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Class 5: Separation theorems and strong duality

In this class, we still consider the following primal problem:

min f(x)
s.t. x ∈ X,

(NLP)

where
X :=

{
x ∈ Rn | g(x) ≤ 0, h(x) = 0

}
, (1)

with f : Rn → R, g : Rn → Rm and h : Rn → Rp. Moreover, its dual problem is given by

max ω(λ, µ)
s.t. (λ, µ) ∈ D,

(2)

where
D :=

{
(λ, µ) ∈ Rm

+ × Rp | ω(λ, µ) > −∞
}
.

and ω : D → R is defined by
ω(λ, µ) := inf

x∈Rn
L(x, λ, µ).

We already know that the weak duality theorem holds for general problems of the type (NLP).
Now, we will prove that the strong duality is satisfied when the problem is convex, under the
Slater CQ. Before that, we need some other tools. Let B(x, r) be the ball centered in x ∈ Rn

with radius r > 0. Recall first that for a set S ⊆ Rn and a point x ∈ Rn, if there exists r > 0
such that B(x, r) ⊆ S, then x is in the interior of S. We denote by intS the set of all points
that is in the interior of S. Moreover, clS denotes the closure of S, that is, the minimum
closed set that contains S. Furthermore, bdS := clS \ intS is called boundary of S.

Theorem 1. Let S ⊂ Rn be a nonempty, convex and closed set. Then, x̄ ∈ Rn is the unique
minimizer of problem

min ∥y − x∥
s.t. y ∈ S

if and only if
⟨x− x̄, y − x̄⟩ ≤ 0 for all y ∈ S.

This point x̄ is called projection of x onto S.

In the following lemma, for a convex set S, we show that a point that is not in the closure
of S can be strictly separated from S.

Lemma 1. (Minkowski’s lemma) Let S ⊂ Rn be a nonempty convex set and x /∈ clS. Then,
there exists a ∈ Rn \ {0} such that

⟨a, x⟩ < ⟨a, y⟩ for all y ∈ S.
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Proof. Since S is nonempty and convex, clS is nonempty, convex and closed. From Theo-
rem 1, there exists a unique x̄ ∈ Rn that is the projection of x onto clS. Once again from
Theorem 1, we have

⟨x̄− x, y − x̄⟩ ≥ 0 for all y ∈ clS.

Define a := x̄ − x, which is not zero because x /∈ clS. From the above inequality, for all
y ∈ S, we obtain

⟨a, y⟩ ≥ ⟨x̄− x, x̄⟩
= ∥x̄∥2 − ⟨x, x̄⟩
= ∥x− x̄∥2 + ⟨x̄− x, x⟩
> ⟨a, x⟩,

where the last inequality holds because a ̸= 0, and the result follows.

The next result is similar to Minkowski’s lemma, but the point to consider is in the boundary
of the set. In this case, we can also “separate” that point from the set, but the separation is
not strict.

Theorem 2. Let S ⊂ Rn be a nonempty convex set and x ∈ bdS. Then there exist a ∈
Rn \ {0} such that

⟨a, x⟩ ≤ ⟨a, y⟩ for all y ∈ S.

Proof. Since x ∈ bdS, there exists a sequence {xk} such that xk → x and xk /∈ clS for all k.
From Lemma 1, for all k, there exists ak ∈ Rn \ {0} such that

⟨ak, x⟩ < ⟨ak, y⟩ for all y ∈ S.

Without loss of generality, assume that {ak/∥ak∥} → a for some a ∈ Rn \ {0}. Dividing the
above inequality by ∥ak∥ and taking the limit k → ∞, gives the desired result.

The next lemma will be used in the proof of the strong duality.

Lemma 2. For problem (NLP), assume that f and g are convex and h is affine, with h(x) :=
Ax− b for some A ∈ Rp×n and b ∈ Rp. Then, the following set is nonempty and convex:

U :=

{
(w, y, z) ∈ Rp × Rm × R

∣∣∣∣ ∃ x ∈ Rn s.t. Ax− b = w, g(x) ≤ y, f(x) ≤ z

}
. (3)

Proof. Since (Ax− b, g(x), f(x)) ∈ U for any x ∈ Rn, we have U ̸= ∅. Now, let (w1, y1, z1) ∈
U , (w2, y2, z2) ∈ U and α ∈ [0, 1]. Then, there exist x1 and x2 such that Ax1 − b = w1,
g(x1) ≤ y1, f(x1) ≤ z1, Ax2−b = w2, g(x2) ≤ y2 and f(x2) ≤ z2. Define x := αx1+(1−α)x2.
Then, we have

Ax− b = A(αx1 + (1− α)x2)− b

= α(Ax1 − b) + (1− α)(Ax2 − b)

= αw1 + (1− α)w2.
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Moreover, since f is convex, we obtain

f(x) ≤ αf(x1) + (1− α)f(x2)

≤ αz1 + (1− α)z2.

Finally, for all i, from the convexity of gi, we get

gi(x) ≤ αgi(x
1) + (1− α)gi(x

2)

≤ αy1 + (1− α)y2.

The above relations show that α(w1, y1, z1)+ (1−α)(w2, y2, z2) ∈ U , which means that U is
convex.

Theorem 3. (Strong duality) For problem (NLP), assume that f and g are convex, and h
is affine. Suppose also that the Slater CQ holds for (NLP), i.e., there exists x̂ ∈ Rn such
that h(x̂) = 0 and gi(x̂) < 0 for all i = 1, . . . ,m. If the optimal value of the primal problem
is finite, i.e., infx∈X f(x) > −∞, then the dual problem (2) has an optimal solution and the
duality gap is zero.

Proof. Since h is affine, we can write h(x) = Ax− b for some A ∈ Rp×n and b ∈ Rp. We can
assume, without loss of generality, that A has linearly independent rows, because otherwise
we can remove the constraints without changing the feasible set, until all the rows become
linearly independent.
We first observe that (0, 0, f̄) ∈ bdU , where f̄ := infx∈X f(x) and U is defined in (3). In
fact, if (0, 0, f̄) ∈ intU , for some ε > 0, we have (0, 0, f̄ − ε) ∈ intU . But this means that
there exits some x ∈ X such that f(x) ≤ f̄ − ε < f̄ , which contradicts the definition of f̄ .
Thus, (0, 0, f̄) ∈ bdU holds. From Lemma 2, the set U is also convex. Thus, we can use
Theorem 2, which says that there exist (λ̄, µ̄, γ) ∈ Rp × Rm × R \ {0} such that

γf̄ ≤ ⟨λ̄, w⟩+ ⟨µ̄, y⟩+ γz for all (w, y, z) ∈ U. (4)

Now, let us first prove that µ̄, γ ≥ 0.

(i) If (w, y, z) ∈ U , then clearly, (w, y, z + t) ∈ U for all t > 0. Thus, from (4), we obtain

γf̄ ≤ ⟨λ̄, w⟩+ ⟨µ̄, y⟩+ γ(z + t) for all t > 0.

If γ < 0, then we can take t sufficiently large, so that the above inequality does not
hold. Therefore, we must have γ ≥ 0.

(ii) Assume that µ̄i < 0 for some i ∈ {1, . . . ,m}. If (w, y, z) ∈ U , then (w, y(t), z) ∈ U for
all t > 0, where

yj(t) :=

{
yj + t, if j = i,
yj , if j ∈ {1, . . . ,m} \ {i}.

From (4), we have

γf̄ ≤ ⟨λ̄, w⟩+ µ̄i(yi + t) +
∑

j∈{1,...,m}\{i}

µ̄jyj + γz for all t > 0.

Once again, when t is sufficiently large, the above inequality does not hold. Thus, we
must have µ̄ ≥ 0.
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Now, assume that γ = 0. Using the fact that ((Ax − b), g(x), f(x)) ∈ U for any x ∈ Rn,
from (4), we obtain

0 ≤ ⟨λ̄, Ax− b⟩+ ⟨µ̄, g(x)⟩
= ⟨λ̄, A(x− x̂)⟩+ ⟨µ̄, g(x)⟩,

where the last equality holds because h(x̂) = Ax̂ − b = 0 (Slater CQ). In particular, when
x = x̂, we have ⟨µ̄, g(x̂)⟩ ≥ 0. Since µ̄ ≥ 0 from the above discussion (ii), and g(x̂) < 0
from Slater CQ, we conclude that µ̄ = 0. Returning to the above inequality, we obtain
⟨A⊤λ̄, x − x̂⟩ = ⟨λ̄, A(x − x̂)⟩ ≥ 0 for all x, which implies A⊤λ̄ = 0. Since the rows of A are
linearly independent, we get λ̄ = 0. Because (λ̄, µ̄, γ) ̸= 0, we have a contradiction. Therefore,
from discussion (i) above, we have γ > 0. Considering now (4) at ((Ax− b), g(x), f(x)) ∈ U
and dividing such an inequality by γ > 0, we obtain

f̄ ≤
⟨
λ̄

γ
, Ax− b

⟩
+

⟨
µ̄

γ
, g(x)

⟩
+ f(x) for all x ∈ Rn.

The above inequality, together with the weak duality theorem [Class 4, Theorem 1], gives

sup
(λ,µ)∈D

ω(λ, µ) ≤ f̄ ≤ inf
x∈Rn

[⟨
λ̄

γ
, Ax− b

⟩
+

⟨
µ̄

γ
, g(x)

⟩
+ f(x)

]
= inf

x∈Rn
L(x, λ̄/γ, µ̄/γ)

= ω(λ̄/γ, µ̄/γ)

≤ sup
(λ,µ)∈D

ω(λ, µ).

We conclude that the above inequalities hold as equalities. Then, (λ̄/γ, µ̄/γ) is a solution of
the dual problem and the duality gap is zero.
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