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Abstract. We consider an optimization reformulation approach for the generalized Nash

equilibrium problem (GNEP) that uses the regularized gap function of a quasi-variational in-

equality (QVI). The regularized gap function for QVI is in general not differentiable, but only

directionally differentiable. Moreover, a simple condition has yet to be established, under which

any stationary point of the regularized gap function solves the QVI. We tackle these issues for

the GNEP in which the shared constraints are given by linear equalities, while the individual

constraints are given by convex inequalities. First, we formulate the minimization problem

involving the regularized gap function, and show the equivalence to GNEP. Next, we establish

the differentiability of the regularized gap function and show that any stationary point of the

minimization problem solves the original GNEP under some suitable assumptions. Then, by

using a barrier technique, we propose an algorithm that sequentially solves minimization prob-

lems obtained from GNEPs with the shared equality constraints only. Further, we discuss the

case of shared inequality constraints and present an algorithm that utilizes the transformation

of the inequality constraints to equality constraints by means of slack variables. We present

some results of numerical experiments to illustrate the proposed approach.
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1 Introduction

A multi-player non-cooperative game is called the Nash equilibrium problem (NEP), if the

goal is to find a solution in which no player has any incentive to change his/her own strategy

unilaterally. The generalized Nash equilibrium problem (GNEP) is a generalization of the

NEP, in which each player’s strategy set depends on the other players’ strategies as well [1]. A

solution of the GNEP is called a generalized Nash equilibrium (GNE). The GNEP has many

applications such as electric power market models [2, 3] and river basin pollution games [4, 5, 6].

Recently, an increasing effort has been made to develop algorithms for computing GNEs [1].

Some of them are based on the well-known fact that a NEP can be reformulated as a variational

inequality (VI) if each player’s problem is a convex programming problem [7, 8, 9]. Pang and

Fukushima [3] proposed an approach for GNEP that solves a sequence of VIs corresponding to
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NEPs, which are obtained by approximating the original GNEP by means of a penalty tech-

nique. Along a similar line, Facchinei and Pang [10] proposed to use an exact penalty function.

More recently, Fukushima [11] proposed a controlled penalty method to find a particular GNE

called a restricted GNE that contains a normalized equilibrium of Rosen [12] as a special case.

Besides penalty methods, several algorithms have been proposed for GNEPs. Facchinei,

Fischer and Piccialli [13] studied Newton-type methods for finding a normalized equilibrium by

way of a VI reformulation of the GNEP with shared constraints, while von Heusinger, Kanzow

and Fukushima [14] proposed a generalized Newton method applied to a fixed point problem de-

rived from the original GNEP. Nabetani, Tseng and Fukushima [15] proposed parametrized VI

approaches to GNEP, with particular emphasis on finding GNEs as many as possible. Krawczyk

and Uryasev [6] and von Heusinger and Kanzow [16], among others, proposed Nikaido-Isoda

function-type approaches to compute GNEs.

Yet another approach is based on the link between a GNEP and a quasi-variational in-

equality (QVI). It is known that a GNEP can be reformulated as a QVI under some assump-

tions [17, 3]. The relationship between the GNEP and QVI in Hilbert space was studied by

Bensoussan [18]. Harker [17] obtained some results for problems in a finite-dimensional Eu-

clidean space. However, compared with the VI, the study of the QVI is still in its infancy, and

only a few algorithms have been proposed to solve QVIs numerically. Fukushima [19] defined

the regularized gap function for a QVI, which is an extension of the one for a VI [20], and

showed that the QVI can be solved by minimizing the regularized gap function. However,

there still remain some difficulties with this approach. Unlike the case of VI, the regularized

gap function for QVI is in general not differentiable, but only directionally differentiable [19].

Moreover, for VI, under some monotonicity assumption, it is proved that any stationary point

of the regularized gap function solves the VI [19]. However, such a simple condition for the

QVI has yet to be established.

In this paper, we focus on the GNEP in which the shared constraints are given by linear

equalities, while the individual constraints are given by convex inequalities. First, we formu-

late the minimization problem with the regularized gap function, and show the equivalence

between this minimization problem and the GNEP. Next, we establish the differentiability of

the regularized gap function and show that any stationary point of the minimization problem

solves the original GNEP under suitable assumptions. This is the main theoretical contribution

of the paper. Then, by using a barrier technique, we propose an algorithm that sequentially

solves minimization problems obtained from GNEPs with the shared equality constraints only.

Further, we discuss the case of shared inequality constraints and present an algorithm that

utilizes the transformation of inequality constraints to equality constraints by means of slack

variables. Finally, we present some results of numerical experiments to illustrate the proposed

approach.

We use the following notation throughout the paper. For vectors x, y ∈ Rn, the inner

product is denoted by 〈x, y〉 := x>y, where > denotes transposition. For a vector x ∈ Rn, the

Euclidean norm is denoted by ‖x‖ :=
√
〈x, x〉. For a transposed vector comprised of several

subvectors, we use a simplified notation (x1, x2, . . . , xN)> instead of ((x1)>, (x2)>, . . . , (xN)>)>.
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2 Generalized Nash Equilibrium Problem

Consider an N -person non-cooperative game in which each player’s strategy set depends on the

other players’ strategies. Specifically, let each player ν solve the following optimization problem

for xν with x−ν treated as exogenous:

P ν(x−ν) :
minimize

xν
θν(xν , x−ν)

subject to xν ∈ Sν(x−ν) ⊆ Rnν ,

where

x := (xν)N
ν=1 ∈ Rn, x−ν := (xν′)N

ν′=1,ν′ 6=ν ∈ Rn−ν , n :=
N∑

ν=1

nν , n−ν := n− nν .

Here, xν ∈ Rnν denotes the strategy of player ν, and x−ν ∈ Rn−ν denotes the vector formed

by the strategies of all players except player ν. The objective function θν : Rnν × Rn−ν → R of

player ν is assumed to be a differentiable convex function for any fixed x−ν . Player ν’s strategy

set Sν(x−ν) ⊆ Rnν is a convex set, and depends on the other player’s strategies. Thus, each

player’s problem is a convex programming problem.

A GNE is then defined to be a tuple x∗ := (x∗,ν)N
ν=1 such that x∗,ν is an optimal solution of

the following optimization problem for each ν = 1, . . . , N :

P ν(x∗,−ν) :
minimize

xν
θν(xν , x∗,−ν)

subject to xν ∈ Sν(x∗,−ν).
(1)

This means that, when each player ν chooses the strategy x∗,ν , no player has any incentive to

change his/her strategy unilaterally.

In particular, if each player’s strategy set does not depend on the other players’ strategies,

then a GNE reduces to the classical Nash equilibrium.

3 Reformulation of GNEP as QVI

Define the vector-valued function F : Rn → Rn and the point-to-set mapping S : Rn ⇒ Rn by

F (x) := (F ν(x))N
ν=1 :=

(∇xνθν(xν , x−ν)
)N

ν=1
∈ Rn, (2)

S(x) :=
N∏

ν=1

Sν(x−ν) ⊆ Rn.

By assumption, problem (1) is a convex programming problem for each ν. Therefore, x∗,ν is

an optimal solution of (1) if and only if x∗,ν is a stationary point of the function θν(·, x∗,−ν) on

the set S(x∗,−ν), that is, x∗,ν satisfies

x∗,ν ∈ Sν(x∗,−ν)
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and

〈∇xνθν(x∗,ν , x∗,−ν), xν − x∗,ν〉 ≥ 0, ∀xν ∈ S(x∗,−ν).

Thus, the GNEP defined in Section 2 is equivalent to finding a vector x∗ ∈ Rn such that

x∗ ∈ S(x∗) and

〈F (x∗), y − x∗〉 ≥ 0, ∀y ∈ S(x∗). (3)

This type of problem is called a quasi-variational inequality (QVI). In particular, if S(x) = Ŝ

for all x, where Ŝ is a nonempty closed convex set, then QVI (3) reduces to a variational

inequality (VI).

4 A Merit Function for QVI

Generally, a merit function of an equilibrium problem refers to a nonnegative-valued function

f such that x is a solution of the problem if and only if f(x) = 0 and x satisfies the constraints

of the problem. The equilibrium problem can be reformulated as an equivalent optimization

problem by means of a merit function. For VIs, there have been several proposals of merit

functions, such as the gap function [21] and the regularized gap function [20], and the properties

of those functions have been studied extensively.

For QVI (3), an extension of the regularized gap function is proposed by Fukushima [19].

This function, also called the regularized gap function for the QVI, is defined by

f(x) := − inf
y

{
〈F (x), y − x〉+

1

2
〈y − x,H(y − x)〉

∣∣∣∣ y ∈ S(x)

}
, (4)

where H is a symmetric positive definite matrix. Let the set X ⊆ Rn be defined by

X := {x ∈ Rn | x ∈ S(x)},

which is called the feasible set of QVI (3). Similarly to VI, for any x ∈ X, the minimization

problem on the right-hand side of (4) is a convex programming problem, and it has a unique

optimal solution for any x. We denote this optimal solution by y(x). Then the regularized gap

function f is written as

f(x) = −〈F (x), y(x)− x〉 − 1

2
〈y(x)− x,H(y(x)− x)〉.

The following result holds [19].

Theorem 4.1. For each x ∈ X, we have f(x) ≥ 0. Moreover, x solves QVI (3) if and only if

f(x) = 0 and x ∈ X.

This theorem indicates that QVI (3) can be reformulated as the following optimization problem:

Q :
minimize f(x)

subject to x ∈ X.
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That is, the function f is a merit function of QVI (3). Unfortunately, unlike the case of VI,

the regularized gap function f for QVI is in general not differentiable, but only directionally

differentiable when the function F is differentiable. Moreover, even if ∇F (x) is positive definite

at any stationary point x of problem Q, it does not imply that x solves the original QVI. In the

next section, we will explore the possibility of avoiding these difficulties with the gap function

approach for a class of GNEPs.

5 GNEP with Shared Equality Constraints and Barrier

Method

Consider the GNEP with player ν’s problem:

minimize
xν

θν(xν , x−ν)

subject to 〈aν
i , x

ν〉 = bi −
∑

ν′ 6=ν

〈aν′
i , xν′〉, i = 1, . . . , m,

hν
j (x

ν) ≤ 0, j = 1, . . . , lν .

(5)

Notice that the shared constraints are given by equalities, while the individual constraints are

given by inequalities. We denote this GNEP as P .

In the remainder of this paper, we make the following assumption:

Assumption 5.1. θν( · , x−ν) : Rnν → R is a twice continuously differentiable convex function

for any fixed x−ν ∈ Rn−ν , and hν
j : Rnν → R, j = 1, . . . , lν are twice continuously differentiable

convex functions.

We apply a barrier technique to the individual inequality constraints, thereby reformulating

the GNEP into another GNEP with the shared equality constraints only. We then develop

an optimization approach using the regularized gap function for the QVI derived from the

latter GNEP. Note that the proposed barrier method incorporates each player’s individual

constraints in the objective function by using the barrier function. This is different from the

common approach where the penalty technique is applied to the shared constraints [10, 11, 3].

By adding the barrier term associated with the individual constraints to the objective func-

tion, problem (5) is approximated by the following problem:

minimize
xν

θν(xν , x−ν)− ρ

lν∑
j=1

log(−hν
j (x

ν))

subject to 〈aν
i , x

ν〉 = bi −
∑

ν′ 6=ν

〈aν′
i , xν′〉, i = 1, . . . , m,

(6)

where ρ > 0 is a barrier parameter. Let Pρ denote the GNEP with each player’s problem given

by (6). Since problem (6) is a convex programming problem, GNEP Pρ can be reformulated as

the following QVI: Find a vector x ∈ S0(x) ∩Σ0 such that

〈F (x)− ρE(x), y − x〉 ≥ 0, ∀y ∈ S0(x), (7)
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where the function F is defined by (2), and Σ0 ⊆ Rn, E : Σ0 → Rn and S0 : Rn ⇒ Rn are

defined by

Σ0 :=
N∏

ν=1

{
xν

∣∣ hν
j (x

ν) < 0, j = 1, . . . , lν
}

,

E(x) :=

(
lν∑

j=1

∇hν
j (x

ν)

hν
j (x

ν)

)N

ν=1

, (8)

S0(x) :=
N∏

ν=1





yν

∣∣∣∣∣∣∣
〈aν

i , y
ν〉 = bi −

N∑
ν′=1
ν′ 6=ν

〈aν′
i , xν′〉, i = 1, . . . ,m





,

respectively. Then, the regularized gap function for this problem is defined by

fρ(x) := − inf

{
〈F (x)− ρE(x), y − x〉+

1

2
〈y − x,H(y − x)〉

∣∣∣∣ y ∈ S0(x)

}
. (9)

Note that the function fρ is defined only on the open set Σ0. By letting fρ(x) = +∞ ∀x 6∈ Σ0,

GNEP Pρ is reformulated as the minimization problem

Qρ :
minimize fρ(x)

subject to x ∈ X0,

where the set X0 ⊆ Rn is defined by

X0 :=

{
x

∣∣∣∣∣ bi −
N∑

ν=1

〈aν
i , x

ν〉 = 0, i = 1, . . . , m

}
.

This fact is formally stated as follows.

Theorem 5.1. For each x ∈ X0, we have fρ(x) ≥ 0. Moreover, x solves QVI (7) if and only

if fρ(x) = 0 and x ∈ X0.

Now we consider the differentiability of the function fρ. Let y(x) denote the unique solution

of the optimization problem on the right-hand side of (9).

Lemma 5.1. If x ∈ X0, then y(x) ∈ X0.

Proof. Since y(x) ∈ S0(x), for each ν = 1, . . . , N , yν(x) satisfies

〈aν
i , y

ν(x)〉 = bi −
∑

ν′ 6=ν

〈aν′
i , xν′〉, i = 1, . . . , m. (10)

Since x ∈ X0 by assumption, we have

bi −
N∑

ν=1

〈aν
i , x

ν〉 = 0, i = 1, . . . , m. (11)
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Hence, by (10) and (11), for each ν = 1, . . . , N , we obtain

〈aν
i , x

ν〉 = 〈aν
i , y

ν(x)〉, i = 1, . . . , m. (12)

Therefore, by (11) and (12), we have

0 = bi −
N∑

ν=1

〈aν
i , x

ν〉 = bi −
N∑

ν=1

〈aν
i , y

ν(x)〉, i = 1, . . . , m,

which implies y(x) ∈ X0. ¥

The following theorem shows that the function fρ is directionally differentiable in general;

moreover it is differentiable under suitable assumptions.

Theorem 5.2. The function fρ defined by (9) is directionally differentiable at every x ∈ Σ0

along any direction d ∈ Rn, and the directional derivative is given by

f ′ρ(x; d) = min
µ∈M(x)

{
〈(F (x)− ρE(x))− (∇F (x)− ρ∇E(x)−H)(y(x)− x), d〉

−
m∑

i=1

N∑
ν=1

µν
i 〈(a1

i , . . . , a
ν−1
i , 0, aν+1

i , . . . , aN
i )>, d〉

}
,

where M(x) ⊆ RNm consists of all vectors µ := ((µν
i )

m
i=1)

N
ν=1 ∈ RNm satisfying

F (x)− ρE(x) + H(y(x)− x) +
m∑

i=1

N∑
ν=1

µν
i (0, . . . , 0, a

ν
i , 0, . . . , 0)> = 0. (13)

In particular, if M(x) is a singleton, i.e.,

M(x) = {µ(x)},

then fρ is differentiable at x and the gradient of fρ at x is given by

∇fρ(x) = (F (x)− ρE(x))− (∇F (x)− ρ∇E(x)−H) (y(x)− x)

−
m∑

i=1

N∑
ν=1

µν
i (x)(a1

i , . . . , a
ν−1
i , 0, aν+1

i , . . . , aN
i )>.

Proof. The regularized gap function fρ is defined by substituting F (x) − ρE(x) for F (x) in

the definition (4) of the regularized gap function fρ. Since F (x) − ρE(x) is differentiable, the

assertion of this theorem immediately follows from [19, Theorem 3]. ¥

The next assumption ensures that the set M(x) is a singleton for any x. This assumption

seems to be reasonable. In fact, if it fails to hold, then a player’s problem (5) will become

infeasible, or very unstable even if it is feasible.
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Assumption 5.2. For each ν = 1, . . . , N , the vectors aν
i , i = 1, . . . ,m are linearly independent.

Theorem 5.3. Let Assumption 5.2 hold. Then the function fρ is differentiable at any point

x ∈ Σ0, and its gradient is given by

∇fρ(x) = −(∇F (x)− ρ∇E(x))(y(x)− x)−
m∑

i=1

N∑
ν=1

µν
i (x)ai,

where ai := (a1
i , . . . , a

N
i )> ∈ Rn.

Proof. By Assumption 5.2, the vectors aν
i , i = 1, . . . ,m are linearly independent for each

ν = 1, . . . , N . Therefore, the vectors (0, . . . , 0, aν
i , 0, . . . , 0)> ∈ Rn, i = 1, . . . , m, ν = 1, . . . , N

are linearly independent, and M(x) has only one element µ(x). Hence, by Theorem 5.2, the

function fρ is differentiable at any point x ∈ Σ0.

Moreover, by Theorem 5.2, the gradient of fρ at x is given by

∇fρ(x) = (F (x)− ρE(x))− (∇F (x)− ρ∇E(x)−H) (y(x)− x)

−
m∑

i=1

N∑
ν=1

µν
i (x)(a1

i , . . . , a
ν−1
i , 0, aν+1

i , . . . , aN
i )>. (14)

The last term on the right-hand side of (14) is rewritten as

m∑
i=1

N∑
ν=1

µν
i (x)(a1

i , . . . , a
ν−1
i , 0, aν+1

i , . . . , aN
i )>

=
m∑

i=1

N∑
ν=1

µν
i (x)(a1

i , . . . , a
ν−1
i , aν

i , a
ν+1
i , . . . , aN

i )> −
m∑

i=1

N∑
ν=1

µν
i (x)(0, . . . , 0, aν

i , 0, . . . , 0)>

=
m∑

i=1

N∑
ν=1

µν
i (x)ai + F (x)− ρE(x) + H(y(x)− x), (15)

where the last equality follows from (13). By using (15), the formula (14) can be rewritten as

∇fρ(x) = −(∇F (x)− ρ∇E(x))(y(x)− x)−
m∑

i=1

N∑
ν=1

µν
i (x)ai.

¥

The following theorem gives a condition under which any point that satisfies the first-order

optimality condition for the optimization problem Qρ is a solution of GNEP Pρ.

Theorem 5.4. Suppose Assumption 5.2 holds. Let x ∈ X0 be a stationary point of problem Qρ,

and ∇F (x)− ρ∇E(x) be positive definite. Then x is a solution of QVI (7), i.e., x is a solution

of GNEP Pρ.
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Proof. First, note that x ∈ Σ0. By Theorem 5.3, the function fρ is differentiable at the point

x under the given assumptions. Thus, when x is a stationary point of problem Qρ, by making

use of the fact that the feasible set X0 is an affine set, we have

〈∇fρ(x), y − x〉 = 0, ∀y ∈ X0. (16)

Note that 〈ai, x〉 − bi = 0 holds by x ∈ X0. Moreover, we have y(x) ∈ X0 by Lemma 5.1, i.e.,

bi − 〈ai, y(x)〉 = 0, i = 1, . . . , m.

Hence, we have

〈ai, y(x)− x〉 = 0, i = 1, . . . ,m. (17)

Thus, it follows from Theorem 5.3 together with (16) and (17) that

0 = 〈∇fρ(x), y(x)− x〉

= −〈(∇F (x)− ρ∇E(x))(y(x)− x) +
m∑

i=1

N∑
ν=1

µν
i (x)ai, y(x)− x〉

= −〈(∇F (x)− ρ∇E(x))(y(x)− x), y(x)− x〉 −
m∑

i=1

N∑
ν=1

µν
i (x)〈ai, y(x)− x〉

= −〈(∇F (x)− ρ∇E(x))(y(x)− x), y(x)− x〉. (18)

Moreover, since ∇F (x) − ρ∇E(x) is positive definite by assumption, we must have y(x) = x

from (18). Then, the definition (9) of fρ yields fρ(x) = 0, and x is a solution of QVI (7)

according to Theorem 5.1. ¥

Corollary 5.1. Suppose Assumption 5.2 holds and ∇F (x) is positive definite at any point

x ∈ X0 ∩ Σ0. Then, for any ρ > 0, a stationary point x of problem Qρ is a solution of

GNEP Pρ.

Proof. By direct calculation, it follows from the definition (8) of E(x) that

∇E(x) = Diag

[
lν∑

j=1

(
∇2hν

j (x
ν)

hν
j (x

ν)
− ∇hν

j (x
ν)∇hν

j (x
ν)>

hν
j (x

ν)2

)]N

ν=1

,

where Diag[Bν ]
N
ν=1 denotes the block diagonal matrix whose block diagonal elements are Bν , ν =

1, . . . , N . Notice that each ∇2hν
j (x

ν) is positive semidefinite since hν
j is convex. This implies

that ∇E(x) is negative semidefinite for any x ∈ Σ0, since hν
j (x

ν) < 0.

Hence, ∇F (x)−ρ∇E(x) is positive definite at any x ∈ Σ0, whenever so is∇F (x). Therefore,

Theorem 5.4 ensures that, for any ρ > 0, a stationary point of Qρ is a solution of GNEP Pρ. ¥
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6 Convergence of the Barrier Method

In the previous section, we have shown that, for every fixed ρ > 0, a solution of GNEP Pρ can

be obtained by solving the minimization problem Qρ. Here we present an algorithm for solving

GNEP P by solving problems Qρ sequentially by letting the parameter ρ tend to zero.

Algorithm 6.1. Choose a positive sequence {ρk} ⊂ R tending to zero. For each k, find a

stationary point xk of the minimization problem

Qρk
:

minimize fρk
(x)

subject to x ∈ X0.

By imposing appropriate conditions, we can show that the sequence {xk} generated by

Algorithm 6.1 converges to a solution of GNEP P .

Assumption 6.1. ∇F (x) is positive definite at any point x ∈ X0 ∩Σ0.

In view of the definition (2) of F , this assumption amounts to requiring the strict mono-

tonicity of the function F , which is also called the diagonal strict convexity1 of the ‘pseudo

gradient’ in the context of GNEP [12]. In words, this condition implies that each player’s ob-

jective function θν(xν , x−ν) is strongly convex in his/her own variable xν and depends relatively

less on the other players’ variables x−ν , which seems to be a reasonable requirement.

Theorem 6.1. Suppose that Assumptions 5.2 and 6.1 hold, and the set Σν := {xν ∈ Rnν |
hν(xν) ≤ 0} is bounded for each ν = 1, . . . , N . Let x∞ be any accumulating point of the sequence

{xk} generated by Algorithm 6.1. Suppose the following Mangasarian-Fromovotz constraint

qualification (MFCQ) holds for each ν = 1, . . . , N :

∑
j∈γν∞

λν
j∇hν

j (x
ν
∞) +

m∑
i=1

µν
i a

ν
i = 0

λν
j ≥ 0, j ∈ γν

∞
µν

i ∈ R, i = 1, . . . ,m





=⇒
{

λν
j = 0, j ∈ γν

∞

µν
i = 0, i = 1, . . . , m,

where γν
∞ := {j | hν

j (x
ν
∞) = 0} ⊆ {1, 2, . . . , lν}. Then x∞ is a solution of GNEP P .

Proof. From Corollary 5.1, xk is a solution of the following QVI: Find x ∈ S0(x) such that

〈F (x)− ρkE(x), y − x〉 ≥ 0, ∀y ∈ S0(x). (19)

Let {xk}k∈κ be a convergent subsequence whose limit is x∞. By Assumption 5.2, the linear

independence constraint qualification holds for problem Pρk
. Thus, it follows from the Karush-

Kuhn-Tucker (KKT) condition for problem (19) that for any k there exist Lagrange multipliers

1In [12], the concept of diagonal strict concavity is introduced, since each player is supposed to solve a
maximization problem.
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(
µν

k,i

)m

i=1
such that

F ν(xk)− ρk

lν∑
j=1

1

hν
j (x

ν
k)
∇hν

j (x
ν
k) +

m∑
i=1

µν
k,ia

ν
i = 0, ν = 1, . . . , N. (20)

Put λν
k,j := −ρk/h

ν
j (x

ν
k) ≥ 0, j = 1, . . . , lν , and define the vectors

φν
k :=

(
λν

k

µν
k

)
,

where λν
k :=

(
λν

k,j

)lν

j=1
and µν

k :=
(
µν

k,i

)m

i=1
. Let us show that the sequence {φν

k}k∈κ is bounded

for each ν. In fact, if {φν
k}k∈κ is unbounded, then there exists a further subsequence {φν

k}k∈κ′

such that

lim
κ′3k→∞

‖φν
k‖ = ∞.

By dividing both sides of (20) by ‖φν
k‖, we have

1

‖φν
k‖

F ν(xk) +
lν∑

j=1

λν
k,j

‖φν
k‖
∇hν

j (x
ν
k) +

m∑
i=1

µν
k,i

‖φν
k‖

aν
i = 0, ν = 1, . . . , N.

Since {λν
k,j/‖φν

k‖}k∈κ′ and {µν
k,i/‖φν

k‖}k∈κ′ are bounded, these sequences have accumulation

points λ̄ν
j and µ̄ν

i , respectively. Therefore, we have

lν∑
j=1

λ̄ν
j∇hν

j (x
ν
∞) +

m∑
i=1

µ̄ν
i a

ν
i = 0, ν = 1, . . . , N. (21)

Now notice that λ̄ν
j ≥ 0 for all j. In particular, since

lim sup
k→∞

hν
j (x

ν
k) < 0, ∀j 6∈ γν

∞,

we have λν
k,j = 0, for all k ∈ κ′ sufficient large, implying λ̄ν

j = 0 for all j 6∈ γν
∞. Thus, it follows

from (21) that
∑
j∈γν∞

λ̄ν
j∇hν

j (x
ν
∞) +

m∑
i=1

µ̄ν
i a

ν
i = 0, ν = 1, . . . , N.

However, this along with the fact that

λ̄ν
j ≥ 0, ∀j ∈ γν

∞, and

∥∥∥∥
(

λ̄ν

µ̄ν

)∥∥∥∥ = 1

contradicts the assumed MFCQ. This implies that {φν
k} is bounded, and that {λν

k} and {µν
k}

have accumulation points λν
∞ and µν

∞, respectively. Therefore, x∞ satisfies

F ν(x∞) +
lν∑

j=1

λν
∞,j∇hν

j (x
ν
∞) +

m∑
i=1

µν
i a

ν
i = 0

hν
j (x

ν
∞) ≤ 0, λν

∞,j ≥ 0, λν
∞,jh

ν
j (x

ν
∞) = 0, j = 1, . . . , lν

〈aν
i , x

ν
∞〉+

∑

ν′ 6=ν

〈aν′
i , xν′

∞〉 − bi = 0, i = 1, . . . , m





, ν = 1, . . . , N.
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This is nothing but the KKT condition for problem (3) with S(x) defined by the constraints in

problems (5). Consequently, x∞ is a solution of GNEP P . ¥

7 Extension to GNEP with Shared Inequality Constraints

The GNEP considered in the previous section assumes that each player’s shared constraints are

defined by equalities only. In practice, however, the shared constraints often contain inequal-

ities. In this section, we discuss the case of shared linear inequality constraints and present

an approach that relies on the transformation to the equality constraints by means of slack

variables.

Suppose that, for each ν, player ν’s problem is given as

minimize
xν

θν(xν , x−ν)

subject to 〈aν
i , x

ν〉 ≤ bi −
∑

ν′ 6=ν

〈aν′
i , xν′〉, i = 1, . . . , m,

hν
j (x

ν) ≤ 0, j = 1, . . . , lν .

(22)

Denote this GNEP as P̂ . Introducing slack variables sν := (sν
1, . . . , s

ν
m) as supplementary

variables for each player ν, problem (22) is rewritten as

minimize
xν ,sν

θν(xν , x−ν)

subject to 〈aν
i , x

ν〉+ sν
i = bi −

∑

ν′ 6=ν

(
〈aν′

i , xν′〉+ sν′
i

)
, i = 1, . . . , m,

hν
j (x

ν) ≤ 0, j = 1, . . . , lν ,

sν
i ≥ 0, i = 1, . . . , m.

(23)

Denote this GNEP as P̌ . The vector consisting of all slack variables is denoted by s :=

(sν)N
ν=1 ∈ RNm. The next result shows that, under some conditions, a solution of GNEP P̌ is

also a solution of GNEP P̂ .

Theorem 7.1. Let (x, s) be a solution of GNEP P̌ . If the relation

sν
i = 0 for some ν =⇒ sν

i = 0 for all ν (24)

holds for all i = 1, . . . , m, then x is a solution of GNEP P̂ .

Proof. Define the Lagrangian for problem (23) by

Lν(xν , sν , λν , µν , ην) := θν(xν , x−ν) +
m∑

i=1

µν
i

(
〈aν

i , x
ν〉+ sν

i +
∑

ν′ 6=ν

〈aν′
i , xν′〉+

∑

ν′ 6=ν

sν′
i − bi

)

+
lν∑

j=1

λν
j h

ν
j (x

ν)−
m∑

i=1

ην
i s

ν
i .

12



A solution (x, s) of GNEP P̌ satisfies the following KKT conditions for all ν:

∇xνLν(xν , sν , λν , µν , ην) = ∇xνθν(xν , x−ν) +
m∑

i=1

µν
i a

ν
i +

lν∑
j=1

λν
j∇hν

j (x
ν) = 0, (25a)

∇sνLν(xν , sν , λν , µν , ην) = µν − ην = 0, (25b)

〈aν
i , x

ν〉+ sν
i +

∑

ν′ 6=ν

〈aν′
i , xν′〉+

∑

ν′ 6=ν

sν′
i − bi = 0, i = 1, . . . ,m, (25c)

λν
j ≥ 0, λν

j h
ν
j (x

ν) = 0, hν
j (x

ν) ≤ 0, j = 1, . . . , lν , (25d)

ην
i ≥ 0, ην

i s
ν
i = 0, sν

i ≥ 0, i = 1, . . . ,m. (25e)

By the relation (24), we have for each i either (i) sν
i = 0 for all ν, or (ii) sν

i > 0 for all ν. Let

us consider these two cases separately.

(i) Suppose sν
i = 0 for all ν. By (25e), we have

ην
i ≥ 0.

Then it follows from (25b) and (25c) that

µν
i ≥ 0

and

〈aν
i , x

ν〉+
∑

ν′ 6=ν

〈aν′
i , xν′〉 − bi = 0

for all ν.

(ii) Suppose sν
i > 0 for all ν. Then, by (25e), we have

ην
i = 0.

Therefore, from (25b) and (25c), we obtain

µν
i = 0

and

〈aν
i , x

ν〉+
∑

ν′ 6=ν

〈aν′
i , xν′〉 − bi < 0

for all ν.

Hence, the following complementarity conditions hold for all i:

µν
i ≥ 0, µν

i

(
N∑

ν=1

〈aν
i , x

ν〉 − bi

)
= 0,

N∑
ν=1

〈aν
i , x

ν〉 − bi ≤ 0. (26)

Combining (25a), (25d) and (26), we have for all ν

∇xνθν(xν , x−ν) +
m∑

i=1

µν
i a

ν
i +

lν∑
j=1

λν
j∇hν

j (x
ν) = 0,

µν
i ≥ 0, µν

i

(
N∑

ν=1

〈aν
i , x

ν〉 − bi

)
= 0,

N∑
ν=1

〈aν
i , x

ν〉 − bi ≤ 0, i = 1, . . . ,m,

λν
j ≥ 0, λν

j h
ν
j (x

ν) = 0, hν
j (x

ν) ≤ 0, j = 1, . . . , lν .

13



This implies that for each ν, xν satisfies the KKT condition for problem (22) with given x−ν .

Thus, x = (xν)N
ν=1 is a solution of GNEP P̂ . ¥

By adding the barrier term associated with the individual constraints to the objective func-

tion, player ν’s problem (23) is approximated by the following problem:

minimize
xν ,sν

θν(xν , x−ν)− ρ

(
lν∑

j=1

log(−hν
j (x

ν)) +
m∑

i=1

log sν
i

)

subject to 〈aν
i , x

ν〉+ sν
i = bi −

∑

ν′ 6=ν

(
〈aν′

i , xν′〉+ sν′
i

)
, i = 1, . . . , m.

(27)

Denote this GNEP as P̌ρ. Let the function F̌ : Rn+Nm → Rn+Nm be defined by

F̌ (x, s) :=

(
F (x)

0

)
∈ Rn+Nm,

where F (x) is given by (2). Define the function G : RNm → RNm by

G(s) := ((1/sν
i )

m
i=1)

N

ν=1 .

Moreover, let the function Ě : Rn+Nm → Rn+Nm be defined by

Ě(x, s) :=

(
E(x)

G(s)

)
∈ Rn+Nm,

where E(x) is given by (8).

Since problem (27) is a convex programming problem, GNEP P̌ρ can be reformulated as

the following QVI: Find (x, s) ∈ Š0(x, s) ∩ Σ̌0 such that

〈
F̌ (x, s)− ρĚ(x, s), (y, t)− (x, s)

〉 ≥ 0, ∀(y, t) ∈ Š0(x, s), (28)

where Σ̌0 ⊆ Rn+Nm and Š0 : Rn+Nm ⇒ Rn+Nm are defined by

Σ̌0 :=
N∏

ν=1

{
(xν , sν)

∣∣ hν
j (x

ν) < 0, j = 1, . . . , lν , s
ν
i > 0, i = 1, . . . , m

}
,

Š0(x, s) :=
N∏

ν=1

{
(yν , tν)

∣∣∣∣∣ 〈a
ν
i , y

ν〉+ tνi = bi −
∑

ν′ 6=ν

〈aν′
i , xν′〉 −

∑

ν′ 6=ν

sν′
i , i = 1, . . . ,m

}
,

respectively. Then, the regularized gap function for this problem is given by

f̌ρ(x, s) := − inf

{
〈F̌ (x, s)− ρĚ(x, s), (y, t)− (x, s)〉

+
1

2
〈(y, t)− (x, s), Ȟ((y, t)− (x, s))〉

∣∣∣∣ (y, t) ∈ Š0(x, s)

}
,
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where Ȟ is a symmetric positive definite matrix. Note that the function f̌ρ is defined only on

the open set Σ̌0. By letting f̌ρ(x, s) := +∞ ∀(x, s) 6∈ Σ̌0, GNEP P̌ρ is reformulated as the

minimization problem

Q̌ρ :
minimize f̌ρ(x, s)

subject to (x, s) ∈ X̌0,

where the set X̌0 ⊆ Rn+Nm is defined by

X̌0 :=

{
(x, s)

∣∣∣∣∣ bi −
N∑

ν=1

〈aν
i , x

ν〉 −
N∑

ν=1

sν
i = 0, i = 1, . . . ,m

}
.

This fact implies that for each ρ > 0, the set of optimum solutions of problem Q̌ρ equals the

set of solutions of GNEP P̌ρ. We will then show that any stationary point for problem Q̌ρ is a

solution of GNEP P̌ρ under some conditions.

Lemma 7.1. Suppose x ∈ Σ0, s > 0 and ρ > 0. Let ∇F (x) − ρ∇E(x) be positive definite.

Then, ∇F̌ (x, s)− ρ∇Ě(x, s) is also positive definite.

Proof. By direct calculation, we have

∇G(s) = diag
((−1/(sν

i )
2
)m

i=1

)N

ν=1
,

which is a negative definite matrix. Thus, by the given assumption, for all ξ ∈ Rn and σ ∈ RNm

such that (ξ, σ) 6= (0, 0), it follows that

(ξ, σ)>
(∇F̌ (x, s)− ρ∇Ě(x, s)

)
(ξ, σ) = (ξ, σ)>

((∇F (x) 0

0 0

)
− ρ

(∇E(x) 0

0 ∇G(s)

))
(ξ, σ)

= ξ>(∇F (x)− ρ∇E(x))ξ + σ> (−ρ∇G(s)) σ

> 0

for ρ > 0. This completes the proof. ¥

Theorem 7.2. Suppose Assumption 5.2 holds. Let (x, s) ∈ X̌0 be a stationary point of prob-

lem Q̌ρ, and ∇F (x)− ρ∇E(x) be positive definite for ρ > 0. Then the point (x, s) is a solution

of QVI (28), i.e., (x, s) is a solution of GNEP P̌ρ.

Proof. By Assumption 5.2, the vectors aν
i , i = 1, . . . ,m are linearly independent for each

ν = 1, . . . , N . Therefore, the vectors ((0, . . . , 0, aν
i , 0, . . . , 0)>, eν

i ) ∈ Rn+Nm, i = 1, . . . ,m, ν =

1, . . . , N are linearly independent, where eν
i ∈ RNm denotes the unit vector whose element

corresponding to sν
i is one and the others are zero. Thus, the following set is a singleton:

M̌(x, s) :=

{
µ ∈ RNm

∣∣∣∣∣ F̌ (x, s)− ρĚ(x, s) + Ȟ((y(x, s), t(x, s))− (x, s))

+
m∑

i=1

N∑
ν=1

µν
i ((0, . . . , 0, a

ν
i , 0, . . . , 0)>, eν

i ) = 0

}
.
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That is, M̌(x, s) has only one element µ(x, s). Hence, by Theorem 5.2, the function f̌ρ is

differentiable at any point (x, s) ∈ Σ̌0.

Since ∇F (x)− ρ∇E(x) is positive definite, we have that ∇F̌ (x, s)− ρ∇Ě(x, s) is positive

definite by Lemma 7.1. Therefore, Theorem 5.4 ensures that any stationary point (x, s) of

problem Q̌ρ solves QVI (28), which means (x, s) is a solution of GNEP P̌ρ. ¥

To solve the minimization problem Q̌ρ, we may apply an SQP-type iterative method using

the gradient values of the function f̌ρ. Moreover, in the hope that condition (24) is satisfied at

the computed solution of problem Q̌ρ, we add the following correction step at every iteration

of the SQP method: For every i,

if sν
i < ε for some ν, then put sν

i :=
1

N

N∑
ν=1

sν
i for all ν. (29)

Although this modification does not change the value of the sum
∑N

ν=1 sν
i for each i, and hence

all the equality constraints

bi −
N∑

ν=1

〈aν
i , x

ν〉 −
N∑

ν=1

sν
i = 0, i = 1, . . . ,m

remain to be satisfied, it may affect the theoretical convergence property of the SQP method.

However, as far as our numerical experiments reported in the next section are concerned, the

method always generated a sequence converging to a stationary point of problem Q̌ρ.

An algorithm for finding a solution of GNEP P̂ may be stated as follows:

Algorithm 7.1. Choose a positive sequence {ρk} ⊆ R tending to zero. For each k, solve the

minimization problem Q̌ρk
, and proceed to the next step by increasing k by one.

We may expect that this algorithm yields a solution to GNEP P̂ , because the correction

step (29) used in the SQP method for solving each problem Q̌ρk
would help condition (24) in

Theorem 7.1 to hold in the limit. However, unlike Algorithm 6.1, it seems to be difficult to

establish theoretical convergence to a solution of problem P̌ satisfying condition (24) even if

this condition holds at a solution of every Q̌ρk
. Nevertheless, in our numerical experiments

to be reported in the next section, the correction step (29) used in the SQP method worked

quite successfully and solutions of GNEP P̌ satisfying condition (24) were obtained in almost

all cases.

8 Numerical Results

In this section, we report our numerical experience with Algorithm 7.1 for some examples. The

matrix Ȟ in the definition of the function f̌ρ is chosen to be the identity matrix. Algorithn 7.1

is terminated when the barrier parameter ρk becomes less than 10−15. To solve minimization

problems Q̌ρk
, we use an SQP method incorporating the correction step (29) with ε = 10−7.

All programs are coded in Matlab.
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Example 1. We consider Harker’s example [17]. In this game, there are two players who solve

the following problems:

P1(x
2) :

minimize
x1

(x1)2 + (8/3)x1x2 − 34x1

subject to 0 ≤ x1 ≤ 10,

x1 + x2 ≤ 15.

P2(x
1) :

minimize
x2

(x2)2 + (5/4)x1x2 − 24.25x2

subject to 0 ≤ x2 ≤ 10,

x1 + x2 ≤ 15.

The solution set of this GNEP is known to be

{(
5

9

)}
∪

{(
t

15− t

)∣∣∣∣ 9 ≤ t ≤ 10

}
.

We have tried various starting points and barrier parameters in implementing Algorithm 7.1,

and then observed that a generated sequence always converged to the particular GNE x =

(5, 9)>.

Example 2. We consider the three-person river basin pollution game [6]. In this game, the

problem of each player ν ∈ {1, 2, 3} is given by

P ν(x−ν) :

minimize (c1ν + c2νx
ν)xν − (

d1 − d2(x
1 + x2 + x3)

)
xν

subject to
3∑

ν=1

uνleνx
ν ≤ Kl, l = 1, 2

xν ≥ 0,

where d1 = 3.0, d2 = 0.01, Kl = 100, l = 1, 2, and the other constants are shown in Table 1.

Table 1: Problem data for the river basin pollution game.

Player ν c1ν c2ν eν uν1 uν2

1 0.10 0.01 0.50 6.5 4.583

2 0.12 0.05 0.25 5.0 6.250

3 0.15 0.01 0.75 5.5 3.750

We implemented Algorithm 7.1 by using 10000 starting points randomly generated in the

feasible set, and found many different GNEs as shown in Figure 1.

Example 3. We consider the internet switching model [22]. In this game, the problem of each
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Figure 1: GNEs of the river basin pollution game found by Algorithm 7.1.

player ν ∈ {1, . . . , N} is given by

P ν(x−ν) :

minimize θν(xν , x−ν) =
xν

B
− xν

∑N
ν=1 xν

subject to
N∑

ν=1

xν ≤ B,

xν ≥ 0.01.

We set N = 10 and B = 1. Using 100 starting points randomly generated in the set Σ0 :=

{x | ∑N
ν=1 xν < B, xν > 0.01, ν = 1, . . . , N}, we implemented Algorithm 7.1 and always

obtained the point x = (0.09, 0.09, . . . , 0.09)>, which is the unique solution of the GNEP [22].

9 Conclusion

We have proposed a gap function approach to the GNEP in which the shared constraints are

given by linear equalities, while the individual constraints are given by convex inequalities. We

apply a barrier technique to individual inequality constraints and transform each player’s prob-

lem into a problem involving the shared equality constraints only. Further, we have shown that

the proposed approach can be extended to GNEPs with shared linear inequality constraints by

means of slack variables. We have implemented the proposed sequential minimization method

on some examples and confirmed that the method can find a solution of those problems.

As mentioned in Introduction, there have been proposed several methods for solving GNEPs,

with different problem settings and different purposes, e.g., (i) computing an arbitrary GNE,

(ii) computing all or as many as GNEs, or (iii) computing a particular GNE such as a normalized

equilibrium. The method proposed in this paper can be categorized as a method of type (ii),

although the applicable class of problems is limited to those with linear shared constraints. In

this category, the only method known to the authors so far is the method proposed in [15] that

solves a parametrized family of VIs, each of which yields a GNE. By comparing the numerical
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results reported in [15] and this paper on the same examples, we may observe that the method of

[15] is able to obtain more widely distributed GNEs. However the parametrization mechanism

used in [15] is somewhat involved and the gap function approach proposed in this paper has

the advantage that it is simpler to implement in practice.
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