Class 7: More results using duality theory

1. The relation with KKT conditions

Let us consider the following primal problem:

$$
\begin{array}{cl}
\min & f(x) \tag{P}\\
\text { s.t. } & x \in X,
\end{array}
$$

where

$$
\begin{equation*}
X:=\left\{x \in \mathbb{R}^{n} \mid g(x) \leq 0, h(x)=0\right\}, \tag{1}
\end{equation*}
$$

with $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$. Moreover, its dual problem is given by

$$
\begin{array}{cl}
\max & \omega(\lambda, \mu) \tag{D}\\
\text { s.t. } & (\lambda, \mu) \in D,
\end{array}
$$

where

$$
D:=\left\{(\lambda, \mu) \in \mathbb{R}_{+}^{m} \times \mathbb{R}^{p} \mid \omega(\lambda, \mu)>-\infty\right\} .
$$

and $\omega: D \rightarrow \mathbb{R}$ is defined by

$$
\omega(\lambda, \mu):=\inf _{x \in \mathbb{R}^{n}} L(x, \lambda, \mu) .
$$

Now, we will show the relation between the dual variables and the Lagrange multipliers that appear in the KKT conditions of the primal problem.

Theorem 1. For problem (P), assume that f and g are convex and that h is affine. Suppose also that the Slater $C Q$ holds for (P), i.e., there exists $\hat{x} \in \mathbb{R}^{n}$ such that $h(\hat{x})=0$ and $g_{i}(\hat{x})<0$ for all $i=1, \ldots, m$. Then, $x^{*} \in X$ is an optimal solution of the primal problem (P) if, and only if, there exists $\left(\lambda^{*}, \mu^{*}\right) \in \mathbb{R}_{+}^{m} \times \mathbb{R}^{p}$ such that

$$
\begin{align*}
L\left(x^{*}, \lambda^{*}, \mu^{*}\right) & =\min _{x \in \mathbb{R}^{n}} L\left(x, \lambda^{*}, \mu^{*}\right) \tag{2}\\
\lambda_{i}^{*} g_{i}\left(x^{*}\right) & =0, \quad i=1, \ldots, m . \tag{3}
\end{align*}
$$

The set of pairs $\left(\lambda^{*}, \mu^{*}\right)$ satisfying the above conditions coincide with the solutions of the dual problem (D), and with the Lagrange multipliers of the primal problem (P).

Proof. Let x^{*} be feasible, i.e., $x^{*} \in X$. Assume that there exists $\left(\lambda^{*}, \mu^{*}\right) \in \mathbb{R}_{+}^{m} \times \mathbb{R}^{p}$ satisfying (2) and (3). Then, for all $x \in \mathbb{R}^{n}$, we have

$$
\begin{align*}
f\left(x^{*}\right) & =f\left(x^{*}\right)+\left\langle\lambda^{*}, g\left(x^{*}\right)\right\rangle+\left\langle\mu^{*}, h\left(x^{*}\right)\right\rangle \\
& =L\left(x^{*}, \lambda^{*}, \mu^{*}\right) \\
& \leq L\left(x, \lambda^{*}, \mu^{*}\right), \tag{4}
\end{align*}
$$

where the first equality comes from (3) and the fact that $h\left(x^{*}\right)=0$, the second one is just the definition of Lagrange function, and the last inequality follows from (2). For all $x \in X$, we also obtain

$$
\begin{equation*}
L\left(x, \lambda^{*}, \mu^{*}\right)=f(x)+\left\langle\lambda^{*}, g(x)\right\rangle+\left\langle\mu^{*}, h(x)\right\rangle \leq f(x), \tag{5}
\end{equation*}
$$

where the inequality holds because $h(x)=0, g(x) \leq 0$ and $\lambda^{*} \geq 0$. Therefore, the above inequality, together with (4) shows that $f\left(x^{*}\right) \leq f(x)$ for all $x \in X$, i.e., x^{*} is an optimal solution for (P).
Now, assume that x^{*} is a solution of (P). In particular, $f\left(x^{*}\right)>-\infty$. From [Class 5, Theorem 3] (the strong duality theorem), the dual problem (D) has a solution $\left(\lambda^{*}, \mu^{*}\right) \in D$ and there is no duality gap, i.e.,

$$
\begin{equation*}
f\left(x^{*}\right)=\omega\left(\lambda^{*}, \mu^{*}\right)=\inf _{x \in \mathbb{R}^{n}} L\left(x, \lambda^{*}, \mu^{*}\right) \leq L\left(x^{*}, \lambda^{*}, \mu^{*}\right), \tag{6}
\end{equation*}
$$

where the last inequality holds from the definition of infimum. Similarly to (5), we also have

$$
L\left(x^{*}, \lambda, \mu\right) \leq f\left(x^{*}\right) \quad \text { for all }(\lambda, \mu) \in \mathbb{R}_{+}^{m} \times \mathbb{R}^{p},
$$

In particular, $L\left(x^{*}, \lambda, \mu\right) \leq f\left(x^{*}\right)$ holds which, together with (6) shows that (2) holds.
Note that when f, g and h are differentiable, the condition (2) is equivalent to

$$
\nabla_{x} L\left(x^{*}, \lambda^{*}, \mu^{*}\right)=\nabla f\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(x^{*}\right)+\sum_{j=1}^{p} \mu_{j} \nabla h_{j}\left(x^{*}\right)=0
$$

because the problem $\min _{x} L\left(x, \lambda^{*}, \mu^{*}\right)$ is convex under the assumptions of the theorem. Therefore, the KKT conditions [Class 3, Theorem 1] are clear.

2. Separable problems

Assume that a vector x can be written as

$$
x:=\left(x^{1}, x^{2}, \ldots, x^{\ell}\right), \quad \text { with } x^{i} \in \mathbb{R}^{n_{i}}, i=1, \ldots, \ell .
$$

Consider once again problem (P), where

$$
f(x)=\sum_{i=1}^{\ell} f_{i}\left(x^{i}\right), \quad g(x)=\sum_{i=1}^{\ell} g_{i}\left(x^{i}\right), \quad h(x)=\sum_{i=1}^{\ell} h_{i}\left(x^{i}\right),
$$

with $f_{i}: \mathbb{R}^{n_{i}} \rightarrow \mathbb{R}, g_{i}: \mathbb{R}^{n_{i}} \rightarrow \mathbb{R}^{m}, h_{i}: \mathbb{R}^{n_{i}} \rightarrow \mathbb{R}^{p}$. We say that such a problem has a separable structure, because each f_{i}, g_{i} and h_{i} does not depend on the whole vector x, but only on x^{i}. Even if the problem is separable, it is easy to see that this problem cannot be solved minimizing in $\mathbb{R}^{n_{i}}$ independently, because of the inequality constraints. However, the dual
function is given as

$$
\begin{aligned}
\omega(\lambda, \mu) & =\inf _{x \in \mathbb{R}^{n}}(f(x)+\langle\lambda, g(x)\rangle+\langle\mu, h(x)\rangle) \\
& =\inf _{x \in \mathbb{R}^{n}}\left(\sum_{i=1}^{\ell}\left(f_{i}\left(x^{i}\right)+\left\langle\lambda_{i}, g_{i}(x)\right\rangle+\left\langle\mu_{i}, h_{i}(x)\right\rangle\right)\right) \\
& =\sum_{i=1}^{\ell}\left(\inf _{x^{i} \in \mathbb{R}^{n_{i}}}\left(f_{i}\left(x^{i}\right)+\left\langle\lambda_{i}, g_{i}(x)\right\rangle+\left\langle\mu_{i}, h_{i}(x)\right\rangle\right)\right) .
\end{aligned}
$$

Defining

$$
\omega_{i}(\lambda, \mu):=\inf _{x^{i} \in \mathbb{R}^{n_{i}}}\left(f_{i}\left(x^{i}\right)+\left\langle\lambda_{i}, g_{i}(x)\right\rangle+\left\langle\mu_{i}, h_{i}(x)\right\rangle\right),
$$

we have $\omega(\lambda, \mu)=\sum_{i=1}^{\ell} \omega_{i}(\lambda, \mu)$. Thus, the objective dual function consists in ℓ independent problems in dimension n_{i}. When n is much larger that $n_{i}, i=1, \ldots, \ell$, this last formulation can be advantageous from the computational point of view.

3. Robust optimization

Consider the following optimization problem:

$$
\begin{array}{cl}
\min _{x} & f(x) \\
\text { s.t. } & g(x, u) \leq 0,
\end{array}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{m}, x \in \mathbb{R}^{n}$ is the decision variable and $u \in U \subset \mathbb{R}^{p}$ is a parameter. We now think in the case that u varies in the set U, which is called uncertainty set. The following problem considers all the constraints for all possible values of u :

$$
\begin{array}{rl}
\min _{x} & f(x) \\
\text { s.t. } & g(x, u) \leq 0 \quad \text { for all } u \in U .
\end{array}
$$

For a general set U, the above problem has infinite number of constraints. This means that it is difficult to solve such a problem. However, depending on the structure of U and g, we will observe that the problem can be reformulated as an easier problem. Let us first note that the above problem is equivalent to

$$
\begin{array}{cl}
\min _{x} & f(x) \\
\text { s.t. } & \max _{u \in U} g(x, u) \leq 0 . \tag{7}
\end{array}
$$

In this sense, we are looking for an optimal for the "worst-case scenario". Let us consider the following example:

$$
g(x, u):=(a+u)^{\top} x, \quad U:=\left\{u \in \mathbb{R}^{m} \mid A^{\top} u=c, u \geq 0\right\} .
$$

Clearly, g is linear with respect to x and U is a polyhedron. In this case, the maximization problem of the constraint in (7) is given by

$$
\begin{aligned}
\max _{u} & (a+u)^{\top} x \\
\text { s.t. } & A^{\top} u=c \\
& u \geq 0 .
\end{aligned}
$$

Since $a^{\top} x$ is just a scalar in the above problem, we can rewrite it as

$$
\begin{aligned}
\max _{u} & u^{\top} x \\
\text { s.t. } & A^{\top} u=c \\
& u \geq 0 .
\end{aligned}
$$

The dual of this problem is given by

$$
\begin{array}{cl}
\min _{\lambda} & c^{\top} \lambda \\
\text { s.t. } & A \lambda \geq x
\end{array}
$$

Because the above problems are linear, the strong duality holds. It means that the robust problem (7) can be rewritten as

$$
\begin{array}{cl}
\min _{x, \lambda} & f(x) \\
\text { s.t. } & a^{\top} x+c^{\top} \lambda \leq 0 \\
& A \lambda \geq x
\end{array}
$$

Assuming that f is linear, this problem is just a linear programming problem. So, we replaced a difficult problem (7) with an easy problem by using duality tricks. Other well-known cases are when U is an ellipsoid and g is linear or quadratic. In such cases, we obtain second-order cone programming or semidefinite programming problems.

Operations Research, Advanced (Graduate School of Informatics, Kyoto University)
1st part by Ellen H. Fukuda (e-mail: ellen(at)i.kyoto-u.ac.jp, where (at) = ©)

