
1

Genetic Algorithms with Automatic Accelerated
Termination

Abdel-Rahman Hedar, Bun Theang Ong, and Masao Fukushima

Abstract

The standard versions of Evolutionary Algorithms (EAs) have two main drawbacks: unlearned termination
criteria and slow convergence. Although several attempts have been made to modify the original versions of
Evolutionary Algorithms (EAs), only very few of them have considered the issue of their termination criteria. In
general, EAs are not learned with automatic termination criteria, and they cannot decide when or where they can
terminate. On the other hand, there are several successful modifications of EAs to overcome their slow convergence.
One of the most effective modifications is Memetic Algorithms. In this paper, we modify genetic algorithm (GA),
as an example of EAs, with new termination criteria and acceleration elements. The proposed method is called GA
with Automatic Accelerated Termination (G3AT). In the G3AT method, Gene Matrix (GM) is constructed to equip
the search process with a self-check to judge how much exploration has been done. Moreover, a special mutation
operation called “Mutagenesis” is defined to achieve more efficient and faster exploration and exploitation processes.
The computational experiments show the efficiency of the G3AT method, especially the proposed termination
criteria.

Keywords—Genetic Algorithms, Evolutionary Algorithms Termination Criteria, Mutagenesis, Global optimiza-
tion,

I. INTRODUCTION

Evolutionary Algorithms (EAs) constitute one of the main tools in the computational intelligence
area [4], [17]. Developing practical versions of EAs is highly needed to confront the rapid growth of
many applications in science, engineering and economics [1], [17]. Nowadays, there is a great interest in
improving the evolutionary operators which go further than modifying their genetics to use the estimation
of distribution algorithms in generating the offspring [20], [23]. However, EAs still have no automatic
termination criteria. Actually, EAs cannot decide when or where they can terminate and usually a user
should prespecify a maximum number of generations or function evaluations as termination criteria. The
following termination criteria have been widely used in numerical experiments of the recent EA literature.

• Maximum number of generations or function evaluations [18], [20], [22], [28], [29], [31], [32], [34].
• Reaching very close to the known global minima [29], [30], [33], [9].
• Maximum number of consecutive generations without improvement [21].

It is worthwhile to note that the test suites for the methods used in these references are unconstrained test
problems with known minima. The above-mentioned measures for termination are generally not applicable
in many real-world problems. There are only a few recent works on termination criteria for EAs [5], [15].
In [5], an empirical study is conducted to detect a maximum number of generations using the problem
characteristics. In [15], 8 termination criteria have been studied with an interesting idea of using clustering
techniques to examine the distribution of individuals in the search space at a given generation. In general,
the termination criteria for EAs can be classified as follows:

Abdel-Rahman Hedar is with the Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University,
Kyoto 606-8501, JAPAN (email: hedar@amp.i.kyoto-u.ac.jp). He is also affiliated with the Department of Computer Science, Faculty of
Computer and Information Sciences, Assiut University, EGYPT (email: hedar@aun.edu.eg).

Masao Fukushima is with the Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto
606-8501, JAPAN (phone: +81-75-753-5519; fax: +81-75-753-4756; email: fuku@amp.i.kyoto-u.ac.jp).

This work has been done while Bun Theang Ong was with the Department of Applied Mathematics and Physics, Graduate School of
Informatics, Kyoto University, Kyoto 606-8501, JAPAN.

2

TABLE I

EAS TERMINATION CRITERIA

Criterion Measures Possible Disadvantages
TFit Fitness Function Convergence Premature Convergence
TPop Population Convergence High Costs
TBud Max No. of Computational Budget User Defined
TSFB Search Feedback Complexity

• TFit Criterion uses convergence measures of best fitness function values over generations.
• TPop Criterion uses convergence measures of the population over generations.
• TBud Criterion uses maximum numbers of computational budget like the number of generations or

function evaluations.
• TSFB Criterion uses search feedback measures to check the progress of exploration and exploitation

processes.
These termination criteria may face some difficulties as summarized in Table I. EAs can easily be

trapped in local minima if only TFit is applied for termination, especially if the algorithm could fast
reach a deep local minimum. Using TPop for termination is generally improper since making the whole
population or a part of it converging is not cheap. In addition, this is not generally needed, and reaching
global minima with one individual is enough. Invoking TBud is problem-dependent and a user should have
prior information about the test problem. Finally, although using TSFB seems efficient, it may face the curse
of dimensionality. Moreover, saving and checking huge historical search information face a complexity
problem.

An intelligent search method should perform wide exploration with deep exploitation. Moreover, it
should also have its strategies to check the progress of its main processes; exploration and exploitation. This
can equip the search method with automatic termination criteria. This paper introduces a new automatic
TSFB termination criterion with low complexity structure. Specifically, a new version of Genetic Algorithms
(GAs) called Genetic Algorithm with Automatic Accelerated Termination (G3AT) is proposed. In the G3AT
method, the standard GA is equipped with automatic termination criteria and new accelerating elements
in order to achieve a better performance of GAs.

Our goal is to construct an intelligent method which seeks optimal or near-optimal solutions of the
nonconvex optimization problem:

min
x∈X

f(x), (P)

where f is a real-valued function defined on the search space X ⊆ Rn with variables x ∈ X . Several
versions of EAs have been proposed to deal with this problem, see [8], [10], [20] and reference therein.
This problem has also been considered by other heuristics than EAs, see [11], [12] and references therein.
Many applications in different areas of computer science, engineering, and economics can be expressed
or reformulated as Problem (P) [1], [6].

The G3AT method is composed by modifying GAs with some directing strategies. First, an exploration
and exploitation scheme is invoked to equip the search process with automatic accelerated termination
criteria. Specifically, a matrix called Gene Matrix (GM) is constructed to represent sub-ranges of the
possible values of each variable. The role of GM is to assist the exploration process in two different
ways. First, GM can provide the search with new diverse solutions by applying a new type of mutation
called “mutagenesis”. Mutagenesis operator alters some survival individuals in order to accelerate the
exploration and exploitation processes. In addition, GM is used to let G3AT know how far the exploration
process has gone in order to judge a termination point. The mutagenesis operation lets G3AT behave like
a so-called “Memetic Algorithm” [26] in order to achieve faster convergence [28], [29]. The numerical
results presented later show that mutagenesis is also effective and much cheaper than local search. Then,
the final intensification process can be started in order to refine the elite solutions obtained so far. The
numerical results shown later indicate that the proposed G3AT method is competitive with some other

3

versions of GAs. In the next section, we highlight the main components of the G3AT method. In Section
III, we discuss numerical experiments with the G3AT method. Finally, the conclusion makes up Section
IV.

II. GENETIC ALGORITHM WITH AUTOMATIC ACCELERATED TERMINATION

In this section, a new modified version of GAs called Genetic Algorithm with Automatic Accelerated
Termination (G3AT) is presented. Before presenting the details of G3AT, we highlight some remarks on
GAs to motivate the proposed G3AT.

The standard GA selection mechanism is a strict Darwinian selection in which all parents are discarded
unless they are good. In general, this is not an optimal selection mechanism since some promising solutions
may be lost if all such parents are discarded. On the other hand, there is an elite selection mechanism in
which the best individuals out of the parents and offspring can only survive to the next generation. We
think this is also not an optimal selection mechanism since it may lead to immature convergence and the
diversity may be lost. Therefore, we compose a new operator called “mutagenesis” in order to alter some
survival individuals which can maintain the diversity and the elitism, and accelerate the diversification
and intensification processes.

Termination criteria are the main drawback EAs in general. They are not equipped with automatic
termination criteria. Actually, EAs may obtain an optimal or near-optimal solution in an early stage of the
search but they are not learned enough to judge whether they can terminate. To counter this weakness,
G3AT is built with termination measures which can check the progress of the exploration process through
successive generations. Then, an exploitation process starts to refine the best candidates obtained so far
in order to achieve faster convergence.

In designing G3AT, we consider the above-mentioned remarks. The standard GA is modified with the
below-mentioned components to compose the G3AT method.

A. Gene Matrix and Termination
Each individual x in the search space consists of n variables or genes since G3AT uses the real-coding

representation of individuals. The range of each gene is divided into m sub-ranges in order to check the
diversity of gene values. The Gene Matrix GM is initialized to be the n×m zero matrix in which each
entry of the i-th row refers to a sub-range of the i-th gene. While the search is processing, the entries of
GM are updated if new values for genes are generated within the corresponding sub-ranges. After having
a GM full, i.e., with no zero entry, the search is learned that an advanced exploration process has been
achieved. Therefore, GM is used to equip the search process with practical termination criteria. Moreover,
GM assists in providing the search with diverse solutions as we will show shortly. We consider two types
of GM as follows.

1) Simple Gene Matrix (GMS): GMS does not take into account the number of genes lying inside
each sub-range. Indeed, during the search, G3AT looks for the value of the considered gene and extracts
the number associated with the sub-range, say v ∈ {1, . . . , m}, where this value lies. Let xi be the
representation of the i-th gene, i = 1, . . . , n. Once a gene gets a value corresponding to a non-explored
sub-range, the GM is updated by flipping the zero into one in the corresponding (i, v) entry.

Figure 1 shows an example of GMS in two dimensions, i.e., n = 2. In this figure, the range of each
gene is divided into ten sub-ranges. We can see that for the first gene x1, no individual has been generated
inside the sub-ranges 1, 7 and 10. Consequently, GMS’s values in the (1, 1), (1, 7) and (1, 10) entries are
still equal to zero. For the second gene x2, only the first and the last sub-ranges are still unvisited, hence
GMS’s values in entries (2, 1) and (2, 10) are null.

2) Advanced Gene Matrix (GMA
α): GMA

α comes along with a ratio α predefined by the user. Unlike
GMS , the GMA

α is not immediately updated unless the ratio of the number of individuals that have been
generated inside a sub-range so far and m (the total number of gene sub-ranges) exceeds or equals α.
Let us note that the counter keeping tracks of the visited sub-ranges is not reinitialized at every iteration.

4

Search Space

GMA
0.2 =

„
0 1 0 1 1 1 0 1 1 0
0 0 0 1 1 0 1 1 0 0

«

Gene Matrices

x1

x2

GMS =

„
0 1 1 1 1 1 0 1 1 0
0 1 1 1 1 1 1 1 1 0

«

Fig. 1. An example of the Gene Matrix in R2.

An example of GMA
α with α = 0.2 in two dimensions can be found in Figure 1. Like GMS , no individual

has been generated inside the sub-ranges 1, 7 and 10 for the gene x1. However, unlike GMS entry (1, 3)
is equal to 0 in GMA

0.2 since there is only one individual lying inside the third sub-range and 1 divided by
10 (the number of sub-ranges) is less than α. For the same reason, x2 has six zero-entries corresponding
to six sub-ranges in which the number of generated individuals divided by m is less than α. This example
refers to the first generation of individuals. In a succeeding generation, if one or more individuals are
generated inside the third sub-range for x1 for example, then entry (1, 3) will be set equal to one.

B. Artificial Improvement
After computing all children in each generation, G3AT may give a chance to some characteristic

children to improve themselves by modifying their genes. This is done by using a more artificial mutation
operation called “mutagenesis”. Specifically, two different types of mutagenesis operation are defined; the
gene matrix mutagenesis (GM-Mutagenesis) and the best child inspiration mutagenesis (BCI-Mutagenesis).

1) GM-Mutagenesis: In order to accelerate the exploration process, GM-Mutagenesis is used to alter
N1 from the Nw worst individuals selected for the next generation. Specifically, a zero-position in GM
is randomly chosen, say the position (i, j), i.e., the variable xi has not yet taken any value in the j-th
partition of its range. Then a random value for xi is chosen within this partition to alter one of the chosen
individuals for mutagenesis. The formal procedure for GM-Mutagenesis is given as follows.

Procedure 2.1: GM−Mutagenesis(x, GM)

1. If GM is full, then return; otherwise, go to Step 2.
2. Choose a zero-position (i, j) in GM randomly.
3. Update x by setting xi = li +(j− r)ui−li

m
, where r is a random number from (0, 1), and li, ui

are the lower and upper bounds of the variable xi, respectively.
4. Update GM and return.

2) BCI-Mutagenesis: N2 individuals from the Nw worst children are modified by considering the best
child’s gene values in the children pool. For each of the N2 worst children, one gene from the best child
is randomly chosen and copied to the same position of the considered bad child as stated formally in the
following procedure.

Procedure 2.2: BCI−Mutagenesis(x, xBest)

1. Choose a random gene position i from {1, 2, . . . , n}.
2. Alter x by setting xi := xBest

i , and return.

5

Parents Children

s = (0, 0, 1, 0, 1)

s̄ = (1, 1, 0, 1, 0)

p1

p2

c1

c2

Fig. 2. An example of the crossover operation.

C. Parent Selection
The parent selection mechanism first produces an intermediate population, say P ′ from the initial

population P : P ′ ⊆ P as in the canonical GA. For each generation, P ′ has the same size as P but an
individual can be present in P ′ more than once. The individuals in P are ranked with their fitness function
values based on the linear ranking selection mechanism [2], [10]. Indeed, individuals in P ′ are copies
of individuals in P depending on their fitness ranking: the higher fitness an individual has, the more the
probability that it will be copied is. This process is repeated until P ′ is full while an already chosen
individual is not removed from P .

D. Crossover
The crossover operation has an exploration tendency, and therefore it is not applied to all parents.

First, for each individual in the intermediate population P ′, the crossover operation chooses a random
number from the interval (0, 1). If the chosen number is less than the crossover probability pc ∈ (0, 1),
the individual is added to the parent pool. After that, two parents from the parent pool are randomly
selected and mated to produce two children c1 and c2, which are then placed in the children pool. These
procedures are repeated until all parents are mated. A recombined child is calculated to have ρ (ρ ≤ n)
partitions. Both parents genotypes are cut in ρ partitions, and the randomly chosen parts are exchanged
to create two children. Let us note that a parent is selected only once, and if the total number of parents
inside the parent pool is uneven, then the unfortunate last parent added into the pool is not considered
for the mating procedure. As an example, Figure 2 shows two parents p1 and p2 partitioned into five
partitions at same positions (after the second, third, fourth and sixth genes). Then, a recombined child
c1 is generated to inherit partitions from the two parents according to the random sequence of zeros and
ones (0, 0, 1, 0, 1) meaning that its first, second and fourth partitions will be inherited from p1 and third
and fifth partitions from p2. The other recombined child c2’s partition sequence is the complementary
of c1’s sequence, namely (1, 1, 0, 1, 0). The following procedure describes the G3AT crossover operation
precisely.

Procedure 2.3: Crossover(p1, p2, c1, c2)

1. Choose an integer ρ (2 ≤ ρ ≤ n) randomly.
2. Partition each parent into ρ partitions at the same positions, i.e. p1 = [X0

1 X0
2 . . . X0

ρ] and
p2 = [X1

1 X1
2 . . . X1

ρ].
3. Choose randomly a sequence of 0 and 1, and let s = {o1, o2, . . . , oρ}, where oi ∈ {0, 1},

i = 1, . . . , ρ.
4. Calculate s̄ = {ō1, ō2, . . . , ōρ}, where ōi is the complementary of oi for each i.
5. Calculate the recombined children c1 = [Xo1

1 Xo2
2 . . . X

oρ
ρ] and c2 = [X ō1

1 X ō2
2 . . . X

ōρ
ρ] and

return.
Actually, this type of crossover is chosen to support the G3AT exploration process. Specifically, there

is no information related to different sub-ranges of different variables saved in GM in order to escape
from the complexity of high dimensional problems. Therefore, there is a possibility of having misguided
termination of exploration process as in the example shown in Figure 3(a), where the GM is already

6

x1

x2

GMS =

„
1 1
1 1

« x1

x2

∗
∗

“ ∗ ” = a recombined child

(a) (b)

Fig. 3. The role of crossover operation and GM.

full although genes x1 and x2 have not their search spaces entirely covered. However, invoking such a
crossover operation as in Procedure 2.3 can easily overcome such a drawback as shown in Figure 3(b).
Moreover, the numerical simulations presented in Section III show that the G3AT can explore the search
space widely.

E. Mutation
The mutation operator uses information contained in the Gene Matrix. For each individual in the

intermediate population P ′ and for each gene, a random number from the interval (0, 1) is associated.
If the associated number is less than the mutation probability pm, then the individual is copied to the
intermediate pool IPM . The number of times the associated numbers are less than the mutation probability
pm is counted, and let numm denote this number. Afterward the mutation operation makes sure that the
total number numm of genes to be mutated does not exceed the number of zeros in the GM, denoted
numzeros. Otherwise the number of genes to be mutated is reduced to numzeros. Finally, a zero from GM
is randomly selected, say in the position (i, j), and a randomly chosen individual from IPM has its gene
xi modified by a new value lying inside the j-th partition of its range. The formal procedure for mutation
is analogous to Procedure 2.1.

Procedure 2.4: Mutation(x, GM)

1. If GM is full, then return; otherwise, go to Step 2.
2. Choose a zero-position (i, j) in GM randomly.
3. Update x by setting xi = li +(j− r)ui−li

m
, where r is a random number from (0, 1), and li, ui

are the lower and upper bounds of the variable xi, respectively.
4. Update GM and return.

F. G3AT Formal Algorithm
The formal detailed description of G3AT is given in the following algorithm.
Algorithm 2.5: G3AT Algorithm

1. Initialization. Set values of m, µ, η, Itmax, and (li, ui), for i = 1, . . . , n. Set the crossover and
mutation probabilities pc ∈ (0, 1) and pm ∈ (0, 1), respectively. Set the generation counter
t := 1. Initialize GM as the n×m zero matrix, and generate an initial population P0 of size
µ.

2. Parent Selection. Evaluate the fitness function F of all individuals in Pt. Select an interme-
diate population P ′

t from the current population Pt.
3. Crossover. Associate a random number from (0, 1) with each individual in P ′

t and add this
individual to the parent pool SPt if the associated number is less than pc. Repeat the following
Steps 3.1 and 3.2 until all parents in SPt are mated:

7

Generate P0

Parents Selection

Crossover

Mutation

Local Search

Generate P0

Parents Selection

Crossover

Mutation

Termination

Termination

(a) (b)

Intensification

Intensification

Survivor Selection

Survivor Selection

Mutagenesis

G3ATL G3ATM

Yes

No

No

Yes

Fig. 4. G3AT Flowcharts.

3.1. Choose two parents p1 and p2 from SPt. Mate p1 and p2 using Procedure 2.3 to reproduce
children c1 and c2.

3.2. Update the children pool SCt by SCt := SCt ∪ {c1, c2} and update SPt by SPt := SPt \
{p1, p2}.

4. Mutation. Associate a random number from (0, 1) with each gene in each individual in P ′
t .

Count the number numm of genes whose associated number is less than pm and the number
numzeros of zero elements in GM. If numm ≥ numzeros then set numm := numzeros.
Mutate numm individuals among those which have an associated number less than pm by
applying Procedure 2.4 and add the mutated individual to the children pool SCt.

5. Artificial Improvement (Local Search). Apply a local search method to improve the best
child (if exists).

6. Stopping Condition. If η generations have passed after getting a full GM, then go to Step
9. Otherwise, go to Step 7.

7. Survivor Selection. Evaluate the fitness function of all generated children SCt, and choose
the µ best individuals in Pt ∪ SCt for the next generation Pt+1.

8. Artificial Improvement (Mutagenesis). Apply Procedures 2.1 and 2.2 to alter the Nw worst
individuals in Pt+1, set t := t + 1, and go to Step 2.

9. Intensification. Apply a local search method starting from each solution from the Nelite elite
ones obtained in the previous search stage.

There are two main versions of Algorithm 2.5 as in the flowcharts shown in Figure 4. These versions
are composed by considering only one “Artificial Improvement” step (Step 5 or Step 8). G3ATL version
is composed by invoking Local Search as Artificial Improvement and discarding Step 8, while G3ATM

invokes mutagenesis and discards Step 5.

III. NUMERICAL EXPERIMENTS

Algorithm 2.5 (G3AT) was programmed in MATLAB and applied to 25 well-known test functions [32],
[21], listed in the Appendix. These test functions can be classified into two classes; functions involving a

8

TABLE II

G3AT PARAMETER SETTING

Parameter Definition Value
µ Population size min{50, 10n}
pc Crossover Probability 0.6
pm Mutation Probability 0.1
m No. of GM columns min{50n, 200}
Nwm No. of individuals used by GM-Mutagenesis 2
Nwb No. of individuals used by BCI-Mutagenesis 2
Nelite No. of starting points for intensification 1
ηmax Value for the parent selection probability computation 1.1
α Advanced Gene Matrix percentage for G3AT A

M 3/m
NMmaxIt No. of maximum iterations used by the Artificial Improvement in G3ATL 5n

small number of variables (f14-f23), and functions involving arbitrarily many variables (f1-f13, f24, f25).
For each function, the G3AT MATLAB codes were run 50 times with different initial populations. The
results are reported in Tables IV, V, VI, VII and VIII as well as in Figures 5, 6, 7 and 8. Before discussing
these results, we summarize the setting of the G3AT parameters and performance.

A. Parameter Setting
First, the search space for Problem P is defined as

[L,U] = {x ∈ Rn : li ≤ xi ≤ ui, i = 1, . . . , n} .

In Table II, we summarize all G3AT parameters with their assigned values. These values are based on
the common setting in the literature or determined through our preliminary numerical experiments.

We used the scatter search diversification generation method [19], [13] to generate the initial population
P0 of G3AT. In that method, the interval [li, ui] of each variable is divided into four sub-intervals of equal
size. New points are generated and added to P0 as follows.

1) Choose one sub-interval for each variable randomly with a probability inversely proportional to the
number of solutions previously chosen in this sub-interval.

2) Choose a random value for each variable that lies in the corresponding selected sub-interval.
We tested three mechanisms for local search in the intensification process based on two methods:

Kelley’s modification [16] of the Nelder-Mead (NM) method [27], and a MATLAB function called
“fminunc.m”. These mechanisms are

1) method1: to apply 10n iterations of Kelley-NM method,
2) method2: to apply 10n iterations of MATLAB fminunc.m function, and
3) method3: to apply 5n iterations of Kelley-NM method, then apply 5n iterations of MATLAB

fminunc.m function.
Five test functions shown in Table III were chosen to test these three mechanisms. One hundred

random initial points were generated in the search space of each test function. Then the three local
search mechanisms were applied to improve the generated points and the average results are reported in
Table III. The last mechanism “method3” could improve the initial values significantly, and it is better
than the other two mechanisms. Therefore, G3AT employs “method3” for the local search in Step 4 of
Algorithm 2.5. Moreover, method3 was used with a bigger number of iterations as the final intensification
method in Step 9 of Algorithm 2.5.

B. G3AT Performance
Extensive numerical experiments were carried out to examine the efficiency of G3AT and to give an idea

about how it works. First, preliminary experiments given in Figures 5, 6 and 7 show the role of exploration

9

TABLE III

RESULTS OF LOCAL SEARCH STRATEGIES

f n
f18 2
f19 3
f15 4
f2 30
f9 30

Initial Local Search Strategy
f̄ f̄method1 f̄method2 f̄method3

46118 371.3246 23.8734 13.0660
–0.9322 –2.6361 –2.8486 –3.6695
8.8e+5 1998.5 0.0120 0.0309

2.2e+20 1.2+e19 1.1e+13 340.6061
551.7739 256.0628 91.5412 193.4720

and automatic termination using GM within G3ATS
M version. In these figures, the solid vertical lines

“Full GM” refer to the generation number at which a full GM is obtained, while the dotted vertical lines
“Termination” refer to the generation number at which the exploration process terminates. The G3ATS

M

code continued running after reaching the dotted lines without applying the final intensification in order
to check the efficiency of the automatic termination. As we can see, no more significant improvement in
terms of function values can be expected after the dotted lines for all 23 test functions. Thus, we can
conclude that our automatic termination played a significant role. Even in failure runs for some difficult
test problems, genetic operators in G3ATS

M could not achieve any significant progress after the automatic
termination line as shown in Figure 7. On the other hand, letting the final intensification phase in Step
9 of Algorithm 2.5 can accelerate the convergence in the final stage instead of letting the algorithm
running for several generations without much significant improvement of the objective value as shown
in Figure 8. This figure represents the general performance of G3AT (using G3ATS

M as an example) on
functions f12, f15 and f23 by plotting the values of the objective function versus the number of function
evaluations. We can observe in this figure that the objective value decreases as the number of function
evaluations increases. This figure also highlights the efficiency of using a final intensification phase in
Step 9 of Algorithm 2.5 in order to accelerate the convergence in the final stage. The behavior in the final
intensification phase is represented in Figure 8 by dotted lines, in which a rapid decrease of the function
value during the last stage is clearly observed.

Three versions of the G3AT (G3ATL, G3ATS
M and G3ATA

M) were compared with each other. The
comparison results are reported in Tables IV and V, which contain the mean and the standard deviation
(SD) of the best solutions obtained for each function as the measure of solution qualities, and the average
number of function evaluations as the measure of solution costs. These results were obtained out of 50
runs. Moreover, t-tests [25] for solution qualities are also reported to show the significant differences
between the compared methods.

For the results in Tables IV, we can conclude that solutions obtained by G3ATL and G3ATS
M are

roughly similar. Nevertheless, we clearly see that the number of function evaluations required by G3ATL

is much larger than that required by G3ATS
M . We estimate that this relatively high cost in terms of function

evaluations required by G3ATL does not justify the slight advantage in terms of function values. Therefore,
we decided to use G3ATS

M instead of G3ATL for our further comparisons. At this stage, we may conclude
that the mutagenesis operation is as efficient as the local search but the latter is more expensive.

In order to explore sub-ranges of each gene’s search space more than once, the parameter α of GMA
α

allows G3ATA
M to revisit sub-ranges until the ratio α is achieved. For our experiments, a sub-range is

considered to be visited if it is visited at least three times. We compared these two versions of GM
methodology and the numerical results are reported in Table V. They indicate that even if G3ATA

M could
be considered more tenacious, the t-tests results show that on the 23 test functions, G3ATA

M outperformed
G3ATS

M only twice on functions f13 and f14. However, the number of function evaluations required by
G3ATA

M is relatively huge compared to that needed by G3ATS
M for all functions. Consequently, we judge

that the best version of G3AT among G3ATL, G3ATS
M and G3ATA

M is G3ATS
M .

10

TABLE IV

SOLUTION QUALITIES AND COSTS FOR G3ATL AND G3ATS
M

Solution Qualities t-test for Solution Qualities Solution Costs

f n
f1 30
f2 30
f3 30
f4 30
f5 30
f6 30
f7 30
f8 30
f9 30
f10 30
f11 30
f12 30
f13 30
f14 2
f15 4
f16 2
f17 2
f18 2
f19 3
f20 6
f21 4
f22 4
f23 4

G3ATL G3ATS
M

Mean SD
0 0
0 0
0 0
0 0
6.3e–11 2.9e–12
0 0
2.0e–4 2.1e–4
–1.0e+4 7.8e+2
0 0
8.8e–16 0
0 0
3.9e–12 2.9e–12
1.36 1.48
1.37 1.28
3.9e–4 2.6e–4
–1.03 8.5e–15
0.39 1.5e–13
3 7.4e–14
–3.86 5.5e–13
–3.27 5.7e–2
–7.14 3.27
–7.64 3.20
–7.98 3.49

Mean SD
0 0
0 0
0 0
0 0
6.4e–11 3.1e–12
0 0
2.0e–4 1.6e–4
–1.2e+4 194.04
0 0
8.8e–16 0
0 0
1.1e–11 7.7e–12
1.90 1.37
2 2.26
3.3e–4 1.3e–4
–1.03 3.8e–14
0.397887 8.8e–14
3 2.6e–13
–3.86 2.2e–14
–3.28 5.5e–2
–6.90 3.71
–7.86 3.58
–8.36 3.38

t-value Best Method

G3ATL – G3ATS
M at significance level 0.05

– –
– –
– –
– –

1.7 –
– –
– –

17.5 G3ATS
M

– –
– –
– –

–6.1 G3ATL

–1.8 –
–1.7 –
1.4 –
0 –
0 –
0 –
0 –

–0.8 –
–0.3 –
0.3 –
0.5 –

G3ATL G3ATS
M

Mean Mean
3.1e+4 1.4e+4
2.9e+4 1.1e+4
2.7e+4 1.4e+4
2.8e+4 1.2e+4
3.2e+4 1.4e+4
2.8e+4 1.1e+4
3.0e+4 1.2e+4
2.9e+4 1.3e+4
3.0e+4 1.2e+4
2.9e+4 1.2e+4
2.9e+4 1.3e+4
3.0e+4 1.3e+4
3.2e+4 2.1e+4
1.6e+3 5.5e+2
3.9e+4 2.1e+3
1.7e+3 5.9e+2
1.6e+3 5.9e+2
1.7e+3 6.1e+2
2.6e+3 1.1e+3
4.3e+3 2.5e+3
3.8e+3 2.1e+3
3.9e+3 2.1e+3
3.8e+3 2.1e+3

TABLE V

SOLUTION QUALITIES AND COSTS FOR G3ATS
M AND G3ATA

M

Solution Qualities t-test for Solution Qualities Solution Costs

f n
f1 30
f2 30
f3 30
f4 30
f5 30
f6 30
f7 30
f8 30
f9 30
f10 30
f11 30
f12 30
f13 30
f14 2
f15 4
f16 2
f17 2
f18 2
f19 3
f20 6
f21 4
f22 4
f23 4

G3ATS
M G3ATA

M

Mean SD
0 0
0 0
0 0
0 0
6.4e–11 3.1e–12
0 0
2.0e–4 1.6e–4
–1.2e+4 194.04
0 0
8.8e–16 0
0 0
1.1e–11 7.7e–12
1.90 1.37
2 2.26
3.3e–4 1.3e–4
–1.03 3.8e–14
0.397887 8.8e–14
3 2.6e–13
–3.86 2.2e–14
–3.28 5.5e–2
–6.90 3.71
–7.86 3.58
–8.36 3.38

Mean SD
0 0
0 0
0 0
0 0
6.5e–11 2.8e–12
0 0
2.1e–4 1.9e–4
–1.2e+4 1.9e–11
0 0
8.8e–16 0
0 0
2.2e–2 5.2e–2
3.2e–1 8.9e–1
1.03 1.9e–1
3.8e–4 2.4e–4
–1.03 9.0e–15
0.397887 3.6e–14
3 7.4e–14
–3.86 3.1e–14
–3.27 5.7e–2
–5.70 3.46
–8.23 3.36
–7.97 3.48

t-value Best Method

G3ATS
M – G3ATA

M at significance level 0.05

– –
– –
– –
– –

–1.6 –
– –

-0.3 –
0 –
– –
– –
– –

–2.9 G3ATS
M

6.8 G3ATA
M

3 G3ATA
M

–1.2 –
0 –
0 –
0 –
0 –

0.8 –
–1.6 –
0.5 –

–0.5 –

G3ATS
M G3ATA

M

Mean Mean
1.4e+4 2.6e+4
1.1e+4 2.3e+4
1.4e+4 2.6e+4
1.2e+4 2.4e+4
1.4e+4 2.9e+4
1.1e+4 2.3e+4
1.2e+4 2.4e+4
1.3e+4 2.5e+4
1.2e+4 2.4e+4
1.2e+4 2.4e+4
1.3e+4 2.5e+4
1.3e+4 2.6e+4
2.1e+4 5.3e+4
5.5e+2 1.4e+3
2.1e+3 5.2e+3
5.9e+2 1.4e+3
5.9e+2 1.3e+3
6.1e+2 1.4e+3
1.1e+3 2.8e+3
2.5e+3 6.3e+3
2.1e+3 5.3e+3
2.1e+3 5.3e+3
2.1e+3 5.3e+3

11

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6

7
x 10

4

Generations

F
un

ct
io

n
V

al
ue

s

f
1

F
ul

l G
M

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5
x 10

12

Generations

F
un

ct
io

n
V

al
ue

s

f
2

F
ul

l G
M

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5
x 10

5

Generations

F
un

ct
io

n
V

al
ue

s

f
3

F
ul

l G
M

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

90

Generations

F
un

ct
io

n
V

al
ue

s

f
4

F
ul

l G
M

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140
0

5

10

15
x 10

5

Generations

F
un

ct
io

n
V

al
ue

s

f
5

F
ul

l G
M

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6

7
x 10

4

Generations

F
un

ct
io

n
V

al
ue

s

f
6

F
ul

l G
M

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

160

Generations

F
un

ct
io

n
V

al
ue

s

f
7

F
ul

l G
M

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140
−12000

−11000

−10000

−9000

−8000

−7000

−6000

−5000

−4000

−3000

Generations

F
un

ct
io

n
V

al
ue

s

f
8

F
ul

l G
M

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140
0

50

100

150

200

250

300

350

400

450

500

Generations

F
un

ct
io

n
V

al
ue

s

f
9

F
ul

l G
M

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140
0

5

10

15

20

25

Generations

F
un

ct
io

n
V

al
ue

s

f
10

F
ul

l G
M

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140
0

100

200

300

400

500

600

Generations

F
un

ct
io

n
V

al
ue

s

f
11

F
ul

l G
M

T
er

m
in

at
io

n

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

8

Generations

F
un

ct
io

n
V

al
ue

s

f
12

F
ul

l G
M

T
er

m
in

at
io

n

Fig. 5. The Performance of Automatic Termination f1—f12

C. G3AT Against Other GAs
The best version G3ATS

M was compared with GA MATLAB toolbox [24] and two other advanced GAs;
Orthogonal GA (OGA/Q) [21], and Hybrid Taguchi-Genetic Algorithm (HTGA) [30]. The comparison
results are reported in Tables VI, VII and VIII, which contain the mean and the standard deviation (SD)
of the best solutions obtained for each function and the average number of function evaluations. These
results were obtained out of 50 runs. The results of OGA/Q and HTGA reported in Tables VII and VIII
are taken from their original papers [21], [30]. In the tables, t-tests [25] for solution qualities are used to
show the significant differences between the compared methods.

The algorithm implemented in GA MATLAB Toolbox is a basic GA. We compared it with our best
version of G3AT using the same number of function evaluations and the same GA parameters. To refine

12

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12

14
x 10

8

Generations

F
un

ct
io

n
V

al
ue

s
f
13

F
ul

l G
M

T
er

m
in

at
io

n

0 5 10 15 20 25 30 35 40 45
0

50

100

150

200

250

300

Generations

F
un

ct
io

n
V

al
ue

s

f
14

F
ul

l G
M

T
er

m
in

at
io

n

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

Generations

F
un

ct
io

n
V

al
ue

s

f
15

F
ul

l G
M

T
er

m
in

at
io

n

0 5 10 15 20 25 30 35 40
−1.5

−1

−0.5

0

0.5

1

1.5

2

Generations

F
un

ct
io

n
V

al
ue

s

f
16

F
ul

l G
M

T
er

m
in

at
io

n

0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

7

8

9

10

Generations

F
un

ct
io

n
V

al
ue

s

f
17

F
ul

l G
M

T
er

m
in

at
io

n

0 5 10 15 20 25 30 35 40 45
20

40

60

80

100

120

140

160

180

200

220

Generations

F
un

ct
io

n
V

al
ue

s

f
18

F
ul

l G
M

T
er

m
in

at
io

n

0 10 20 30 40 50 60
−3.9

−3.85

−3.8

−3.75

−3.7

−3.65

−3.6

−3.55

−3.5

−3.45

−3.4

Generations

F
un

ct
io

n
V

al
ue

s

f
19

F
ul

l G
M

T
er

m
in

at
io

n

0 10 20 30 40 50 60 70
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

Generations

F
un

ct
io

n
V

al
ue

s

f
20

F
ul

l G
M

T
er

m
in

at
io

n

0 10 20 30 40 50 60 70
−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

Generations

F
un

ct
io

n
V

al
ue

s

f
21

F
ul

l G
M

T
er

m
in

at
io

n

0 10 20 30 40 50 60 70
−12

−10

−8

−6

−4

−2

0

Generations

F
un

ct
io

n
V

al
ue

s

f
22

F
ul

l G
M

T
er

m
in

at
io

n

0 10 20 30 40 50 60 70
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Generations

F
un

ct
io

n
V

al
ue

s

f
23

F
ul

l G
M

T
er

m
in

at
io

n

Fig. 6. The Performance of Automatic Termination f13—f23

0 10 20 30 40 50 60 70
−6

−5

−4

−3

−2

−1

0

Generations

F
un

ct
io

n
V

al
ue

s

f
21

F
ul

l G
M

T
er

m
in

at
io

n

0 10 20 30 40 50 60 70
−3

−2.5

−2

−1.5

−1

−0.5

Generations

F
un

ct
io

n
V

al
ue

s

f
22

F
ul

l G
M

T
er

m
in

at
io

n

0 10 20 30 40 50 60 70
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

Generations

F
un

ct
io

n
V

al
ue

s

f
23

F
ul

l G
M

T
er

m
in

at
io

n

Fig. 7. The Performance of Automatic Termination in Failure Runs

13

0 2000 4000 6000 8000 10000 12000 14000
10

−15

10
−10

10
−5

10
0

10
5

10
10

No. of Funtion Evaluations

F
un

ct
io

n
V

al
ue

s
f
12

0 500 1000 1500 2000 2500
10

−4

10
−3

10
−2

10
−1

10
0

No. of Funtion Evaluations

F
un

ct
io

n
V

al
ue

s

f
15

0 500 1000 1500 2000 2500
−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

No. of Funtion Evaluations

F
un

ct
io

n
V

al
ue

s

f
23

Fig. 8. The Performance of Final Intensification

TABLE VI

SOLUTION QUALITIES FOR G3ATS
M AND GA

Solution Qualities t-test for Solution Qualities

f n
f1 30
f2 30
f3 30
f4 30
f5 30
f6 30
f7 30
f8 30
f9 30
f10 30
f11 30
f12 30
f13 30
f14 2
f15 4
f16 2
f17 2
f18 2
f19 3
f20 6
f21 4
f22 4
f23 4

G3ATS
M GA

Mean SD
0(100%) 0
0(100%) 0
0(100%) 0
0(100%) 0

6.4e–11(100%) 3.1e–12
0(100%) 0

2.0e–4(100%) 1.6e–4
–1.2e+4(0%) 194.04

0(100%) 0
8.8e–16(100%) 0

0(100%) 0
1.1e–11(100%) 7.7e–12

1.90(4%) 1.37
2(74%) 2.26

3.3e–4(100%) 1.3e–4
–1.03(100%) 3.8e–14

0.397887(100%) 8.8e–14
3(100%) 2.6e–13

–3.86(100%) 2.2e–14
–3.28(70%) 6.0e–2

–6.90 (56%) 3.71
–7.86(66%) 3.58
–8.36(70%) 3.38

Mean SD
1.1e–11(100%) 4.9e–11

8.88(0%) 1.78
1.8e+4(2%) 5.1e+3

21.62(0%) 11.08
1.8e+3(0%) 2.4e+3
769.34(0%) 225.71

0.27(0%) 8.9e–2
–9.3e+3(0%) 7.1e+3

38.90(0%) 10.58
5.64(0%) 0.66

1.2e–11(100%) 1.1e–11
6.55(2%) 2.64
5.62(2%) 2.23

6.04(24%) 5.41
2.3e–3(42%) 1.8e–3
–1.03(100%) 2.3e–14

0.397887(100%) 3.1e–13
5.16(92%) 7.40

–3.86(100%) 1.5e–14
–3.26(50%) 6.0e–2
–5.19(26%) 3.13
–6.13(38%) 3.44
–5.99(36%) 3.53

t-value Best Method

G3ATS
M – GA at significance level 0.05

–1.5 –
–35.2 G3ATS

M

–24.9 G3ATS
M

–13.7 G3ATS
M

–5.3 G3ATS
M

–24.1 G3ATS
M

–21.4 G3ATS
M

80.6 G3ATS
M

–25.9 G3ATS
M

–60.4 G3ATS
M

–7.7 G3ATS
M

–17.5 G3ATS
M

–10.0 G3ATS
M

–4.8 G3ATS
M

–7.7 G3ATS
M

0 –
0 –

–2.06 G3ATS
M

0 –
0 –

–2.4 G3ATS
M

–2.4 G3ATS
M

–3.4 G3ATS
M

the best solution found by GA MATLAB Toolbox, a built-in hybrid Nelder-Mead method is used to keep
an equal level of search strategies between GA MATLAB Toolbox and G3ATS

M . The results are reported
in Table VI, which also contains the success rate of a trial judged by means of the condition

|f ∗ − f̂ | < ε, (1)

where f ∗ refers to the known exact global minimum value, f̂ refers to the best function value obtained
by the algorithm, and ε is a small positive number, which is set equal to 10−3 in our experiments.

Table VI clearly indicates that G3ATS
M outperforms the GA MATLAB Toolbox in terms of success

rates and solution qualities for all functions. This concludes that using the mutagenesis operation can help
GA to achieve better results with faster convergence.

As to the results in Tables VII and VIII, all the compared methods (G3ATS
M , HTGA and OGA/Q)

are neutral on 7 out of 14 problems in terms of solution qualities. Moreover, we observe that G3ATS
M

outperforms the other two methods on 4 problems, while HTGA and OGA/Q outperforms G3ATS
M on 3

14

TABLE VII

SOLUTION QUALITIES FOR G3ATS
M , HTGA AND OGA/Q

Solution Qualities t-test for Solution Qualities

f n
f1 30
f2 30
f3 30
f4 30
f5 100
f7 30
f8 30
f9 30
f10 30
f11 30
f12 30
f13 30
f24 100
f25 100

G3ATS
M HTGA OGA/Q

Mean SD
0 0
0 0
0 0
0 0
2.2e–010 0
2.0e–4 1.6e–4
–12155.34 194.04
0 0
8.8e–16 0
0 0
1.1e–11 7.7e–12
1.90 1.37
–93.31 1.14
–72.68 1.46

Mean SD
0 0
0 0
0 0
0 0
0.7 0
1.0e–3 0
–12569.46 0
0 0
0 0
0 0
1.0e–6 0
1.0e–4 0
–92.83 0
–78.3 0

Mean SD
0 0
0 0
0 0
0 0
0.752 0.114
6.3e–3 4.1e–4
–12569.45 6.4e–4
0 0
4.4e–16 4.0e–17
0 0
6.0e–6 1.2e–6
1.9e–4 2.6e–5
–92.83 2.6e–2
–78.3 6.3e–3

Best Method

at significance level 0.05

–
–
–
–

G3ATS
M

G3ATS
M

HTGA, OGA/Q
–
–
–

G3ATS
M

HTGA
G3ATS

M

HTGA, OGA/Q

TABLE VIII

SOLUTION COSTS FOR G3ATS
M , HTGA AND OGA/Q

f n
f1 30
f2 30
f3 30
f4 30
f5 100
f7 30
f8 30
f9 30
f10 30
f11 30
f12 30
f13 30
f24 100
f25 100

G3ATS
M HTGA OGA/Q

1.41e+4 1.43e+4 1.13e+5
1.17e+4 1.28e+4 1.13e+5
1.40e+4 1.54e+4 1.13e+5
1.23e+4 1.46e+4 1.13e+5
3.88e+4 3.93e+4 1.68e+5
1.22e+4 1.28e+4 1.13e+5
1.35e+4 1.11e+5 3.02e+5
1.20e+4 1.51e+4 2.25e+5
1.20e+4 1.41e+4 1.12e+5
1.36e+4 1.61e+4 1.34e+5
1.38e+4 3.43e+4 1.35e+5
2.05e+4 2.06e+4 1.34e+5
4.49e+4 2.19e+5 3.03e+5
5.07e+4 2.05e+5 2.46e+5

problems, in terms of solution qualities. On the other hand, G3ATS
M outperforms the other two methods

in terms of solution costs. Actually, G3ATS
M is cheaper than HTGA and much cheaper than OGA/Q.

IV. CONCLUSIONS

This paper has showed that G3AT is robust and enables us to reach global minima or at least be very
close to them in many test problems. The use of Gene Matrix effectively assists an algorithm to achieve
wide exploration and deep exploitation before stopping the search. This indicates that our main objective
to equip evolutionary algorithms with automatic accelerated termination criteria has largely been fulfilled.
Moreover, the proposed Artificial Improvement based on the mutagenesis of Gene Matrix and Best Child
Inspiration has proved to be more efficient in our experiments than local search based on the Nelder-Mead
method. Among the three versions of G3AT, G3ATS

M is the one showing the best general performance.
Finally, the comparison results indicate that G3ATS

M undoubtedly outperforms the GA MATLAB toolbox,
and much cheaper than some advanced versions of GAs.

15

ACKNOWLEDGMENT

This work was supported in part by the Scientific Research Grant-in-Aid from Japan Society for the
Promotion of Science.

APPENDIX

A. Sphere Function (f1)
Definition: f1(x) =

∑n
i=1 x2

i .
Search space: −100 ≤ xi ≤ 100, i = 1, . . . , n
Global minimum: x∗ = (0, . . . , 0), f1(x

∗) = 0.

B. Schwefel Function (f2)
Definition: f2(x) =

∑n
i=1 |xi|+ Πn

i=1|xi|.
Search space: −10 ≤ xi ≤ 10, i = 1, . . . , n
Global minimum: x∗ = (0, . . . , 0), f2(x

∗) = 0.

C. Schwefel Function (f3)
Definition: f3(x) =

∑n
i=1(

∑i
j=1 xj)

2.
Search space: −100 ≤ xi ≤ 100, i = 1, . . . , n
Global minimum: x∗ = (0, . . . , 0), f3(x

∗) = 0.

D. Schwefel Function (f4)
Definition: f4(x) = maxi=1,...n{|xi|}.
Search space: −100 ≤ xi ≤ 100, i = 1, . . . , n
Global minimum: x∗ = (0, . . . , 0), f4(x

∗) = 0.

E. Rosenbrock Function (f5)

Definition: f5(x) =
∑n−1

i=1

[
100 (x2

i − xi+1)
2
+ (xi − 1)2

]
.

Search space: −30 ≤ xi ≤ 30, i = 1, 2, . . . , n.
Global minimum: x∗ = (1, . . . , 1), f5(x

∗) = 0.

F. Step Function (f6)
Definition: f6(x) =

∑n
i=1(bxi + 0.5c)2.

Search space: −100 ≤ xi ≤ 100, i = 1, 2, . . . , n.
Global minimum: x∗ = (0, . . . , 0), f6(x

∗) = 0.

G. Quartic Function with Noise (f7)
Definition: f7(x) =

∑n
i=1 ix4

i + random[0, 1).
Search space: −1.28 ≤ xi ≤ 1.28, i = 1, . . . , n
Global minimum: x∗ = (0, . . . , 0), f7(x

∗) = 0.

H. Schwefel Functions (f8)

Definition: f8(x) = −∑n
i=1

(
xi sin

√
|xi|

)
.

Search space: −500 ≤ xi ≤ 500, i = 1, 2, . . . , n.
Global minimum: x∗ = (420.9687, . . . , 420.9687), f8(x

∗) = −418.9829n.

16

I. Rastrigin Function (f9)
Definition: f9(x) = 10n +

∑n
i=1 (x2

i − 10 cos (2πxi)) .
Search space: −5.12 ≤ xi ≤ 5.12, i = 1, . . . , n.
Global minimum: x∗ = (0, . . . , 0), f9(x

∗) = 0.

J. Ackley Function (f10)

Definition: f10(x) = 20 + e− 20e−
1
5

√
1
n

Pn
i=1 x2

i − e
1
n

Pn
i=1 cos(2πxi).

Search space: −32 ≤ xi ≤ 32, i = 1, 2, . . . , n.
Global minimum: x∗ = (0, . . . , 0); f10(x

∗) = 0.

K. Griewank Function (f11)

Definition: f11(x) = 1
4000

∑n
i=1 x2

i −
∏n

i=1 cos
(

xi√
i

)
+ 1.

Search space: −600 ≤ xi ≤ 600, i = 1, . . . , n.
Global minimum: x∗ = (0, . . . , 0), f11(x

∗) = 0.

L. Levy Functions (f12, f13)
Definition:
f12(x) = π

n
{10 sin2(πy1) +

∑n−1
i=1

[
(yi − 1)2(1 + 10 sin2(πyi + 1))

]
+ (yn − 1)2}

+
∑n

i=1 u(xi, 10, 100, 4), yi = 1 + xi−1
4

, i = 1, . . . , n.

f13(x) = 1
10
{sin2(3πx1) +

∑n−1
i=1

[
(xi − 1)2(1 + sin2(3πxi + 1))

]
+ (xn − 1)2(1 + sin2(2πxn))

+
∑n

i=1 u(xi, 5, 100, 4),

u(xi, a, k, m) =





k(xi − a)m, xi > a;
0, −a ≤ xi ≤ a;
k(−xi − a)m, xi < a.

Search space: −50 ≤ xi ≤ 50, i = 1, . . . , n.
Global minimum: x∗ = (1, . . . , 1), f12(x

∗) = f13(x
∗) = 0.

M. Shekel Foxholes Function (f14)

Definition: f14(x) =
[

1
500

+
∑25

j=1
1

j+
P2

i=1(xi−Aij)6

]−1

,

A =

»
−32 −16 0 16 33 −32 . . . 0 16 32
−32 −32 −32 −32 −32 −16 . . . 32 32 32

–
.

Search space: −65.536 ≤ xi ≤ 65.536, i = 1, 2.
Global minimum: x∗ = (−32,−32); f14(x

∗) = 0.998.

N. Kowalik Function (f15)

Definition: f15(x) =
∑11

i=1

[
ai − x1(b2i +bix2)

b2i +bix3+x4

]2

,

a = (0.1957, 0.1947, 0.1735, 0.16, 0.0844, 0.0627, 0.0456, 0.0342, 0.0323, 0.0235, 0.0246),
b = (4, 2, 1, 1

2
, 1

4
, 1

6
, 1

8
, 1

10
, 1

12
, 1

14
, 1

16
) .

Search space: −5 ≤ xi ≤ 5, i = 1, . . . , 4.
Global minimum: x∗ ≈ (0.1928, 0.1908, 0.1231, 0.1358), f15(x

∗) ≈ 0.0003.75.

O. Hump Function (f16)
Definition: f16(x) = 4x2

1 − 2.1x4
1 + 1

3
x6

1 + x1x2 − 4x2
2 + 4x4

2.
Search space: −5 ≤ xi ≤ 5, i = 1, 2.
Global minima: x∗ = (0.0898,−0.7126), (−0.0898, 0.7126); f16(x

∗) = 0.

17

P. Branin RCOS Function (f17)
Definition: f17(x) = (x2 − 5

4π2 x
2
1 + 5

π
x1 − 6)2 + 10(1− 1

8π
) cos(x1) + 10.

Search space: −5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15.
Global minima: x∗ = (−π, 12.275), (π, 2.275), (9.42478, 2.475); f17(x

∗) = 0.397887.

Q. Goldstein & Price Function (f18)
Definition: f18(x) = (1 + (x1 + x2 + 1)2(19− 14x1 + 13x2

1 − 14x2 + 6x1x2 + 3x2
2))

∗ (30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 − 48x2 − 36x1x2 + 27x2
2)).

Search space: −2 ≤ xi ≤ 2, i = 1, 2.
Global minimum: x∗ = (0,−1); f18(x

∗) = 3.

R. Hartmann Function (f19)

Definition: f19(x) = −∑4
i=1 αi exp

[
−∑3

j=1 Aij (xj − Pij)
2
]
,

α = [1, 1.2, 3, 3.2]T , A =




3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35


, P = 10−4




6890 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828


 .

Search space: 0 ≤ xi ≤ 1, i = 1, 2, 3.
Global minimum: x∗ = (0.114614, 0.555649, 0.852547); f19(x

∗) = −3.86278.

S. Hartmann Function (f20)

Definition: f20(x) = −∑4
i=1 αi exp

[
−∑6

j=1 Bij (xj −Qij)
2
]
,

α = [1, 1.2, 3, 3.2]T , B =




10 3 17 3.05 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14


,

Q = 10−4




1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381


.

Search space: 0 ≤ xi ≤ 1, i = 1, . . . , 6.
Global minimum: x∗ = (0.201690, 0.150011, 0.476874, 0.275332, 0.311652, 0.657300);
f20(x

∗) = −3.32237.

T. Shekel Functions (f21, f22, f23)
Definition: f21(x) = S4,5(x), f22(x) = S4,7(x), f23(x) = S4,10(x),

where S4,m(x) = −∑m
j=1

[∑4
i=1 (xi − Cij)

2 + βj

]−1
, m = 5, 7, 10,

β = 1
10

[1, 2, 2, 4, 4, 6, 3, 7, 5, 5]T , C =




4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 5.0 1.0 2.0 3.6
4.0 1.0 8.0 6.0 3.0 2.0 3.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6


.

Search space: 0 ≤ xi ≤ 10, i = 1, . . . , 4.
Global minimum: x∗ = (4, 4, 4, 4); f21(x

∗) = −10.1532, f22(x
∗) = −10.4029, f23(x

∗) = −10.5364.

18

U. Function (f24)

Definition: f24(x) = −∑n
i=1 sin(xi) sin20(

ix2
i

π
).

Search space: 0 ≤ xi ≤ π, i = 1, . . . , n.
Global minimum: f24(x

∗) = −99.2784.

V. Function (f25)
Definition: f25(x) = 1

n

∑n
i=1(x

4
i − 16x2

i + 5xi).
Search space: −5 ≤ xi ≤ 5, i = 1, . . . , n.
Global minimum: f25(x

∗) = −78.33236.

REFERENCES

[1] T. Back, D.B. Fogel and Z. Michalewicz. Handbook of Evolutionary Computation. IOP Publishing Ltd. Bristol, UK, 1997.
[2] J. E. Baker, Adaptive selection methods for genetic algorithms. In: J. J. Grefenstette (Ed.), Proceedings of the First International

Conference on Genetic Algorithms, Lawrence Erlbaum Associates, Hillsdale, MA, (1985) 101–111.
[3] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer, Berlin, 2003.
[4] A.P. Engelbrecht. Computational Intelligence: An Introduction. John Wiley & Sons, England, 2003.
[5] M.S. Giggs, H.R. Maier, G.C. Dandy and J. B. Nixon. Minimum number of generations required for convergence of genetic algorithms.

Proceedings of 2006 IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada (2006) 2580–2587.
[6] F. Glover and G.A. Kochenberger (Eds.). Handbook of Metaheursitics. Kluwer Academic Publishers, Boston, MA, 2003.
[7] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, 1989.
[8] N. Hansen. “The CMA evolution strategy: A comparing review,” in Towards a new evolutionary computation, Edited by J.A. Lozano,

P. Larraaga, I. Inza, and E. Bengoetxea (Eds.), Springer-Verlag, Berlin, 2006.
[9] N. Hansen, and S. Kern. Evaluating the CMA Evolution Strategy on Multimodal Test Functions. Proceedings of Eighth International

Conference on Parallel Problem Solving from Nature PPSN VIII, 82–291, 2004.
[10] A. Hedar, and M. Fukushima. Minimizing multimodal functions by simplex coding genetic algorithm. Optimization Methods and

Software, 18: 265–282, 2003.
[11] A. Hedar, and M. Fukushima. Heuristic pattern search and its hybridization with simulated annealing for nonlinear global optimization.

Optimization Methods and Software 19:291–308, 2004.
[12] A. Hedar, and M. Fukushima. Tabu search directed by direct search methods for nonlinear global optimization. European Journal of

Operational Research, 170:329–349, 2006.
[13] A. Hedar, and M. Fukushima. Derivative-free filter simulated annealing method for constrained continuous global optimization. Journal

of Global Optimization, 35(4):521–549, 2006.
[14] F. Herrera, M. Lozano and J.L. Verdegay, Tackling real-coded genetic algorithms: Operators and tools for behavioural analysis, Artificial

Intelligence Review, 12 (1998) 265-319.
[15] B.J. Jain, H. Pohlheim and J. Wegener. On termination criteria of evolutionary algorithms, in L. Spector, Proceedings of the Genetic

and Evolutionary Computation Conference, Morgan Kaufmann Publishers, p. 768, 2001.
[16] C. T. Kelley. Detection and remediation of stagnation in the Nelder-Mead algorithm using a sufficient decrease condition, SIAM J.

Optim., 10:43–55, 1999.
[17] A. Konar. Computational Intelligence : Principles, Techniques and Applications. Springer-Verlag, Berlin, 2005.
[18] V.K. Koumousis and C. P. Katsaras. A saw-tooth genetic algorithm combining the effects of variable popultion size and reinitialization

to enhance performance. IEEE Transactions on Evolutionary Computation, 10(1):19–28, February 2006.
[19] M. Laguna and R. Marti. Scatter Search: Methodology and Implementations in C, Kluwer Academic Publishers, Boston, 2003.
[20] C.Y. Lee and X. Yao. Evolutionary programming using the mutations based on the Lévy probability distribution. IEEE Transactions

on Evolutionary Computation, 8:1-13, 2004.
[21] Y.-W. Leung, and Y. Wang. An orthogonal genetic algorithm with quantization for numerical optimization. IEEE Transactions on

Evolutionary Computation, 5:41-53, 2001.
[22] D. Lim, Y.-S. Ong, Y. Jin and B. Sendhoff. Trusted evolutionary alorithm. Proceedings of 2006 IEEE Congress on Evolutionary

Computation, Vancouver, BC, Canada (2006) 456–463.
[23] J.A. Lozano, P. Larraaga, I. Inza, and E. Bengoetxea (Eds.). Towards a new evolutionary computation. Springer-Verlag, Berlin, 2006.
[24] MATLAB Genetic Algorithm and Direct Search Toolbox Users Guide, The MathWorks, Inc.

http://www.mathworks.com/access/helpdesk/help/toolbox/gads/
[25] D.C. Montgomery, and G.C. Runger. Applied Statistics and Probability for Engineers. Thrid Edition. John Wiley & Sons, Inc, 2003.
[26] P. Moscato. Memetic algorithms: An introduction, in New Ideas in Optimization Edited by D. Corne, M. Dorigo and F. Glover.

McGraw-Hill, London, UK, (1999).
[27] J.A. Nelder and R. Mead. A simplex method for function minimization, Comput. J., 7:308-313, 1965.
[28] Y.-S. Ong and A. Keane. Meta-Lamarckian learning in memetic alorithms. IEEE Transactions on Evolutionary Computation, 8(2):99–

110, April 2004.
[29] Y.-S. Ong, M.-H. Lim, N. Zhu and K.W. Wong. Classification of adaptive memetic algorithms: A comparative study. IEEE Transactions

on Systems, Man, and Cybernetics–Part B, 36(1):141–152, February 2006.
[30] J.-T. Tsai, T.-K. Liu and J.-H. Chou. Hybrid Taguchi-genetic algorithm for global numerical optimization. IEEE Transactions on

Evolutionary Computation, 8(2):365–377, April 2004.

19

[31] Z. Tu and Y. Lu. A robust stochastic genetic algorithm (StGA) for global numerical optimization. IEEE Transactions on Evolutionary
Computation, 8(5):456–470, October 2004.

[32] X. Yao, Y. Liu and G. Lin. Evolutionary programming made faster. IEEE Transactions on Evolutionary Computation, 3(2):82-102,
July 1999.

[33] W. Zhong, J. Liu, M. Xue and L. Jiao. A multiagent genetic algorithm for global numerical optimization. IEEE Transactions on Systems,
Man, and Cybernetics–Part B, 34(2):1128–1141, April 2004.

[34] Z. Zhou, Y.-S. Ong, P.B. Nair, A.J. Keane and K.Y. Lum. Combining global and local surrogate models to accelerate evolutionary
optimization. IEEE Transactions on Systems, Man, and Cybernetics–Part B, 37(1):66–76, January 2007.

