Name:

Department:

OR Advanced, Part 1, Final Report

\checkmark Answer the questions in Japanese or English.
\checkmark The final report corresponds to 70% of the grade of the "nonlinear optimization" part, and the two small reports correspond to 30% (each one 15%) of the total grade.
\checkmark Submit this report on November 28's class.

Exercise 1. [15 points] Let $x^{*} \in \mathbb{R}^{n}$ be a local minimizer of the following nonlinear programming problem:

$$
\begin{array}{cl}
\min & f(x) \\
\text { s.t. } & g_{i}(x) \leq 0, \quad i=1, \ldots, m, \tag{P1}
\end{array}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, i=1, \ldots, m$, are differentiable. Assume that x^{*} satisfies the linear independence constraint qualification (LICQ), and let $\lambda^{*} \in \mathbb{R}^{m}$ be its corresponding Lagrange multiplier that satisfies the KKT conditions of (P1). Prove that λ^{*} is unique.

Exercise 2. Consider the following quadratic optimization problem:

$$
\begin{array}{cl}
\min & \frac{1}{2} x^{\top} Q x+r^{\top} x \tag{P2}\\
\text { s.t. } & A x \leq b,
\end{array}
$$

where $Q \in \mathbb{R}^{n \times n}, r \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$ are given and $x \in \mathbb{R}^{n}$ is the decision variable. Assume also that Q is symmetric and positive definite.
(a) [5 points] Prove that the objective function of (P2) is convex.
(b) [15 points] Prove that the dual of (P2) is also a quadratic problem of the form

$$
\begin{aligned}
\max & \lambda^{\top} \tilde{Q} \lambda+\tilde{r}^{\top} \lambda+\tilde{s} \\
\text { s.t. } & \lambda \in \mathbb{R}_{+}^{m} .
\end{aligned}
$$

Write the formulas of \tilde{Q}, \tilde{r} and \tilde{s} explicitly, using only Q, r, A and b.

Exercise 3. [15 points] Consider the following nonlinear optimization problem:

$$
\begin{align*}
\min & f(x) \\
\text { s.t. } & g(x) \leq 0, \tag{P3}\\
& h(x)=0,
\end{align*}
$$

with $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$. We say that $\left(x^{*}, \lambda^{*}, \mu^{*}\right) \in \mathbb{R}^{n} \times \mathbb{R}_{+}^{m} \times \mathbb{R}^{p}$ is a saddle point of the Lagrangian function L if the following inequalities hold:

$$
L\left(x^{*}, \lambda, \mu\right) \leq L\left(x^{*}, \lambda^{*}, \mu^{*}\right) \leq L\left(x, \lambda^{*}, \mu^{*}\right) \quad \text { for all }(x, \lambda, \mu) \in \mathbb{R}^{n} \times \mathbb{R}_{+}^{m} \times \mathbb{R}^{p} .
$$

Assume that f and g are convex and that h is affine. Suppose also that the Slater constraint qualification holds. Prove that $x^{*} \in \mathbb{R}^{n}$ is an optimal solution of problem (P3) if, and only if, there exists $\left(\lambda^{*}, \mu^{*}\right) \in \mathbb{R}_{+}^{m} \times \mathbb{R}^{p}$ such that $\left(x^{*}, \lambda^{*}, \mu^{*}\right)$ is a saddle point of L.

Exercise 4. Consider the following optimization problem:

$$
\begin{array}{cl}
\min & f(x) \\
\text { s.t. } & g_{i}(x) \leq 0, \quad i=1, \ldots, m, \tag{P4}
\end{array}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, i=1, \ldots, m$, are differentiable and convex. Let $\phi_{i}: \mathbb{R} \rightarrow \mathbb{R}$, $i=1, \ldots, m$, be increasing, differentiable and convex functions.
(a) [10 points] Prove that the function $q: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined below is convex:

$$
q(x):=f(x)+\sum_{i=1}^{m} \phi_{i}\left(g_{i}(x)\right) .
$$

(b) [10 points] Assume that $\bar{x} \in \mathbb{R}^{n}$ is a minimizer of q. Find a feasible point for the dual of (P4) by using \bar{x}, justifying your answer. Write out the corresponding lower bound on (P4)'s optimal value.

