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Class 7: More results using duality theory

1. The relation with KKT conditions

Let us consider the following primal problem:

min f(x)
s.t. x ∈ X, (P)

where
X :=

{
x ∈ Rn | g(x) ≤ 0, h(x) = 0

}
, (1)

with f : Rn → R, g : Rn → Rm and h : Rn → Rp. Moreover, its dual problem is given by

max ω(λ, µ)
s.t. (λ, µ) ∈ D, (D)

where
D :=

{
(λ, µ) ∈ Rm+ × Rp | ω(λ, µ) > −∞

}
.

and ω : D → R is defined by
ω(λ, µ) := inf

x∈Rn
L(x, λ, µ).

Now, we will show the relation between the dual variables and the Lagrange multipliers that
appear in the KKT conditions of the primal problem.

Theorem 1. For problem (P), assume that f and g are convex and that h is affine. Suppose
also that the Slater CQ holds for (P), i.e., there exists x̂ ∈ Rn such that h(x̂) = 0 and
gi(x̂) < 0 for all i = 1, . . . ,m. Then, x∗ ∈ X is an optimal solution of the primal problem (P)
if, and only if, there exists (λ∗, µ∗) ∈ Rm+ × Rp such that

L(x∗, λ∗, µ∗) = min
x∈Rn

L(x, λ∗, µ∗), (2)

λ∗i gi(x
∗) = 0, i = 1, . . . ,m. (3)

The set of pairs (λ∗, µ∗) satisfying the above conditions coincide with the solutions of the dual
problem (D), and with the Lagrange multipliers of the primal problem (P).

Proof. Let x∗ be feasible, i.e., x∗ ∈ X. Assume that there exists (λ∗, µ∗) ∈ Rm+ × Rp satisfy-
ing (2) and (3). Then, for all x ∈ Rn, we have

f(x∗) = f(x∗) + 〈λ∗, g(x∗)〉+ 〈µ∗, h(x∗)〉
= L(x∗, λ∗, µ∗)

≤ L(x, λ∗, µ∗), (4)
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where the first equality comes from (3) and the fact that h(x∗) = 0, the second one is just
the definition of Lagrange function, and the last inequality follows from (2). For all x ∈ X,
we also obtain

L(x, λ∗, µ∗) = f(x) + 〈λ∗, g(x)〉+ 〈µ∗, h(x)〉 ≤ f(x), (5)

where the inequality holds because h(x) = 0, g(x) ≤ 0 and λ∗ ≥ 0. Therefore, the above
inequality, together with (4) shows that f(x∗) ≤ f(x) for all x ∈ X, i.e., x∗ is an optimal
solution for (P).
Now, assume that x∗ is a solution of (P). In particular, f(x∗) > −∞. From [Class 5,
Theorem 3] (the strong duality theorem), the dual problem (D) has a solution (λ∗, µ∗) ∈ D
and there is no duality gap, i.e.,

f(x∗) = ω(λ∗, µ∗) = inf
x∈Rn

L(x, λ∗, µ∗) ≤ L(x∗, λ∗, µ∗), (6)

where the last inequality holds from the definition of infimum. Similarly to (5), we also have

L(x∗, λ, µ) ≤ f(x∗) for all (λ, µ) ∈ Rm+ × Rp,

In particular, L(x∗, λ, µ) ≤ f(x∗) holds which, together with (6) shows that (2) holds.

Note that when f , g and h are differentiable, the condition (2) is equivalent to

∇xL(x∗, λ∗, µ∗) = ∇f(x∗) +

m∑
i=1

λi∇gi(x∗) +

p∑
j=1

µj∇hj(x∗) = 0

because the problem minx L(x, λ∗, µ∗) is convex under the assumptions of the theorem.
Therefore, the KKT conditions [Class 3, Theorem 1] are clear.

2. Separable problems

Assume that a vector x can be written as

x := (x1, x2, . . . , x`), with xi ∈ Rni , i = 1, . . . , `.

Consider once again problem (P), where

f(x) =
∑̀
i=1

fi(x
i), g(x) =

∑̀
i=1

gi(x
i), h(x) =

∑̀
i=1

hi(x
i),

with fi : Rni → R, gi : Rni → Rm, hi : Rni → Rp. We say that such a problem has a separable
structure, because each fi, gi and hi does not depend on the whole vector x, but only on
xi. Even if the problem is separable, it is easy to see that this problem cannot be solved
minimizing in Rni independently, because of the inequality constraints. However, the dual
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function is given as

ω(λ, µ) = inf
x∈Rn

(
f(x) + 〈λ, g(x)〉+ 〈µ, h(x)〉

)
= inf

x∈Rn

(∑̀
i=1

(
fi(x

i) + 〈λi, gi(x)〉+ 〈µi, hi(x)〉
))

=
∑̀
i=1

(
inf

xi∈Rni

(
fi(x

i) + 〈λi, gi(x)〉+ 〈µi, hi(x)〉
))

.

Defining

ωi(λ, µ) := inf
xi∈Rni

(
fi(x

i) + 〈λi, gi(x)〉+ 〈µi, hi(x)〉
)
,

we have ω(λ, µ) =
∑`

i=1 ωi(λ, µ). Thus, the objective dual function consists in ` independent
problems in dimension ni. When n is much larger that ni, i = 1, . . . , `, this last formulation
can be advantageous from the computational point of view.

3. Robust optimization

Consider the following optimization problem:

min
x

f(x)

s.t. g(x, u) ≤ 0,

where f : Rn → R, g : Rn × Rp → Rm, x ∈ Rn is the decision variable and u ∈ U ⊂ Rp is a
parameter. We now think in the case that u varies in the set U , which is called uncertainty
set. The following problem considers all the constraints for all possible values of u:

min
x

f(x)

s.t. g(x, u) ≤ 0 for all u ∈ U.

For a general set U , the above problem has infinite number of constraints. This means that
it is difficult to solve such a problem. However, depending on the structure of U and g, we
will observe that the problem can be reformulated as an easier problem. Let us first note
that the above problem is equivalent to

min
x

f(x)

s.t. max
u∈U

g(x, u) ≤ 0.
(7)

In this sense, we are looking for an optimal for the “worst-case scenario”. Let us consider
the following example:

g(x, u) := (a+ u)>x, U := {u ∈ Rm | A>u = c, u ≥ 0}.
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Clearly, g is linear with respect to x and U is a polyhedron. In this case, the maximization
problem of the constraint in (7) is given by

max
u

(a+ u)>x

s.t. A>u = c
u ≥ 0.

Since a>x is just a scalar in the above problem, we can rewrite it as

max
u

u>x

s.t. A>u = c
u ≥ 0.

The dual of this problem is given by

min
λ

c>λ

s.t. Aλ ≥ x.

Because the above problems are linear, the strong duality holds. It means that the robust
problem (7) can be rewritten as

min
x,λ

f(x)

s.t. a>x+ c>λ ≤ 0
Aλ ≥ x.

Assuming that f is linear, this problem is just a linear programming problem. So, we replaced
a difficult problem (7) with an easy problem by using duality tricks. Other well-known cases
are when U is an ellipsoid and g is linear or quadratic. In such cases, we obtain second-order
cone programming or semidefinite programming problems.
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