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Class 4: Dual problems and weak duality theorem

In duality theory, we associate an optimization problem with the so-called dual problem that,
under some conditions, can be equivalent in some sense to the original problem. This equiv-
alence can be established in linear programming problems, but even for general optimization
problems, the duality theory is known to be useful. As usual, we consider the following
nonlinear programming problem:

min f(x)
s.t. x ∈ X, (NLP)

where
X :=

{
x ∈ Rn | g(x) ≤ 0, h(x) = 0

}
. (1)

Once again, we assume that f : Rn → R and g : Rn → Rm are continuously differentiable,
and we write g := (g1, . . . , gm) with gi : Rn → R, i = 1, . . . ,m. In this context, we call (NLP)
the primal problem.
Consider the following Lagrangian function L : Rn × Rm × Rp → R associated to (NLP):

L(x, λ, µ) := f(x) + 〈g(x), λ〉+ 〈h(x), µ〉

= f(x) +
m∑
i=1

gi(x)λi +

p∑
j=1

hj(x)µj ,

where λ ∈ Rm and µ ∈ Rp are called Lagrange multipliers associated to the inequality and
the equality constraints, respectively. We first show the following result, that will be used to
reformulate the primal problem.

Proposition 1. For problem (NLP), the following equality holds:

sup
(λ,µ)∈Rm

+×Rp

L(x, λ, µ) =

{
f(x), if x ∈ X,
∞, otherwise.

(2)

Proof. We prove separately for the cases that (i) x is feasible and (ii) x is not feasible.

(i) Assume that x ∈ X. For all (λ, µ) ∈ Rm+ × Rp, since 〈g(x), λ〉 ≤ 0 and 〈h(x), µ〉 = 0,
we obtain

L(x, λ, µ) ≤ f(x).

Moreover, we have L(x, 0, µ) = f(x) for all µ ∈ Rp. Therefore, in this case, (2) holds.

(ii) Assume that x /∈ X. We also have two cases to consider: (a) there exists j ∈ {1, . . . , p}
such that hj(x) 6= 0, or (b) there exists i ∈ {1, . . . ,m} such that gi(x) > 0.
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(a) Assume that hj(x) 6= 0 for some j ∈ {1, . . . , p}. Then, we can define

µi =

{
thi(x), if i = j,
0, if i ∈ {1, . . . , p} \ {j},

with t > 0, and λi = 0 for all i ∈ {1, . . . ,m}. In this case, we obtain

t→∞ ⇒ L(x, λ, µ) = f(x) + thj(x)2 →∞.

(b) Assume that gi(x) > 0 for some i ∈ {1, . . . ,m}. Then, we can define

λj =

{
t, if j = i,
0, if j ∈ {1, . . . ,m} \ {i},

with t > 0, and µj = 0 for all j ∈ {1, . . . , p}. In this case, we have

t→∞ ⇒ L(x, λ, µ) = f(x) + tgi(x)→∞.

From (a) and (b), we conclude that (2) also holds in this case.

The previous proposition shows that the original problem (NLP) can be written as

min sup
(λ,µ)∈Rm

+×Rp

L(x, λ, µ)

s.t. x ∈ X,

where

X =

{
x ∈ Rn

∣∣∣∣ sup
(λ,µ)∈Rm

+×Rp

L(x, λ, µ) <∞

}
.

By changing the order of the “min” and the “max” (“sup”) in the above problem, we have:

max ω(λ, µ)
s.t. (λ, µ) ∈ D, (3)

where
D :=

{
(λ, µ) ∈ Rm+ × Rp | ω(λ, µ) > −∞

}
.

and ω : D → R is defined by
ω(λ, µ) := inf

x∈Rn
L(x, λ, µ).

The maximization problem (3) is called the dual problem associated to (NLP).

Example 1. (Linear programming) Let us show the dual of the following problem:

min 〈c, x〉
s.t. Ax ≥ b,

where c ∈ Rn, A ∈ Rm×n and b ∈ Rm are given.
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Proof. The above problem is a particular case of (NLP), with f(x) = 〈c, x〉, g(x) = b − Ax
and h(x) = 0. By ignoring the parts associated to the equality constraints, we have:

ω(λ) = inf
x∈Rn

L(x, λ)

= inf
x∈Rn
〈c, x〉+ 〈b−Ax, λ〉

= inf
x∈Rn
〈c−A>λ, x〉+ 〈b, λ〉.

We now show that ω(λ) > −∞ if and only if c−A>λ = 0. If c−A>λ = 0, we clearly obtain
ω(λ) > −∞. Assume that ω(λ) > −∞ and c − A>λ 6= 0. If we define x = −t(c − A>λ),
then by taking t→∞, we have ω(λ) = −∞, which is a contradiction. Thus, the equivalence
holds and the dual feasible set is written as

D = {λ ∈ Rm+ | ω(λ) > −∞}
= {λ ∈ Rm+ | A>λ = c}.

Since ω(λ) = 〈b, λ〉 for all λ ∈ D, we can write the dual problem as

max 〈b, λ〉
s.t. A>λ = c,

λ ≥ 0.

We now show that the dual problem has desirable properties, that does not depend on the
problem’s structure. In particular, (3) is a maximization of a concave objective function
under a convex set. Therefore, all local optimal solutions of (3) are also global.

Proposition 2. For any optimization problem of the type (NLP) and its dual problem (3),
the objective function ω is concave and the feasible dual set D is convex.

Proof. First, let us note that the Lagrangian function L is linear with respect to the pair
(λ, µ), that is,

L(x, αλ1 + (1− α)λ2, αµ1 + (1− α)µ2)

= αL(x, λ1, µ1) + (1− α)L(x, λ2, µ2)

for all λ1, λ2 ∈ Rm, µ1, µ2 ∈ Rp and α ∈ [0, 1]. Therefore, we have

ω(αλ1 + (1− α)λ2, αµ1 + (1− α)µ2)

= inf
x∈Rn

L(x, αλ1 + (1− α)λ2, αµ1 + (1− α)µ2)

= inf
x∈Rn

[
αL(x, λ1, µ1) + (1− α)L(x, λ2, µ2)

]
≥ α inf

x∈Rn
L(x, λ1, µ1) + (1− α) inf

x∈Rn
L(x, λ2, µ2)

= αω(λ1, µ1) + (1− α)ω(λ2, µ2), (4)
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where the inequality holds because α ∈ [0, 1] and by using a property of infimums. We then
conclude that ω is concave. Now, let us define

D̃ := {(λ, µ) ∈ Rm × Rp | ω(λ, µ) > −∞} .

Observe that D = D̃∩(Rm+×Rp). Letting (λ1, µ1), (λ2, µ2) ∈ D̃, we have ω(λ1, µ1) > −∞ and

ω(λ2, µ2) > −∞. Then, taking α ∈ [0, 1], we obtain α(λ1, µ1) + (1−α)(λ2, µ2) ∈ D̃ from (4),
which means that D̃ is convex. Since Rm+ ×Rp is also convex, and D is an intersection of two
convex sets, we conclude that D is also convex.

The previous proposition shows that the dual problem is always a convex optimization prob-
lem (since maximization of a concave function under a convex set can be written as a min-
imization of a convex function under a convex set). However, the dual function ω is, in
general, nondifferentiable, even if the primal problem is differentiable. Although the primal
and dual problems are not equivalent in general, we can show that the dual problem can at
least give an lower bound for the primal problem.

Theorem 1. (Weak duality) For any optimization problem of the type (NLP) and its dual
problem (3), we have

ω(λ, µ) ≤ f(x)

for all feasible primal-dual pairs x ∈ X and (λ, µ) ∈ D. In particular, we obtain

sup
(λ,µ)∈D

ω(λ, µ) ≤ inf
x∈X

f(x). (5)

Proof. Let x ∈ X and (λ, µ) ∈ D. Then,

ω(λ, µ) = inf
z∈Rn

L(z, λ, µ)

≤ L(x, λ, µ)

= f(x) + 〈g(x), λ〉+ 〈h(x), µ〉
≤ f(x),

where the second inequality holds because h(x) = 0, g(x) ≤ 0 and λ ≥ 0. The conclusion
follows by taking the infimum and the supremum, respectively in the right-side and the
left-side of the above inequality.

When the inequality (5) is satisfied with an equality, we say that the strong duality holds.
Otherwise, if the inequality is strict, then we say that there exists a duality gap between the
problems. The strong duality holds only for particular optimization problems (e.g. linear
programming). Still, for the general case, the weak duality theorem shows the following:

• If the primal problem is unbounded (i.e., infx∈X f(x) = −∞), then the dual problem
is infeasible (i.e., D = ∅).

• If the dual problem is unbounded (i.e., sup(λ,µ)∈D ω(λ, µ) =∞), then the primal prob-
lem is infeasible (i.e., X = ∅).
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