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Abstract. In this paper, we consider a new formulation for stochastic mathematical pro-
grams with complementarity constraints and recourse. We show that the new formulation is
equivalent to a smooth semi-infinite program that does no longer contain recourse variables.
Optimality conditions for the problem are deduced and connections among the conditions are
investigated. Then, we propose a combined Monte Carlo sampling and penalty method for solv-
ing the problem, and examine the limiting behavior of optimal solutions and stationary points
of the approximation problems.

Key words. Stochastic mathematical program with complementarity constraints, here-
and-now, recourse, semi-infinite programming, optimality conditions, Monte Carlo sampling,
penalty method.

1 Introduction

Recently, stochastic mathematical programs with equilibrium constraints (SMPECs) have been

receiving much attention in the optimization world [1,13–15,17,21,25–27]. In particular, Lin et

al. [13] introduced two kinds of SMPECs: One is the lower-level wait-and-see model, in which

the upper-level decision is made before a random event is observed, while a lower-level decision is

made after a random event is observed. The other is the here-and-now model that requires us to

make all decisions before a random event is observed. Lin and Fukushima [14,15,17] suggested a

smoothing penalty method and a regularization method, respectively, for a special class of here-

and-now problems. Shapiro and Xu [25–27] discussed the sample average approximation and
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implicit programming approaches for the lower-level wait-and-see problems. In addition, Birbil

et al. [1] considered an SMPEC in which both the objective and constraints involve expectations.

In [13], the here-and-now problem is formulated as follows:

min E[f(x, y, ω) + dT z(ω)]

s.t. g(x) ≤ 0, h(x) = 0, (1.1)

0 ≤ y ⊥ (F (x, y, ω) + z(ω)) ≥ 0,

z(ω) ≥ 0, ω ∈ Ω a.s.,

where f : <n+m × Ω → <, g : <n → <s1 , h : <n → <s2 , and F : <n+m × Ω → <m are functions,

E means expectation with respect to the random variable ω ∈ Ω, the symbol ⊥ means the two

vectors are perpendicular to each other, “a.s.” is the abbreviation for “almost surely” under the

given probability measure, z(ω) is a recourse variable, and d ∈ <m is a constant vector with

positive elements. Moreover, x denotes the upper-level decision, y represents the lower-level

decision, and both the decisions x and y need to be made at once, before ω is observed. We

suppose that all functions involved are continuous and, particularly, f and F are continuously

differentiable with respect to (x, y), g and h are continuously differentiable with respect to x.

Lin et al. [13, 15, 17] considered the case where the function F is affine and the underlying

sample space Ω is discrete and finite. In this paper, we consider a general case, i.e., F is

nonlinear and Ω is a compact subset of <l. A general strategy for SMPECs with infinitely many

samples is to discretize the problem by some kind of sampling selection methods, which means

the approximation problems are still MPECs [14]. The strategy of this paper is, in contrast, to

solve some standard nonlinear programs as approximations of the original SMPEC.

The main contributions of the paper can be stated as follows. We note that problem (1.1)

has the following difficulties:

• The problem contains recourse, which is a function of ω, and an expectation. Both of

them may cause computational difficulty in general.

• Because of the presense of complementarity constraints, problem (1.1) fails to satisfy a

standard constraint qualification at any feasible point [5].

We will get rid of the recourse variables. To this end, we first consider the following formulation

of SMPECs with recourse, which slightly differs from (1.1):

min E[f(x, y, ω) + σ‖z(ω)‖2]

s.t. g(x) ≤ 0, h(x) = 0, (1.2)

0 ≤ y ⊥ (F (x, y, ω) + z(ω)) ≥ 0,

z(ω) ≥ 0, ω ∈ Ω a.s.,
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where σ > 0 is a weight constant. We can show that problem (1.2) is equivalent to

min E[f(x, y, ω) + σ‖u(x, y, ω)‖2]

s.t. g(x) ≤ 0, h(x) = 0, y ≥ 0, (1.3)

y ◦ F (x, y, ω) ≤ 0, ω ∈ Ω a.s.,

where u : <n+m × Ω → <m is defined by

u(x, y, ω) := max{−F (x, y, ω), 0} (1.4)

and ◦ denotes the Hadamard product, i.e., y ◦F (x, y, ω) := (y1F1(x, y, ω), · · · , ymFm(x, y, ω))T .

See the appendix for a proof of the equivalence between (1.2) and (1.3). Problem (1.3) does no

longer contain recourse variables. The reasons we consider (1.2) instead of (1.1) are stated as

follows:

• Since both dT z(ω) and σ‖z(ω)‖2 serve as a penalty term for the possible violation of the

complementarity constraint 0 ≤ y ⊥ F (x, y, ω) ≥ 0, problems (1.1) and (1.2) are essentially

the same.

• The quadratic penalty σ‖z(ω)‖2 yields the equivalent problem (1.3) that has a differen-

tiable objective function, but the linear penalty dT z(ω) does not.

Note that problem (1.3) is actually a semi-infinite programming problem with a large number of

complementarity-like constraints and it also involves an expectation in the objective function.

Therefore, problem (1.3) is generally more difficult to handle than an ordinary semi-infinite

programming problem. Firstly, we discuss the optimality conditions for the problems and in-

vestigate their connections. Then, we make use of a Monte Carlo sampling method to handle

the expectation and propose a penalty technique to deal with the complementarity-like con-

straints. We also examine the limiting behavior of optimal solutions and stationary points of

the approximation problems.

The following notations are used in the paper. For any vectors a and b of the same dimension,

both max{a, b} and min{a, b} are understood to be taken componentwise. For a given function

c : <s → <s′ and a vector t ∈ <s, ∇c(t) is the transposed Jacobian of c at t and Ic(t) :=

{i | ci(t) = 0} stands for the active index set of c at t. In addition, ei denotes the unit vector

whose ith element is one.

2 Optimality Conditions

We first consider the semi-infinite programming problem (1.3). In the literature on semi-infinite

programming, it is often assumed that there are a finite number of active constraints at a solution
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(see, e.g., a survey paper [11]). However, the above assumption does not hold in problem (1.3) in

general. For example, if yi = 0 for some index i, there must be infinitely many active constraints

at the point. This indicates that problem (1.3) is more difficult to deal with than an ordinary

semi-infinite programming problem. We define the stationarity for problem (1.3) as follows.

Let (x∗, y∗) be a local optimal solution of problem (1.3) and Ω̄ be the largest subset of Ω

such that (x∗, y∗) is feasible to

g(x) ≤ 0, h(x) = 0, y ≥ 0,

y ◦ F (x, y, ω) ≤ 0, ∀ω ∈ Ω̄.

Let p denote the probability measure on Ω. It follows from the feasibility of (x∗, y∗) in (1.3) that

p(Ω \ Ω̄) = 0. This indicates that, for any integrable function ξ defined on Ω, there must hold
∫

Ω
ξ(ω) dp =

∫

Ω̄
ξ(ω) dp

and conversely, for any integrable function ξ defined on Ω̄, we can extend its definition to Ω such

that the above condition holds. For simplicity, we suppose Ω̄ = Ω in the following.

Let B be an arbitrary measurable subset of Ω̄ with null probability measure. We consider

the problem

min E[f(x, y, ω) + σ‖u(x, y, ω)‖2]

s.t. g(x) ≤ 0, h(x) = 0, y ≥ 0, (2.1)

y ◦ F (x, y, ω) ≤ 0, ∀ω ∈ Ω \B.

Since any feasible solution of problem (2.1) must be feasible to (1.3), the point (x∗, y∗) is also a

local optimal solution of problem (2.1).

We denote the feasible region of problem (2.1) by FB and, in addition, we use NFB
(x∗, y∗)

and TFB
(x∗, y∗) to stand for the normal cone and the tangent cone of the set FB at the point

(x∗, y∗), respectively. Then we have

−∇(x,y)E
[
f(x∗, y∗, ω) + σ‖u(x∗, y∗, ω)‖2

]
∈ NFB

(x∗, y∗). (2.2)

Suppose that there exists an integrable function η : Ω → [0,+∞] such that
∥∥∥∇(x,y)f(x, y, ω)− 2σ∇(x,y)F (x, y, ω)u(x, y, ω)

∥∥∥ ≤ η(ω) (2.3)

holds for any (x, y, ω). It then follows from (1.4) along with the corollary in §7-4 of [3] that

∇(x,y)E
[
f(x, y, ω) + σ‖u(x, y, ω)‖2

]
= E

[
∇(x,y)f(x, y, ω)− 2σ∇(x,y)F (x, y, ω)u(x, y, ω)

]
.
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Note thatNFB
(x∗, y∗) is the dual cone of TFB

(x∗, y∗) [22], that is,NFB
(x∗, y∗) = [TFB

(x∗, y∗)]∗.

We then have from (2.2) and the arbitrariness of B that

−E
[
∇(x,y)f(x∗, y∗, ω)− 2σ∇(x,y)F (x∗, y∗, ω)u(x∗, y∗, ω)

]
∈

⋂
B⊂Ω

p(B)=0

[
TFB

(x∗, y∗)
]∗

. (2.4)

In what follows, we denote I∗Y := {i | y∗i = 0} and Ωi := {ω ∈ Ω | Fi(x∗, y∗, ω) = 0} for each

i /∈ I∗Y . Consider the cone

CFB
(x∗, y∗) :=





(
dx
dy

)
∈ <n+m

∣∣∣∣∣∣∣∣∣∣

(∇gi(x∗))T dx ≤ 0 (i ∈ Ig(x∗));
(∇hi(x∗))T dx = 0 (i = 1, · · · , s2);
eT
i dy ≥ 0 (i ∈ I∗Y );

(∇(x,y)[y∗i Fi(x∗, y∗, ω)])T
(

dx
dy

) ≤ 0 (i ∈ I∗Y ,∀ω ∈ Ω \B);
(∇(x,y)[y∗i Fi(x∗, y∗, ω)])T

(
dx
dy

) ≤ 0 (i /∈ I∗Y ,∀ω ∈ Ωi \B),





which is known as the linearizing cone of the feasible region of problem (2.1) at the point (x∗, y∗)

and satisfies TFB
(x∗, y∗) ⊆ CFB

(x∗, y∗). Then, by the nonhomogeneous Farkas lemma for linear

semi-infinite systems [8, 12], the dual cone of CFB
(x∗, y∗) can be written as

[
CFB

(x∗, y∗)
]∗

=





(
dx
dy

)
∈ <n+m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
dx

dy

)
∈ ∑

i∈Ig(x∗)
αi

(
∇gi(x

∗)
0

)
+

s2∑
i=1

βi

(
∇hi(x

∗)
0

)
− ∑

i∈I∗Y
γi

(
0

ei

)

+
∑

i∈I∗Y
cone

{
∇(x,y)[y∗i Fi(x∗, y∗, ω)]

∣∣∣ ω ∈ Ω \B
}

+
∑

i/∈I∗Y
cone

{∇(x,y)[y∗i Fi(x∗, y∗, ω)] | ω ∈ Ωi \B
}

,

αi ≥ 0 (i ∈ Ig(x∗)), βi is free (i = 1, · · · , s2), γi ≥ 0 (i ∈ I∗Y )





,

where cone means the closed convex conical hull.

Let M+(A) denote the set of nonnegative regular Borel measures on a σ-algebra σ(A) with

A ⊆ Ω. For each ν ∈ M+(A), we let ν̃ ∈ M+(Ω) be a measure satisfying the following

conditions:

• ν̃ |σ(A) ≡ ν;

• ν̃(Ω \A) = 0;

• ∫
Ω φ(ω) dν̃ =

∫
A φ(ω) dν holds for any function φ defined on Ω and integrable with respect

to ν on A.

It then follows from Lemma 6.3 in [11] that

cone
{
∇(x,y)[y

∗
i Fi(x∗, y∗, ω)]

∣∣∣ ω ∈ Ω \B
}

=
{ ∫

Ω\B
∇(x,y)[y

∗
i Fi(x∗, y∗, ω)]dν

∣∣∣ ν ∈M+(Ω \B)
}

=
{ ∫

Ω
∇(x,y)[y

∗
i Fi(x∗, y∗, ω)]dν̃

∣∣∣ ν̃ ∈M+(Ω)
}
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for i ∈ I∗Y and

cone
{
∇(x,y)[y

∗
i Fi(x∗, y∗, ω)]

∣∣∣ ω ∈ Ωi \B
}

=
{ ∫

Ωi\B
∇(x,y)[y

∗
i Fi(x∗, y∗, ω)]dν

∣∣∣ ν ∈M+(Ωi \B)
}

=
{ ∫

Ωi

∇(x,y)[y
∗
i Fi(x∗, y∗, ω)]dν̃

∣∣∣ ν̃ ∈M+(Ωi)
}

for i /∈ I∗Y .

Recall that a measure ν is said to be absolutely continuous with respect to another measure

ς, denoted ν ¿ ς as usual, if ν(B) = 0 whenever ς(B) = 0. Suppose that the following constraint

qualification holds:
⋃

B⊂Ω
p(B)=0

CFB
(x∗, y∗) ⊆

⋃
B⊂Ω

p(B)=0

TFB
(x∗, y∗). (2.5)

It then follows that
⋂

B⊂Ω
p(B)=0

[
TFB

(x∗, y∗)
]∗
⊆

⋂
B⊂Ω

p(B)=0

[
CFB

(x∗, y∗)
]∗

.

Thus, we have from (2.4) that

−E
[
∇(x,y)f(x∗, y∗, ω)− 2σ∇(x,y)F (x∗, y∗, ω)u(x∗, y∗, ω)

]

∈
⋂

B⊂Ω
p(B)=0

[
CFB

(x∗, y∗)
]∗

=





(
dx
dy

)
∈ <n+m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
dx

dy

)
∈ ∑

i∈Ig(x∗)
αi

(
∇gi(x

∗)
0

)
+

s2∑
i=1

βi

(
∇hi(x

∗)
0

)
− ∑

i∈I∗Y
γi

(
0

ei

)

+
∑

i∈I∗Y

⋂
B⊂Ω

p(B)=0

cone
{
∇(x,y)[y∗i Fi(x∗, y∗, ω)]

∣∣∣ ω ∈ Ω \B
}

+
∑

i/∈I∗Y

⋂
B⊂Ω

p(B)=0

cone
{∇(x,y)[y∗i Fi(x∗, y∗, ω)] | ω ∈ Ωi \B

}
,

αi ≥ 0 (i ∈ Ig(x∗)), βi is free (i = 1, · · · , s2), γi ≥ 0 (i ∈ I∗Y )





=





(
dx
dy

)
∈ <n+m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
dx

dy

)
∈ ∑

i∈Ig(x∗)
αi

(
∇gi(x

∗)
0

)
+

s2∑
i=1

βi

(
∇hi(x

∗)
0

)
− ∑

i∈I∗Y
γi

(
0

ei

)

+
∑

i∈I∗Y

{∫
Ω∇(x,y)[y∗i Fi(x∗, y∗, ω)]dν̃

∣∣∣ ν̃∈M+(Ω)
ν̃¿p

}

+
∑

i/∈I∗Y

{∫
Ωi
∇(x,y)[y∗i Fi(x∗, y∗, ω)]dν̃

∣∣∣ ν̃∈M+(Ωi)
ν̃¿p

}
,

αi ≥ 0 (i ∈ Ig(x∗)), βi is free (i = 1, · · · , s2), γi ≥ 0 (i ∈ I∗Y )





.

As a result, there exist multipliers

α∗i ≥ 0, (i ∈ Ig(x∗));

β∗i is free, (i = 1, · · · , s2);

γ∗i ≥ 0, (i ∈ I∗Y );
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and nonnegative regular Borel measures

ν̃∗i ∈M+(Ω), ν̃∗i ¿ p, (i ∈ I∗Y );

ν̃∗i ∈M+(Ωi), ν̃∗i ¿ p, (i /∈ I∗Y )

such that

−E
[
∇(x,y)f(x∗, y∗, ω)− 2σ∇(x,y)F (x∗, y∗, ω)u(x∗, y∗, ω)

]

=
∑

i∈Ig(x∗)

α∗i
(
∇gi(x

∗)
0

)
+

s2∑

i=1

β∗i
(
∇hi(x

∗)
0

)
−

∑

i∈I∗Y
γ∗i

(
0

ei

)

+
∑

i∈I∗Y

∫

Ω
∇(x,y)[y

∗
i Fi(x∗, y∗, ω)]dν̃∗i +

∑

i/∈I∗Y

∫

Ωi

∇(x,y)[y
∗
i Fi(x∗, y∗, ω)]dν̃∗i .

By Theorem 7-7B (Radon-Nikodym theorem) and Exercise 7-53 in [3], there are some finite-

valued nonnegative measurable functions δ∗i , i = 1, · · · ,m, defined on Ω or Ωi such that
∫

Ω
∇(x,y)[y

∗
i Fi(x∗, y∗, ω)]dν̃∗i =

∫

Ω
∇(x,y)[y

∗
i Fi(x∗, y∗, ω)]δ∗i (ω)dp, i ∈ I∗Y

and
∫

Ωi

∇(x,y)[y
∗
i Fi(x∗, y∗, ω)]dν̃∗i =

∫

Ωi

∇(x,y)[y
∗
i Fi(x∗, y∗, ω)]δ∗i (ω)dp, i /∈ I∗Y .

For each i /∈ I∗Y , we set δ∗i (ω) := 0 for any ω ∈ Ω \ Ωi. Then, for each i = 1, · · · ,m, there holds
∫

Ωi

∇(x,y)[y
∗
i Fi(x∗, y∗, ω)]dν̃∗i = E

[
∇(x,y)[y

∗
i Fi(x∗, y∗, ω)]δ∗i (ω)

]
.

In consequence, by letting α∗i := 0 for every i /∈ Ig(x∗) and γ∗i := 0 for every i /∈ I∗Y , we obtain

the following result.

Theorem 2.1 Suppose that (x∗, y∗) is a local optimal solution of problem (1.3). Assume that

there exists an integrable function η : Ω → [0,+∞] satisfying condition (2.3) and there holds the

constraint qualification (2.5). Then, there exist some multiplier vectors α∗ ∈ <s1 , β∗ ∈ <s2 , γ∗ ∈
<m, and a multiplier function δ∗ : Ω → <m such that

0 = E[∇xf(x∗, y∗, ω)− 2σ∇xF (x∗, y∗, ω)u(x∗, y∗, ω)] (2.6)

+∇g(x∗)α∗ +∇h(x∗)β∗ + E[∇x(y∗ ◦ F (x∗, y∗, ω))δ∗(ω)],

0 = E[∇yf(x∗, y∗, ω)− 2σ∇yF (x∗, y∗, ω)u(x∗, y∗, ω)] (2.7)

− γ∗ + E[∇y(y∗ ◦ F (x∗, y∗, ω))δ∗(ω)],

0 ≤ α∗ ⊥ − g(x∗) ≥ 0, (2.8)

β∗ : free, h(x∗) = 0, (2.9)

0 ≤ γ∗ ⊥ y∗ ≥ 0, (2.10)

0 ≤ δ∗(ω) ⊥ − y∗ ◦ F (x∗, y∗, ω) ≥ 0, ω ∈ Ω a.s. (2.11)
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The above result naturally yields the following definition of stationarity for problem (1.3).

Definition 2.1 We say (x∗, y∗) is stationary to (1.3) if there exist Lagrangian multiplier vectors

α∗ ∈ <s1 , β∗ ∈ <s2 , γ∗ ∈ <m, and a Lagrangian multiplier function δ∗ : Ω → <m such that

conditions (2.6)–(2.11) hold.

Similarly, we define the strong stationarity for problem (1.2) as follows.

Definition 2.2 We say (x∗, y∗, z∗(·)) is strongly stationary to problem (1.2) if it is feasible in

(1.2) and there exist Lagrangian multiplier vectors ᾱ ∈ <s1 , β̄ ∈ <s2 , γ̄ ∈ <m, and Lagrangian

multiplier functions λ̄, µ̄ : Ω → <m such that

0 = E[∇xf(x∗, y∗, ω)] +∇g(x∗)ᾱ +∇h(x∗)β̄ − E[∇xF (x∗, y∗, ω)λ̄(ω)] (2.12)

0 = E[∇yf(x∗, y∗, ω)]− γ̄ − E[∇yF (x∗, y∗, ω)λ̄(ω)], (2.13)

0 = E[2σz∗(ω)]− E[λ̄(ω)]− E[µ̄(ω)], (2.14)

0 ≤ ᾱ ⊥ − g(x∗) ≥ 0, (2.15)

β̄ : free, h(x∗) = 0, (2.16)

γ̄i : zero if i /∈ I∗Y ; free if i /∈ I∗W ; nonnegative if i ∈ I∗Y ∩ I∗W , (2.17)

λ̄i(ω) : free if i /∈ I∗Y ; zero if i /∈ I∗W ; nonnegative if i ∈ I∗Y ∩ I∗W , ω ∈ Ω a.s., (2.18)

0 ≤ µ̄(ω) ⊥ z∗(ω) ≥ 0, ω ∈ Ω a.s. (2.19)

where I∗W := {i | Fi(x∗, y∗, ω) + z∗i (ω) = 0, ω ∈ Ω a.s.}.

This definition can obviously be regarded as a generalization of the strong stationarity in the

literature on MPEC [23]. The connections between the above concepts can be stated as follows.

Theorem 2.2 If (x∗, y∗) is a stationary point of problem (1.3), then (x∗, y∗, u(x∗, y∗, ·)) is a

strongly stationary point of problem (1.2), where u is defined by (1.4).

Proof. Let z∗(ω) := u(x∗, y∗, ω) for any ω ∈ Ω. Then (x∗, y∗, z∗(·)) is feasible to problem

(1.2) (cf. Appendix). We next show that there exist Lagrangian multiplier vectors ᾱ ∈ <s1 , β̄ ∈
<s2 , γ̄ ∈ <m, and Lagrangian multiplier functions λ̄, µ̄ : Ω → <m satisfying (2.12)–(2.19). Since

(x∗, y∗) is stationary to (1.3), there must be Lagrangian multiplier vectors α∗ ∈ <s1 , β∗ ∈
<s2 , γ∗ ∈ <m, and a Lagrangian multiplier function δ∗ : Ω → <m satisfying (2.6)–(2.11). Let

ᾱ := α∗, (2.20)

β̄ := β∗, (2.21)

γ̄ := γ∗ − E[diag(F1(x∗, y∗, ω), · · · , Fm(x∗, y∗, ω)) δ∗(ω)], (2.22)

λ̄(ω) := 2σz∗(ω)− diag(y∗1, · · · , y∗m) δ∗(ω), (2.23)

µ̄(ω) := diag(y∗1, · · · , y∗m) δ∗(ω). (2.24)
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We then have (2.14)–(2.16) immediately. On the other hand, since

∇x(y ◦ F (x, y, ω)) = ∇xF (x, y, ω)diag(y1, · · · , ym), (2.25)

∇y(y ◦ F (x, y, ω)) = ∇yF (x, y, ω)diag(y1, · · · , ym) + diag(F1(x, y, ω), · · · , Fm(x, y, ω)) (2.26)

for any (x, y) ∈ <n+m and ω ∈ Ω, conditions (2.12) and (2.13) follow from (2.6)–(2.7) and

(2.20)–(2.24).

We next show (2.17) and (2.18). Note that, from (2.11),

y∗i δ
∗
i (ω)Fi(x∗, y∗, ω) = 0, ω ∈ Ω a.s. (2.27)

holds for each i = 1, · · · ,m. Moreover, it is not difficult to show that

I∗W =
{

i
∣∣∣ E[Fi(x∗, y∗, ω) + z∗i (ω)] = 0

}
.

Suppose that i /∈ I∗Y , which means y∗i > 0. It then follows from (2.10) that γ∗i = 0.

Moreover, by (2.27), there holds δ∗i (ω)Fi(x∗, y∗, ω) = 0 for almost every ω ∈ Ω and hence

E[δ∗i (ω)Fi(x∗, y∗, ω)] = 0. Therefore, we have

γ̄i = γ∗i − E[δ∗i (ω)Fi(x∗, y∗, ω)] = 0.

Suppose that i ∈ I∗Y ∩I∗W . From the feasibility of (x∗, y∗, z∗(·)) in (1.2), we have Fi(x∗, y∗, ω) +

z∗i (ω) = 0 for almost every ω ∈ Ω. This indicates that Fi(x∗, y∗, ω) ≤ 0 for almost all ω ∈ Ω and

hence E[δ∗i (ω)Fi(x∗, y∗, ω)] ≤ 0. Since γ∗i ≥ 0 by (2.10), we have

γ̄i = γ∗i − E[δ∗i (ω)Fi(x∗, y∗, ω)] ≥ 0.

This shows (2.17). In a similar way, we can show (2.18).

Finally we show (2.19). It is obvious that µ̄(ω) ≥ 0 and z∗(ω) ≥ 0 for almost all ω ∈ Ω. Notic-

ing that µ̄i(ω)Fi(x∗, y∗, ω) = y∗i δ
∗
i (ω)Fi(x∗, y∗, ω) = 0 by (2.27) and z∗i (ω) = max{−Fi(x∗, y∗, ω), 0}

by the definition, we have µ̄i(ω)z∗i (ω) = 0 for each i and almost every ω ∈ Ω. As a result, there

must hold (2.19).

In consequence, the multipliers defined by (2.20)–(2.24) satisfy conditions (2.12)–(2.19).

Namely, (x∗, y∗, z∗(·)) is a strongly stationary point of problem (1.2)

3 Monte Carlo Sampling and Penalty Approximations

Let Ω be a compact set and φ : Ω → < be a function. The Monte Carlo sampling estimate

for E[φ(ω)] is obtained by taking independently and identically distributed random samples
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{ω1, · · · , ωk} from Ω and letting E[φ(ω)] ≈ 1
k

∑k
`=1 φ(ω`). The strong law of large numbers

guarantees that this procedure converges with probability one (abbreviated by “w.p.1” below),

i.e.,

lim
k→∞

1
k

k∑
`=1

φ(ω`) = E[φ(ω)] :=
∫

Ω
φ(ω)dp w.p.1. (3.1)

See [19,24] for more details about the Monte Carlo sampling methods.

Applying the above method and using a penalty technique, we obtain the problem

min
1
k

k∑
`=1

(
f(x, y, ω`) + σ‖u(x, y, ω`)‖2 + ρk ‖y ◦ v(x, y, ω`)‖2

)
(3.2)

s.t. g(x) ≤ 0, h(x) = 0, y ≥ 0,

which is a smooth approximation of problem (1.3). Here, ρk > 0 is a penalty parameter tending

to ∞ as k →∞, u : <n+m × Ω → <m is defined by (1.4), and v : <n+m × Ω → <m is given by

v(x, y, ω) := max{F (x, y, ω), 0}. (3.3)

Note that, by (1.4) and (3.3), we have

v(x, y, ω) = F (x, y, ω) + u(x, y, ω), (x, y, ω) ∈ <n+m × Ω. (3.4)

Problem (3.2) is neither a semi-infinite program nor an MPEC and it is generally much

easier to deal with than those problems. In the rest of the paper, we denote the feasible region

of problem (3.2) by F . Note that F does not depend on k.

We next discuss the existence conditions of solutions of problem (3.2). Let F be affine with

respect to (x, y) and given by

F (x, y, ω) := N(ω)x + M(ω)y + q(ω), (3.5)

where N : Ω → <m×n, M : Ω → <m×m, and q : Ω → <m are all continuous.

Definition 3.1 We call M̄ ∈ <m×m an R0-matrix if

y ≥ 0, M̄y ≥ 0, yT M̄y = 0 =⇒ y = 0.

It is well-known that any P-matrix is an R0-matrix [6]. We have the following result.

Lemma 3.1 Let {Mk} ⊂ <m×m be convergent to M̄ ∈ <m×m and M̄ be an R0-matrix. Then,

there exists an integer k0 > 0 such that Mk is an R0-matrix for every k ≥ k0.
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Theorem 3.1 Suppose that the set X := {x ∈ <n | g(x) ≤ 0, h(x) = 0} is nonempty and

bounded, the function f is bounded below on F × Ω, and lim
k→∞

ρk = +∞. Let F be defined by

(3.5) and M̄ :=
∫
Ω M(ω)dp be an R0-matrix. We then have the following statements almost

surely.

(i) Problem (3.2) has at least one optimal solution when k is sufficiently large.

(ii) Let (xk, yk) be an optimal solution of (3.2) for each k sufficiently large. Then the sequence

{(xk, yk)} is bounded.

Proof. (i) For each k, let Mk := 1
k

∑k
`=1 M(ω`). It then follows from (3.1) that M̄ = lim

k→∞
Mk

with probability one. Since M̄ is an R0-matrix, by Lemma 3.1, there almost surely exists an

integer k0 > 0 such that Mk is an R0-matrix for every k ≥ k0.

Let k ≥ k0 be fixed and suppose Mk is an R0-matrix. It is easy to see that F is a nonempty

closed set and the objective function of problem (3.2) is bounded below on F . Then, there exists

a sequence {(xj , yj)} ⊆ F such that

lim
j→∞

1
k

k∑
`=1

(
f(xj , yj , ω`) + σ‖u(xj , yj , ω`)‖2 + ρk‖yj ◦ v(xj , yj , ω`)‖2

)

= inf
(x,y)∈F

1
k

k∑
`=1

(
f(x, y, ω`) + σ‖u(x, y, ω`)‖2 + ρk‖y ◦ v(x, y, ω`)‖2

)
. (3.6)

Since f is bounded below and ρk is a positive constant, it follows from (3.6) that the sequences

{1
k

k∑
`=1

‖u(xj , yj , ω`)‖2
}

j=0,1,···
and

{1
k

k∑
`=1

‖yj ◦ v(xj , yj , ω`)‖2
}

j=0,1,···

are bounded. This along with (3.4) implies that

{1
k

k∑
`=1

u(xj , yj , ω`)
}

j=0,1,···
and

{1
k

k∑
`=1

(yj)T
(
N(ω`)xj + M(ω`)yj + q(ω`) + u(xj , yj , ω`)

)}
j=0,1,···

are also bounded. Note that the latter sequence can be rewritten as
{

(yj)T
(1

k

k∑
`=1

N(ω`)xj + Mky
j +

1
k

k∑
`=1

q(ω`) +
1
k

k∑
`=1

u(xj , yj , ω`)
)}

j=0,1,···
. (3.7)

Moreover, by the boundedness of the set X , the sequence {xj} is bounded. On the other hand,

it is obvious from the feasibility of (xj , yj) in (3.2) and the definition of u that, for each j,

yj ≥ 0,
1
k

k∑
`=1

N(ω`)xj + Mky
j +

1
k

k∑
`=1

q(ω`) +
1
k

k∑
`=1

u(xj , yj , ω`) ≥ 0. (3.8)

Suppose the sequence {yj} is unbounded. Taking a subsequence if necessary, we assume that

lim
j→∞

‖yj‖ = +∞, lim
j→∞

yj

‖yj‖ = ȳ, ‖ȳ‖ = 1. (3.9)
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Then, dividing (3.7) and (3.8) by ‖yj‖2 and ‖yj‖, respectively, and letting j → +∞, we obtain

0 ≤ ȳ ⊥ Mk ȳ ≥ 0.

Since Mk is an R0-matrix, we have ȳ = 0. This contradicts (3.9) and hence {yj} is bounded.

Therefore, {(xj , yj)} is bounded. Since F is closed, we see from (3.6) that any accumulation

point of {(xj , yj)} must be an optimal solution of (3.2). This completes the proof of (i).

(ii) Let (xk, yk) be an optimal solution of (3.2) for each sufficiently large k. The boundedness

of {xk} follows from the boundedness of the set X immediately. We next prove that {yk} is

almost surely bounded. To this end, we choose a vector x̄ ∈ X arbitrarily. Then, (x̄, 0) is feasible

to problem (3.2). Since (xk, yk) is an optimal solution of (3.2), we have

1
k

k∑
`=1

(
f(xk, yk, ω`) + σ‖u(xk, yk, ω`)‖2 + ρk‖yk ◦ v(xk, yk, ω`)‖2

)

≤ 1
k

k∑
`=1

(
f(x̄, 0, ω`) + σ‖u(x̄, 0, ω`)‖2

)
(3.10)

and, by the definitions (1.4) and (3.5),

1
k

k∑
`=1

N(ω`)xk +
1
k

k∑
`=1

M(ω`)yk +
1
k

k∑
`=1

q(ω`) +
1
k

k∑
`=1

u(xk, yk, ω`) ≥ 0, yk ≥ 0. (3.11)

It follows from (3.10) that

0 ≤ σ

k

k∑
`=1

‖u(xk, yk, ω`)‖2 +
ρk

k

k∑
`=1

‖yk ◦ v(xk, yk, ω`)‖2

≤ 1
k

k∑
`=1

(
f(x̄, 0, ω`)− f(xk, yk, ω`)

)
+

σ

k

k∑
`=1

‖u(x̄, 0, ω`)‖2.

Since f is bounded below, we have from (3.1) that

{1
k

k∑
`=1

(
f(x̄, 0, ω`)− f(xk, yk, ω`)

)}
and

{σ

k

k∑
`=1

‖u(x̄, 0, ω`)‖2
}

are almost surely bounded. In consequence, the sequences
{1

k

k∑
`=1

‖u(xk, yk, ω`)‖2
}

and
{ρk

k

k∑
`=1

‖yk ◦ v(xk, yk, ω`)‖2
}

are almost surely bounded. By Cauchy-Schwartz inequality, we have
( k∑

`=1

ui(xk, yk, ω`)
)2
≤ k

k∑
`=1

(
ui(xk, yk, ω`)

)2
, i = 1, · · · ,m

for each k and hence
∥∥∥1
k

k∑
`=1

u(xk, yk, ω`)
∥∥∥

2
=

1
k2

m∑
i=1

( k∑
`=1

ui(xk, yk, ω`)
)2

≤ 1
k

m∑
i=1

k∑
`=1

(
ui(xk, yk, ω`)

)2
=

1
k

k∑
`=1

‖u(xk, yk, ω`)‖2. (3.12)
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Similarly, we have

∣∣∣1
k

k∑
`=1

(yk)T
(
N(ω`)xk + M(ω`)yk + q(ω`) + u(xk, yk, ω`)

)∣∣∣
2

=
1
k2

∣∣∣
m∑

i=1

k∑
`=1

yk
i vi(xk, yk, ω`)

∣∣∣
2

≤ m

k2

m∑
i=1

( k∑
`=1

yk
i vi(xk, yk, ω`)

)2

≤ m

k

m∑
i=1

k∑
`=1

(
yk

i vi(xk, yk, ω`)
)2

=
m

k

k∑
`=1

‖yk ◦ v(xk, yk, ω`)‖2. (3.13)

It follows from (3.12) and (3.13) that both
{

1
k

∑k
`=1 u(xk, yk, ω`)

}
and

{1
k

k∑
`=1

(yk)T
(
N(ω`)xk + M(ω`)yk + q(ω`) + u(xk, yk, ω`)

)}
(3.14)

are almost surely bounded. Suppose that the sequence {yk} is unbounded with probability one.

Taking a subsequence if necessary, we assume that

lim
k→∞

‖yk‖ = +∞, lim
k→∞

yk

‖yk‖ = ȳ, ‖ȳ‖ = 1. (3.15)

Note that the sequences {xk} and
{

1
k

∑k
`=1 u(xk, yk, ω`)

}
are bounded and, by (3.1),

lim
k→∞

1
k

k∑
`=1

M(ω`) = M̄, lim
k→∞

1
k

k∑
`=1

N(ω`) =
∫

Ω
N(ω)dp, lim

k→∞
1
k

k∑
`=1

q(ω`) =
∫

Ω
q(ω)dp.

Dividing (3.11) and (3.14) by ‖yk‖ and ‖yk‖2, respectively, and letting k → +∞, we obtain

0 ≤ ȳ ⊥ M̄ ȳ ≥ 0. Since M̄ is an R0-matrix, we have ȳ = 0 with probability one. This

contradicts (3.15) and hence, the sequence {yk} is almost surely bounded. This completes the

proof of (ii).

4 Convergence Analysis

In this section, we investigate convergence properties of the Monte Carlo sampling and penalty

method. For each k, we let {ω1, · · · , ωk} be independently and identically distributed random

samples drawn from Ω.

Definition 4.1 [20] Let τ > 0 and κ ≥ 0 be constants. We say G : <s → <t is Hölder

continuous on K ⊆ <s with order τ and Hölder constant κ if

‖G(u)−G(v)‖ ≤ κ‖u− v‖τ

holds for all u and v in K.
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This concept is a generalization of the Lipschitz continuity, which is, by definition, Hölder

continuity with order τ = 1. Note that, for two different positive numbers τ and τ ′, Hölder

continuous functions with order τ and those with order τ ′ constitute different subclasses. For

example, the function G(u) :=
√
‖u‖ is Hölder continuous with order τ = 1

2 but not Lipschitz

continuous.

4.1 Limiting behavior of optimal solutions

We first study the convergence of optimal solutions of problems (3.2). Recall that F denotes

the feasible region of problem (3.2).

Theorem 4.1 Suppose that both f and F are Hölder continuous in (x, y) on F with order τ > 0

and Hölder constant κ(ω) satisfying E[κ(ω)] < +∞. Assume that lim
k→∞

ρk = +∞, (xk, yk) solves

problem (3.2) for each k, and the sequence {(xk, yk)} is bounded. Let (x∗, y∗) be an accumulation

point of {(xk, yk)}. Then (x∗, y∗) is an optimal solution of problem (1.3) with probability one.

Proof. Without loss of generality, we suppose lim
k→∞

(xk, yk) = (x∗, y∗).

(a) We first prove that (x∗, y∗) is almost surely feasible to (1.3). It is obvious that (x∗, y∗)

satisfies the constraints of problem (3.2). Therefore, it is sufficient to show that there holds

y∗ ◦ F (x∗, y∗, ω) ≤ 0, ω ∈ Ω a.s. (4.1)

In fact, since (xk, yk) is an optimal solution of problem (3.2) and (x∗, 0) is a feasible point of

(3.2), we have

1
k

k∑
`=1

(
f(xk, yk, ω`) + σ‖u(xk, yk, ω`)‖2 + ρk‖yk ◦ v(xk, yk, ω`)‖2

)

≤ 1
k

k∑
`=1

(
f(x∗, 0, ω`) + σ‖u(x∗, 0, ω`)‖2

)
,

which yields

ρk

k

k∑
`=1

‖yk ◦ v(xk, yk, ω`)‖2 ≤ 1
k

k∑
`=1

(
f(x∗, 0, ω`) + σ‖u(x∗, 0, ω`)‖2

)
− 1

k

k∑
`=1

f(xk, yk, ω`). (4.2)

By the assumptions of the theorem, there hold

‖f(x, y, ω)− f(x′, y′, ω)‖ ≤ κ(ω)‖(x, y)− (x′, y′)‖τ

and

‖F (x, y, ω)− F (x′, y′, ω)‖ ≤ κ(ω)‖(x, y)− (x′, y′)‖τ (4.3)
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for any (x, y) ∈ F , (x′, y′) ∈ F , and ω ∈ Ω. Therefore, we have from (3.1) that

lim
k→∞

∣∣∣1
k

k∑
`=1

(
f(xk, yk, ω`)− f(x∗, y∗, ω`)

)∣∣∣ ≤ lim
k→∞

‖(xk, yk)− (x∗, y∗)‖τ 1
k

k∑
`=1

κ(ω`) = 0

and hence

lim
k→∞

1
k

k∑
`=1

f(xk, yk, ω`) = lim
k→∞

1
k

k∑
`=1

f(x∗, y∗, ω`) =
∫

Ω
f(x∗, y∗, ω)dp w.p.1.

This indicates that
{

1
k

∑k
`=1 f(xk, yk, ω`)

}
is bounded with probability one. Moreover, since Ω

is compact, both f(x∗, 0, ·) and u(x∗, 0, ·) are bounded on Ω. Thus, we have from (4.2) that

the sequence
{

ρk
k

∑k
`=1 ‖yk ◦ v(xk, yk, ω`)‖2

}
is bounded with probability one. As a result, the

sequence
{

ρk
k

∑k
`=1(y

k
i )2 (Fi(xk, yk, ω`) + ui(xk, yk, ω`))2

}
is almost surely bounded for each i

and, since

yk ≥ 0, F (xk, yk, ω`) + u(xk, yk, ω`) = v(xk, yk, ω`) ≥ 0

for every k and `,
{

ρk
k

∑k
`=1(y

k)T (F (xk, yk, ω`)+u(xk, yk, ω`))
}

is almost surely bounded. Noting

that lim
k→∞

ρk = +∞, we have

lim
k→∞

1
k

k∑
`=1

(yk)T
(
F (xk, yk, ω`) + u(xk, yk, ω`)

)
= 0 w.p.1. (4.4)

On the other hand, we have from (4.3) that, for any k and `,

‖(F (xk, yk, ω`) + u(xk, yk, ω`))− (F (x∗, y∗, ω`) + u(x∗, y∗, ω`))‖
≤ 2‖F (xk, yk, ω`)− F (x∗, y∗, ω`)‖
≤ 2κ(ω`)‖(xk, yk)− (x∗, y∗)‖τ

and then

lim
k→∞

∣∣∣1
k

k∑
`=1

(yk)T
(
(F (xk, yk, ω`) + u(xk, yk, ω`))− (F (x∗, y∗, ω`) + u(x∗, y∗, ω`))

)∣∣∣

≤ lim
k→∞

2 ‖yk‖ ‖(xk, yk)− (x∗, y∗)‖τ 1
k

k∑
`=1

κ(ω`)

= 0 w.p.1. (4.5)

It follows from (4.4) and (4.5) that

0 = lim
k→∞

1
k

k∑
`=1

(yk)T
(
F (xk, yk, ω`) + u(xk, yk, ω`)

)

= lim
k→∞

1
k

k∑
`=1

(yk)T
(
F (x∗, y∗, ω`) + u(x∗, y∗, ω`)

)

=
∫

Ω
(y∗)T (F (x∗, y∗, ω) + u(x∗, y∗, ω`))dp w.p.1, (4.6)
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where the last equality follows from (3.1). Noting that both (y∗)T (F (x∗, y∗, ·)+u(x∗, y∗, ·)) and

(y∗)T u(x∗, y∗, ·) are nonnegative on Ω, we obtain (4.1) from (4.6) immediately.

(b) Let (x, y) be an arbitrary feasible solution of problem (1.3). It is obvious that (x, y) is

feasible to problem (3.2). Moreover, if yi > 0 for some i, there must hold Fi(x, y, ω) ≤ 0 for

almost all ω ∈ Ω and so ui(x, y, ω) = −Fi(x, y, ω) for almost all ω ∈ Ω. This means

y ◦ v(x, y, ω) = y ◦ (F (x, y, ω) + u(x, y, ω)) = 0, ω ∈ Ω a.s. (4.7)

Since (xk, yk) is an optimal solution of problem (3.2), we have almost surely that

1
k

k∑
`=1

(
f(x, y, ω`) + σ‖u(x, y, ω`)‖2

)

=
1
k

k∑
`=1

(
f(x, y, ω`) + σ‖u(x, y, ω`)‖2 + ρk‖y ◦ v(x, y, ω`)‖2

)

≥ 1
k

k∑
`=1

(
f(xk, yk, ω`) + σ‖u(xk, yk, ω`)‖2 + ρk‖yk ◦ v(xk, yk, ω`)‖2

)

≥ 1
k

k∑
`=1

(
f(xk, yk, ω`) + σ‖u(xk, yk, ω`)‖2

)
.

As a result, we have

1
k

k∑
`=1

(
f(x∗, y∗, ω`) + σ‖u(x∗, y∗, ω`)‖2

)
− 1

k

k∑
`=1

(
f(x, y, ω`) + σ‖u(x, y, ω`)‖2

)

≤ 1
k

k∑
`=1

(
f(x∗, y∗, ω`) + σ‖u(x∗, y∗, ω`)‖2

)
− 1

k

k∑
`=1

(
f(xk, yk, ω`) + σ‖u(xk, yk, ω`)‖2

)

≤ 1
k

k∑
`=1

(
|f(x∗, y∗, ω`)− f(xk, yk, ω`)|

+ σ‖u(x∗, y∗, ω`)− u(xk, yk, ω`)‖ (‖u(x∗, y∗, ω`)‖+ ‖u(xk, yk, ω`)‖)
)

w.p.1. (4.8)

Note that the Hölder continuity of f yields

lim
k→∞

1
k

k∑
`=1

|f(x∗, y∗, ω`)− f(xk, yk, ω`)| = 0. (4.9)

On the other hand, it follows from (1.4) and (4.3) that

‖u(x∗, y∗, ω`)− u(xk, yk, ω`)‖ ≤ ‖F (x∗, y∗, ω`)− F (xk, yk, ω`)‖
≤ κ(ω`)‖(xk, yk)− (x∗, y∗)‖τ , ` = 1, · · · , k.

By the boundedness of the sequence
{

1
k

∑k
`=1(‖u(x∗, y∗, ω`)‖+ ‖u(xk, yk, ω`)‖)

}
, we have

lim
k→∞

σ

k

k∑
`=1

‖u(x∗, y∗, ω`)− u(xk, yk, ω`)‖
(
‖u(x∗, y∗, ω`)‖+ ‖u(xk, yk, ω`)‖

)
= 0. (4.10)
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Letting k → +∞ in (4.8) and taking (4.9), (4.10) and (3.1) into account, we obtain

E[f(x∗, y∗, ω) + σ‖u(x∗, y∗, ω)‖2] ≤ E[f(x, y, ω) + σ‖u(x, y, ω)‖2] w.p.1,

which indicates that (x∗, y∗) is an optimal solution of (1.3) with probability one.

Remark 4.1 In Theorem 4.1, to avoid notational complication, we simply assume that the

functions f and F are Hölder continuous with same order. However, it is easy to see from the

proof that the assumption can be relaxed to allow those functions to have different orders. This

remark also applies to Theorem 4.2 in the next subsection.

4.2 Limiting behavior of stationary points

In general, it is difficult to obtain an optimal solution, whereas computation of stationary points

is relatively easy. Therefore, it is important to study the limiting behavior of stationary points

of problems (3.2). In what follows, we let E denote the feasible region of problem (1.3). Note

that, for any (x, y) ∈ E , the standard Mangasarian-Fromovitz constraint qualification does not

hold at (x, y) if there holds yi = 0 for some index i. In this paper, we define a generalized

constraint qualification for problem (1.3) as follows.

Definition 4.2 Let (x∗, y∗) ∈ E. We say the generalized Mangasarian-Fromovitz constraint

qualification (GMFCQ) holds at (x∗, y∗) if

• the gradients ∇hi(x∗), i = 1, · · · , s2, are linearly independent;

• there exists a vector
(

dx
dy

) ∈ <n+m such that

(dx)T∇hi(x∗) = 0, i = 1, · · · , s2;

(dx)T∇gi(x∗) < 0, i ∈ Ig(x∗);

(dy)T ei > 0, i ∈ I∗Y ;
(

dx
dy

)T ∇(x,y)[y
∗
i Fi(x∗, y∗, ω)] < 0, ω ∈ Ω̂i a.s., i = 1, · · · ,m,

where

Ω̂i :=
{

ω ∈ Ω′i
∣∣∣ (y∗i )

2 + F 2
i (x∗, y∗, ω) 6= 0

}
,

Ω′i :=
{

ω ∈ Ω
∣∣∣ y∗i Fi(x∗, y∗, ω) = 0

}

for each i.
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Note that, for i ∈ I∗Y , Ω′i is equal to Ω, and hence Ω̂i equals the set {ω ∈ Ω | Fi(x∗, y∗, ω) 6= 0}.
The main convergence result can be stated as follows.

Theorem 4.2 Suppose ∇(x,y)f, F,∇(x,y)F are all Hölder continuous in (x, y) on F with order

τ > 0 and Hölder constant κ(ω) satisfying E[κ(ω)] < +∞ and lim
k→∞

ρk = +∞. Let (xk, yk) be

a Karush-Kuhn-Tucker point of (3.2) for each k and (x∗, y∗) ∈ E be an accumulation point of

{(xk, yk)}. Suppose that the GMFCQ holds at (x∗, y∗), and for each i ∈ I∗Y , either p(ω ∈ Ω :

Fi(x∗, y∗, ω) = 0) = 0 or p(ω ∈ Ω : Fi(x∗, y∗, ω) > 0) > 0 holds. Then (x∗, y∗) is a stationary

point of problem (1.3) with probability one.

Proof. Without loss of generality, we suppose that lim
k→∞

(xk, yk) = (x∗, y∗). Since (xk, yk) is

a Karush-Kuhn-Tucker point of problem (3.2), there must exist Lagrangian multiplier vectors

αk ∈ <s1 , βk ∈ <s2 , and γk ∈ <m such that

0 =
1
k

k∑
`=1

(
∇xf(xk, yk, ω`)− 2σ∇xF (xk, yk, ω`)u(xk, yk, ω`) (4.11)

+ 2ρk∇xF (xk, yk, ω`)diag(yk
1 , · · · , yk

m)(yk ◦ v(xk, yk, ω`))
)

+∇g(xk)αk +∇h(xk)βk,

0 =
1
k

k∑
`=1

(
∇yf(xk, yk, ω`)− 2σ∇yF (xk, yk, ω`)u(xk, yk, ω`) (4.12)

+ 2ρk

(
∇yF (xk, yk, ω`)diag(yk

1 , · · · , yk
m)

+ diag(v1(xk, yk, ω`), · · · , vm(xk, yk, ω`))
)
(yk ◦ v(xk, yk, ω`))

)
− γk,

0 ≤ αk ⊥ − g(xk) ≥ 0, (4.13)

βk : free, h(xk) = 0, (4.14)

0 ≤ γk ⊥ yk ≥ 0. (4.15)

(i) We first show that the sequences {αk}, {βk}, {γk}, and
{

1
k

∑k
`=1 ρky

k
i vi(xk, yk, ω`)

}
, i =

1, · · · ,m, are all bounded with probability one. To this end, we let

τk :=
m∑

i=1

1
k

k∑
`=1

2ρky
k
i vi(xk, yk, ω`) +

s1∑
i=1

αk
i +

s2∑
i=1
|βk

i |+
m∑

i=1
γk

i . (4.16)

Suppose that there is an unbounded sequence among the above sequences. Then, taking a

subsequence if necessary, we may assume that lim
k→∞

τk = +∞. Note that, by the definition (3.3),

there holds (vi(x, y, ω))2 = vi(x, y, ω)Fi(x, y, ω) for any (x, y, ω) and any i. Then, we can rewrite

(4.11) and (4.12) as follows:

−1
k

k∑
`=1

(
∇(x,y)f(xk, yk, ω`)− 2σ∇(x,y)F (xk, yk, ω`)u(xk, yk, ω`)

)

=
1
k

k∑
`=1

m∑
i=1

2ρky
k
i vi(xk, yk, ω`)

(
yk

i ∇xFi(xk, yk, ω`)
yk

i ∇yFi(xk, yk, ω`) + Fi(xk, yk, ω`)ei

)

+
s1∑

i=1
αk

i

(∇gi(xk)
0

)
+

s2∑
i=1

βk
i

(∇hi(xk)
0

)
−

m∑
i=1

γk
i

(
0
ei

)
. (4.17)
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Dividing both sides of (4.17) and (4.16) by τk, we get
(
− 1

kτk

∑k
`=1(∇(x,y)f(xk, yk, ω`)− 2σ∇(x,y)F (xk, yk, ω`)u(xk, yk, ω`))

1

)

=
m∑

i=1

1
k

k∑

`=1

2ρky
k
i vi(xk, yk, ω`)

τk




yk
i ∇xFi(xk, yk, ω`)

yk
i ∇yFi(xk, yk, ω`) + Fi(xk, yk, ω`)ei

1




+
s1∑

i=1

αk
i

τk



∇gi(xk)

0
1


 +

s2∑

i=1

βk
i

τk



∇hi(xk)

0
sign(βk

i )


−

m∑

i=1

γk
i

τk




0
ei

1


 .

Let B be an arbitrary subset of Ω with p(B) = 0. We then have
(
− 1

kτk

∑k
`=1(∇(x,y)f(xk, yk, ω`)− 2σ∇(x,y)F (xk, yk, ω`)u(xk, yk, ω`))

1

)

−
m∑

i=1

1
k

∑
1≤`≤k
ω`∈B

2ρky
k
i vi(xk, yk, ω`)

τk




yk
i ∇xFi(xk, yk, ω`)

yk
i ∇yFi(xk, yk, ω`) + Fi(xk, yk, ω`)ei

1




=
m∑

i=1

1
k

∑
1≤`≤k
ω` /∈B

2ρky
k
i vi(xk, yk, ω`)

τk




yk
i ∇xFi(xk, yk, ω`)

yk
i ∇yFi(xk, yk, ω`) + Fi(xk, yk, ω`)ei

1




+
s1∑

i=1

αk
i

τk



∇gi(xk)

0
1


 +

s2∑

i=1

βk
i

τk



∇hi(xk)

0
sign(βk

i )


−

m∑

i=1

γk
i

τk




0
ei

1


 . (4.18)

Note that, by the assumptions, there hold

‖∇(x,y)f(x, y, ω)−∇(x,y)f(x′, y′, ω)‖ ≤ κ(ω)‖(x, y)− (x′, y′)‖τ ,

‖F (x, y, ω)− F (x′, y′, ω)‖ ≤ κ(ω)‖(x, y)− (x′, y′)‖τ ,

‖∇(x,y)F (x, y, ω)−∇(x,y)F (x′, y′, ω)‖ ≤ κ(ω)‖(x, y)− (x′, y′)‖τ

for any (x, y) ∈ F , (x′, y′) ∈ F , and any ω ∈ Ω. Therefore, for each k, we have

lim
k→∞

∥∥∥1
k

k∑
`=1

(
∇(x,y)f(xk, yk, ω`)−∇(x,y)f(x∗, y∗, ω`)

)∥∥∥

≤ lim
k→∞

1
k

k∑
`=1

∥∥∥∇(x,y)f(xk, yk, ω`)−∇(x,y)f(x∗, y∗, ω`)
∥∥∥

≤ lim
k→∞

‖(xk, yk)− (x∗, y∗)‖τ 1
k

k∑
`=1

κ(ω`)

= 0 w.p.1.

It then follows that

lim
k→∞

1
k

k∑
`=1

∇(x,y)f(xk, yk, ω`) = lim
k→∞

1
k

k∑
`=1

∇(x,y)f(x∗, y∗, ω`)

=
∫

Ω
∇(x,y)f(x∗, y∗, ω) dp w.p.1, (4.19)
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where the last equality follows from (3.1). Moreover, since

lim
k→∞

∥∥∥1
k

k∑
`=1

(
∇(x,y)F (xk, yk, ω`)u(xk, yk, ω`)−∇(x,y)F (x∗, y∗, ω`)u(x∗, y∗, ω`)

)∥∥∥

≤ lim
k→∞

1
k

k∑
`=1

∥∥∥∇(x,y)F (xk, yk, ω`)
(
u(xk, yk, ω`)− u(x∗, y∗, ω`)

)

+
(
∇(x,y)F (xk, yk, ω`)−∇(x,y)F (x∗, y∗, ω`)

)
u(x∗, y∗, ω`)

∥∥∥

≤ lim
k→∞

1
k

k∑
`=1

(
‖∇(x,y)F (xk, yk, ω`)‖ ‖F (xk, yk, ω`)− F (x∗, y∗, ω`)‖

+ ‖∇(x,y)F (xk, yk, ω`)−∇(x,y)F (x∗, y∗, ω`)‖ ‖u(x∗, y∗, ω`)‖
)

≤ lim
k→∞

2 C ‖(xk, yk)− (x∗, y∗)‖τ 1
k

k∑
`=1

κ(ω`)

= 0 w.p.1,

where C > 0 is an upper bound of {∇(x,y)F (xk, yk, ω`)} and {u(x∗, y∗, ω`)}, we have

lim
k→∞

1
k

k∑
`=1

∇(x,y)F (xk, yk, ω`)u(xk, yk, ω`) = lim
k→∞

1
k

k∑
`=1

∇(x,y)F (x∗, y∗, ω`)u(x∗, y∗, ω`)

=
∫

Ω
∇(x,y)F (x∗, y∗, ω)u(x∗, y∗, ω) dp w.p.1. (4.20)

It follows from (4.19) and (4.20) that

lim
k→∞

1
kτk

k∑
`=1

(
∇(x,y)f(xk, yk, ω`)− 2σ∇(x,y)F (xk, yk, ω`)u(xk, yk, ω`)

)
= 0 w.p.1. (4.21)

Now let lBk be the cardinality of the sample subset {ω` ∈ B | ` = 1, · · · , k}. Since p(B) = 0,

there almost surely holds lim
k→∞

lBk
k = 0. Therefore, taking into account the fact that the sequence





m∑

i=1

2ρky
k
i vi(xk, yk, ω`)

τk




yk
i ∇xFi(xk, yk, ω`)

yk
i ∇yFi(xk, yk, ω`) + Fi(xk, yk, ω`)ei

1








is bounded, we have

lim
k→∞

1
k

∑
1≤`≤k
ω`∈B

m∑

i=1

2ρky
k
i vi(xk, yk, ω`)

τk




yk
i ∇xFi(xk, yk, ω`)

yk
i ∇yFi(xk, yk, ω`) + Fi(xk, yk, ω`)ei

1


 = 0 w.p.1.(4.22)

Furthermore, taking a subsequence if necessary, we may assume that the limits

ᾱ := lim
k→∞

αk

τk
, β̄ := lim

k→∞
βk

τk
, γ̄ := lim

k→∞
γk

τk
(4.23)
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exist. Thus, letting k → +∞ in (4.18), we have

lim
k→∞

m∑

i=1

1
k

∑
1≤`≤k
ω` /∈B

2ρky
k
i vi(xk, yk, ω`)

τk




yk
i ∇xFi(xk, yk, ω`)

yk
i ∇yFi(xk, yk, ω`) + Fi(xk, yk, ω`)ei

1




=




0
0
1


−

s1∑

i=1

ᾱi



∇gi(x∗)

0
1


−

s2∑

i=1

β̄i



∇hi(x∗)

0
sign(βk

i )


 +

m∑

i=1

γ̄i




0
ei

1


 w.p.1. (4.24)

In addition, in a similar way to (4.19) and (4.20), we can show that, for each i, there holds

lim
k→∞

1
k

∑
1≤`≤k
ω` /∈B

2ρky
k
i vi(xk, yk, ω`)

τk




yk
i ∇xFi(xk, yk, ω`)

yk
i ∇yFi(xk, yk, ω`) + Fi(xk, yk, ω`)ei

1




= lim
k→∞

1
k

∑
1≤`≤k
ω` /∈B

2ρky
k
i vi(xk, yk, ω`)

τk




y∗i∇xFi(x∗, y∗, ω`)
y∗i∇yFi(x∗, y∗, ω`) + Fi(x∗, y∗, ω`)ei

1


 (4.25)

with probability one. Note that y∗i Fi(x∗, y∗, ω) ≤ 0, ω ∈ Ω a.s., for each i, since (x∗, y∗) ∈ E by

the given assumption. For each i and any ε > 0, let

Ωε
i :=

{
ω ∈ Ω

∣∣∣ y∗i Fi(x∗, y∗, ω) ≤ −ε
}

.

If Ωε
i is nonempty for some i, we have Fi(x∗, y∗, ω) ≤ −ε/y∗i < 0 for every ω ∈ Ωε

i . Since Ωε
i is

a closed subset of the compact set Ω, there must exist a neighborhood U∗ of (x∗, y∗) such that

the function Fi is uniformly continuous on U∗ × Ωε
i . It then follows that, when k is sufficiently

large,

vi(xk, yk, ω) = max
{

Fi(xk, yk, ω), 0
}

= 0 (4.26)

holds for every ω ∈ Ωε
i . Therefore, we have from (4.24)–(4.26) that




0
0
1


−

s1∑

i=1

ᾱi



∇gi(x∗)

0
1


−

s2∑

i=1

β̄i



∇hi(x∗)

0
sign(βk

i )


 +

m∑

i=1

γ̄i




0
ei

1




=
m∑

i=1

lim
k→∞

1
k

∑
1≤`≤k
ω` /∈B

2ρky
k
i vi(xk, yk, ω`)

τk




y∗i∇xFi(x∗, y∗, ω`)
y∗i∇yFi(x∗, y∗, ω`) + Fi(x∗, y∗, ω`)ei

1




=
m∑

i=1

lim
k→∞

1
k

∑
1≤`≤k

ω` /∈B,ω` /∈Ωε
i

2ρky
k
i vi(xk, yk, ω`)

τk




y∗i∇xFi(x∗, y∗, ω`)
y∗i∇yFi(x∗, y∗, ω`) + Fi(x∗, y∗, ω`)ei

1




∈
m∑

i=1

cone








y∗i∇xFi(x∗, y∗, ω)
y∗i∇yFi(x∗, y∗, ω) + Fi(x∗, y∗, ω)ei

1




∣∣∣∣∣∣
ω ∈ Ω \ (B ∪ Ωε

i)



 w.p.1.
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The arbitrariness of B and ε yields



0
0
1


−

s1∑

i=1

ᾱi



∇gi(x∗)

0
1


−

s2∑

i=1

β̄i



∇hi(x∗)

0
sign(βk

i )


 +

m∑

i=1

γ̄i




0
ei

1




∈
m∑

i=1

⋂
B⊂Ω

p(B)=0

cone








y∗i∇xFi(x∗, y∗, ω)
y∗i∇yFi(x∗, y∗, ω) + Fi(x∗, y∗, ω)ei

1




∣∣∣∣∣∣
ω ∈ Ω′i \B



 w.p.1.

In consequence, as shown in Section 2, there almost surely exist some finite-valued nonnegative

measurable functions δ̄i, i = 1, · · · ,m, defined on Ω′i such that



0
0
1


−

s1∑

i=1

ᾱi



∇gi(x∗)

0
1


−

s2∑

i=1

β̄i



∇hi(x∗)

0
sign(βk

i )


 +

m∑

i=1

γ̄i




0
ei

1




=
m∑

i=1

∫

Ω′i




y∗i∇xFi(x∗, y∗, ω)
y∗i∇yFi(x∗, y∗, ω) + Fi(x∗, y∗, ω)ei

1


 δ̄i(ω)dp,

which is equivalent to

0 =
m∑

i=1

∫

Ω′i

(
y∗i∇xFi(x∗, y∗, ω)

y∗i∇yFi(x∗, y∗, ω) + Fi(x∗, y∗, ω)ei

)
δ̄i(ω)dp

+
s1∑

i=1

ᾱi

(∇gi(x∗)
0

)
+

s2∑

i=1

β̄i

(∇hi(x∗)
0

)
−

m∑

i=1

γ̄i

(
0
ei

)
, (4.27)

1 =
m∑

i=1

∫

Ω′i
δ̄i(ω)dp +

s1∑

i=1

ᾱi +
s2∑

i=1

|β̄i|+
m∑

i=1

γ̄i. (4.28)

Note that, by (4.13) and (4.15), there hold

ᾱi = 0, i /∈ Ig(x∗), (4.29)

γ̄i = 0, i /∈ I∗Y . (4.30)

By taking into account the definition of Ω̂i along with (4.29) and (4.30), we may rewrite (4.27)

as

0 =
m∑

i=1

∫

Ω̂i

(
y∗i∇xFi(x∗, y∗, ω)

y∗i∇yFi(x∗, y∗, ω) + Fi(x∗, y∗, ω)ei

)
δ̄i(ω)dp

+
∑

i∈Ig(x∗)

ᾱi

(∇gi(x∗)
0

)
+

s2∑

i=1

β̄i

(∇hi(x∗)
0

)
−

∑

i∈I∗Y
γ̄i

(
0
ei

)
.

Since the GMFCQ holds at (x∗, y∗), it follows that

ᾱi = 0, i ∈ Ig(x∗),

β̄i = 0, i = 1, · · · , s2,

γ̄i = 0, i ∈ I∗Y ,
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and

δ̄i(ω) = 0, ∀ω ∈ Ω̂i (4.31)

for each i. This together with (4.28)–(4.30) yields

1 =
m∑

i=1

∫

Ω′i\Ω̂i

δ̄i(ω)dp =
∑

i∈I∗Y

∫

Ω′i\Ω̂i

δ̄i(ω)dp,

where the second equality follows from the fact that Ω′i \ Ω̂i must be empty when i /∈ I∗Y .

Therefore, there exists an index i0 ∈ I∗Y such that
∫

Ω′i0\Ω̂i0

δ̄i0(ω)dp > 0. (4.32)

This indicates that p(Ω′i0 \ Ω̂i0) = p(ω ∈ Ω : Fi0(x
∗, y∗, ω) = 0) > 0. Then, from the assumptions

of the theorem, p(ω ∈ Ω̂i0 : Fi0(x
∗, y∗, ω) > 0) is positive. We further can choose a number ε̄ > 0

such that the probability measure of the set Ω̄i0 := {ω ∈ Ω̂i0 | Fi0(x
∗, y∗, ω) ≥ ε̄} is also positive.

Note that both Ω′i0 \ Ω̂i0 and Ω̄i0 are compact. It follows from the definition (3.3) that, when k

is sufficiently large,

vi0(x
k, yk, ω′) ≤ ε̄ ≤ vi0(x

k, yk, ω′′)

holds for any ω′ ∈ Ω′i0 \ Ω̂i0 and any ω′′ ∈ Ω̄i0 . Let k be sufficiently large. Noting that both

p(Ω′i0 \ Ω̂i0) and p(Ω̄i0) are positive, we may choose independently and identically distributed

random samples, denoted by {ω′1, · · · , ω′k} and {ω′′1 · · · , ω′′k}, respectively, from Ω′i0 \ Ω̂i0 and Ω̄i0 .

Since yk
i0
≥ 0, it then follows that

1
k

k∑
`=1

2ρky
k
i0

vi0(x
k, yk, ω′`)

τk
≤ 1

k

k∑
`=1

2ρky
k
i0

vi0(x
k, yk, ω′′` )

τk
.

Letting k → +∞ and taking into (3.1) account, we have
∫

Ω′i0\Ω̂i0

δ̄i0(ω)dp ≤
∫

Ω̄i0

δ̄i0(ω)dp = 0

with probability one, where the equality follows from (4.31). This contradicts (4.32). Hence,

the sequences {αk}, {βk}, {γk}, and
{

1
k

∑k
`=1 ρky

k
i vi(xk, yk, ω`)

}
, i = 1, · · · ,m, are all bounded

with probability one.

(ii) We next show that there exist multiplier vectors α∗ ∈ <s1 , β∗ ∈ <s2 , γ∗ ∈ <m, and a

multiplier function δ∗ : Ω → <m such that there hold (2.6)–(2.11) with probability one. First of

all, without loss of generality, we may assume that the following limits exist:

α∗ := lim
k→∞

αk, β∗ := lim
k→∞

βk, γ∗ := lim
k→∞

γk.
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Recall that the sequences
{

1
k

∑k
`=1 ρky

k
i vi(xk, yk, ω`)

}
, i = 1, · · · ,m, are all bounded with prob-

ability one. In a similar way to (4.27) and taking (4.19)–(4.20) into account, we can get

from (4.17) that there almost surely exist some finite-valued nonnegative measurable functions

δ∗i , i = 1, · · · ,m, defined on Ω′i such that

−
∫

Ω

(
∇(x,y)f(x∗, y∗, ω)− 2σ∇(x,y)F (x∗, y∗, ω)u(x∗, y∗, ω)

)
dp

=
m∑

i=1

∫

Ω′i

(
y∗i∇xFi(x∗, y∗, ω)

y∗i∇yFi(x∗, y∗, ω) + Fi(x∗, y∗, ω)ei

)
δ∗i (ω)dp

+
s1∑

i=1

α∗i

(∇gi(x∗)
0

)
+

s2∑

i=1

β∗i

(∇hi(x∗)
0

)
−

m∑

i=1

γ∗i

(
0
ei

)
.

For each i, we define δ∗i (ω) := 0 for ω ∈ Ω \ Ω′i. It then follows that

−
∫

Ω

(
∇(x,y)f(x∗, y∗, ω)− 2σ∇(x,y)F (x∗, y∗, ω)u(x∗, y∗, ω)

)
dp

=
m∑

i=1

∫

Ω

(
y∗i∇xFi(x∗, y∗, ω)

y∗i∇yFi(x∗, y∗, ω) + Fi(x∗, y∗, ω)ei

)
δ∗i (ω)dp

+
s1∑

i=1

α∗i

(∇gi(x∗)
0

)
+

s2∑

i=1

β∗i

(∇hi(x∗)
0

)
−

m∑

i=1

γ∗i

(
0
ei

)
w.p.1. (4.33)

Taking (2.25) and (2.26) into account, we obtain (2.6) and (2.7) from (4.33) with probability

one. Moreover, (2.8)–(2.10) follow from (4.13)–(4.15) immediately. In addition, it is obvious

that δ∗i (ω) ≥ 0 for any ω ∈ Ω. Since y∗i Fi(x∗, y∗, ω) < 0 is equivalent to ω ∈ Ω \ Ω′i for each i,

(2.11) is also valid.

Therefore, (α∗, β∗, γ∗, δ∗(·)) satisfies (2.6)–(2.11) with probability one and hence (x∗, y∗) is

almost surely a stationary point of problem (1.3). This completes the proof of the theorem.

5 Conclusions

We have presented a new formulation (1.2) of the SMPECs with recourse and shown that the

new formulation is actually equivalent to a smooth semi-infinite programming problem. We have

deduced the optimality conditions for the problems and investigated the connections among the

conditions. Then, we have employed a Monte Carlo sampling method and a penalty technique to

get some approximations to the problem. Under appropriate assumptions, we have established

convergence of the proposed method. Recall that the sample space Ω is assumed to have infinitely

many elements. Actually, if Ω has only a finite number of elements, we may present a similar

method without resort to a Monte Carlo sampling approximation technique.
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Appendix: Equivalence between problems (1.2) and (1.3). If (x∗, y∗) solves prob-

lem (1.3), then (x∗, y∗, u(x∗, y∗, ·)) is an optimal solution of problem (1.2). Conversely, if

(x∗, y∗, z∗(·)) is an optimal solution of problem (1.2), then (x∗, y∗) solves problem (1.3).

Proof. (i) Suppose that (x∗, y∗) is an optimal solution of (1.3). We then have from (1.4) that

F (x∗, y∗, ω) + u(x∗, y∗, ω) ≥ 0, ∀ω ∈ Ω.

Note that, if y∗i > 0 for some i, there must hold Fi(x∗, y∗, ω) ≤ 0 for almost all ω ∈ Ω and so

ui(x∗, y∗, ω) = −Fi(x∗, y∗, ω) for almost all ω ∈ Ω. Therefore, we have

(y∗)T (F (x∗, y∗, ω) + u(x∗, y∗, ω)) = 0, ω ∈ Ω a.s.

This indicates that (x∗, y∗, u(x∗, y∗, ·)) is feasible to problem (1.2). Let (x, y, z(·)) be an arbitrary

feasible point of problem (1.2). It then follows that, for almost every ω ∈ Ω,

z(ω)− u(x, y, ω) = min{F (x, y, ω) + z(ω), z(ω)} ≥ 0

and hence z(ω) ≥ u(x, y, ω) ≥ 0. This implies that E[ ‖z(ω)‖2−‖u(x, y, ω)‖2 ] ≥ 0. On the other

hand, it follows from the feasibility of (x, y, z(·)) in problem (1.2) that

y ◦ F (x, y, ω) = −y ◦ z(ω) ≤ 0, ω ∈ Ω a.s.,

and so the point (x, y) is a feasible point of problem (1.3). Thus, we have from the optimality

of (x∗, y∗) in (1.3) that

E[f(x, y, ω) + σ‖u(x, y, ω)‖2] ≥ E[f(x∗, y∗, ω) + σ‖u(x∗, y∗, ω)‖2].

Therefore, there holds

E[f(x, y, ω) + σ‖z(ω)‖2]− E[f(x∗, y∗, ω) + σ‖u(x∗, y∗, ω)‖2]

= E[f(x, y, ω) + σ‖u(x, y, ω)‖2]− E[f(x∗, y∗, ω) + σ‖u(x∗, y∗, ω)‖2] + σE[‖z(ω)‖2 − ‖u(x, y, ω)‖2]

≥ 0.

This indicates that (x∗, y∗, u(x∗, y∗, ·)) is an optimal solution of problem (1.2).
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(ii) Suppose that (x∗, y∗, z∗(·)) is an optimal solution of (1.2). It is not difficult to see that

z∗(ω) = u(x∗, y∗, ω) for almost all ω ∈ Ω. Let (x, y) be an arbitrary feasible point of (1.3).

In a similar way to (i), we can show that (x, y, u(x, y, ·)) is feasible to problem (1.2). Since

(x∗, y∗, z∗(·)) solves (1.2), there holds

E[f(x, y, ω) + σ‖u(x, y, ω)‖2] ≥ E[f(x∗, y∗, ω) + σ‖z∗(ω)‖2]

= E[f(x∗, y∗, ω) + σ‖u(x∗, y∗, ω)‖2].

This implies that (x∗, y∗) is an optimal solution of problem (1.3).
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