OR Advanced, Part 1, Final Report

- $\checkmark\,$ Answer the questions in Japanese or English.
- $\checkmark~$ The final report corresponds to 70% of the grade of the "nonlinear optimization" part, and the two small reports correspond to 30% (each one 15%) of the total grade.
- $\checkmark\,$ Submit this report on November 28's class.

Exercise 1. [15 points] Let $x^* \in \mathbb{R}^n$ be a local minimizer of the following nonlinear programming problem:

$$\min_{\text{s.t.}} f(x) \\ \text{s.t.} \quad g_i(x) \le 0, \quad i = 1, \dots, m,$$
 (P1)

where $f: \mathbb{R}^n \to \mathbb{R}$ and $g_i: \mathbb{R}^n \to \mathbb{R}$, i = 1, ..., m, are differentiable. Assume that x^* satisfies the linear independence constraint qualification (LICQ), and let $\lambda^* \in \mathbb{R}^m$ be its corresponding Lagrange multiplier that satisfies the KKT conditions of (P1). Prove that λ^* is unique. Exercise 2. Consider the following quadratic optimization problem:

$$\min \quad \frac{1}{2} x^{\top} Q x + r^{\top} x$$
s.t. $Ax \le b,$
(P2)

where $Q \in \mathbb{R}^{n \times n}$, $r \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ are given and $x \in \mathbb{R}^n$ is the decision variable. Assume also that Q is symmetric and positive definite.

- (a) [5 points] Prove that the objective function of (P2) is convex.
- (b) [15 points] Prove that the dual of (P2) is also a quadratic problem of the form

$$\begin{array}{ll} \max & \lambda^{\top} \tilde{Q} \lambda + \tilde{r}^{\top} \lambda + \tilde{s} \\ \text{s.t.} & \lambda \in \mathbb{R}^m_+. \end{array}$$

Write the formulas of \tilde{Q} , \tilde{r} and \tilde{s} explicitly, using only Q, r, A and b.

Exercise 3. [15 points] Consider the following nonlinear optimization problem:

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & g(x) \leq 0, \\ & h(x) = 0, \end{array} \end{array} \tag{P3}$$

with $f: \mathbb{R}^n \to \mathbb{R}, g: \mathbb{R}^n \to \mathbb{R}^m$ and $h: \mathbb{R}^n \to \mathbb{R}^p$. We say that $(x^*, \lambda^*, \mu^*) \in \mathbb{R}^n \times \mathbb{R}^m_+ \times \mathbb{R}^p$ is a saddle point of the Lagrangian function L if the following inequalities hold:

$$L(x^*, \lambda, \mu) \le L(x^*, \lambda^*, \mu^*) \le L(x, \lambda^*, \mu^*) \quad \text{for all } (x, \lambda, \mu) \in \mathbb{R}^n \times \mathbb{R}^m_+ \times \mathbb{R}^p.$$

Assume that f and g are convex and that h is affine. Suppose also that the Slater constraint qualification holds. Prove that $x^* \in \mathbb{R}^n$ is an optimal solution of problem (P3) if, and only if, there exists $(\lambda^*, \mu^*) \in \mathbb{R}^m_+ \times \mathbb{R}^p$ such that (x^*, λ^*, μ^*) is a saddle point of L.

Exercise 4. Consider the following optimization problem:

$$\min_{\substack{x \in \mathcal{F}_{i}}} f(x)$$
 s.t. $g_{i}(x) \leq 0, \quad i = 1, \dots, m,$ (P4)

where $f: \mathbb{R}^n \to \mathbb{R}, g_i: \mathbb{R}^n \to \mathbb{R}, i = 1, ..., m$, are differentiable and convex. Let $\phi_i: \mathbb{R} \to \mathbb{R}$, i = 1, ..., m, be increasing, differentiable and convex functions.

(a) [10 points] Prove that the function $q \colon \mathbb{R}^n \to \mathbb{R}$ defined below is convex:

$$q(x) := f(x) + \sum_{i=1}^{m} \phi_i(g_i(x)).$$

(b) [10 points] Assume that $\bar{x} \in \mathbb{R}^n$ is a minimizer of q. Find a feasible point for the dual of (P4) by using \bar{x} , justifying your answer. Write out the corresponding lower bound on (P4)'s optimal value.