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In [1], a modified relaxation method was proposed for mathematical programs with complemen-
tarity constraints and some new sufficient conditions for M- or B-stationarity were shown. However,
due to an ignored sign in the Lagrangian function of the relaxed problem, the proofs of Theorems
3.4 and 3.5 in [1] are incorrect. In what follows, we give the corrected proofs. Throughout, we use
the same notations as in [1].

Theorem 3.4. Let {e;} C (0,+00) be convergent to 0 and 2* € F., be a stationary point
of problem (3) with € = €, and multiplier vectors \¥, ¥, 6, and ~*. Suppose that, for each k,
VgLek(zk,)\k,uk,(Sk,'yk) 1s bounded below with constant ay on the corresponding tangent space
T..(2%). Let z be an accumulation point of the sequence {z*}. If the sequence {ay} is bounded
and the MPEC-LICQ holds at Z, then Z is an M-stationary point of problem (1).

Proof. Assume that limj_,. 2¥ = Z without loss of generality. First of all, we note from
Theorem 3.3 that z is a C-stationary point of problem (1). To prove the theorem, we assume to
the contrary that z is not M-stationary to problem (1). Then, it follows from the definitions of
C-stationarity and M-stationarity that there must exist an iy € Zg(Z) N Zg(Z) such that

i, <0, 7 <0. (49)
By (39)-(40) and (45)—(46), we have
io € Zo,, (zF)u Ty, (z)
for every sufficiently large k. We first claim that iy ¢ Zs,, (2%) for all k sufficiently large. In fact,

if there exists a subsequence {2*}.cx such that g € Zs,, (2%) for all k € K, then, by (39) and (40),
we have from (49) that

@i = lim 0 (Hio(2") +ex) <0,
k—oo

Uiy = lim 0 (Gig (") +ex) < 0.
k—oo

Since (55“0 > 0 for each k, when k € K is sufficiently large, there hold
H; (Zk) < —€g, Gio (Zk) < —€k

and hence H;,(2*)Gj,(2*) > €2. This contradicts the fact that, for each k, z* is a feasible point of
problem (3) with € = €. Therefore, we have ig ¢ Zo,, (2%) for all sufficiently large k, which implies

io € Ty, (") (50)
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for all sufficiently large k. Then, by (39) and (40),

and so

'L_Lio = = klggo %koH’io (Zk) < O’ (51)

vy = — lim i Gi(2h) <0, (52)
H: k

lim ZO(Z ) =, (53)

hold and all the matrix functions A;(z,€), i = 1,---, N, in (7) have full column rank at (z*,¢).

For such k, the matrix Ay, (zk, €x) whose columns consist of the vectors

Vgl(zk) s leZy(2),
Vhr(zk): r=1,---,q,

VGi(2h) 1 i€ (Ta(2) N Tu(2) U (Ta(2) \ T, (%) UTu,, (),
VGZ(Zk) + WVHZ(Zk) 1 E I@ek (Zk) \IH(Z),
VGi(zF) + fIE ;VH( OF i € Ty, (2")\ Zu(2),
VH;(z*): j € (Ta(5)NTu(2) U (Za(3)\ Zo, (F) UL, (M),
VH;(2*) + Z Ezk; I ;’: VG (*): j €Ty, (2")\Ta(2),

H; (%) . k -
VH](Z )+ Gj(Zk)VG ( ) J EI\I/%(Z )\IG(Z)

has full column rank. Therefore, we can choose a vector d¥ € R™ such that

(d)TVgi(2F) =0, 1€ T,(2); (54)
(d*)TVh,(2F) =0, r=1,--,q; (55)
(d)VGi() =0, i€ (Ta(5) N Tu(z >) (Za()\ Zo, (") UTu, (), i #i0; (56)
Gi(zF) + € ) _
(@ (V6P + IR () =0, € T, (5)\ Tu ) (57
(dk)T(VG-(zk)+(MVH-(zk)) =0 i€ Ty, (2°)\ Zu(2); (58)
4 Hz(zk) ? ’ €k ’
(d)VH; () =0, j e (Za(z)NTIu(2) U (Tu(2)\ (Za,, () UTu, (). § # io; (59)
H;(2F) 4 ¢ . _
(@ (V) + Grm o VEIED) =0 4 € o, M)\ Zo(2) (60)
kT by HEN O ey , k .
() (VH; (M) + Z @ VG (9) =0, j € Tu, (F)\ Ta(2); (61)
Gj(2F)
(d)TV Gy, (2F) = 1; (62)
_ Hio(zk)
(dk)TVHlo (Zk) - _Gio (zk:)



Then for any i € Zop,, (2%) and any j € Ty, (2*), since

Ve, i(2") = (Gi(zF) + e) VH;(2%) + (Hi(zF) + &) VGi(2"),
Vi, (%) = H;j(Z")VG;(F) + G;(2F)VH; (%),
we have
(d*)'Vei(z) =0, i€y, (2Y),
(d*) Ve, j(z") =0, j €Ty, (),

and so d* € T (z*). Furthermore, we can choose the sequence {d*} to be bounded. Since
VgLEk(zk, ek 6% ~k) is bounded below with constant az on the corresponding tangent space
7., (%), we have from (48) that there exists a constant C' such that

(@) V2 Le, (25, N, ¥, 6% /) dE > —ay||d¥|? > O, (63)

where the last inequality follows from the boundedness of the sequences {ay} and {d*}. Note that,
by (32)—(34) and
V20, i(2") = VGi(zM)VH; (2" + VH;(2")VG;(2F)T
H(Gi(2) + ) V2H (2F) + (Hi(2%) + ex) V2G4 ("),
Ve () = VG(EMVH; ()T + VH;(2F)VG; ()T
+G;(2F)VPH; (%) + H (2F)V?G(2F),

there holds

V2L, (2%, AF uk 68 A%y = V2§ —i—Z/\lVle +Zukv2

=1
=D 0EVP e, i (2F) + Z Ve, 5 (2F)
i=1 j=1
= VEM+ Y ANVt +Zu,’fv2 (%)
leZy(z)
— Y V() YD VR, ().
iEI@Ek (Zk) jGZ\psk (Zk)

We then have
(d)TV2Le (25 AP, 1, 6%, 4F)d*
q
= (a2 Y M@V (R)dE + ) ()T VR () d"
leZy(z) r=1
— > H(@TVGER) VH(R T + ()T VH; (F)VGi(F)Td
’iEIq;Ek(Zk)
+ (Gi(2") + &) (@) V2 H; (2%)dF + (Hi (%) + ek)(dk)TV2G,-(zk)dk)
Y (@G EVH M 4 (@ VH (VG ()
J€Ty,, ()

+ G () ()T V2H; (R)db + Hy(2F) (d4) V2G5 () d" ). (64)



By the twice continuous differentiability of the functions, the boundness of the sequence {d*}, and
the convergence of the sequences {z*}, {\F} and {uF} (by (43)—(44)), the terms

q
@)V, YT @) VRa(M)dE, Y () he () d
leZy(z) r=1

are all bounded. Consider arbitrary indices ¢ and j such that ¢ € Zo, (2%) for infinitely many k
and j € Ty, (%) \ {40} for infinitely many k, respectively. If

i€ZIg(z)NI(z) or j€Ig(z)NIu(z),
then
(dTVGi(2") =0 or (d*)'VH;(Z") =0

and, by (39)—(40) and (45)—(46), the sequences

{st@ e ). {okmeh +al,

and

are all convergent. If

0,5 ¢ Lg(2) N1u(2),

then, also by (39)-(40) and (45)-(46), the sequences {6¥} and {fyf} are convergent. Therefore, we
have that the terms

> (@)TVGF)VH (T + (@) VH (F)V (R dE +

iEIq>Ek(zk)
(Gilz%) + ) (@) V2 Hy(2F)d* + (Hi(2F) + ) (@) TV2Gy(2F) )
and

> (@GN VH (R AR 4 (dNTVH,(F)V G5 (R dr +
7€Tu g, (9)\Lio}

G3(M) ()2 H, (F)d* + H, (=) (d*) V2G5 d")
are bounded. On the other hand, however, we have (50) for all sufficiently large k and

fyfo ((d’“)TVGiO(zk)VHiO(zk)Tdk + (d*) TV Hyy (2F)V Gy, (27) T dF

Gy () (@) V2 Hiy () 4 Hyy (29) (@) V2 (5)d) (65)
- 2”;; Pl o (Gl )T Hig P + iy ()26 ()

Since (53) holds and ’yiko — +o0 as k — oo by (29) and (51), we have

_ 27ikoHio (Zk) oo

Gy (2%)



as k — oo. Note that, by (51) and (52), the sequences
bheae) e}

are also convergent. We then have that the term (65) tends to —oo as k — oo. Therefore, it follows
from (64) that

(dk)Tngek (Zk> )\k7 ,U*k7 5ka ’yk)dk — =00
as k — oo. This contradicts (63) and hence z is M-stationary to problem (1). O

Theorem 3.5. Let {e;}, {2}, and Z be the same as in Theorem 8.4 and N¢,u* 6%, and ~*

be the multiplier vectors corresponding to z*. Let B be the smallest eigenvalue of the matriz

V2L, (28, \F, ik 6% ~F). If the sequence {3y} is bounded below and the MPEC-LICQ holds at Z,
then z is a B-stationary point of problem (1).

Proof. 1t is easy to see that the assumptions of Theorem 3.4 are satisfied with « = max{—/y, 0}
and so Z is an M-stationary point of problem (1). Suppose that z is not B-stationary to problem
(1). Then, by the definitions of B- and M-stationarity, there exists an iy € Zg(2Z) NZg(Z) such that

iy <0, Tig =0 (66)
or
Ui, =0, 7, <O0.
Without loss of generality, we assume that (66) holds. By (39)—(40) and (45)—(46), we have
1o € I{;.Ek (zk) U I\p% (zk)

for every sufficiently large k. If there exists a subsequence {z¥}rcx such that i € Is., (2%) for
all k € K, we have from (39), (45), and (66) that u;, = limyex koo Or, (Hio(2%) + €) < 0, which
implies H;,(2%) + e, < 0 when k € K is sufficiently large. Since (H;,(2%) + €x)(Gi, (%) + €x) > €2
for each k, there also holds G;,(2*) + e < 0 for all k € K sufficiently large. Thus, there must hold
H;,(2%)Gy,(2%) > €2 when k € K is sufficiently large, which contradicts the fact that z* is feasible
to problem (3) with € = ¢ for each k. Therefore, we have io ¢ Zo,, (2%) for all sufficiently large k,
which yields

io € Ty, (") (67)

for all sufficiently large k. Then, it follows from (39), (40), and (66) that

Ui, = — lim 'yﬁ)Hio(zk) <0
k—oo
and so, by (29), we have
lim %ko = 400. (68)
k—o0

Now we suppose that, for all sufficiently large k, (28)—(31) and (35) hold and the matrix Ay, (2", ex)
defined in the proof of Theorem 3.4 has full column rank. Therefore, we can choose a vector d¥ € R"



such that

(d*'Vg(zF) =0, 1 € Ty(2);

(d*T'Vh, (%) =0, r=1,---,¢q;

(d)VGi (%) =0, i€ (IG(Z) n zH(z)) U (zg(z) \ (Za, (%) Uy, (zk))), i # io;
i Zk €

(T (VGi(F) + flEzk; 1 - VHi( 5) =0, i€Zo, (2")\Iu(3);
(R

@ (VO + GEAVHG) =0 i€ Tu, )\ TuG)

(@)'VH;(*) =0, j € (T6(2) nTn(2) U (Tn(2)\ (Zo., () UTu,, (M),  # io;

H;(2") + € _

(@) (V) + Grm o VEIED) =0 5 € To, M)\ Zo(2)
(K

(@) (VI + G TEE) =0 T e T, (9)\ To(e):

Furthermore, we can choose the sequence {d*} to be bounded. By the assumptions of the theorem,
there exists a constant C such that

(d)TV2Le, (2% NF 1k 6% AR)dE > gy ||d¥|)? > © (69)

holds for all k. In a similar way to the proof of Theorem 3.4, we can show that all the terms on
the right-hand side of (64) except

7 () V Gy (2F)V Hig (F)Td" 4 (%) Hiy (2F)V Gy () "

+Gig (2F) (@) V2 Hiy (2F)d + Hiy (=) (@) TV2Giy (2F)d")
are bounded. On the other hand,

7 ()Y Gy (M) V Hig (F)Td* 4 (%) Hiy (M) VGl (2F)Td) = =298 — —o0
by the definition of {d*} and (68), and
7E (Gio (29) (@) V2 Hig (2F)dF + Hiy (%) (@) TV Gy (2F) ")
is bounded by the convergence of the sequences
{VZGio(Zk)}a {ViHio(zk)}-
In consequence, we have
(dk)Tngek(Zk,)\k,,uk,(sk,’)/k)dk 00

as k — oo. This contradicts (69) and hence z is B-stationary to problem (1). O
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