\circ} \supseteq(\operatorname{co} C)^{\circ}$. Thus, we just need to show that $C^{\circ} \subseteq(\operatorname{co} C)^{\circ}$. Let $y \in C^{\circ}$ and $x \in \operatorname{co} C$ be taken arbitrarily. From Theorem 1, there exist $\alpha_{i} \geq 0$ and $x^{i} \in C, i=1, \ldots, n+1$ such that

$$
x=\sum_{i=1}^{n+1} \alpha_{i} x^{i} .
$$

Therefore, we have

$$
\langle y, x\rangle=\sum_{i=1}^{n+1} \alpha_{i}\left\langle y, x^{i}\right\rangle \leq 0
$$

This means that $y \in(\operatorname{co} C)^{\circ}$, and the conclusion follows.

