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Class 3: KKT conditions and constraint qualifications

With the tools given in the last two classes, we can now prove the Karush-Kuhn-Tucker
(KKT) conditions for the following NLP problem:

min f(x)
s.t. x ∈ X, (NLP)

where
X :=

{
x ∈ Rn | g(x) ≤ 0

}
(1)

is the feasible set. Here, for simplicity, we deal only with inequality constraints. The following
analysis is similar when we add equalities. Recall that we assume that the functions f : Rn →
R and g : Rn → Rm are continuously differentiable. Moreover, we write g := (g1, . . . , gm) with
gi : Rn → R, i = 1, . . . ,m.

Definition 1. Let A(x) := {i ∈ {1, . . . ,m} | gi(x) = 0} be the set of active indices at
x ∈ Rn. The linearized cone of X at x is defined by

LX(x) :=
{
d ∈ Rn | 〈∇gi(x), d〉 ≤ 0, i ∈ A(x)

}
.

The above definition says that the linearized cone LX(x) is the set of vectors that make obtuse
angle with all the gradients ∇gi(x) associated to the active constraints. It can be seen that
LX(x) is a convex cone. Furthermore, although LX(x) is not equivalent to the tangent set
TX(x), the inclusion TX(x) ⊆ LX(x) does hold. The so-called constraint qualifications (CQ)
are conditions under which the linearized cone LX(x) is similar to the tangent cone TX(x).
In the next theorem, we will prove the KKT conditions for (NLP) by assuming that one of
these CQs holds.

Theorem 1. Let x∗ ∈ Rn be a local minimizer of problem (NLP) and assume that LX(x∗) ⊆
coTX(x∗) holds. Then, there exist λ ∈ Rm such that

∇f(x∗) +

m∑
i=1

λi∇gi(x∗) = 0,

λi ≥ 0, gi(x
∗) ≤ 0, λigi(x

∗) = 0, i = 1, . . . ,m.

In other words, (x∗, λ) satisfies the Karush-Kuhn-Tucker (KKT) conditions.

Proof. Since x∗ is a local minimizer, we have

−∇f(x∗) ∈ NX(x∗)

from [Class 1, Theorem 1]. Moreover, we obtain

LX(x∗)◦ ⊇ (coTX(x∗))◦ = TX(x∗)◦ = NX(x∗),
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where the first inclusion holds from this theorem’s assumption and [Class 2, Proposition 1(a)],
the second equality is satisfied from [Class 2, Proposition 1(b)], and the third one is just the
definition of normal cone, given in [Class 1, Definition 5]. Then, we can write

−∇f(x∗) ∈ LX(x∗)◦. (2)

Now, using Farkas’ lemma [Class 2, Lemma 2], we obtain

LX(x∗)◦ =

d ∈ Rn

∣∣∣∣∣ d =
∑

i∈A(x∗)

λi∇gi(x∗), λi ≥ 0

 .

From (2), it means that there exists λi ≥ 0 for i ∈ A(x∗) such that

−∇f(x∗) =
∑

i∈A(x∗)

λi∇gi(x∗).

By defining λi = 0 for i ∈ {1, . . . ,m} \A(x∗), we have

∇f(x∗) +
m∑
i=1

λi∇gi(x∗) = 0.

Moreover, since x∗ is a local minimizer, it is also feasible, that is, gi(x
∗) ≤ 0 for all i.

Furthermore, from the definition of λ, the conditions λi ≥ 0 and λigi(x
∗) = 0, i = 1, . . . ,m

clearly hold. Therefore, the KKT conditions are satisfied.

In the next result, we show that the condition LX(x) ⊆ coTX(x) is automatically satisfied
when the constraints are all linear.

Proposition 1. Assume that the feasible set (1) is defined with gi(x) := 〈ai, x〉 + bi, with
ai ∈ Rn and bi ∈ R for all i = 1, . . . ,m. Then, the condition LX(x) ⊆ coTX(x) holds for all
x ∈ X.

Proof. Let d ∈ LX(x). Since ∇gi(x) = ai, from the definition of LX(x∗), we have 〈ai, d〉 ≤ 0
for all i ∈ A(x). Define xk := x + tkd, with tk > 0 and tk → 0. Clearly, we obtain xk → x.
Also, since

gi(x
k) = 〈ai, xk〉+ bi = 〈ai, x〉+ bi + tk〈ai, d〉 = gi(x) + tk〈ai, d〉

holds and x ∈ X, for sufficiently large k, we have gi(x
k) ≤ 0. This means that xk ∈ X

when k is large enough. Moreover, defining αk := 1/tk, then αk ≥ 0 and the following holds:

lim
k→∞

αk(xk − x) = d.

Therefore, d ∈ LX(x) ⊆ coTX(x), and the conclusion follows.

Definition 2. Given x ∈ X, the following are CQs for problem (NLP):
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(a) Guignard CQ: LX(x) ⊆ coTX(x).

(b) Abadie CQ: LX(x) ⊆ TX(x).

The condition used in the previous proof of the KKT conditions is the Guignard CQ, which
is in a sense the weakest CQ that ensures that KKT conditions are necessary optimality
conditions. However, in general, for nonlinear constraints, it is difficult to verify the Guignard
CQ or even the Abadie CQ. Because of this, other CQs were proposed in the literature, and
here we list some of them that are well-known.

Definition 3. Given x ∈ X, the following are CQs for problem (NLP):

(a) Linear independence CQ (LICQ): ∇gi(x) with i ∈ A(x) are linearly independent.

(b) Slater CQ: gi is convex and there exists x̂ ∈ Rn such that gi(x̂) < 0 for all i = 1, . . . ,m.

(c) Mangasarian-Fromovitz CQ (MFCQ): There exists d ∈ Rn such that

〈∇gi(x), d〉 < 0, i ∈ A(x).

When the problem has only inequality constraints, the MFCQ is also called Cottle CQ. Let
us now show the relation between these CQs.

Theorem 2. The linear independence CQ implies Mangasarian-Fromovitz CQ.

Proof. Assume that LICQ holds at x ∈ Rn. Let G be a matrix with columns ∇gi(x) with
i ∈ A(x). Then, from LICQ, the rank of G is |A(x)|. Thus, the matrix G>G ∈ R|A(x)|×|A(x)|

is nonsingular, and so there exists a vector z such that

GTGz =

 −1
...
−1

 .

By defining d := Gz, we obtain

〈∇gi(x), d〉 = −1 < 0, i ∈ A(x),

and we conclude that MFCQ is satisfied at x.

Theorem 3. Slater CQ implies Mangasarian-Fromovitz CQ.

Proof. Given x ∈ Rn, since gi is convex,

gi(x̂) ≥ gi(x) + 〈∇gi(x), x̂− x〉

holds for all i. Letting i ∈ A(x), we have gi(x) = 0. Thus, if d = x̂ − x, we obtain gi(x̂) ≥
〈∇gi(x), d〉. Now, from Slater CQ, we conclude that 〈∇gi(x), d〉 ≤ 0, as we claimed.

It is clear that LICQ or MFCQ does not necessarily imply Slater CQ because of its con-
vexity assumption. It is also known that MFCQ implies Abadie CQ, which in turn implies
Guignard CQ.
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