ARTICLE IN PRESS

Available online at www.sciencedirect.com
EUROPEAN
SCIENCE@DIRECT® JOURNAL
OF OPERATIONAL
RESEARCH

EILSEVIER European Journal of Operational Research xxx (2004) xxx—Xxx

www.elsevier.com/locate/dsw

Decision Aiding

Dynamic programming approach to discrete time
dynamic feedback Stackelberg games with independent
and dependent followers ™

Pu-yan Nie *°, Li-hua Chen ®, Masao Fukushima ®*

& Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan
® Guanghua School of Management, Peking University, Beijing, 100871, China
¢ Department of Mathematics, College of Information Science and Technology, Jinan University, Guangzhou, 510632, China

Received 5 November 2003; accepted 21 June 2004

Abstract

Stackelberg games play an extremely important role in such fields as economics, management, politics and behavi-
oral sciences. Stackelberg game can be modelled as a bilevel optimization problem. There exists extensive literature
about static bilevel optimization problems. However, the studies on dynamic bilevel optimization problems are rela-
tively scarce in spite of the importance in explaining and predicting some phenomena rationally. In this paper, we con-
sider discrete time dynamic Stackelberg games with feedback information. Dynamic programming algorithms are
presented for the solution of discrete time dynamic feedback Stackelberg games with multiple players both for inde-
pendent followers and for dependent followers. When the followers act dependently, the game in this paper is a com-
bination of Stackelberg game and Nash game.
© 2004 Published by Elsevier B.V.
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1. Introduction

In many decision processes there exists a hierarchy of decision makers. Decisions are made at differ-
ent levels with different goals in this hierarchy. Moreover, those decision makers often cannot act
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independently of each other but have to take into account decisions made by players of different levels.
Especially, in the bilevel case, the optimal strategies chosen by the lower level players (hereafter the
“followers”) depend on the strategy selected by the upper level player (hereafter the “leader’). Further-
more, the objective function of the leader may depend not only on his/her own decisions but also on the
followers’. Then, the leader is able to make his/her decisions by estimating the followers’ rational
reactions, assuming that they behave in such a way that they optimize their objective functions given the
leader’s actions. This is the static bilevel model introduced by Von Stackelberg [24]. There exists extensive
research on bilevel optimization [2,3,11,20]. Under certain conditions, a bilevel optimization problem can
be reformulated as a mathematical program with equilibrium constraints (MPEC) [17], which has recently
drawn much attention in the optimization community [13,14,16,18,19]. However, the studies on dynamic
bilevel optimization are relatively scarce. Dynamic bilevel optimization was first introduced by Chen and
Cruz [10], and Simaan and Cruz [21,22] in nonzero-sum dynamic games. Dynamic bilevel optimization
problems have subsequently been studied by a number of authors [1,4,5,8,9,12,15]. In particular,
Ye [25,26] recently studies optimality conditions for continuous time dynamic bilevel optimization
problems.

The discrete time dynamic optimization problems have many applications in economics and manage-
ment sciences [1,12]. See an excellent monograph [4] on dynamic games. Linear—quadratic (LQ) systems
are considered in [5,6,8-10,15,21]. In [8], stochastic dynamic Stackelberg games with two players are intro-
duced and explicit solutions are given when the information sets are nested. In [10,21], necessary and suf-
ficient conditions for the Stackelberg games with open-loop information have been obtained and explicit
solutions are given. In [23], Stackelberg solution is extended to multi-players and necessary conditions
for the existence of an open-loop Stackelberg games are shown. In [22], Stackelberg games with feedback
information are considered and necessary conditions for the existence of Stackelberg strategies are ob-
tained. In [5], explicit solutions are also given for deterministic games with multiple players under
closed-loop information, in particular, feedback information structure. More recently, in [15], an incentive
strategy for discrete time LQ state feedback Stackelberg games is developed. Moreover, in [1], recursive
methods are presented for dynamic Stackelberg games with two players. In [9], a new feedback solution
called anticipative feedback solution is introduced to cope with the infinite-horizon, linear—quadratic, dy-
namic, Stackelberg games. All methods to deal with LQ systems and dynamic Stackelberg games with two
players are based on the special structure of the problems. In [6], continuous time dynamic Stackelberg
games with closed-loop information are considered. In [12], pricing and advertising models in a market
are modelled as continuous time dynamic Stackelberg games.

In this paper, we consider a general dynamic Stackelberg game under feedback information structure
that may be modelled as a discrete time dynamic bilevel optimization problem, where the upper level state
variables are influenced by the decisions of the leader, and the lower level state variables are related to the
decisions of the leader and the followers. Assuming the feedback information structure, we will apply dy-
namic programming algorithms to the game with dependent followers as well as the one with independent
followers.

Let us give the formal statement of the problem. The discrete time periods are denoted t =0, 1,..., T, and
N is the number of followers in the game.

The variables involved in the problem are listed as follows:

Vectors x, € Z C R™ denote the state of the leader at time r =0,1,...,7.

Vectors y; € %" C R™ denote the state of the vth follower at time t =0, 1,.. ., 7. The followers’ state var-
iables at time ¢ are collectively denoted y,:= (y',12,....»V) €W ="' x H* x .. x " C R" with
m=m +nmp,+ .-+ my.

Vectors u;, € % € R™ denote the decision variables for the leader at time t=0,1,...,7T—1.

Vectors v, € I)(x,,y],u,) C ¥ C R™ denote the decision variables for the vth follower at time
t=0,1,...,7— 1. (The definition of IT)(x;,»},u,) is given below.) The followers’ decision variables at time
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t are collectively denoted v, := (v}, 0%,...,0V) € ¥ =9 x¥?x - x ¥V CR" with n=n;+n,+
R
Moreover, we denote

u .= (Lto,ul, ce ,MT_I) S RnOT7 X = (x07x1, ce 7)CT) S RmO(TJrl)7

v = (0, 0], ..., 00 ) ERMT wi= (01, 0%, oY) € R
Vo= sy € RPN yi= (07 Y e RMTD.

The state variables {x,}_, and {y,}"_, are governed by the systems of state transition equations
xt+1:Ft(xt>ut)7 t:0717"'7T_1a (11)
Vi =1 (vl u,v)), t=0,1,...,T—-1, v=1,2,...,N, (1.2)

with x, and y}, being given as the initial states of the leader and the vth followers, v=1,2,.. N,
respectively.
Let the set of admissible decisions of the leader be given by

M (xo) := {u | K (x1,u,) <0,6=0,1,...., T — 1}
and the sets of admissible decisions of the followers v=1,2,..., N be given by
IT" (xo, v, u) := {v" | b} (x1, ), 0, 0)) < 0,6 =0,1,..., T — 1},

where 4 : R™ x R™ — R™ and &} : R™ x R™ x R™ x R — R™, v=1,2,... N, are some functions used to
specify admissible decisions at each period and {x.}’_, and {y,}’_, are governed by (1.1) and (1.2), where 7,
and i, for v=1,2,..., N are all integers. Note that the set Ho(xo), which specifies the set of admissible deci-
sions of the leader at periods t=1,...,7 — 1, only depends on the initial state x,, since the subsequent
states x, are determined by (1.1). On the other hand, the set IT"(xo,y;, u) of admissible decisions of the
vth follower also depends only on the initial state y; of the follower along with the initial state x, and
the decision u of the leader.
We also denote

1) (x,) = {u, | 1 (xi,u,) <O} C R™,
0 (xe, 75 ) o= o] | by (s y) s e, 07) <O} C R,
M (x0, g, ) := I (x0, v, u) X IT*(x0,y5,u) X -+ x IV (xo, ¥} ,u) C R™,
I, (x1, 1) 2= T (g, y ) X T2 (3, v u) X oo TN (o, 0 ) C R
The problem is then formally stated as follows: given the initial state (xo,y,) € Z X ¥,
minimize J°(xo, vy, #, V)
subject to V" (xo, yo, ) = J" (X0, Y0, 4, 0"),

u € I’ (xo),
o' € IT" (xo, 5, u), v=1,2,...,N,

(1.3)

where

T—1

Jo(xovyOa u, U) = GT(xTvyT) + Z Gt(xtvyta Uy, Ul)a
t=0
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T—1
J"(x07y07 u, UV) = g;(xTvy;") + Zg;(xh.y;’? Uz, U;)’
t=0

{x}, and {y,}_, are determined by (1.1) and (1.2), respectively, and ¥"(xo,yo,u) are the optimal value
functions for followers v=1,2,..., N defined by

V' (x0, 0, ) := min{J" (xo, vy, u,0") | (1.1), (1.2) and v* € II"(xo, ¥y, 1)}

In the following, we will sometimes write

fi=UN ), o= (R R Y

fort=0,1,...,7—1.

We refer to problem (1.3) as a dynamic bilevel optimization problem or DBOP for short. The paper is
organized as follows: a dynamic programming algorithm for DBOP is proposed and its validity is shown in
Section 2. The results are extended to DBOP with dependent followers in Section 3. Some remarks are given
in the final section.

2. Dynamic programming algorithm for DBOP with independent followers under feedback information
structure

The aim of this section is to develop a dynamic programming algorithm for DBOP (1.3) under feedback
information structure, which is an extension of the one presented in [10,21-23] (see also [4, Section 7.3]) and
is based on the principle of optimality stated in Theorem 2.1. In this section, we assume that the followers
act independently of each other. Namely, when a follower makes a decision, he/she only takes into account
the leader’s action and will not consider other followers. Here and throughout, we assume that an optimal
response of the followers is uniquely determined for any decisions of the leader.

For convenience, we will use the following notation for r =0,1,...,7—1:

X1-1 1= (xtv s 7xT71)7 Yir-1 = ( (TR 7yT—1)7 y;inl = (y;‘v s 7y‘}—1)7

oy = (U yur_y),  Veror = (U, 0721),  Uppoy = (U], 00 ),

Xos = (X(),. - 7xt)7 yz)z = (y(‘)a T ay;7)7 US,; = (U(‘;v"'av;y%

T—1
J(;—t(xtvyn ut,T—lvvt,T—l) = GT(XTvyT) + Z Gr(xrvyra Uz, Ur)a
=t

JVT ,(xtvymurT lavtT 1) _gT xTayT +Zg‘c x‘ﬂy‘g?ul’? r)

0, (x) o= {ur | W2 u) <0t =t +1,...,T — 1},
I}, (X vy uer—r) == {0y oy [ B (e, yhue,0)) <Ot =80+ 1,..., T — 1},

Iy (X, Y 1) 1= H;I,T—1(xt7yt1a”t.,T—l) X X H?,]T—l(xtayﬁvvutffl)a

~y

Vo (X6, p1,ur-1) »= min {Jr (X v - l’vtT ) (Ut’vt+17 S Up ) € H{rfl(xt,y}’vuz‘r—l)}- (2.1)
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For each t =0,1,...,7 — 1, consider the subproblem

. . . 0
minimize J7_,(X;, ¥, Ur -1, Urr—1)

: el v v v \
SubJeCt to V]",t(xnyﬂ ulﬂT—l) = JT,t(xhym ul,T—l ) U[AT71)>

Ur—1 € H?,rq(xt)a (2.2)

v v v
UI,T—I € Hr,T—l(xtaymut,Tfl)
v=1,2,....N

where the initial state (x,,y,) is given, and {x,}’_, and {y,}"_, are determined by (1.1) and (1.2), respectively.
This problem is referred to as Pr_(x;,y;).

Theorem 2.1. Let (ufj,uj, ... uy_,) and (v§,vy,...,0%5_,) constitute an optimal policy for DBOP (1.3) under
Sfeedback information structure with corresponding optimal trajectories (xo,x%,...,x%) and (vo,¥5,...,V5)
Consider the subproblem Pr_,(x},y}) for every t=1,2,...,T — 1 with the initial state (x},y}). Then, the
truncated policy

{(ut7ut+l7 c "u;'—l) (Ut7vt+l? . -70;‘71)}

is optimal for the subproblem Pr_,(x},y}).

Proof. First, we show that the policy (v},v},,,...,v}_,) is the optimal response to the leader’s decision
(u,,u, " 1>---up_y). If it were not an optimal response of the followers, then there would exist some
€{1,2,....N} and (8],0),,,...,0y_,) € I ;_,(x;,3),u;;_,) with the corresponding sequences {i"'}._, such
that = yt and
r-1
gy, 75) + Y g, 3, ) < gp (a0 +Zg X5,k ol

=t

where the sequences {x*}’_, and {y"*}"_, are generated by {u}"_, and {v'*}"

(015 Oy y) € g poy (65, 30" Uo7 y)

respectively. Thus, we have

=t

and
-1
g3, 9 + ng UV +Zg XY UL ) < @p( ) Y g, i, k).
=0
This indicates that (v, vt,...,v5 ;) is not an optimal response to (u,u7,...,u; ), which contradicts the
assumption of this theorem. Consequently, (vr, vy, ..., v5_,) is the optimal response to the leader’s deci-
sion (uf,uy,\, ... U5 ).

To prove the theorem by contradiction, suppose that {(uy,u}, ,...,u} ), (v},v},,...,07_;)} is not an
optimal solution to the subproblem Pr_,(x},y;). Then, there must exist another policy
{(@, trs1,- - ur-1)s (T, 0141, - - -, U7—1) } such that (o7, B4 1, - - ., 07—1) 18 the optimal response of the followers
to the leader’s decision (i, %11, - .., 4r—1) and

-1 -1
Gr(&r,77) + Y Gel(Fe, 7o e, B:) < Gr(xy, py) + D Golot, 3,15, 03), (2.3)
=t =t

where {(x}, x5 ,,...,x%), 05, Vi, - -5 ) and {(X, Xis1,. .., X7), (B Vi1, - - - 9p)} are the sequences of the
leader’s and the followers’ states generated by the above-mentioned policies, with the initial conditions

xx=x'=Xand y, =y =y,
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Note that the policies {(uf,u}, ;... ,u5_y), (v}, 0}, ..., v5_)} and {(@, b1, ... 0r-1), (O, Oyt - - -
or-1)} all satisfy the constraints
(0o s 07 ) € Hipa (67,57, 457 y)s

(s v vy Or1) € Iy (X4, 3y i 71)
with x} =X, and y; = »,. Accordingly, we have

* * K * * *
(V01> V57 —1) € Hor—1 (X5, Y5, U, 15Uy 71,

(Ua,t—l’ Etj‘,]) € HOA,T*I (x67y63 u67[_17 at,Tfl)
with x} =X, and y; =7,.
Furthermore, we show that (vj, ,0,7-1) is the optimal response to (g, ;4 r-1) by contradiction. If
this were false, from the above proof, there would exist an optimal response of the form (v ,—1,0,7-1),
corresponding to (u}y, |,%,r-1), and some v € {1,2,...,N} satisfying

7—1 t—1
g (xTayT +ng xray17ur7 T +Zg1; T;ymum 1—)
T=t =0
7—1 t—1
<G Er T D g% e, B) @, ), (2.4)
=t =0

where (X,,7,) = (x,y;) and ('xat—l’)_cfj)’ (J’B.;_lv)_’:,r) and Yor are generated by (“6,:—17%7)’ (Uﬁ,z—l’f’ti) and
o7, respectively.
However, (2.4) implies

t—1

E V(x =V E u* v*
gr(‘xﬂyr’ T ’E < gr T7yT7 T r)’

=0

V- v - v v 3 i - V Wk 5V
Up'r_1 € Ho,r_1(x07J’07“o,T—1) dnd (%,;—n”z,rq) € H04T—1(x0aJ’0a”6,T—1) with xo = xj and y; =y = y;. We
therefore have

wmm+25m%%m+25wnqw%wwmv+2gﬂnwmm

which contradicts the hypothesis that (v, v1,...,v5_,) is the optimal response to (uf,u},. .., u; ;). Conse-
quently, (v}, ,,r—1) is the optimal response to (uf, |, r-1).
Moreover, from (2.3) we have
T-1 t—1

GT(XT’j/T)+ZGT(Xnyﬂﬁnl_)r)+ZG( mym ra 'c)

=t =0
7—1 (—1
<GT(X;'7y;")+ZG( rvyw rv r)—l_ZG( T’yr’ ‘c’ r) (25)
=t =0

This contradicts the optimality of the policy {(ug, u}, ..., u5_), (v, v},...,v%_,)} in DBOP (1.3). The proof
is complete. [

The principle of optimality shown in Theorem 2.1 suggests that an optimal policy of DBOP can be con-
structed in a piecemeal manner. First, optimal policies are found for subproblems involving only the last
stage. Then, utilizing these results, we obtain optimal policies for the last two stages. We repeat this pro-
cedure step by step backward until an optimal policy for the entire problem is constructed. The dynamic
programming algorithm is presented as follows.
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Algorithm 2.2 (DP algorithm for DBOP with independent followers).
Step 1. Set t: = T and let for each (xr,y;) € X' x ¥
Vo(xr,yr) i= Gr(xr,yr),  Volxr,vy) == ghlxr,yy) v=1,2,...,N.
Step 2. Set t: = t—1 and solve the following problem for each (x,,y,) € Z x ¥

H#]I(l ){Gt(xtvyn Uy, Ut(xtayn ul)) + V(T)Lt—l (Fl(xla ul),ﬁ(xlvyn Uy, Ul(xlayn ul)))}v (26)
ure ! Xt
where v,(x;, y,,u;) == (v} (e, ¥} u), 02 (%0, Y2, 1), .o, 0V (%, ¥V, u,)) comprises the solutions of the lower level
problems
v“eHr‘I(lin“ )gr(xt7y;’7 uh U;,) + V;7t71 (Ft(xtu ut)7ﬁ(xt>yt> uﬁ Ut)) (27)
¢ S Xy st

forv=1,2,...,N. Let V')_,(x;,¥,) and V;_t(x,,y;’, u,) denote the optimal values of problems (2.6) and (2.7),
respectively. Let u}(x,,y,) be an optimal solution of (2.6), and v} (x,y,) := v:(x;,y,, u; (x,,»,)). Define
Vy (x,y),v=12...,N, by

V;“—t(xtvyt) = f/;—t(xlvy;’» ”;(xtvyt))'
Step 3. If t =0, a solution of DBOP (1.3) is obtained and stop. Otherwise, go to Step 2.

The next theorem shows that an optimal solution to DBOP (1.3) under feedback information structure is
obtained with Algorithm 2.2.

Theorem 2.3. For eacht=0,1,...,T, and (x,,y,) € X x ¥, let {u} (x;,3,), v} (x1,¥,)} be an optimal solution to
(2.6) and (2.7). Then, for any t and (x,y,), an optimal solution to the subproblem Pr_/x,y,) is given by

{0 Gers ) vy (vt Vi) - s sy (ermn, v7y))s (07 (s 20), 074y (e, Vit ) -+ 07 (-1, 720)
with
Xy = Fo(xul),  yio = [0, vl ul,vl) (2.8)
fort=tt+1,...,T—1andv=1,2,...,N. In particular,
{5 (xo,30), wi (x1,31)s - sy (X1, 721))s (V5 (X0, 1) 07 (51, 1) -+, 0y (Y71, 721)) )
is an optimal solution to DBOP (1.3) under feedback information structure.
Proof. We prove by induction in ¢. Apparently, the results hold for r = 7' — 1. Assuming the conclusions

are correct forall t =7 —1,...,7+ 1, we show that the statement also holds for t = 1.
Since the results hold when ¢ =7+ 1, we see that, for any (x7y1,y7,) € £ X ¥,

*

L Oty Yet )y 0 (702, Vi) ooyt (o, Ypog))s (U (i, Vgt ) U0 (42, Vi) -5 V7 (71, 721))
is an optimal solution to the subproblem Pr_;_; (x+1,)7,;). On one hand,

(0F 1 (15 Ve00)s U0 (K2, Veg2) s -+ 07 (571, 7))
is the optimal response to the leader’s decision

(”f+1(xt+le’f+1)a ”f+2(xz+2ayf+z)a oWy (71,7 1)),
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where {x.}/_,,, and {,}/,,, are determined by (2.8). Namely, for each v=1,2,...,N and Uir €
H¥+1,T—1(x?+1’)_/¥+17 u?*+1,T—1)’ we have

T—1

(xTayT + Z gT xT?yr?”r’ 1) > xTvyT Z gr 'x‘fvy‘ﬂuf? T ) V (xf+layt+la t+l)
T=i+1 T=i+1
=V (1, Y1) (2.9)
for each v=1,2,...,N, where (xq11,5:,,) = (X1, V) and

Xer1 = Fo(xe,ul), v = f e, yul,0)), t=t4+1,...,T—1. (2.10)
On the other hand, (4}, | (X¢+1,Vip1)s o (X642, Vipa)s - - - » Wy (X7-1,¥7_1)) is an optimal decision of the lea-
der and (v2, | (Xps1,Yi01), Ui (¥e42, Viga)s - - -, U5 (X7—1, 7)) s the optimal response to the leader’s decision,
where {xT}T:, ., and {y.},;., are determined by (2.8). Namely, for any decisions of the leader
(@1, 12, . .., ir—) and the corresponding response of the followers ., . | € H}'H’Tf](5c;+1,j/}'+],it;+1‘7,1),

v=1,2,...,N, we have

-1 -1
GT()ACT7)A}T) + Z G‘E('/X\j‘ﬁj}'ma‘ﬂﬁf) 2 GT(-xTayT) + Z G (x‘Hyra 1—7 ‘[) = V(}—ffl(‘%f+17j}i+l)7 (211)
1=1+1 T=1+1

where (xii1,37,1) = (X1, 57,,) and
)ACT+1 :Fr(iraﬁr)a 5;¥+] *f (xraj/zailravr)a T :E+ 17" '7T7 1 (212)

Consider ¢ = ¢ and assume that (u}(x;,»;), v} (x7,;)) is an optimal solution to the subproblem Pr_;(x;, ;).
First, we show that (v} (xz, y;), 05, (Xes1,Vi1)s - - -, U5 (X7-1, Y7, )) is the optimal response of the followers to
the leader’s decisions

(”;(x?,)ﬁ)a 7 (x?+1aJ’?+1)a oty (o1, v71))-

For the purpose of contradiction, suppose that there exist some v € {1,2,...,N} and

(07 (¢t 1) 07y (15 V1) - -+ O (721, V7))
such that
71
g;‘(xTay;")+Zg;(xTaJ_}¥7 T7 1)<gT(xTayT +Zg1 xﬂyp 15 z) (213)
=1

for y! = 3/, where {x.}!_,,, and {3"}_,., are determined by (2.10). Moreover, we have

AV A~V

xT,yT +ng xrayraurv ‘[) V (xt+layt+1a t+l)+gt(vayt’ut7 t) V (xf’y;v”;)

T—1
= V‘f—i(vayt) gT(xT,yT +ng xrayfauﬂ . )

=t

with y7 =y}, where the first inequality follows from (2.9) and the second inequality comes from Step 2 of
Algorithm 2.2. However, this contradicts (2.13). Therefore,

(U;'(xi,J’i)7 Ui (xm,J’m)a o Up (erm1,y7)

is the followers’ optimal response to (u} (Xs,¥;), 0 (Xie1, Vip1)s - - - Wy (Xr—1,¥7_1))-
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Now, we show that

{(M,*(x,,y,),u,*+1(xz+1,yt+1), s ’u*T—l(xT—l»yT—l))a (v;(x,7y,)7 U;+1(X;+1,yt+1); R U;—I(XT—I:yT—l))}

is an optimal solution to the subproblem Pr_x;,y;). If the results were false, there must exist the leader’s

decision (i, #i711, . . ., tir—;) and the followers’ response (%7, Uz,1, - - ., 071 ), along with the corresponding se-
T — T . — —_

quences {X.}._;,, and {y .}, ;,, with X; = x; and y; = y;, such that

T—1 T—1
XT yT +Z x‘rayﬂurvvf) < GT(xT yT +ZG xﬂyrau‘[? 1) (214)
=t =t

However, we have

-1

Gr(xr,yr) + Z GelXe, Vot 0) = Vo (a1, Pray) + Giloxa, g, 1, 07) = Vi (%, 77)

= xTayT Z G xﬂy‘m 15 r)

=1

with x; = X; and y; = y;, where the first inequality follows from (2.11) and the second inequality is induced
from Step 2 of Algorithm 2.2. This contradicts (2.14). Therefore,

{(u;(vay?)v u;*+1(x;+1,y;+1), cee 7U'T_1(x771 s Vro1))s (v;‘(xay;% vf*+l(x?+1ayi+l)v R U;‘—l(fol vyT—l))}

is optimal and, hence, the results hold for z.
Consequently, the results hold for all t=0,1,...,7—1 and the proof is complete. [I

In dynamic programming, the problem is decomposed into a sequence of minimization problems involv-
ing only decision variables of each stage, which are easier than the original problem. The following example
illustrates the algorithm.

Example 1. Consider the following three-player problem with three stages. Among players, one is the

leader and the other two are followers. The decision variables of the players are u = (ug,u;,us),v' =

(v, v}, v}) and v? = (v3,12, v3), respectively. The state transition equations are given by

Xep1 = X+ Uy,
ytv+1:y1‘+1]23 v:172; t:07172~

The cost functions are given by

G (x3, ;) = 4x3 + 3y + 23,
g3(x3,33) = x3 + 2},
23(x3,53) = X3+ 3)3
and
Gyt 00) = ()" + (0])" + (07)° + 2u,
(vl unv)) = u + (o) — 1)
S, unv?) = (t— Du? + (0 +1)° + 1

for 1 =0,1,2. The initial states are xo = 1,y) = 1,5} = 1 and the admissible decisions are unrestricted, i.e.,
M (x,) = R, 1T (x;,y!,u) = R and IT?(x,,y',u;) = R for t =0, 1,2.
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Let us apply Algorithm 2.2 to this example. Let
Vo(xs,ys) = 43 + 3y3 + 23,
Vilxs, 3) = x5 + 2y,
Vi(xs,33) = x5 + 33,
At the first step, the following problem, which corresponds to (2.6) with ¢ = 2, is considered:
min 4(xy +up) + 303 +03) + 2003 + 13) + G,

us
subject to vy € argmin{x, + up + 2(yy + v3) + &},

v% € argmin{x, + u, + 3(y§ + U%) +g§}.

The solution to this problem is computed as u, = —%x, — 1, v} =0, 13 = — X2 Moreover, we have
~1

V1062, 0, u2) = X3 + 2u + 23 41,

~2 1 5 2
Vi(x2,35,12) = X2 + 1z + 3y5 — <§u2 +5> +2,

5/4 1M\ 5
V1(x2,,) :4X2+3y;+2y§—1<§x2+?> +3

17

3
Vi(o.p,) = -0+ 2n - =,

5

1 2 7N 1
Vi, ) = 3% +3y; — <§x2 §> -5

Then, the following problem, which corresponds to (2.6) with ¢ =1, is considered:

. 5(4 4 11\*> 5
min 4x; +duy + 3y, + 30+ 27+ 20 — S (cx +zu +— | +>+ G

uy 4\5 5 5 4

) ) 3 3 17
subject to v} € argmm{gxl — 3 —?+2v% + 2 +g%},
. 2 2 A 1 1
v € argmm{—<§x1 +§U1 —§> +§x1 +§141 —§+3J’f + 37 —&-g%}-
The solution to this problem is computed as u; = —x; + 1, v} =0, vf = —%. Furthermore, we have
~1 3 2 12
Vy(xi,y,u) = —satsum —?+2y},
I 2 2 7N 1 1 9 25
Vy(xi,y,um) = —<5x1 +§M1 —5) +§X1 +§u1 +§+3y% 1
15

Vg(xhyl) = 3))} +2y% _x% _Za
Vaa,p) = —x + 2y = 2,
21

V%(xh)ﬁ) = 3)’% T4



ARTICLE IN PRESS

P. Nie et al. | European Journal of Operational Research xxx (2004) xxx—xxx 11
The final step is to consider the following problem, which corresponds to (2.6) with ¢ = 0:

. 15
min 3yp + 3vp + 25 + 205 — e (o + 1) + Gy
ug

subject to vy € argmin{2v, + 2y, — (xo + uo + 2) + go },
. 21
5 € argmin{3y; + 3vj — 77 )
The solution of this problem is computed as uy = 3, v} =0, 2 = —23. Furthermore, we have

~1
V3(x0,y0,u0) = 2y(1) - (XO + 1)5

I 13 /1 5\2
V5(x0, v, 1) = 3}’(2) 7 <§u0 —§> ,

19
3(x0,v0) = 3yo + 25 — X — T

V
V;(X(),yo) = 2}/(1) - (X() + 1)7
17
V%(xoaJ’o) = 3y(§ 4

Therefore, the optimal decisions are (ug,v),v5) = (3,0,—1), (u1,v},v}) = (=3,0,—3), (uz,0,03) =
(=3,0,—1), with the corresponding states (x ,yl,yl) (4,1,0), (x2,»5,»3)=(1,1,—3) and
(x3,74,13) = (=2,1,—1). The optimal values to the leader and the followers are —3 and 0, — 2, respectively.

In many practical situations, it is not possible to obtain an optimal solution analytically, and one has to
resort to numerical execution of the dynamic programming algorithm possibly through discretization of the
state and decision spaces [7].

3. DBOP structure with dependent followers under feedback information

In the previous section, we have assumed that the followers act independently. In practice, when a fol-
lower makes decisions, he/she often has to take into account the strategies of the other followers and be-
haves in a noncooperative manner. In such a case, the lower level problems comprise a Nash game among
the followers. Therefore, the whole problem is a feedback Stackelberg game with Nash game constraints,
which is stated as follows: Given the initial state (xg, o),

minimize  J°(xo, vy, u, 0)

subject to V" (xo, g, u, v") = J" (X0, Vo, U, V), (3.1)
u€ I’(xy), v €Il(xo,y,u), v=12,...,N,
where
o= (0,2, e oY),

T—1

JO(Xo,yO,u,U) = GT(XTvyT + ZGt xtaynutyvt)
=0

B T—1

JV(xO?yO’u?U) = gT xTvyT + Z X”y,,i/lt,l],
t=0

and 7" (xo, yo,u,v"") are the optimal value functions for followers v =1,2,..., N defined by
V" (x0, 9, 4, v™") := min{J" (xo,y,,u,v) | (1.1) and (1.2) and v* € II"(xo, v}, u)}.
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Therefore, the constraints in (3.1) imply that
v’ € argmin{J" (xo, vy, u,v) | (1.1) and (1.2) and v* € IT"(xo, ¥, u)}

for all v=1,2,...,N. Namely, v is a Nash equilibrium (NE) in the lower level problem for a given u. In
DBOP (3.1) with dependent followers, the feasible region of a follower is independent of the other followers
but the cost functions are dependent in the lower level problem.

Recall that, for the lower level problems in (3.1), (v}, v},...,v3 ) is called a Nash equilibrium corre-
sponding to (xo,yo,u) if and only if, for given (xo, o, u),
jv(x07y07 u, U*) <¢7v(x07y0a u, (Uv7 Uﬁv*)) (32)

for any v" € IT"(xp, ), u) and all v=1,2,...,N.

We will develop a dynamic programming algorithm for DBOP (3.1) with dependent followers under
feedback information structure. The following result, which is an extension of Theorem 2.1, shows the prin-
ciple of optimality for this problem. Some related notation are given below.

Lot o), vy =07,

v = (v Lo
vy = (vg",...,0"), oy = vy, ...,0)), v =(v),0,"),

Urr-1 = (U;‘,Tflﬂvti,;fl)ﬂ Y= (y;,ay;v)v
7-1
J?‘—t(xlﬂytvut,TfhUt,Tfl) = GT(xTayT) + ZGT(XﬂynuraUT)a

=t

7—1
J‘T_[(xtayt’ ut,Tfl;Ut,Tfl) = g;‘(xT7yT) + Zg;(xfayﬁuﬂ vr)a

=t

7;7t(xt,yl,u,>7,1,v;;71) =min{J, (X, Yt 1,0r1) 20 5y € I (e, V)t 1)} (3.3)
For t=0,1,...,T — 1, consider the subproblem

. . . 0
minimize  J, (X, Y,y r—1,Vr7-1)

—y

subject to V;f,(x”yt,u,,T_l, Ur_1) =J (X6, Yo ttr-1, Uiro1),
Ur-1 € Hngl(xt)a (34)

v vV VvV
U € HZAT—l(xhyﬂufyT*l)?
v=1,2,...,N,

where the initial state (x;,y,) is given, and {xT}IT:t, {yT}TT:, are determined by (1.1) and (1.2). This problem is
referred to as Pr_(x,,y,). Moreover, for the subproblem Pr_(x,,y,), vj;_, = (v}, 0},,...,v}_,) is called a
Nash equilibrium corresponding to (x;, v, u, r—1) if and only if, for given (x, v, u, r_1),

7;-4()6,,)/,, Urr-1, U;Tfl) gj;"—t(xhyn UrT-1, (U;,,T—l ’ Ut_;":l)) (3'5)

for any Uiy € I}, (x,y},u,r—1) and all v=1,2,...,N. All the results in this section are based on the NE
formulations (3.2) and (3.5), which will be assumed to have a unique solution throughout.

Theorem 3.1. Let (uf,uj,...,u%_) and (v§,v},...,v5_,) constitute an optimal policy for DBOP (3.1) under
Sfeedback information structure with corresponding trajectories (xj, x7,...,x%) and (v}, 5, ..., yy) such that

(05, v%,...,05_,) comprises the solution to NE (3.2) among the followers. Consider the subproblem Pr_,(x},y})
for each t=1,2,...,T — 1. Then, the truncated policy
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LG uf gy y) (0,074, 07 ) }
is optimal for the subproblem Pr_(x},y;), where (v},v},,,...,v}_;) comprises the solution to NE (3.5)

among the followers.

Proof. First, we show that (v}, v}, ,...,v5_,) is the solution to NE (3.5) corresponding to the leader’s deci-
sion (u},u},,,...,uy_,). If it were not a solution to NE (3.5) of the followers, then there would exist some
e {1,2,...,N} and
(0, Oy ey Opy) € Iy (57, 970 U )

with the corresponding sequences {x*}’_, and {j"}"_,, such that

J t( [7(y[7yt )7 tT lﬂ(vz;T—lvvaT:l)) <JT—t(x;7y;7u;,T—l7v;T—l)
with J/ = y}*. Moreover, we have

(”0: 1 Drroy) € 115 7y (X5, 00" Uy 1)

with y = y}*. Therefore, we obtain

t—1
J‘(xoﬂyO’u:)‘T—l’(Ua,tfl’(1};’,7"—1’0;7"1:1))) ‘]T (7 0y )y U I’(UrT 1 tT 1) +Zgr X5, Vi, UY)
=0
1

TV * * * * =V
<JT—t(xt’ymut‘T—l’Ut‘T—l) + E :gr( T,yf,uf,vf)

=0
A * *
=J (XanOVMOAT—l’UO«,T—l)'
This indicates that (v}, v7,...,v5 ) is not a solution to NE (3. 2) corresponding to (uf,u?,...,u}_;), which
contradicts the hypothesis of this theorem. Consequently, (v}, v}, ,...,v}_,) is the solution to NE (3.5) cor-
responding to the leader’s decision (u},u},,... ,u}_,).

To prove the theorem by contradiction, suppose that {(uy,u}, ,...,u}_,), (v},v},...,05_;)} is not an
optimal solution to the subproblem Pr_;(x,yr), where (v}, v}, ,...,v5_,) is the solution to NE (3.5). Then,
there must exist another policy { (@, @1, --.,4r-1), (Ur, Ot1,- -, 0r—1)} such that (B, Ts41,...,07-1) is the
solution to NE (3.5) corresponding to the leader’s decision (i, #;41, ..., 47—1) and

-1 -1
GT(XT7.)7T) + Z Gr(x‘nj}wanﬁ‘r) < GT(x’Z(Wy;‘) + Z G ( zayﬁ M,[, UT) (36)
T=t 1=t

where {(x}, x5 ,,...,x%), O, Vi, - -0} and {(X, X1, ., X7), (D Visrs - - - 07)} are the sequences of the
leader’s and the followers’ states generated by the corresponding decisions, with the initial conditions

x, =x; =X, and y, = y} = y,, respectively.

Note that the decisions  {(u},u},\,...,u5 1), (v}, v} y,...,v5_)} and  {(&,du1,... 047 1),
(T4, Uys1, - .., 07—1)} all satisfy the constraints
(o5 vry) € gy (53, 9 Ui y),
(E;” e ’E‘;'—l) S H:T—l(xla)_/;’a ZTllATfl)

forv=1,2,...,N, where x; =X, and y; = y,. Accordingly, we have

(W1 0 1) € o py (55007 (g, 15 Uy r 1))

(Uo,z—lv Uz,T—l) HS T— 1(x67J’6'*a (”6,:—17 L_‘t,T*I))
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forv=1,2,...,N, where x; =X, and y; = ¥,. In a similar manner to proof of Theorem 2.1, we can show that
(05,1, 0i7—1) 1s an NE corresponding to the decision (uak17 i, 7—1). Furthermore, from (3.6), we have
T—1 —1
Gr(Er.7) + Y Gel¥e, Jo e, B) + D Gel(xt, vl v7%)
=t =0

7-1 t—1

< Gr(xp,y3) + > Gelxn, v, v)) + > Go(xh, v, v}). (3.7)

=t =0
This contradicts the optimality of the policy {(uf,u},...,u5 ), (v, v},...,v5_ )} in DBOP (3.1). The
proof is complete. [

Based on Theorem 3.1, a dynamic programming algorithm for DBOP with dependent followers under
feedback information structure is presented as follows.

Algorithm 3.2 (DP algorithm for DBOP with dependent followers).
Step 1. Set t: = T and let for each (xr,y;) € X x ¥
Vg(xfayT) = GT(xfayT)a VS(XT;)’T) = g;"(xTayT) V= 1727"'7N'
Step 2. Set t: =1t — 1 and solve the following problem for each (x;,y,) € £ x ¥:

min {Gt(xtaymuh Ut(xtayta ut)) + V(z)“_[_l(Ft(xmut)vfl(xtaytauh Ut(xtaytaut)))}7 (38)

u,EH?(x,)
where v,(x,,y,,u,) comprises the solution to NE (3.5) associated with the lower level problems

min g;’(xtvyn Uy, Ut) + f/;ftfl(FT(xtv ut)v.ﬁ(xlaytv Uz, Ut)) (39)

Ny v v —V
oy €IT) (xp,) s, 077")

forv=1,2,...,N. Let V'%_,(x,»,) and 17;7,(xt,y,“,ut, v,") denote the optimal values of problems (3.8) and
(3.9), respectively. Let u;(x,,,) be an optimal solution of (3.8) and v;(x,,y,) 1= vi(x;, ¥, u;(x:,,)). Define
Ve (x,3),v=12...,N, by

f/;—t(xt,yz) = Vf—r(xtayzlv u:(xtayz)a Utiv*(xtzyt))-
Step 3. If t =0, a solution of DBOP (3.1) is obtained and stop. Otherwise, go to Step 2.

In Step 2, the lower level problems constitute a single stage Nash game with given (x,,y,,u,). The next
theorem shows that Algorithm 3.2 produces an optimal solution to DBOP (1.3) for any initial state
(x0,¥) € Z X #. For convenience, we denote

17;,,,1(35;7)’17“”1%) = f/;,,,l(Ft(xmut)aft(xtaynutyUr))~

Theorem 3.3. Under feedback information structure, for each t=0,1,....T, and (x;,y,) € X X ¥, let
{ur(x,»,), v} (x,3,)} be an optimal solution to (3.8) and (3.9). Then, for any t and (x,,y,), an optimal solution to
the subproblem Pr_,(x,,y,) is given by

{(u;(xtayt)7 “;+1(xt+17%+1)7 s ,u},l(xr_l,ypl)% (U;(xﬁyt)? v;+l(xt+17yt+l)7 RRX) U’Z('—l(xT—lny—l))}7

where {x.}|_,.| and {y.}_,,, are determined by (2.8). In particular,

{(ua(x(),yo), ui (X, 1), up (Y11, Y7-1)),s (va(xO,yo), U1 07 (o1, 372)
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is an optimal solution to DBOP (3.1).

Proof. We prove by induction in ¢. Apparently, the results hold for r = 7' — 1. Assuming the conclusions
are correct forall t =7 —1,...,7+ 1, we show that the statement also holds for t =1.
Since the results hold when ¢ =7+ 1, it follows that, for any (xz11,y;,1) € £ x ¥

{(”fﬂ <X?+17yf+1)7 “f+2(xi+27y;+2)a e W (erm1,¥71)),

(U (X1, 271 )5 Oran (X425 Viga ) 5 Uy (ro1, 74)) }
is an optimal solution to the subproblem Pr_;_(x;11, ;). On one hand,
(V71 (15 Vi1 ) 050 (42, V) - -+, U (X715 07)
is the solution to NE (3.5) corresponding to the leader’s decision

(u;+1(x?+17yr+l)a M;+2(X7+27y,+2), s 7”}_1(folvyT—l))7

T
=1+

where {x.}! ., and {,}]_,., are determined by (2.8). Namely, for any #!,, , , € IT oy (e, Vs ¥ )

T+1,7—

with the corresponding sequence {)7‘{}3:_;11’ we have

‘7;471 (X415 (Ji’;ﬂ >y?_+v1)v M;Jrl,Tfl? (6¥+I,T—l ) U?_J:I*,T—I ) = ]‘}7;71 (X415 Vis1s U1 U;+1,r71) (3.10)
and

j;‘fifl(xﬂl Vvt Ui 71 Vi) = f/;f?fl(xﬂl Virt) (3.11)

for each v=1,2,...,N, where 3}, =}, ,.

On the other hand, (u,; (xiy1,V701), w5 (Xi2,¥12), - - - 5 (X1, ¥7_1)) is an optimal decision of the
leader and (v2, | (Xiy1,V741)s Vs (X412, Vi42), - - -, U5 (¥7—1, 7)) is the solution to NE (3.5) corresponding to
the leader’s decision. Namely, for any decisions of the leader (i, 1,742, ..,ur_1) and the corresponding
response of the followers (0711, 042, .- .,0r—1), we have

-1 7—1
GT()ACTL)A}T) + Z Gr(vaj/m il‘f? ijf) 2 GT(XT7yT) + Z Gf(xfﬂyﬂ u;7 U;) = V(;—i—l (x?+l»)/?+1) (312)
=1+1 ={+1

with (xi11,0741) = (41, 77.,), where {%,}7,., and {3,}!_,,, are determined by (2.12).

Consider ¢ =7 and assume that (u(xz,y;), v (x7,»;)) is optimal to (3.8) and (3.9). First, we show that
(02 (x3,31), 05, (i1, Y1 )5 - -+ U5y (x7—1, 7)) is the solution to NE (3.5) corresponding to the leader’s
decision (u (x7,¥7), 5,y (Xi11,Ve11)s - - - Wp_ (X7-1,¥7_1)). For the purpose of contradiction, suppose that
there exist some v € {1,2,...,N} and v}, | € IIj;_(xz,¥],u; ;) with the corresponding sequence S »
such that

Ty i, up_ys (0715 0774)) < T v Uir_1,Vir_y) (3.13)
with y; = y;. Consider two decisions {u;, |, (o}, 07"), (07, 7, 0517 ))} and {wg .y, (57, 07), 05, 71)}
with the initial state (x;,y;). Correspondingly, there exist two state trajectories {(x,y;), (Xit1, (7, 1, 51)),
R (xTv (j};"ay;‘))} and {(xfay?)’ (x?+17.)7f+1)7 e (xTayT)}’ respectively. Note that )7;+1 = y¥+1 =
S (xz, v}, uz,v)) and hence we have (3}, ,,y;.,) = y7,,. From (3.10) and Step 2 of Algorithm 3.2, we therefore
have
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7;72()5?,)’;7”%717( % —1» z_}"l))
= & (v, v ur, (07, 07)) +J;7;71(xi+17 Gl Vi) iy oy (l_)iVH,T—l’ vilvl*,ffl))
> g (xi, v, 5, (07, 07™)) +j;—?—1(x?+17y2+17u;+1.,T—l7v;-f—l,T—l)
= g (v, yiup, (5, 0,) + Vg (e, i)
= & (vt (0, 07)) + Vi (e, (5, 07)
> g0y 5, 0) Vg (v v 1, 05) = T (50, Vs 7 By,

where vf = vi(x;,y;) and o =v*(x;,))), for all v=1,2,...,N. This contradicts (3.13). Therefore,

(0r (2, ¥5), 0% (X1, Vigy )5 - - -5 V5 (X7—1,¥7_1)) is the solution to NE (3.5) corresponding to the decision
(u;(-xfay?)a u;+1(xf+l7y?+l)a .. 7“}‘71 (fobnyl)) and
7;—f(x?7y7a”f,r—1>v;,r—1> = f/;_;(x;,y;) (3.14)

for any v=1,2,...,N.
Then, we show that

{(u;(xf’yt)7 u;+1(xt+17%+1)7 e a”;fl(xT—lvnyl))v (vt*(x,,y,), U:+1(xr+l7yz+1)v cee U}—1<xT—l7yT—l))}
is an optimal solution to the subproblem Pr_;(x;,,). If this were false, there must exist the leader’s decision
(%7, 711, - - -, ur_1) together with the corresponding solution (o7, Tz, 1, ..., 0r_1) to NE (3.5) of the followers
such that
-1 -1
GT(XT7)7T)+ZG (xﬂyrauﬁ ) < GT(xT7yT) ZG (xﬂyzvuw r) (3'15)
=t =1

where the sequences {¥.}/_;,, and {7}/, , are generated according to {a.}"=! and {5.}-

; respectively,
with x; = X; and y; = y,. However, from Algorithm 3.2 and (3.12), we have

‘L't’

-1

GT()_CT,)_/T) + Z GT()_C”)_/T, ljl‘[’ T)‘f) = V(])"_;_l()_c?“’l a)_}H»l) + Gt(x?ayia L_lf, Ef) = V(;_;()_C;,)_/’;)
=t
T-1
= GT(XTvyT) =+ Z G, (x'f?yﬂur? Ur)
=t

which is in contradiction with (3.15). Therefore
L0 (e, o)y u g (e, Ve )s oo g Corm, v7y)s (0F (s ) U7y (e, Vet ) -0 U (r-1,0p0))

is optimal for P7_7(x;,y;) and hence the results hold for 7.
Consequently, the results hold for all t=0,1,...,7 — 1 and the proof is complete. [

The following example illustrates Algorithm 3.2.

Example 2. Consider the following three-player problem with three stages. Among players, one is the
leader and the other two are followers. The decision variables of the players are wu=

(ug, ur,u2), v = (v}, v}, v}) and v? = (v3,12, v3), respectively. The state transition equations are given by

X1 :xt+uz_2U, “rU[z,
Vg =220, v=1,2t=0,1,2.
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The cost functions are given by

Gs(x3,3) = 4x3 + 3y; + 23,
85(x3,73) = x5+ 24 — 10)3,
g5(x3,03) = 203+ 3)3
and
G, (X0 v, g, v,) = (u)* + (U})2 - (Uf)2 + 2ux, + X2,
g (%, 0,) = —15u, 4+ (v — 1)° = 2010% + ()7,
S (X, g, 0) = 2u0” + (0 + 1) + (02 4 1)
for t =0,1,2. The initial states are xo = 1, y} =1, »2 = 1 and the admissible decisions are unrestricted, i.e.,

m(x;) =R, H!(x;,y",u;) = R and IT*(x,,y!,u,) = R for t =0,1,2.
Let us employ Algorithm 3.2 to solve the above example. Let

Volxs,v3) = 4xs + 3p3 + 207,
f/:)(xaa)%) =x3 + 25 — 1053,
Volxs,y3) = 263 + 33,
At the first step, the following problem, which corresponds to (3.8) with ¢ = 2, is considered:
min 402 +ur = 20y +03) + 3(0y + 203) + 2(y3 + 203) + G
subject to vy € argmin{(x, + u» — 205 + v3) + 2(y; + 205) — 10(y3 + 203) + &>},
v; € argmin{2(x; + up — 20y + v3) + 3(y; + 203) + &5 }-

The unique Nash equilibrium for the lower level problem is given by (v},v3) = (—(5 + u2), —(5 + w2)).
Accordingly, the solution is computed as u, = 1 —x,, v} = 13, v3 = —5 — u,. Furthermore, we have

(%2, 5, u2) = x2 4 25 — 10¥3 + 5uy + 96,
X252, I/Iz) - 2)62 + 3y§ + 12 + 41,{2,
X2,9,) = 6x3 + 3p) + 233 — 31,

X2,¥,) = 101 — 4x, + 2yé — lOy%,

=
~ —L 3 - —:%
= = =

X2,¥,) = —2x3 + 33 + 16.
Then, the following problem, which corresponds to (3.8) with ¢ = 1, is considered:

min 6x1 + 6u; + 3y} — 6v] + 2y7 + 1007 — 31 + G,
uy
subject to v} € argmin{101 — 4x, + 2y} — 10y} — duy + 120 — 240} + g} },
vy € argmin{—2(x; + uy — 20} +v7) + 30 + 207) + 16 + g1 }.

The unique Nash equilibrium for the lower level problem is given by (v}, v}) = (—8 — u;, —3 — u;). Conse-

quently, the solution is computed as u; = —6 —x;, v} = —5+ v}, v} = =3 —u;. Moreover, we have
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V(e ) = 119 — dxy + 291 — 10y — 5w,
f/z(xhypul) = —2x; + 2uy + 3y} + 25,
Vg(xl,)ﬁ) = —6x; + 3y} + ny +6,
V3, 0) = 149 +x1 + 291 — 1057,
V;(xbyl) = —4x; + 3y; + 13

The final step is to consider the following problem, which corresponds to (3.8) with ¢ = 0:

min —6x0 + 3y + 2% — 6uy + 18v) — 20 + 6+ Gy

uo
subject to vy € argmin{149 +xo + 2y, — 10y + uo + 2vy — 190 + o},
vg € argmin{13 — 4xo — duy + 8vj + 205 + 3y + g5 }-

The unique Nash equilibrium for the lower level problem is given by (v}, v3) = (—up — 2, —up — 2).

Therefore, the solution is computed as uy = —xo + 11, v} = v}, v} = —ug — 2. Moreover, we have

X0, Yg: to) = 188 +x0 + 2y — 105 + Suo,
X(),yo,u(]) =-5- 4X() - 141/{0 + 3)/37
X0, ¥9) = —6x0 + 3y} 4+ 202 +x2 — (xo — 11)7 — 26,

x07y0) 7243*4}604‘2}70 loy(z)a

—~ o~ o~~~

/75 (x0,7p) = —159 + 10x0 + 3y7.

Thus, the optimal decisions are (ug, v}, v3) = (10,—12,—12), (uy,v},v?) = (=29,21,26), (ua,v},v3) =
(23,28, —28), with the corresponding states (xi,y},»}) = (23,23, -23), (xz,yz,yz) (—22,19,29) and
(x3,)3,33) = (29, —37,—27). The optimal values to the leader and the two followers are —126 and 231,
—146, respectively.

4. Concluding remarks

A backward dynamic programming algorithm for DBOP under feedback information structure is put
forward in Section 2. It is further extended to the case of dependent followers in Section 3. Since various
decision-making problems can be modelled as discrete time dynamic Stackelberg games, the results ob-
tained in this paper are expected to be useful in practice. Nevertheless, we have to point out some limits
of the dynamic programming approach. As is well known, the major difficulty in dynamic programming
algorithms consists in the curse of dimensionality. Also, the proposed dynamic programming algorithms
may not be applied to the case where the state transition equations of a follower depend on other followers’
decision. Another difficulty lies in the fact that, in practice, it is not easy to find a global optimal solution to
each subproblem. Moreover, in Algorithms 2.2 and 3.2, we assume that there exists a unique solution for
the lower level problem at each stage. If there exist nonunique responses of the followers, the problem will
become intractable. Therefore, the practical applicability of the proposed approach may be somewhat lim-
ited. It is an interesting and important subject to develop efficient algorithms for solving more general
DBOPs.
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