## A Modified Relaxation Scheme for Mathematical Programs with Complementarity Constraints:

## Erratum

Gui-Hua Lin\* and Masao Fukushima<sup>†</sup>

April 20, 2006

In [1], a modified relaxation method was proposed for mathematical programs with complementarity constraints and some new sufficient conditions for M- or B-stationarity were shown. However, due to an ignored sign in the Lagrangian function of the relaxed problem, the proofs of Theorems 3.4 and 3.5 in [1] are incorrect. In what follows, we give the corrected proofs. Throughout, we use the same notations as in [1].

**Theorem 3.4.** Let  $\{\epsilon_k\} \subseteq (0, +\infty)$  be convergent to 0 and  $z^k \in \mathcal{F}_{\epsilon_k}$  be a stationary point of problem (3) with  $\epsilon = \epsilon_k$  and multiplier vectors  $\lambda^k, \mu^k, \delta^k$ , and  $\gamma^k$ . Suppose that, for each k,  $\nabla^2_z L_{\epsilon_k}(z^k, \lambda^k, \mu^k, \delta^k, \gamma^k)$  is bounded below with constant  $\alpha_k$  on the corresponding tangent space  $\mathcal{T}_{\epsilon_k}(z^k)$ . Let  $\bar{z}$  be an accumulation point of the sequence  $\{z^k\}$ . If the sequence  $\{\alpha_k\}$  is bounded and the MPEC-LICQ holds at  $\bar{z}$ , then  $\bar{z}$  is an M-stationary point of problem (1).

*Proof.* Assume that  $\lim_{k\to\infty} z^k = \bar{z}$  without loss of generality. First of all, we note from Theorem 3.3 that  $\bar{z}$  is a C-stationary point of problem (1). To prove the theorem, we assume to the contrary that  $\bar{z}$  is not M-stationary to problem (1). Then, it follows from the definitions of C-stationarity and M-stationarity that there must exist an  $i_0 \in \mathcal{I}_G(\bar{z}) \cap \mathcal{I}_H(\bar{z})$  such that

$$\bar{u}_{i_0} < 0, \quad \bar{v}_{i_0} < 0. \tag{49}$$

By (39)-(40) and (45)-(46), we have

$$i_0 \in \mathcal{I}_{\Phi_{\epsilon_k}}(z^k) \cup \mathcal{I}_{\Psi_{\epsilon_k}}(z^k)$$

for every sufficiently large k. We first claim that  $i_0 \notin \mathcal{I}_{\Phi_{\epsilon_k}}(z^k)$  for all k sufficiently large. In fact, if there exists a subsequence  $\{z^k\}_{k\in\mathcal{K}}$  such that  $i_0 \in \mathcal{I}_{\Phi_{\epsilon_k}}(z^k)$  for all  $k \in \mathcal{K}$ , then, by (39) and (40), we have from (49) that

$$\bar{u}_{i_0} = \lim_{\substack{k \in \mathcal{K} \\ k \to \infty}} \delta_{i_0}^k (H_{i_0}(z^k) + \epsilon_k) < 0,$$

$$\bar{v}_{i_0} = \lim_{\substack{k \in \mathcal{K} \\ k \to \infty}} \delta_{i_0}^k (G_{i_0}(z^k) + \epsilon_k) < 0.$$

Since  $\delta_{i_0}^k \geq 0$  for each k, when  $k \in \mathcal{K}$  is sufficiently large, there hold

$$H_{i_0}(z^k) < -\epsilon_k, \qquad G_{i_0}(z^k) < -\epsilon_k$$

and hence  $H_{i_0}(z^k)G_{i_0}(z^k) > \epsilon_k^2$ . This contradicts the fact that, for each  $k, z^k$  is a feasible point of problem (3) with  $\epsilon = \epsilon_k$ . Therefore, we have  $i_0 \notin \mathcal{I}_{\Phi_{\epsilon_k}}(z^k)$  for all sufficiently large k, which implies

$$i_0 \in \mathcal{I}_{\Psi_{\epsilon_k}}(z^k) \tag{50}$$

<sup>\*</sup>Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, China (email: ghlin@amp.i.kyoto-u.ac.jp)

<sup>&</sup>lt;sup>†</sup>Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan (email: fuku@amp.i.kyoto-u.ac.jp)

for all sufficiently large k. Then, by (39) and (40),

$$\bar{u}_{i_0} = -\lim_{k \to \infty} \gamma_{i_0}^k H_{i_0}(z^k) < 0,$$
 (51)

$$\bar{v}_{i_0} = -\lim_{k \to \infty} \gamma_{i_0}^k G_{i_0}(z^k) < 0,$$
 (52)

and so

$$\lim_{k \to \infty} \frac{H_{i_0}(z^k)}{G_{i_0}(z^k)} = \frac{\bar{u}_{i_0}}{\bar{v}_{i_0}} > 0.$$
 (53)

In what follows, we suppose that, for all sufficiently large k, (28)–(31), (35), and

$$\frac{H_{i_0}(z^k)}{G_{i_0}(z^k)} > 0$$

hold and all the matrix functions  $A_i(z, \epsilon)$ ,  $i = 1, \dots, N$ , in (7) have full column rank at  $(z^k, \epsilon_k)$ . For such k, the matrix  $A_{N_k}(z^k, \epsilon_k)$  whose columns consist of the vectors

$$\begin{split} \nabla g_l(z^k) : \quad & l \in \mathcal{I}_g(\bar{z}), \\ \nabla h_r(z^k) : \quad & r = 1, \cdots, q, \\ \nabla G_i(z^k) : \quad & i \in \left(\mathcal{I}_G(\bar{z}) \cap \mathcal{I}_H(\bar{z})\right) \cup \left(\mathcal{I}_G(\bar{z}) \setminus \left(\mathcal{I}_{\Phi_{\epsilon_k}}(z^k) \cup \mathcal{I}_{\Psi_{\epsilon_k}}(z^k)\right)\right), \\ \nabla G_i(z^k) + \frac{G_i(z^k) + \epsilon_k}{H_i(z^k) + \epsilon_k} \nabla H_i(z^k) : \quad & i \in \mathcal{I}_{\Phi_{\epsilon_k}}(z^k) \setminus \mathcal{I}_H(\bar{z}), \\ \nabla G_i(z^k) + \frac{G_i(z^k)}{H_i(z^k)} \nabla H_i(z^k) : \quad & i \in \mathcal{I}_{\Psi_{\epsilon_k}}(z^k) \setminus \mathcal{I}_H(\bar{z}), \\ \nabla H_j(z^k) : \quad & j \in \left(\mathcal{I}_G(\bar{z}) \cap \mathcal{I}_H(\bar{z})\right) \cup \left(\mathcal{I}_H(\bar{z}) \setminus \left(\mathcal{I}_{\Phi_{\epsilon_k}}(z^k) \cup \mathcal{I}_{\Psi_{\epsilon_k}}(z^k)\right)\right), \\ \nabla H_j(z^k) + \frac{H_j(z^k) + \epsilon_k}{G_j(z^k) + \epsilon_k} \nabla G_j(z^k) : \quad & j \in \mathcal{I}_{\Phi_{\epsilon_k}}(z^k) \setminus \mathcal{I}_G(\bar{z}), \\ \nabla H_j(z^k) + \frac{H_j(z^k)}{G_j(z^k)} \nabla G_j(z^k) : \quad & j \in \mathcal{I}_{\Psi_{\epsilon_k}}(z^k) \setminus \mathcal{I}_G(\bar{z}), \end{split}$$

has full column rank. Therefore, we can choose a vector  $d^k \in \mathbb{R}^n$  such that

$$(d^k)^T \nabla g_l(z^k) = 0, \qquad l \in \mathcal{I}_q(\bar{z}); \tag{54}$$

$$(d^k)^T \nabla h_r(z^k) = 0, \qquad r = 1, \dots, q; \tag{55}$$

$$(d^k)^T \nabla G_i(z^k) = 0, \quad i \in \left( \mathcal{I}_G(\bar{z}) \cap \mathcal{I}_H(\bar{z}) \right) \cup \left( \mathcal{I}_G(\bar{z}) \setminus \left( \mathcal{I}_{\Phi_{\epsilon_k}}(z^k) \cup \mathcal{I}_{\Psi_{\epsilon_k}}(z^k) \right) \right), \quad i \neq i_0; \quad (56)$$

$$(d^k)^T \left( \nabla G_i(z^k) + \frac{G_i(z^k) + \epsilon_k}{H_i(z^k) + \epsilon_k} \nabla H_i(z^k) \right) = 0, \quad i \in \mathcal{I}_{\Phi_{\epsilon_k}}(z^k) \setminus \mathcal{I}_H(\bar{z}); \tag{57}$$

$$(d^k)^T \left( \nabla G_i(z^k) + \frac{G_i(z^k)}{H_i(z^k)} \nabla H_i(z^k) \right) = 0, \qquad i \in \mathcal{I}_{\Psi_{\epsilon_k}}(z^k) \setminus \mathcal{I}_H(\bar{z}); \tag{58}$$

$$(d^k)^T \nabla H_j(z^k) = 0, \quad j \in \left( \mathcal{I}_G(\bar{z}) \cap \mathcal{I}_H(\bar{z}) \right) \cup \left( \mathcal{I}_H(\bar{z}) \setminus \left( \mathcal{I}_{\Phi_{\epsilon_k}}(z^k) \cup \mathcal{I}_{\Psi_{\epsilon_k}}(z^k) \right) \right), \quad j \neq i_0; \quad (59)$$

$$(d^k)^T \left( \nabla H_j(z^k) + \frac{H_j(z^k) + \epsilon_k}{G_j(z^k) + \epsilon_k} \nabla G_j(z^k) \right) = 0, \quad j \in \mathcal{I}_{\Phi_{\epsilon_k}}(z^k) \setminus \mathcal{I}_G(\bar{z}); \tag{60}$$

$$(d^k)^T \left( \nabla H_j(z^k) + \frac{H_j(z^k)}{G_j(z^k)} \nabla G_j(z^k) \right) = 0, \qquad j \in \mathcal{I}_{\Psi_{\epsilon_k}}(z^k) \setminus \mathcal{I}_G(\bar{z}); \tag{61}$$

$$(d^k)^T \nabla G_{i_0}(z^k) = 1; (62)$$

$$(d^k)^T \nabla H_{i_0}(z^k) = -\frac{H_{i_0}(z^k)}{G_{i_0}(z^k)}.$$

Then for any  $i \in \mathcal{I}_{\Phi_{\epsilon_k}}(z^k)$  and any  $j \in \mathcal{I}_{\Psi_{\epsilon_k}}(z^k)$ , since

$$\nabla \phi_{\epsilon_k,i}(z^k) = (G_i(z^k) + \epsilon_k) \nabla H_i(z^k) + (H_i(z^k) + \epsilon_k) \nabla G_i(z^k),$$
  
$$\nabla \psi_{\epsilon_k,j}(z^k) = H_j(z^k) \nabla G_j(z^k) + G_j(z^k) \nabla H_j(z^k),$$

we have

$$(d^k)^T \nabla \phi_{\epsilon_k, i}(z^k) = 0, \quad i \in \mathcal{I}_{\Phi_{\epsilon_k}}(z^k),$$
$$(d^k)^T \nabla \psi_{\epsilon_k, j}(z^k) = 0, \quad j \in \mathcal{I}_{\Psi_{\epsilon_k}}(z^k),$$

and so  $d^k \in \mathcal{T}_{\epsilon_k}(z^k)$ . Furthermore, we can choose the sequence  $\{d^k\}$  to be bounded. Since  $\nabla^2_z L_{\epsilon_k}(z^k, \lambda^k, \mu^k, \delta^k, \gamma^k)$  is bounded below with constant  $\alpha_k$  on the corresponding tangent space  $\mathcal{T}_{\epsilon_k}(z^k)$ , we have from (48) that there exists a constant C such that

$$(d^k)^T \nabla_z^2 L_{\epsilon_k}(z^k, \lambda^k, \mu^k, \delta^k, \gamma^k) d^k \ge -\alpha_k ||d^k||^2 \ge C, \tag{63}$$

where the last inequality follows from the boundedness of the sequences  $\{\alpha_k\}$  and  $\{d^k\}$ . Note that, by (32)–(34) and

$$\nabla^{2} \phi_{\epsilon_{k},i}(z^{k}) = \nabla G_{i}(z^{k}) \nabla H_{i}(z^{k})^{T} + \nabla H_{i}(z^{k}) \nabla G_{i}(z^{k})^{T} + (G_{i}(z^{k}) + \epsilon_{k}) \nabla^{2} H_{i}(z^{k}) + (H_{i}(z^{k}) + \epsilon_{k}) \nabla^{2} G_{i}(z^{k}),$$

$$\nabla^{2} \psi_{\epsilon_{k},j}(z^{k}) = \nabla G_{j}(z^{k}) \nabla H_{j}(z^{k})^{T} + \nabla H_{j}(z^{k}) \nabla G_{j}(z^{k})^{T} + G_{j}(z^{k}) \nabla^{2} H_{j}(z^{k}) + H_{j}(z^{k}) \nabla^{2} G_{j}(z^{k}),$$

there holds

$$\nabla_{z}^{2} L_{\epsilon_{k}}(z^{k}, \lambda^{k}, \mu^{k}, \delta^{k}, \gamma^{k}) = \nabla^{2} f(z^{k}) + \sum_{l=1}^{p} \lambda_{l}^{k} \nabla^{2} g_{l}(z^{k}) + \sum_{r=1}^{q} \mu_{r}^{k} \nabla^{2} h_{r}(z^{k}) 
- \sum_{i=1}^{m} \delta_{i}^{k} \nabla^{2} \phi_{\epsilon_{k}, i}(z^{k}) + \sum_{j=1}^{m} \gamma_{j}^{k} \nabla^{2} \psi_{\epsilon_{k}, j}(z^{k}) 
= \nabla^{2} f(z^{k}) + \sum_{l \in \mathcal{I}_{g}(\bar{z})} \lambda_{l}^{k} \nabla^{2} g_{l}(z^{k}) + \sum_{r=1}^{q} \mu_{r}^{k} \nabla^{2} h_{r}(z^{k}) 
- \sum_{i \in \mathcal{I}_{\Phi_{\epsilon_{i}}}(z^{k})} \delta_{i}^{k} \nabla^{2} \phi_{\epsilon_{k}, i}(z^{k}) + \sum_{j \in \mathcal{I}_{\Psi_{\epsilon_{i}}}(z^{k})} \gamma_{j}^{k} \nabla^{2} \psi_{\epsilon_{k}, j}(z^{k}).$$

We then have

$$(d^{k})^{T} \nabla_{z}^{2} L_{\epsilon_{k}}(z^{k}, \lambda^{k}, \mu^{k}, \delta^{k}, \gamma^{k}) d^{k}$$

$$= (d^{k})^{T} \nabla^{2} f(z^{k}) d^{k} + \sum_{l \in \mathcal{I}_{g}(\bar{z})} \lambda_{l}^{k} (d^{k})^{T} \nabla^{2} g_{l}(z^{k}) d^{k} + \sum_{r=1}^{q} \mu_{r}^{k} (d^{k})^{T} \nabla^{2} h_{r}(z^{k}) d^{k}$$

$$- \sum_{i \in \mathcal{I}_{\Phi_{\epsilon_{k}}}(z^{k})} \delta_{i}^{k} \Big( (d^{k})^{T} \nabla G_{i}(z^{k}) \nabla H_{i}(z^{k})^{T} d^{k} + (d^{k})^{T} \nabla H_{i}(z^{k}) \nabla G_{i}(z^{k})^{T} d^{k}$$

$$+ (G_{i}(z^{k}) + \epsilon_{k}) (d^{k})^{T} \nabla^{2} H_{i}(z^{k}) d^{k} + (H_{i}(z^{k}) + \epsilon_{k}) (d^{k})^{T} \nabla^{2} G_{i}(z^{k}) d^{k} \Big)$$

$$+ \sum_{j \in \mathcal{I}_{\Psi_{\epsilon_{k}}}(z^{k})} \gamma_{j}^{k} \Big( (d^{k})^{T} \nabla G_{j}(z^{k}) \nabla H_{j}(z^{k})^{T} d^{k} + (d^{k})^{T} \nabla H_{j}(z^{k}) \nabla G_{j}(z^{k})^{T} d^{k}$$

$$+ G_{j}(z^{k}) (d^{k})^{T} \nabla^{2} H_{j}(z^{k}) d^{k} + H_{j}(z^{k}) (d^{k})^{T} \nabla^{2} G_{j}(z^{k}) d^{k} \Big). \tag{64}$$

By the twice continuous differentiability of the functions, the boundness of the sequence  $\{d^k\}$ , and the convergence of the sequences  $\{z^k\}$ ,  $\{\lambda_I^k\}$  and  $\{\mu_r^k\}$  (by (43)–(44)), the terms

$$(d^k)^T \nabla^2 f(z^k) d^k, \quad \sum_{l \in \mathcal{I}_q(\bar{z})} \lambda_l^k (d^k)^T \nabla^2 g_l(z^k) d^k, \quad \sum_{r=1}^q \mu_r^k (d^k)^T \nabla^2 h_r(z^k) d^k$$

are all bounded. Consider arbitrary indices i and j such that  $i \in \mathcal{I}_{\Phi_{\epsilon_k}}(z^k)$  for infinitely many k and  $j \in \mathcal{I}_{\Psi_{\epsilon_k}}(z^k) \setminus \{i_0\}$  for infinitely many k, respectively. If

$$i \in \mathcal{I}_G(\bar{z}) \cap \mathcal{I}_H(\bar{z})$$
 or  $j \in \mathcal{I}_G(\bar{z}) \cap \mathcal{I}_H(\bar{z})$ ,

then

$$(d^k)^T \nabla G_i(z^k) = 0$$
 or  $(d^k)^T \nabla H_j(z^k) = 0$ 

and, by (39)-(40) and (45)-(46), the sequences

$$\left\{\delta_i^k(G_i(z^k) + \epsilon_k)\right\}, \quad \left\{\delta_i^k(H_i(z^k) + \epsilon_k)\right\},$$

and

$$\left\{\gamma_j^k G_j(z^k)\right\}, \quad \left\{\gamma_j^k H_j(z^k)\right\}$$

are all convergent. If

$$i, j \notin \mathcal{I}_G(\bar{z}) \cap \mathcal{I}_H(\bar{z}),$$

then, also by (39)–(40) and (45)–(46), the sequences  $\{\delta_i^k\}$  and  $\{\gamma_j^k\}$  are convergent. Therefore, we have that the terms

$$\sum_{i \in \mathcal{I}_{\Phi_{\epsilon_k}}(z^k)} \delta_i^k \Big( (d^k)^T \nabla G_i(z^k) \nabla H_i(z^k)^T d^k + (d^k)^T \nabla H_i(z^k) \nabla G_i(z^k)^T d^k + (G_i(z^k) + \epsilon_k) (d^k)^T \nabla^2 H_i(z^k) d^k + (H_i(z^k) + \epsilon_k) (d^k)^T \nabla^2 G_i(z^k) d^k \Big)$$

and

$$\sum_{j \in \mathcal{I}_{\Psi_{\epsilon_k}}(z^k) \setminus \{i_0\}} \gamma_j^k \Big( (d^k)^T \nabla G_j(z^k) \nabla H_j(z^k)^T d^k + (d^k)^T \nabla H_j(z^k) \nabla G_j(z^k)^T d^k + G_j(z^k) (d^k)^T \nabla^2 H_j(z^k) d^k + H_j(z^k) (d^k)^T \nabla^2 G_j(z^k) d^k \Big)$$

are bounded. On the other hand, however, we have (50) for all sufficiently large k and

$$\gamma_{i_0}^k \Big( (d^k)^T \nabla G_{i_0}(z^k) \nabla H_{i_0}(z^k)^T d^k + (d^k)^T \nabla H_{i_0}(z^k) \nabla G_{i_0}(z^k)^T d^k \\
+ G_{i_0}(z^k) (d^k)^T \nabla^2 H_{i_0}(z^k) d^k + H_{i_0}(z^k) (d^k)^T \nabla^2 G_{i_0}(z^k) d^k \Big)$$

$$= -\frac{2\gamma_{i_0}^k H_{i_0}(z^k)}{G_{i_0}(z^k)} + \gamma_{i_0}^k \Big( G_{i_0}(z^k) (d^k)^T \nabla^2 H_{i_0}(z^k) d^k + H_{i_0}(z^k) (d^k)^T \nabla^2 G_{i_0}(z^k) d^k \Big).$$
(65)

Since (53) holds and  $\gamma_{i_0}^k \to +\infty$  as  $k \to \infty$  by (29) and (51), we have

$$-\frac{2\gamma_{i_0}^k H_{i_0}(z^k)}{G_{i_0}(z^k)} \to -\infty$$

as  $k \to \infty$ . Note that, by (51) and (52), the sequences

$$\left\{\gamma_{i_0}^k G_{i_0}(z^k)\right\}, \quad \left\{\gamma_{i_0}^k H_{i_0}(z^k)\right\}$$

are also convergent. We then have that the term (65) tends to  $-\infty$  as  $k \to \infty$ . Therefore, it follows from (64) that

$$(d^k)^T \nabla_z^2 L_{\epsilon_k}(z^k, \lambda^k, \mu^k, \delta^k, \gamma^k) d^k \to -\infty$$

as  $k \to \infty$ . This contradicts (63) and hence  $\bar{z}$  is M-stationary to problem (1).

**Theorem 3.5.** Let  $\{\epsilon_k\}, \{z^k\}$ , and  $\bar{z}$  be the same as in Theorem 3.4 and  $\lambda^k, \mu^k, \delta^k$ , and  $\gamma^k$  be the multiplier vectors corresponding to  $z^k$ . Let  $\beta_k$  be the smallest eigenvalue of the matrix  $\nabla_z^2 L_{\epsilon_k}(z^k, \lambda^k, \mu^k, \delta^k, \gamma^k)$ . If the sequence  $\{\beta_k\}$  is bounded below and the MPEC-LICQ holds at  $\bar{z}$ , then  $\bar{z}$  is a B-stationary point of problem (1).

*Proof.* It is easy to see that the assumptions of Theorem 3.4 are satisfied with  $\alpha_k = \max\{-\beta_k, 0\}$  and so  $\bar{z}$  is an M-stationary point of problem (1). Suppose that  $\bar{z}$  is not B-stationary to problem (1). Then, by the definitions of B- and M-stationarity, there exists an  $i_0 \in \mathcal{I}_G(\bar{z}) \cap \mathcal{I}_H(\bar{z})$  such that

$$\bar{u}_{i_0} < 0, \quad \bar{v}_{i_0} = 0 \tag{66}$$

or

$$\bar{u}_{i_0} = 0, \quad \bar{v}_{i_0} < 0.$$

Without loss of generality, we assume that (66) holds. By (39)–(40) and (45)–(46), we have

$$i_0 \in \mathcal{I}_{\Phi_{\epsilon_k}}(z^k) \cup \mathcal{I}_{\Psi_{\epsilon_k}}(z^k)$$

for every sufficiently large k. If there exists a subsequence  $\{z^k\}_{k\in\mathcal{K}}$  such that  $i_0\in\mathcal{I}_{\Phi_{\epsilon_k}}(z^k)$  for all  $k\in\mathcal{K}$ , we have from (39), (45), and (66) that  $\bar{u}_{i_0}=\lim_{k\in\mathcal{K},k\to\infty}\delta_{i_0}^k(H_{i_0}(z^k)+\epsilon_k)<0$ , which implies  $H_{i_0}(z^k)+\epsilon_k<0$  when  $k\in\mathcal{K}$  is sufficiently large. Since  $(H_{i_0}(z^k)+\epsilon_k)(G_{i_0}(z^k)+\epsilon_k)\geq\epsilon_k^2$  for each k, there also holds  $G_{i_0}(z^k)+\epsilon_k<0$  for all  $k\in\mathcal{K}$  sufficiently large. Thus, there must hold  $H_{i_0}(z^k)G_{i_0}(z^k)>\epsilon_k^2$  when  $k\in\mathcal{K}$  is sufficiently large, which contradicts the fact that  $z^k$  is feasible to problem (3) with  $\epsilon=\epsilon_k$  for each k. Therefore, we have  $i_0\notin\mathcal{I}_{\Phi_{\epsilon_k}}(z^k)$  for all sufficiently large k, which yields

$$i_0 \in \mathcal{I}_{\Psi_{\epsilon,k}}(z^k) \tag{67}$$

for all sufficiently large k. Then, it follows from (39), (40), and (66) that

$$\bar{u}_{i_0} = -\lim_{k \to \infty} \gamma_{i_0}^k H_{i_0}(z^k) < 0$$

and so, by (29), we have

$$\lim_{k \to \infty} \gamma_{i_0}^k = +\infty. \tag{68}$$

Now we suppose that, for all sufficiently large k, (28)–(31) and (35) hold and the matrix  $A_{N_k}(z^k, \epsilon_k)$  defined in the proof of Theorem 3.4 has full column rank. Therefore, we can choose a vector  $d^k \in \mathbb{R}^n$ 

such that

$$\begin{split} &(d^k)^T \nabla g_l(z^k) = 0, & l \in \mathcal{I}_g(\bar{z}); \\ &(d^k)^T \nabla h_r(z^k) = 0, & r = 1, \cdots, q; \\ &(d^k)^T \nabla G_i(z^k) = 0, & i \in \left(\mathcal{I}_G(\bar{z}) \cap \mathcal{I}_H(\bar{z})\right) \cup \left(\mathcal{I}_G(\bar{z}) \setminus \left(\mathcal{I}_{\Phi_{\epsilon_k}}(z^k) \cup \mathcal{I}_{\Psi_{\epsilon_k}}(z^k)\right)\right), \; i \neq i_0; \\ &(d^k)^T \left(\nabla G_i(z^k) + \frac{G_i(z^k) + \epsilon_k}{H_i(z^k) + \epsilon_k} \nabla H_i(z^k)\right) = 0, & i \in \mathcal{I}_{\Phi_{\epsilon_k}}(z^k) \setminus \mathcal{I}_H(\bar{z}); \\ &(d^k)^T \left(\nabla G_i(z^k) + \frac{G_i(z^k)}{H_i(z^k)} \nabla H_i(z^k)\right) = 0, & i \in \mathcal{I}_{\Psi_{\epsilon_k}}(z^k) \setminus \mathcal{I}_H(\bar{z}); \\ &(d^k)^T \nabla H_j(z^k) = 0, & j \in \left(\mathcal{I}_G(\bar{z}) \cap \mathcal{I}_H(\bar{z})\right) \cup \left(\mathcal{I}_H(\bar{z}) \setminus \left(\mathcal{I}_{\Phi_{\epsilon_k}}(z^k) \cup \mathcal{I}_{\Psi_{\epsilon_k}}(z^k)\right)\right), \; j \neq i_0; \\ &(d^k)^T \left(\nabla H_j(z^k) + \frac{H_j(z^k) + \epsilon_k}{G_j(z^k) + \epsilon_k} \nabla G_j(z^k)\right) = 0, & j \in \mathcal{I}_{\Phi_{\epsilon_k}}(z^k) \setminus \mathcal{I}_G(\bar{z}); \\ &(d^k)^T \left(\nabla H_j(z^k) + \frac{H_j(z^k)}{G_j(z^k)} \nabla G_j(z^k)\right) = 0, & j \in \mathcal{I}_{\Psi_{\epsilon_k}}(z^k) \setminus \mathcal{I}_G(\bar{z}); \\ &(d^k)^T \nabla G_{i_0}(z^k) = 1; \\ &(d^k)^T \nabla H_{i_0}(z^k) = -1. \end{split}$$

Furthermore, we can choose the sequence  $\{d^k\}$  to be bounded. By the assumptions of the theorem, there exists a constant C such that

$$(d^k)^T \nabla_z^2 L_{\epsilon_k}(z^k, \lambda^k, \mu^k, \delta^k, \gamma^k) d^k \ge \beta_k ||d^k||^2 \ge C$$

$$(69)$$

holds for all k. In a similar way to the proof of Theorem 3.4, we can show that all the terms on the right-hand side of (64) except

$$\gamma_{i_0}^k \Big( (d^k)^T \nabla G_{i_0}(z^k) \nabla H_{i_0}(z^k)^T d^k + (d^k)^T \nabla H_{i_0}(z^k) \nabla G_{i_0}(z^k)^T d^k + G_{i_0}(z^k) (d^k)^T \nabla^2 H_{i_0}(z^k) d^k + H_{i_0}(z^k) (d^k)^T \nabla^2 G_{i_0}(z^k) d^k \Big)$$

are bounded. On the other hand,

$$\gamma_{i_0}^k \left( (d^k)^T \nabla G_{i_0}(z^k) \nabla H_{i_0}(z^k)^T d^k + (d^k)^T \nabla H_{i_0}(z^k) \nabla G_{i_0}(z^k)^T d^k \right) = -2\gamma_{i_0}^k \to -\infty$$

by the definition of  $\{d^k\}$  and (68), and

$$\gamma_{i_0}^k \left( G_{i_0}(z^k) (d^k)^T \nabla^2 H_{i_0}(z^k) d^k + H_{i_0}(z^k) (d^k)^T \nabla^2 G_{i_0}(z^k) d^k \right)$$

is bounded by the convergence of the sequences

$$\left\{\gamma_{i_0}^k G_{i_0}(z^k)\right\}, \quad \left\{\gamma_{i_0}^k H_{i_0}(z^k)\right\}.$$

In consequence, we have

$$(d^k)^T \nabla_z^2 L_{\epsilon_k}(z^k, \lambda^k, \mu^k, \delta^k, \gamma^k) d^k \to -\infty$$

as  $k \to \infty$ . This contradicts (69) and hence  $\bar{z}$  is B-stationary to problem (1).

**Acknowledgements.** The authors thank Liu Bing, who pointed out the inaccuracies in [1].

## References

[1] G.-H. Lin and M. Fukushima, A Modified Relaxation Scheme for Mathematical Programs with Complementarity Constraints, Annals of Operations Research, 133 (2005), 63-84.