
December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

International Journal of Information Technology & Decision Making
c© World Scientific Publishing Company

TABU PROGRAMMING: A NEW PROBLEM SOLVER THROUGH
ADAPTIVE MEMORY PROGRAMMING OVER TREE DATA

STRUCTURES

ABDEL-RAHMAN HEDAR

Department of Computer Science,
Faculty of Computers and Information,

Assiut University, EGYPT
hedar@aun.edu.eg

EMAD MABROUK∗ and MASAO FUKUSHIMA†

Department of Applied Mathematics and Physics,

Graduate School of Informatics,
Kyoto University, Kyoto 606-8501, JAPAN

∗hamdy@amp.i.kyoto-u.ac.jp
†fuku@i.kyoto-u.ac.jp

Received Day Month Year
Revised Day Month Year

Since the first appearance of the Genetic Programming (GP) algorithm, extensive theo-
retical and application studies on it have been conducted. Nowadays, the GP algorithm

is considered one of the most important tools in Artificial Intelligence (AI). Neverthe-
less, several questions have been raised about the complexity of the GP algorithm and
the disruption effect of the crossover and mutation operators. In this paper, the Tabu
Programming (TP) algorithm is proposed to employ the search strategy of the classical

Tabu Search algorithm with the tree data structure. Moreover, the TP algorithm exploits
a set of local search procedures over a tree space in order to mitigate the drawbacks of
the crossover and mutation operators. Extensive numerical experiments are performed to
study the performance of the proposed algorithm for a set of benchmark problems. The

results of those experiments show that the TP algorithm compares favorably to recent
versions of the GP algorithm in terms of computational efforts and the rate of success.
Finally, we present a comprehensive framework called Meta-Heuristics Programming
(MHP) as general machine learning tools.

Keywords: Machine Learning; Meta-heuristics; Local Search; Parse Tree; Tabu Program-
ming; Tabu Search.

1. Introduction

Many different problems from artificial intelligence, symbolic processing, and ma-
chine learning require discovery of a “computer program” as an output when pre-
sented with particular inputs. Koza1,2 introduces a lot of problems that can be
viewed as problems of discovering desirable computer programs. Many research ar-

1

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

2

eas contain such problems as machine learning, planning in artificial intelligence
and robotics, symbolic regression, concept formation, game playing, neural network
design and training, etc. The process of solving those problems can be reformulated
as a search for the fittest individual computer program in the space of possible
computer programs for the problem under consideration.

The purpose of this paper is to propose a new algorithm called Tabu Program-
ming (TP) algorithm that searches for desirable computer program as an output.
The proposed algorithm follows the search strategy in the well-known Tabu Search
(TS) algorithm using a different data structure. Specifically, the TP algorithm deals
with working computer programs represented as a tree data structure. Therefore,
the main contribution of the proposed algorithm is to design more alternatives to
the Genetic Programming (GP) algorithm in order to accommodate more appli-
cation areas. Because of the good performance of the TS algorithm compared to
the Genetic Algorithms (GAs) in some implementations,3,4 we expect that the TP
algorithm also has a chance to outperform the GP algorithm for certain problems.

Genetic Algorithms (GAs) are search algorithms inspired from the biological pro-
cesses of natural selection and survival of the fittest. GAs have been widely studied,
experimented and applied in many fields through a huge amount of publications.5,6,7

In addition, GAs have been shown to outperform other traditional methods in vari-
ous sets of applications.8,9,10,11 On the other hand, the Genetic Programming (GP)
algorithm inherits the basic idea of GAs and deals with working computer programs
obtained from a given problem. The first proposal of “tree-based” genetic program-
ming was given by Cramer in 1985.12 This work was popularized by Koza1,2,13,14,
and subsequently, the feasibility of this approach in well-known application areas
has been demonstrated.15,16,17

The main difference between GAs and GP lies in the representation of a solution
and the application fields. GAs usually use an array of bits to represent a solution,7,9

while GP deals with computer programs represented as trees, in which leaf nodes
are called terminals and internal nodes are called functions.13,14,15,16,17 Actually,
the tree-based representation of a solution is a great advantage of GP and makes it
possible to cover a wide area of applications. The GP algorithm starts a search with
a “population” of computer programs that are usually generated randomly. Then,
the algorithm selects a portion of the current population based on their fitness to
breed a new generation using the crossover and mutation operators. This process
is iterated with the hope of driving the population toward an optimal solution. It
is worthwhile to mention that although there are many metaheuristic alternatives
to GAs, GP is almost the only metaheuristics adapted for searching the space of
computer programs.

The crossover and mutation operators are the main breeding operators in GP.
Indeed, the crossover and mutation operators have extensively been studied. Many
effective settings of these operations have been proposed to deal with a wide vari-
ety of problems. One of the early GP crossover operators is introduced in Ref. 1.
However, some bad performance of the crossover operators are reported in Refs. 18,

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

3

19. Specifically, it was argued that trees tend to grow in size over the generations,
causing the crossover operation to be computationally expensive and yielding the
program bloat problem, see Ref. 20 and references therein. Actually, this problem
produces a high computational cost in GP due to the growth of individuals in size
and complexity during the evolution process.21 Moreover, Ref. 22 shows that 75%
of crossover events can result in disruption of building blocks. It has also been
addressed that crossover and mutation are highly disruptive with the risk of con-
vergence to a non-optimal solution.18,19,23,24,25 Altering a node high in the tree may
result in serious disruption of the subtree below it. This motivates some researchers
to propose some hypotheses about the causes behind this phenomenon. One of these
hypotheses is “Protective effect against destructive nature of modifying operators”,
see Refs. 26, 27 for more details. Since these operators are the essential solution
generation operators in GP, there have been many attempts to edit them to make
changes in small scales, for example by using natural language processing.16,24 Using
new crossover operators, such as brood crossover,28,29 context-aware crossover,30,31

homologous crossover and crossover-hill climbing,22 ripple crossover,32 and depth-
fair crossover,33 were practical remedies for these problems. Moreover, the impor-
tance of local search and improving the local structure of individuals have been
addressed.34,35

This motivates us to try to invoke the use of the local search in new fashions in
order to provide an alternative remedy for the solution generation process. Specifi-
cally, we use new local search procedures over a tree space as alternative operations
to crossover and mutation. These procedures aim to generate a set of trial programs
in the neighborhood of a program by making moderate changes in it. We will show
through extensive numerical experiments that the procedures in the TP algorithm
work effectively and, in fact, the TP algorithm outperforms the GP algorithm on
some benchmark test problems. From the numerical experiments, we may expect
that TP provides a promising approach for problem solving.

The rest of the paper is organized as follows. Section 2 recalls the Tabu Search
algorithm and its procedures. Basic procedures for stochastic local search over a
tree space are described in Section 3. After presenting the TP algorithm in Section
4, we report numerical results in Section 5 for three types of benchmark prob-
lems; the symbolic regression problem, the 6-bit multiplexer problem, and the 3-bit
even-parity problem. A comprehensive framework called the Meta-Heuristics Pro-
gramming framework is presented as a generalization of the TP algorithm in Section
6. Finally, concluding remarks make up Section 7.

2. Tabu Search

Tabu Search (TS) is a meta-heuristic method originally proposed by Glover36 in
1986. Afterward, it has spread quickly to become one of the most powerful meta-
heuristic methods for tackling difficult combinatorial optimization problems.37,38,39

In particular, TS improves an ordinary local search method by accepting uphill

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

4

movements, and storing attributes of the recently visited solutions in a short-term
memory called tabu list (TL). This strategy enables TS to avoid getting trapped in
local minima and prevent cycling over a sequence of non-optimal solutions. In several
cases, TS provides solutions very close to optimality with reasonable computing
time. In addition, the high efficiency of TS has captured the attention of many
researchers. Several papers, book chapters, special issues and monographs have
surveyed the rich TS literature.3,4,37,38,39,40,41

Suppose that the goal is to minimize the objective function f : S → R over all
s ∈ S, where each solution s has an associated neighborhood N(s) ⊂ S. A simple TS
algorithm with short-term memory begins with an initial solution s chosen, usually
randomly, from the feasible set S. The best non-tabu solution in the neighborhood
N(s) replaces the current one s, and its attributes will be stored in the TL. However,
an aspiration criterion may be applied to accept a tabu solution if it is better than
the best solution found so far. These steps are repeated with new solutions until
some termination conditions are satisfied (e.g., reaching the maximum number of
iterations). The best solution found during the search process is designated as a
solution of the problem.

The short-term memory TL is built to keep the recency only. In order to achieve
better performance, a long-term memory has been proposed to keep more important
search features, such as the quality and the frequency, along with the recency.
Specifically, the long-term memory in a more advanced TS records attributes of
special characteristics of a solution or a move.37,38,39,40,41 In this case, the search
process of TS can adapt itself using intensification and diversification strategies. The
purpose of the diversification strategy is to allow the algorithm to guide the search
to new areas of the search space. However, the intensification strategy enables the
algorithm to return to attractive regions, and performing a thorough search around
elite solutions in order to obtain much better solutions in their vicinities.

During the search process in the TS algorithm, the best solution that replaces the
current one is chosen from a modified neighborhood called Ñ(s), where the structure
of Ñ(s) mainly depends on the history of the search process.41 In case of using TS
based on a short-term memory, the modified neighborhood Ñ(s) is a subset of the
ordinary neighborhood N(s), where TL and aspiration criteria are used to recognize
solutions that belong to N(s) and are excluded from Ñ(s). However, in a more
advanced TS with short-term and long-term memories, the modified neighborhood
Ñ(s) may be expanded to include some solutions that do not ordinarily exist in
N(s). For example, Ñ(s) may contain the high quality neighbors of elite solutions
in the attractive regions to be used if the intensification strategy is needed. It is
worthwhile to note that the modified neighborhood Ñ(s) of a solution s depends
on the history of the search.

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

5

3. Local Searches over Tree Space

As mentioned in the introduction, GP deals with computer programs as solutions to
a problem. Those computer programs can be represented as parse treesa, in which
leaf nodes are called terminals and internal nodes are called functions. Depending
on the problem at hand, users can define the domains of terminals and functions. In
the coding process, tree structures of solutions should be transformed to executable
codes. Usually, those codes are expressed to closely match the Polish notation of
logic expressions.42 Fig. 1 shows three examples of a tree representation of individ-
uals and their executable codes below these trees. These codes are geometrically
illustrated in Fig. 2 as solid lines or curves. Then, a fitness function is defined to
measure the quality of the individuals represented by these codes. If the target is
to obtain the dotted curve as a fitting curve of some given dataset (i.e., a symbolic
regression problem), then the fitness function may be defined as an error function
on the given dataset.

Fig. 1. Examples of GP representation.

In this section, some local search procedures over a tree space are introduced.
These procedures aim to generate trial moves from a current tree to another tree
in its neighborhood. The proposed local searches have two aspects; static structure
search and dynamic structure search. Static structure search aims to explore the
neighborhood of a tree by altering its nodes without changing its structure. Dynamic
structure search changes the structure of a tree by expanding its terminal nodes or
cutting its subtreesb. We introduce Shaking as a static structure search procedure,
and Grafting and Pruning as dynamic structure search procedures.

For a parse tree X, we define its size, leaf number and depth as follows.

• Tree Size |X| is the number of nodes in tree X.

aA parse tree is a data structure representation in a language, and each element in a parse tree is
called a node. In addition, the start node represents the root of the structure, the interior nodes

represent non-terminals (functions) symbols, and the leaf nodes represent terminals symbols.
bThroughout the paper, the term “branch” is used to refer to a subtree, see Ref. 43.

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

6

Fig. 2. Geometrical illustration of Examples of Fig. 1.

• Tree Leaf Number l(X) is the number of leaf nodes in tree X.
• Tree Depth d(X) is the number of links in the path from the root of tree X to

its farthest node.

3.1. Shaking search

Shaking search is a static structure search procedure that generates a tree X̃ from
a tree X by replacing the terminals or functions at some of its nodes by alternative
ones without changing its structure, i.e., an altered terminal node is replaced by
a new terminal value and an altered node containing a binary function is replaced
by a new binary function, and so on. Procedure 3.1 states the formal description
of shaking search, while Fig. 3 shows an example of shaking search that alters two
nodes of X. In Procedure 3.1, ν ∈ [1, |X|] is a positive integer that represents
the number of nodes to be changed, and ν must be determined before calling the
procedure.

Fig. 3. Example of shaking search (ν = 2).

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

7

Procedure 3.1. X̃ = Shaking(X, ν)

1. If ν > |X|, return.
2. Set X̃ := X.
3. Repeat the following Steps 3.1 - 3.3 for j = 1, . . . , ν.

3.1 Choose a node (function or terminal) from X̃ randomly.
3.2 Generate an alternative randomly from the set of functions and terminals.
3.3 Update X̃ by replacing the chosen node by the new alternative one.

4. Return.

A neighborhood NS(X) of a tree X, associated with shaking search, is defined
by

NS(X) = {X̃|X̃ = Shaking(X, ν), ν = 1, . . . , |X|}.

Therefore, a modified neighborhood ÑS(X) of a tree X, associated with shaking
search, can be defined as

ÑS(X) = {X̃|X̃ ∈ NS(X), X̃ is not tabu or it satisfies an aspiration criterion}.
(3.1)

It is worthwhile to note that the random choices of Steps 3.1 and 3.2 of Procedure
3.1 make the shaking procedure behave as stochastic search. Therefore, for a tree
X, one may get a different X̃ after each run of the procedure.

3.2. Grafting search

In order to increase the variability of the search process, grafting search is invoked
as a dynamic structure search procedure. Grafting search generates an altered tree
X̃ from a tree X by expanding some of its leaf nodes to branches. As a result, X and
X̃ have different tree structures, since |X̃| > |X|, l(X̃) > l(X), and d(X̃) ≥ d(X).
Procedure 3.2 states the formal description of grafting search, where λ refers to the
number of branches of depthc ζ that will be added to X. In addition, λ and ζ must
be determined before calling the procedure. Figure 4 shows an example of grafting
search that alters two nodes in X by two branches in X̃.

Procedure 3.2. X̃ = Grafting(X,λ, ζ)

1. Set X̃ := X.
2. Repeat the following Steps 2.1 - 2.3 for j = 1, . . . , λ.

2.1 Generate a branch Bj of depth ζ randomly.
2.2 Choose a terminal node tj from X̃ randomly.
2.3 Update X̃ by replacing the node tj by the branch Bj .

cThe depth of a branch B has the same definition as the depth d(X) of a tree X, and will also be
denoted by d(B).

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

8

Fig. 4. Example of grafting search (λ = 2 and ζ = 1).

3. Return.

A neighborhood NG(X) of a tree X, associated with grafting search, is defined
by

NG(X) = {X̃|X̃ = Grafting(X,λ, ζ), λ = 1, . . . , l(X), ζ = 1, 2, . . . , ζmax},

where ζmax is a predetermined positive integer. Therefore, a modified neighborhood
ÑG(X) of a tree X, associated with grafting search, can be defined as

ÑG(X) = {X̃|X̃ ∈ NG(X), X̃ is not tabu or it satisfies an aspiration criterion}.
(3.2)

Note that the random choices of Steps 2.1 and 2.2 of Procedure 3.2 also make the
grafting procedure behave as stochastic search. Therefore, for a tree X, one may
get a different X̃ after each run of the procedure.

3.3. Pruning search

Pruning search is another dynamic structure search procedure. In contrast with
grafting search, pruning search generates an altered tree X̃ from a tree X by cut-
ting some of its branches. Therefore, X and X̃ have different tree structures, since
|X̃| < |X|, l(X̃) < l(X), and d(X̃) ≤ d(X). In the coding process, it is more conve-
nient to express the tree X in a special code and use it to distinguish all possible
branches which may be selected for pruning. Specifically, we introduce the branch
coding (Procedure 3.3) to assist pruning search, which expresses X as a parse tree
containing meta-terminal nodes. Those meta-terminal nodes are the branches of X

that have the same depth ζ. If X has ξ branches B1, . . . , Bξ of depth ζ, then the
branch coding expresses X in a form that distinguishes these branches. In other
words, Procedure 3.3 extracts all branches in X with depth ζ, which can be written

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

9

as [B1, . . . , Bξ] = Branches(X, ζ), where d(B1) = · · · = d(Bξ) = ζ. In addition, as
in the grafting procedure, the depth ζ of the branches is chosen depending on the
use of the pruning procedure. If it works as an intensification procedure, then ζ is
chosen to be small, preferably 1. But, in the case of using the pruning procedure as
a diversification procedure, ζ is chosen to be large.

For instance, if pruning search is used to cut a branch of depth ζ = 1 in tree X,
then the branch coding procedure is called to express each branch of depth ζ = 1
in X as a meta-terminal node as shown in Fig. 5. Hence, pruning search can easily
choose one of these branches and replace it by a randomly generated leaf node.

Fig. 5. Example of branch coding (ξ = 2, ζ = 1).

Procedure 3.3. [B1, . . . , Bξ] = Branches(X, ζ)

1. If ζ ≥ d(X), return.
2. Select all branches B1, . . . , Bξ in X with depth ζ.
3. Return.

The formal description of pruning search is given below in Procedure 3.4. Fig.
6 shows an example of pruning search that cuts two branches in X. In Procedure
3.4, η is a positive integer that represents the number of branches replaced by a leaf
node during pruning search.

Procedure 3.4. X̃ = Pruning(X, η, ζ)

1. Set X̃ := X and set the counter j = 1.
2. While ζ ≤ d(X̃) and j ≤ η, repeat Steps 2.1 - 2.3

2.1 Use Procedure 3.3 to get [B1, . . . , Bξj] := Branches(X̃, ζ).
2.2 Choose a terminal node tj randomly from the set of terminals.
2.3 Update X̃ by replacing a randomly chosen branch from {B1, . . . , Bξj} by tj

and set j = j + 1.

3. Return.

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

10

Fig. 6. Example of pruning search (η = 2, ζ1 = 1, ζ2 = 2).

A neighborhood NP (X) of a tree X, associated with pruning search, can be
defined by

NP (X) = {X̃|X̃ = Pruning(X, η, ζ), η = 1, . . . , |X| − l(X), ζ = 1, . . . , d(X)}.

Therefore, a modified neighborhood ÑP (X) of a tree X, associated with pruning
search, can be defined as

ÑP (X) = {X̃|X̃ ∈ NP (X), X̃ is not tabu or it satisfies an aspiration criterion}.
(3.3)

The random choices of Steps 2.1 and 2.2 of Procedure 3.4 also make the pruning
procedure behave as stochastic search. Therefore, for a tree X, one may get a
different X̃ after each run of the procedure.

The values of ν, λ, η and ζ in the proposed local search procedures, Procedures
3.1, 3.2 and 3.4, must be determined before calling these procedures. In particular,
one can choose the values of ν, λ and η as random integers, based on the numbers
of functions and terminals inside the tree X. For example, the value of ν can be
chosen as a random integer between 1 and |X|. However in this paper, we choose
the values of ν, λ and η based on the number of trials that we wish to generate. For
example, to generate three trial solutions using the shaking procedure, we call the
shaking procedure three times with ν = 1, ν = 2 and ν = 3, respectively. In other
words, the first trial solution (ν = 1) is generated by choosing one node randomly
and replacing it by an alternative node, while the second trial solution (ν = 2) is
generated by choosing two nodes randomly and replacing them by two alternative
nodes, and so on. More details will be described later in Section 4.

On the other hand, the value of ζ may depend on the mission of the search
process. Specifically, during the ordinary search process, the local search procedures
should be applied with a small scale of change to avoid the disruption of the current
solution. However, those local search procedures should be applied with a bigger
scale of change if diversification is needed. Actually, keeping diversity is one of the

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

11

major issues that should be taken into account in designing efficient global search
techniques.44

4. Tabu Programming

The TP algorithm is a modified version of the Tabu Search algorithm that uses tree-
based representations and different neighborhood structures. In particular, every
solution generated by the TP algorithm is a computer program represented by a
tree consisting of terminals and functions. Therefore, the search space of the TP
algorithm is the set of all computer programs that can be represented as trees. In
addition, neighborhoods of a solution X should be generated by using the local
search procedures introduced in Section 3.

In fact, to the best of the authors’ knowledge, there have been just a few at-
tempts to extend other meta-heuristics to deal with tree data structures. Specifi-
cally, ant colony programming45,46 is a generalized meta-heuristic of the ant colony
optimization algorithm. In the literature, however, there is no explanation about
the performance of ant colony programming in comparison with the GP algorithm.
The first idea of the TP algorithm was proposed by Hedar and Fukushima,47 in
a short paper presented in a 2006 workshop. Then, in 2007, Balicki48 discussed
TP as an extension of TS to deal with tree representations using a special set of
procedures. However, Balicki’s algorithm uses operations similar to the mutation in
GP and does not pay much attention to the drawbacks of the mutation procedure.
In this paper, we introduce a more advanced version of the TP algorithm and its
implementation for problem solving.

The proposed TP algorithm invokes three basic search stages; local search, di-
versification and intensification. In the local search stage, the TP algorithm uses
two types of local searches; static structure search to make good exploration around
the current solution, and dynamic structure search to accelerate the search process
if successive non-improvements face the static structure search. Static structure
search aims to explore the neighborhood of a current solution Xk by altering its
nodes without changing its structure through shaking search. In addition, dynamic
structure search tries to change locally the tree structure of Xk through grafting and
pruning searches using branches of small depth. Then, the Diversification pro-
cedure is applied (if needed) in order to diversify the search for new tree structures.
Finally, in order to explore close tree structures around the best programs visited
so far, the Intensification procedure is applied to improve these best programs
further. Figure 7 shows the main structure of the TP algorithm, and its formal
description is given below.

Algorithm 4.1. (TP Algorithm)

1. Initialization. Choose an initial program X0, set the tabu list TL and other
memory elements empty, and set the counter k := 0. Choose the values of
nTL, nT , n′

T , n′′
T , ζ1, ζ2 and n∗.

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

12

2. Main Loop. Repeat the following Steps 2.1 - 2.3 until the non-improvement
condition for the main loop is satisfied.

2.1 Static Structure Search. Repeat the following Steps 2.1.1 - 2.1.3 until a
non-improvement condition for the static structure search is satisfied. If the
condition is satisfied, proceed to Step 2.2.

2.1.1 Generate a set of nT trial programs Sk from the neighborhood ÑS(Xk) ⊂
NS(Xk), Equation (3.1), based on the tabu restrictions and an aspiration
criterion.

2.1.2 Choose the best program in Sk and denote it by Xk+1.
2.1.3 Add Xk+1 to the TL and remove the oldest program in it. Update other

memory elements and set k := k + 1.

2.2 Dynamic Structure Search. Do the following Steps 2.2.1 - 2.2.4.

2.2.1 Generate a set of n′
T trial programs S′

k from the neighborhood ÑG(Xk) ⊂
NG(Xk), Equation (3.2), based on the tabu restrictions and an aspiration
criterion.

2.2.2 Generate a set of n′′
T trial programs S′′

k from the neighborhood ÑP (Xk) ⊂
NP (Xk), Equation (3.3), based on the tabu restrictions and an aspiration
criterion.

2.2.3 Choose the best program in S′
k ∪ S′′

k and denote it by Xk+1.
2.2.4 Add Xk+1 to the TL and remove the oldest program in it. Update other

memory elements and set k := k + 1.

2.3 Check for the non-improvement. If a non-improvement condition is sat-
isfied, go to Step 3. Otherwise, return to Step 2.1.

3. Termination. If a termination condition is satisfied, then go to Step 5. Other-
wise, go to Step 4.

4. Diversification. Choose a new diverse structure program Xk+1, set k := k + 1
and go to Step 2.

5. Intensification. If additional refinements are needed, then improve the n∗ best
obtained programs.

6. Stop. Stop and return with the best program found.

Algorithm 4.1 exhibits the more advanced TP algorithm. In Step 1, the algo-
rithm starts the search process with a random program X0 and the empty TL and
other memory elements. During the search process, those memory elements will
be updated regularly to contain information that helps in guiding the algorithm
toward an optimal solution, and terminate the search process in a suitable time.
Specifically, the memory elements store a set of elite solutions, the numbers of suc-
cessive non-improvements faced by the static and dynamic structure searches, and
the number of fitness evaluations that have been used.

The main loop in the algorithm starts at Step 2 and it contains two basic stages,
Step 2.1 and Step 2.2. In Step 2.1, the algorithm uses the shaking procedure to gen-
erate nT trial programs around the current one, based on the tabu restrictions.

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

13

Fig. 7. The TP flowchart.

Then, the best program in the trial set replaces the current program, and the TL

and other memory elements are updated. Until a non-improvement condition, e.g.,
reaching the maximum number of successive internal iterations without improve-
ments, for the static structure search is satisfied, the inner loop consisting of Steps
2.1.1 - 2.1.3 is repeated. Then the algorithm moves to Step 2.2.

In Step 2.2, the algorithm explores new programs a little bit far from the current
program by applying the grafting and pruning procedures using random branches of
depth ζ1 (preferably a small positive integer). Two sets containing n′

T and n′′
T trial

programs are generated using the grafting and pruning procedures, respectively,
based on the tabu restrictions. Then, the best program among those trials replaces
the current program, and the TL and other memory elements are updated.

In Step 3, the algorithm proceeds to the next iteration, but the need of diversifi-
cation is checked first, unless a termination condition (e.g., reaching the maximum
number of function evaluations) is satisfied. In Step 5, the algorithm refines the n∗

best programs during the search process, and in Step 6, stops with the best program
obtained.

During the search process, the algorithm generates new programs X̃i, i =
1, 2, ..., nk from the current one Xk using one of the local search procedures defined
in Section 3, where nk is a positive integer that represents the number of trial pro-
grams generated by the chosen procedure, e.g., nk = nT for the shaking procedure
in Step 2.1.1 and nk = n′

T +n′′
T for the grafting and the pruning procedures in Steps

2.2.1 and 2.2.2. Specifically, in Step 2.1.1, the algorithm uses the shaking procedure
to generate a set Sk of nT trial programs from the neighborhood ÑS(Xk) ⊂ NS(Xk),
i.e., Sk ={X̃ν | X̃ν = Shaking(Xk, ν), ν = 1, 2, ..., nT }. Similarly, in Steps 2.2.1 and

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

14

2.2.2, the algorithm generates sets S′
k and S′′

k of n′
T and n′′

T trial programs from
the neighborhoods ÑG(Xk) ⊂ NG(Xk) and ÑP (Xk) ⊂ NP (Xk) using the grafting
and pruning procedures, respectively, i.e., S′

k ={X̃λ| X̃λ = Grafting(Xk, λ, ζ1),
λ = 1, 2, ..., n′

T } and S′′
k ={X̃η| X̃η = Pruning(X, η, ζ1), η = 1, 2, ..., n′′

T }. In addi-
tion, each program in Sk, S′

k and S′′
k must be verified to be accepted, based on the

tabu restrictions or the aspiration criteria.
In Algorithm 4.1, the diversification and intensification procedures are optional,

i.e., these procedures should be employed only when a simple TP algorithm is not
effective enough. In Step 4, the algorithm randomly chooses one of the grafting or
pruning procedures as a diversification procedure with a large depth ζ2. In addition,
in Step 5, the algorithm uses the shaking procedure as an intensification procedure.

Different types of long-term memories can also be invoked to enhance the search
process. Memory may save visited elite solutions for further use in the intensifica-
tion mechanism. Moreover, historical search information may be saved to assist
the diversification mechanism. For instance, visited tree structures can be saved to
generate a new diverse tree structure as shown in Fig. 8. Moreover, frequencies of
choosing a node as a terminal or a function can be saved in order to use them in
generating a new tree structure which may have been overlooked in the previous
search process.

Fig. 8. Example of a visited tree structure for full tree with depth 4.

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

15

5. Numerical Experiments

In this section, we discuss the implementation of the TP algorithm. Then, we study
the performance of the TP algorithm on three types of benchmark problems; the
symbolic regression problem, the 6-bit multiplexer problem and the 3-bit even-
parity problem. Some preliminary experiments were carried out first to study the
behavior of TP parameters, and to study the efficiency of local search over the tree
space. Then, we conduct extensive experiments to analyze the main components of
the TP algorithm. Finally, some comparisons between the TP algorithm and the
GP algorithm are reported.

5.1. Implementation of the algorithm

In this subsection, we describe the detailed representation of a program in the TP
algorithm. In addition, the set of parameters used in the TP algorithm is defined.
In the numerical experiments, we used ζ1 = 1, ζ2 ≥ 3 and n∗ ≥ 3 in Algorithm 4.1.

5.1.1. Representations of TP individuals

The TP algorithm generates solutions represented as trees for a given problem.
Those solutions are called “computer programs”. Each program consists of one or
more “gene(s)”, where each gene represents a subtree consisting of some external
nodes called terminals and some internal nodes called functions. All genes in a
program are linked together by using a suitable linking function to produce the
final form of that program. In the coding process, the tree structure of a program
is transformed to an executable code called genome.49 We used a new strategy,
extracted from the individual representation of the Gene Expression Programming
(GEP),49 to code genes in TP as a linear symbolic string composed of some symbols
that represents the underlying terminals and functions.

As to the initial program in the TP algorithm, we generate its genes one by one.
Each gene is generated according to the following simple steps: First, a temporary
gene in its genome form is generated by choosing its nodes randomly. This gene
is composed of two parts, the head which contains function and terminal nodes,
and the tail which contains terminal nodes only. The total length (the number of
nodes) of the temporary gene is the sum of the head length hLen and the tail length
t = hLen(n − 1) + 1, where n is the maximum number of arguments of a function.
Second, we adjust the final form of the temporary gene by constructing its tree
representation and deleting unnecessary elements. In this way, we can guarantee to
generate a gene with a syntactically correct structure. For example, when hLen = 5,
the set of functions is F = {+,−, ∗, /} and the set of terminals is T = {a}, which
implies that t = hLen(n − 1) + 1 = 6 since n = 2. Suppose that the generated
temporary gene has 11 nodes as in Fig. 9A. By converting this gene to its tree rep-
resentation (Fig. 9B), we can see that the last 4 elements are unnecessary elements.
Consequently, we can delete these unnecessary elements and keep the rest as in Fig.

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

16

9C.

Fig. 9. Constructing a new gene.

Once the initial program is generated, it will be evolved and improved using the
shaking, grafting and pruning procedures. For each problem, the sets of functions
and terminals, the number of genes, the head length hLen for the initial population,
and the fitness function must be determined before calling the algorithm. In fact,
adapting each program to contain more than one genes increases the probability
of finding suitable solutions, and enables the algorithm to deal with more complex
problems.49 During this paper, the maximum depth for a program is set to be 10.

5.1.2. Set of parameters in TP

As described in 5.1.1, the TP algorithm makes use of a set of two kinds of parame-
ters; representation parameters and search parameters. We list these parameters in
the following:

• Representation Parameters

◦ hLen: The maximum head length for every gene in the initial program.
◦ nGenes: The number of genes in a program.

• Search Parameters

◦ nTrs: The number of trial programs to be generated in the neighborhood of
the current program. We set nT , n′

T and n′′
T in Algorithm 4.1 all equal to nTrs.

◦ StNonImp: The maximum number of consecutive non-improvements for the
static structure search (used as the termination condition for Step 2.1).

◦ MnNonImp: The maximum number of consecutive non-improvements for the
main loop (used as the termination condition for the main loop in Step 2).

◦ IntNonImp: The maximum number of consecutive non-improvements in the
intensification step (used in the termination condition for Step 5).

◦ nTL: The tabu list size.

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

17

◦ FunCnt: The maximum allowed number of fitness evaluations (used to specify
the upper limit of the amount of computations).

5.2. Test problems

The benchmark problems are described in this subsection.

5.2.1. Symbolic regression (SR) problem

The terminology symbolic regression represents the process of fitting a measured
data set by a suitable mathematical formula. Thus, for a given dataset {(xj , yj)}N

j=1,
we try to find a function g such that the absolute error

N∑
j=1

|yj − g(xj)| (5.1)

is minimized.
In our numerical experiments, we use the quartic polynomial (QP) function

given by

f(x) = x4 + x3 + x2 + x. (5.2)

We generated 20 fitness cases of the form (x, f(x)) obtained by choosing x uniformly
at random in the interval [−1, +1]. In addition, the set of terminals is the singleton
{x}, the set of functions is the set of binary functions {+, −, ∗, %}, where % is
called “the protected division”. The protected division function is protected against
division by zero, and it returns 1 if the denominator argument is 0; otherwise, it
returns the normal quotient.13,14 The fitness value was calculated as the sum, with
the sign reversed, of the absolute errors between the output produced by a program
and the desired output on each of the fitness cases.

5.2.2. 6-Bit multiplexer (6BM) problem

The input to the Boolean N -bit multiplexer function consists of k “address” bits
ai and 2k “data” bits di, and is a string of length N = k + 2k of the form
ak−1, ..., a1, a0, d2k−1, ..., d1, d0. In addition, the value of the N -bit multiplexer func-
tion is the value (0 or 1) of the particular data bit that is singled out by the k address
bits of the multiplexer. For example, for the 6-bit multiplexer problem (where k =
2), if the two address bits a1 and a0 are 1 and 0, respectively, then the multiplexer
singles out the data bit 2 (i.e., d2) as its output. Therefore, the Boolean 6-bit mul-
tiplexer is a function of 6 activities; two activities a1, a0 determine the address, and
four activities d3, d2, d1, d0 determine the answer. Our goal is to detect the Boolean
6-bit multiplexer function.

For the 6-bit multiplexer problem, we make the following assumptions.

(1) The set of 6 activities {a1, a0, d3, d2, d1, d0} is the set of terminals.

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

18

(2) The set of functions consists of the Boolean functions {AND, OR, NOT, IF},
where IF(x, y, z) returns the value y if x is true, and it returns the value z

otherwise.
(3) There are 26 = 64 possible combinations of the 6 activities a1, a0, d3, d2, d1, d0

along with the associated correct values of the 6-bit multiplexer function. There-
fore, we use the entire set of 64 combinations of activities as the fitness cases
for evaluating the fitness.13 The fitness value in this case is the number of fit-
ness cases where the Boolean value returned by the TP algorithm for a given
combination of arguments is the correct Boolean value. Thus, the fitness value
for this problem ranges between 0 and 64.

5.2.3. 3-Bit even-parity (3BEP) problem

The Boolean N -bit even-parity function is a function of N -bit arguments. In ad-
dition, it returns 1 (True) if the arguments contain an even number of 1’s and it
returns 0 (False) otherwise. In fact, the Boolean N -bit even-parity functions appear
to be the most difficult Boolean functions to detect via a blind random search.13

Here, using the TP algorithm, we try to detect the Boolean 3-bit even-parity func-
tion as a special case of N -bit even-parity functions. The Boolean 3-bit even-parity
function is a function of 3 activities a2, a1, a0 and we make the following assump-
tions.

(1) The 3 activities {a2, a1, a0} constitute the set of terminals.
(2) The Boolean functions {AND, OR, NAND, NOR} constitute the set of func-

tions.
(3) There are 23 = 8 possible combinations of the 3 activities a2, a1, a0 along with

the associated correct values of the 3-bit even-parity function. Therefore, we use
the entire set of 8 combinations of activities as the fitness cases for evaluating
the fitness.13 The fitness value is the number of fitness cases where the Boolean
value returned by the TP algorithm for a given combination of arguments is the
correct Boolean value. Thus, the fitness value for this problem ranges between
0 and 8.

5.3. Performance analysis

In this subsection, we study the performance of the TP algorithm under different
environments. First, we discuss several tabu list structures and representations to
authorize one of them as the TL of the TP algorithm. Then, the parameter setting
of the TP algorithm is introduced to choose the best parameter values that will be
used through the rest of the numerical experiments. Throughout this subsection,
we use the standard values of the TP parameters shown in Table 1.

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

19

Table 1. Standard values of the TP parameters.

Parameter Value
SR-QP 6BM 3BEP

hLen 3 3 3
nGenes 3 7 3
nTrs 5 7 5
StNonImp 3 3 3
MnNonImp 7 7 7
IntNonImp 3 3 3
nTL 7 7 7
FunCnt 2500 25000 25000

5.3.1. Structure of the tabu list

In TS, the tabu list TL represents the short-term memory which is limited in terms
of time and storage capacity. The TL is a list that stores certain attributes for the
last nTL visited solutions, to decide if a new solution is accepted or not. Basically,
the TL is used to prevent the algorithm from being trapped in a cycle or a local
optimum. In addition, in most implementations of TS, TL is used to store nTL latest
moves, or attributes of nTL latest solutions instead of storing the entire solutions
themselves.

Here, we discuss the structure of the TL in the proposed TP algorithm. We start
by introducing some of the important attributes for a program generated in the TP
algorithm:

• The fitness value of a program.
• The structure of a program and its information, for example, the number of nodes,

the depth, the width (the maximum number of nodes that lie in the same depth
from the root node), the number of function nodes, and the number of terminal
nodes.

• The latest operations performed to get a program, for example, the latest node(s)
changed and the latest local search procedure used to generate this program.

• The program itself.

To use the fitness value as an attribute in the TL, the algorithm must construct
each candidate solution and evaluate its fitness value before determining its tabu
status. However, this process increases the number of fitness evaluations and the
computational effort for the algorithm. Therefore, we omit the use of the fitness
value as an attribute in the TL for the TP algorithm. To choose a more suitable TL

structure, the following TL structures are used and examined

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

20

(1) TL1: The tabu list stores some information about the structure of current tabu
programs (the number of nodes, the depth, the width, and the number of func-
tion nodes). Therefore, the TL1 is a list of nTL vectors, each consisting of four
elements, which contain the structure information of the last nTL visited solu-
tions.

(2) TL2: The tabu list stores vectors of bits corresponding to the genome represen-
tations of current tabu programs. Specifically, the TL2 is a list of nTL vectors of
bits gotten from the genome representations of the last nTL visited solutions,
where 1 corresponds to a function node, and 0 corresponds to a terminal node.

(3) TL3: The tabu list stores the same vectors of bits in TL2, as well as some in-
formation about the latest operations performed to get the tabu programs.
Specifically, the TL3 is a list of nTL vectors, where each vector stores bit values
that correspond to the genome representation of a program, the latest gene
changed, the latest node processed, and the latest local search procedure used
to generate this program.

(4) TL4: The tabu list stores the genome representations of the latest nTL visited
solutions. Therefore, the TL4 is a list that contains nTL vectors of strings. In
addition, storing a program in the TL4 as a vector of strings is not costly in
terms of memory.

The algorithm may generate many trees that have the same number of nodes,
the same depth, the same width, and the same number of function nodes, but
have different structures or different results. The TL1, TL2 and TL3 will therefore
reject some (may be a lot) of the new unvisited programs if they share the same
attributes with one of the tabu programs. On the other hand, the TL4 will reject
a new program if it exactly matches one of the tabu programs. In fact, TLi is
considered more restrictive than TLi+1 for i = 1, 2, 3, in terms of accepting new
solutions.

For each TL structure discussed above, we performed 100 runs of the TP algo-
rithm for the SR problem with the QP function (5.2), which will be referred to as
the SR-QP problem in the rest of the paper. The values of the TP parameters are
set as in Table 1, except FunCnt = 5000. The results of the TP algorithm with
the above-mentioned four TL structures are compared in Table 2, in terms of the
average (AV) and the median (ME) of the number of fitness evaluations as well as
the rate of success (R). It is clear from these results that a less restrictive tabu list
yields a more efficient TP algorithm. In particular, the TL4 is the best choice for
the current version of the TP algorithm.

In the rest of this paper, we adjust the TL to store the last nTL visited solutions
in its genome coding representation. This means each element in the TL is a vector
of strings that represents a program. If there is one program in the TL that has the
same number of nodes as the new program, then the complete test is performed. If
the new program matches to some program in the TL, it will be rejected. Otherwise,
the new program will be accepted.

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

21

Table 2. Performance of the TP algorithm with different tabu list structures.

TL AV ME R%

TL1 4,171 5,000 31
TL2 3,476 4,239 67
TL3 1,485 1,015 95
TL4 795 681 100

5.3.2. Parameters setting

In this subsection, we study the effect of the TP parameters and discuss the choice
of their proper values for each problem. For each parameter, we select a set of values,
and for each value, we performed 100 independent runs to compute the average of
the number of fitness evaluations as well as the rate of success. Other parameters
are fixed at their standard values given in Table 1.

The computational results are displayed in Table 3. It is clear from these results
that the crucial parameters in the TP algorithm are nGenes, nTrs and MnNonImp,
while other parameters affect the success rate only slightly. In addition, although
the best value for nGenes depends on the problem itself, appropriate values are
roughly 2 ≤ nGenes ≤ 5 for the SR-QP and 3BEP problems, and 3 ≤ nGenes ≤ 9
for the 6BM problem. As to nTrs, it should be large enough but should not be too
large (to avoid consuming the allowed number of fitness evaluations in earlier stages
of the algorithm) and suitable values are roughly 5 ≤ nTrs ≤ 9. Lastly, a proper
choice for StNonImp is a large value, e.g., 5 ≤ StNonImp ≤ 9.

5.4. TP vs GP

To examine the performance of the TP algorithm compared to the GP algorithm, we
performed several experiments for different problems. First, we compared the results
of the TP algorithm with the results of the release 3.0 of the Genetic Programming
Lab (GPLab) toolbox.50 Second, the results of the TP algorithm were compared
with the results of different versions of the GP algorithm that appeared in the
literature. Finally, we performed some experiments for the TP and GP algorithms
using different sets of operators, to show the effects of our local search procedures.

In fact, a perfect comparison between the TP algorithm and the GP algorithm
cannot be made due to the differences in the search techniques, since TP is a point-
to-point algorithm, while GP is a population-based algorithm. But here, we just try
to show their performance in terms of the rate of success and the number of fitness
evaluations needed to get a desired solution. Throughout the experiments in this
subsection, the parameter values for the TP algorithm, the GPLab toolbox and the
standard GP algorithm are set as in Table 4.

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

22

Table 3. Performance of the TP algorithm with different values of each TP parameter.

SR-QP 6BM 3BEP
Param. Val. AV R% Val. AV R Val. AV R%

1 1,092 90 1 8,062 96 1 7,311 96
3 870 97 3 7,739 96 3 7,958 92

hLen 5 897 94 5 7,985 97 5 7,206 98
7 964 92 7 8,074 94 7 6,853 98
9 1,147 88 9 7,646 95 9 7,847 96

1 1,098 84 1 16,268 63 1 16,074 57
2 981 95 3 9,432 91 2 9,383 86

nGenes 3 801 99 5 7,606 95 3 6,840 99
4 963 90 7 8,198 95 4 7,540 96
5 1,068 89 9 9,102 95 5 7,693 96

2 1,597 61 2 21,451 43 2 18,905 48
3 1,274 82 3 12,295 89 3 9,123 94

nTrs 5 901 94 5 7,971 95 5 6,477 99
7 1,012 91 7 7,825 98 7 6,973 96
9 1,068 86 9 8,593 96 9 7,185 99

1 1,143 85 1 10,569 90 1 9,507 92
3 906 93 3 8,419 96 3 6,825 98

StNonImp 5 1,028 91 5 8,353 96 5 6,841 99
7 967 96 7 7,829 98 7 6,483 98
9 1,107 89 9 8,070 95 9 5,897 97

1 1,242 80 1 14,592 76 1 12,972 80
3 1,146 89 3 9,635 96 3 7,640 94

MnNonImp 5 1,097 91 5 7,093 96 5 7,524 96
7 987 93 7 8,527 95 7 7,450 94
9 1,005 93 9 8,037 97 9 5,612 100

1 1,073 85 1 7,488 98 1 7,211 96
3 1,279 80 3 8,157 97 3 6,704 97

nTL 5 914 94 5 7,928 99 5 6,755 98
7 971 90 7 9,659 97 7 7,055 97
9 1,035 89 9 6,988 98 9 7,429 94

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

23

Table 4. Parameter values for the TP algorithm, the GPLab toolbox and the standard GP algo-

rithm.

Algorithm Parameter SR-QP SR-Poly-4 6BM 3BEP

TP hLen 3 3 3 3
nGenes 3 3 7 3
nTrs 5 9 7 5
StNonImp 3 7 7 3
MnNonImp 7 9 7 9
IntNonImp 3 3 3 3
nTL 7 7 7 7

GPLab nPop 50 - 500 500
nGnrs 50 - 50 50

GP nPop 50 - - 500
nGnrs 50 - - 50
Crossover probability: 0.8
Mutation probability: 0.2
Selection: the tournament selection of size 4

5.4.1. TP algorithm vs GPLab toolbox

GPLab50 is a free Matlab toolbox that can be used under general public license
(GNU) software regulations. In addition, the current release of GPLab includes
most of the traditional features usually found in GP tools and it has the ability
to accommodate a wide variety of usages. For more details about GPLab and its
usage, see Ref. 51.

We show the performance of TP compared to GPLab in the case where both of
them have a limited number of fitness evaluations. So, we performed 100 indepen-
dent runs for both of TP and GPLab under the same limitation on the number of
fitness evaluations. The parameter values for the TP and GPLab toolbox are shown
in Table 4. For the GPLab toolbox, we set its parameter values as the standard
values,50 except for the population size nPop and the number of generations nGnrs
to meet the condition for the maximum number of fitness evaluations. Note that,
the maximum number of fitness evaluations for TP and GPLab is nPop*nGnrs. The
results are shown in Table 5, where comparisons are made in terms of the average
and the median of the number of fitness evaluations as well as the rate of success.

It is clear, from the results shown in Table 5, that the TP algorithm generally
outperforms the GPLab toolbox. Specifically, the TP algorithm was able to obtain
good and acceptable solutions in an early stage of computations, compared with

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

24

Table 5. Comparison among the TP algorithm and the GPLab toolbox for the SR-QP, 6BM and

3BEP problems.

TP GPLab
Prob. AV ME R% AV ME R%

SR-QP 801 652 99 1,303 1,075 81
6BM 7,829 6,393 98 8,445 7,500 100
3BEP 5,612 4,272 100 11,175 6,500 77

the GPLab toolbox. At the same time, the rate of success for the TP algorithm is
better than the corresponding rate of success for the GPLab toolbox, especially for
the 3BEP problem.

5.4.2. TP vs GP, BC-GP, CGP and ECGP

Here, we compare the TP algorithm with different versions of the GP algorithm
that appeared in the literature, and show that the TP algorithm performs well
compared to all those versions of the GP algorithms. The parameter values for the
TP algorithm are set as in Table 4.

Poli and Langdon52 conducted extensive numerical experiments to compare the
backward-chaining GP (BC-GP) algorithm and the standard GP algorithm. They
considered two types of symbolic regression problems; one is the SR-QP problem
with f(x) = x4 + x3 + x2 + x, and the other is the symbolic regression with the
multivariate polynomial f(x1, · · · , x4) = x1x2 + x3x4 + x1x4, which we call the
SR-Poly-4 problem. For the SR-QP problem, they used 20 fitness cases of the form
(x, f(x)) obtained by choosing x uniformly at random in the interval [−1, +1]. In
addition, 50 fitness cases of the form (x1, x2, x3, x4, f(x1, · · · , x4)) generated by
randomly setting xi ∈ [−1, +1], i = 1, 2, 3, 4 have been used for the SR-Poly-4
problem. The function set for these problems included the functions +,−, ∗ and
%, where x%y = x if y = 0; otherwise, x%y = x/y. The terminal set included
the independent variables for each problem. The fitness value was calculated as the
sum, with the sign reversed, of the absolute errors between the output produced by
a program and the desired output on each of the fitness cases.

Poli and Langdon52 performed two independent experiments for each of the
SR-QP and the SR-Poly-4 problems, to compare between the BC-GP and GP al-
gorithms using different population sizes. In the first two experiments, they per-
formed 5000 independent runs using nPop = 100 and nPop = 1, 000 for the SR-QP
and SR-Poly-4 problems, respectively. In the other experiments, they performed
1000 independent runs using nPop = 1, 000 and nPop = 10, 000 for the SR-QP and
SR-Poly-4 problems, respectively. For all experiments they used nGnrs = 30. The
results shown in Fig. 10 for the BC-GP and GP algorithms are taken from Figs.

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

25

8-11 in the original reference, Ref. 52.
We performed the same experiments for the SR-QP and SR-Poly-4 problems

using the TP algorithm to compare its results with those of Poli and Langdon52.
The parameter values for the TP algorithm are shown in Table 4, and the results of
the TP, BC-GP and GP algorithms are shown in Fig. 10. As we can see from these
figures, the TP algorithm can obtain a desired solution very fast compared to both
of the BC-GP and GP algorithms, especially for the more difficult problem SR-
Poly-4. It is clear that the TP algorithm can save a lot of efforts and computations
compared to the BC-GP and GP algorithms.

Fig. 10. Comparison among the TP, BC-GP and GP algorithms for the SR-QP and SR-Poly-4

problems.

Walker and Miller53 conducted extensive numerical experiments to examine
the performance of the Cartesian GP (CGP) algorithm and the Embedded CGP
(ECGP) algorithm. They reported a lot of results for several test problems with
the CGP and ECGP algorithms, and showed that those algorithms outperformed
the standard GP algorithm and several contemporary algorithms. In particular, the
ECGP algorithm is a generalization of the CGP algorithm that utilizes an auto-
matic module acquisition technique to automatically build and evolve modules, and
re-use these modules as functions in the main program. Here, we consider the results
of the CGP and ECGP algorithms for the 3BEP problem.

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

26

Walker and Miller53 used the Boolean functions {AND, OR, NAND, NOR} as
the function set and the arguments {a0, a1, a2} as the terminal set for the 3BEP
problem. In addition, they used the module technique to automatically build and
evolve modules in the ECGP algorithm. They performed 50 independent runs for
the 3BEP problem and, for each run, the algorithm was run until the exact solution
was found. Then, they made some statistical analysis for their results to discuss the
performance of the CGP and ECGP algorithms.

Here, we also performed 50 independent runs for the 3BEP problem using the
TP algorithm, where the parameter values for the TP algorithm are shown in Table
4. For each run, the TP algorithm was run until the exact solution was obtained.
A comparison of the performance of the CGP, ECGP and TP algorithms is shown
in Table 6. From these results, we can see that the TP algorithm performs well
compared to the CGP and ECGP algorithms. The results for the CGP and ECGP
algorithms have been taken from Table IV in the original reference, Ref. 53.

Table 6. Comparison among the TP, CGP and ECGP algorithms for the 3BEP problem, in terms

of median (ME) number of evaluations, median absolute deviation (MAD), and interquartile range
(IQR) for 50 independent runs.

Algorithm ME MAD IQR

CGP 5,993 2,936 6,610
ECGP (with modules) 5,931 3,804 10,372
TP 4,170 2,296 6,511

Koza13 published a book on GP, which contains numerical results for a large
number of problems. In addition, a book chapter by Azad and Ryan54 also contains
a lot of numerical results. These two references also contain results for some of the
problems used in this paper, and our results seem to compare favorably to those
reported there.

5.4.3. TP with mutation vs GP with local search

In the previous subsections, we saw that TP outperforms the standard GP and
various contemporary versions of GP. In this subsection, we study the performance
of the local search procedures introduced in Section 3, compared to the ordinary
mutation operator in the standard GP algorithm. Therefore, several comparisons,
in terms of the average and the median of the number of fitness evaluations as well
as the rate of success, will be given for the following algorithms:

(1) GP: The standard GP.
(2) GP-LS: The standard GP using the local search procedures in Section 3 instead

of the mutation operator.

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

27

(3) TP: The proposed TP algorithm as described in Algorithm 4.1.
(4) TP-Mut: The proposed TP algorithm using the mutation operator instead of

the local search procedures in Section 3.

To make comparisons, we performed 100 independent runs of each algorithm for
the SR-QP and 3BEP problems. The parameter values are set as shown in Table 4.
When applying the mutation, a node is chosen randomly from a program, and the
subtree rooted at this node is replaced by a new subtree generated randomly as a
gene in the initial population.13,14 The initial populations for the GP and GP-LS
algorithms are generated and represented in the same way as TP generates and
represents genes, where each program in GP and GP-LS is represented as one gene
according to the standard GP algorithm. The results are shown in Table 7, where
the maximum number of fitness evaluations for the GP, GP-LS, TP and TP-Mut
algorithms is nPop*nGnrs.

Table 7. Comparison among the GP, GP-LS, TP and TP-Mut algorithms for the SR-QP and
3BEP problems.

SR-QP 3BEP
Algorithm AV ME R% AV ME R%

GP 1,056 700 79 13,960 10,750 76
GP-LS 783 625 96 13,600 11,500 82
TP-Mut 1,615 1,851 62 3,969 3,261 100
TP 801 652 99 5,612 4,272 100

From Table 7, we observe that, for the SR-QP problem, TP and GP with local
search procedures performed better GP and TP with the mutation operator, in
terms of AV, ME and R. For the 3BEP problem, the mutation operator helped to
improve the results slightly compared with the local search procedures, in terms of
AV and ME. Nevertheless, the local search procedures were slightly more effective
than the mutation operator in terms of the rate of success especially for the GP
algorithm. Although it is not a completely fair comparison, one can see that the two
versions of the TP algorithm outperform the current two versions of the standard
GP algorithm for the 3BEP problem. However, the two versions of the GP algorithm
slightly outperform the two versions the TP algorithm for the SR-QP problem.
From the previous results of the GP, GP-LS, TP and TP-Mut algorithms, one
may conclude that no algorithm can be the absolute winner. Each algorithm can
outperform other algorithms for some set of problems, but it cannot outperform
them for all problems. This may be a good motivation for those who introduce new
algorithms.

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

28

6. Discussion and Future Works

The promise of the TP results shown in the previous section has inspired the authors
to model a comprehensive framework containing a class of general problem solvers.
Using the local search procedures introduced in Section 3, various meta-heuristics
can be extended to deal with tree data structures. We call this new framework
Meta-Heuristics Programming (MHP).

The main steps of applying meta-heuristics to solve a given problem are sum-
marized as follows:

(1) Select a meta-heuristic method that has shown efficient evidences in related
problems.

(2) Compose the best configurations of the search procedures of the selected
method. For example, if GA is the selected method, then define the crossover,
mutation and selection procedures that fit the given problem.

(3) Set and tune the initial and controlling parameters of the selected method in
order to obtain the best results.

Hence, the choice of a suitable meta-heuristic is an essential issue in problem
solving. Moreover, it has been reported that the performance of search methods, es-
pecially meta-heuristics, varies even when they are applied to the same problem.46,55

Moreover, the concept of No Free Lunch56,57 has shown that no search algorithm
is better than the others when its performance is averaged over all possible ap-
plications. Therefore, the existence of different types of meta-heuristics and their
diversity are highly needed to accommodate different types of applications. This
also has inspired the authors to extend meta-heuristics to deal with applications by
utilizing a tree data structure through the MHP framework. More details of this
framework are stated below.

Generally speaking, heuristic algorithms make use of four procedures. Two of
them are essential and the other two procedures are optional. The first one is the
procedure that generates a set of trial solutions around the current solution, e.g.,
the neighborhood structure in the Tabu Search and Scatter Search algorithms.
The second one is the procedure that updates the search process to move to the
next iteration, e.g., the best solution from the set of trial solutions replaces the
current one in the Tabu Search algorithm or replaces the current solution in the
Simulated Annealing algorithm if a certain probability is greater than a random
number between 0 and 1. On the other hand, the third procedure (optional) is the
procedure that drives the search process to explore new regions in the case of being
trapped in local optima. Finally, the fourth one (optional) is the procedure that
improves the best program(s) obtained during the search process.

In the MHP, initial computer program(s) represented as parse tree(s) can be
adapted through the following five procedures to obtain acceptable target solutions
of the given problem.

• TrialProgram: Generate trial program(s) from the current ones.

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

29

• UpdateProgram: Choose one program or more from the generated ones for the
next iteration.

• Enhancement: Accelerate the search process if a promising solution is detected,
or escape from the current solution if an improvement cannot be achieved.

• Diversification: Drive the search to new unexplored regions in the search space
by generating new structures of programs.

• Refinement: Improve the best programs obtained so far.

The TrialProgram and UpdateProgram procedures are the essential ones
in MHP. The other three procedures are recommended to achieve better and faster
performance of MHP. Actually, these procedures make MHP behave like an intelli-
gent hybrid algorithm. The local search procedures introduced in Section 3 are used
in the TrialProgram procedure, while the UpdateProgram procedure depends
on the type of invoked meta-heuristics.

The main structure of the MHP framework is shown in Fig. 11. In its initializa-
tion step, the MHP algorithm generates an initial set of trial programs which may
be a singleton set in the case of point-to-point meta-heuristics. The main loop in the
MHP framework starts by calling the TrialProgram procedure to generate a set
of trial programs from the current population. Then, the MHP framework detects
characteristic states in the recent search process and applies the Enhancement

procedure to generate new promising trial programs using the following tactics.

• Intensive Enhancement. Apply a faster local search technique whenever a promis-
ing improvement has been detected.

• Diverse Enhancement. Apply an accelerated escape strategy whenever a non-
improvement has been detected.

To proceed to the next iteration, the UpdateProgram procedure is used to
extract the next program or the next population from the current ones. Conse-
quently, the controlling parameters are also updated to fit in the next iteration.
It is noteworthy that MHP uses an adaptive memory to check the progress of the
search process. Two types of memories are defined as follows.

• Assembly Memory. Start with an empty memory and collect useful search infor-
mation hierarchically.

• Global Memory. Start with a full memory that samples the whole search space,
and remove unnecessary memory elements when new solutions are visited.

When a full assembly memory or an empty global memory is obtained, we
may terminate the MHP algorithm. If the termination criteria are met, then the
Refinement procedure is applied to improve the elite solutions obtained so far.
Otherwise, the search proceeds to the next iteration but the need of diversity is
checked first. The Diversification procedure may be applied to generate new
diverse solutions by guidance of the adaptive memory.

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

30

It is worthwhile to note that the MHP framework can be implemented in dif-
ferent ways depending on the type of the invoked meta-heuristics; a point-to-point
algorithm or a population-based algorithm. In Fig. 11, if the population size is 1,
then the algorithm will work as a point-to-point algorithm. Otherwise, the algorithm
will work as a population-based algorithm.

Fig. 11. The MHP flowchart.

Finally, the MHP framework can extend other meta-heuristics to develop gen-
eral problem solvers. Actually, the authors and their research groups are currently
trying to apply the MHP framework to extend some other meta-heuristics such as
memetic algorithm, simulated annealing, scatter search, artificial immune systems,
etc. Some of these works have already been presented in conferences, see Memetic
Programming58 and Scatter Programming.59

Although the TP algorithm outperforms the CGP and ECGP algorithms, we
expect that the results of the TP algorithm can be improved further by means of the
Automatically Defined Functions (ADFs). The ADF is a sub-tree that can be used
as a function (called subroutine, subprogram, or module) of dummy arguments in
the main tree to exploit symmetries and modularities in problem environments.14 In
GP with ADFs, each program consists of one or more function-defining branches,
i.e., ADF, and one result-producing branch that produces the final value of this
program. While the algorithm is running, ADFs for a program are created, evolved
and included automatically into the original function set for the result-producing
branch of this program. In addition, the idea of using modules in the ECGP algo-
rithm is similar to using ADFs in the standard GP algorithm. Actually, based on
the individual representation in TP, we can extend the TP algorithm to build and

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

31

reuse ADFs. Since each program in TP contains one or more gene(s), we can adapt
one or more of these genes to work as ADF(s). However, this technique needs a
lot of experiments to adjust the parameters and improve the results. Therefore, we
consider this point to be a future work.

7. Concluding Remarks

Genetic Programming (GP) is one of the powerful tools in computational intelli-
gence. It deals with a search space of computer programs which can be represented
as parse trees. However, it has been argued that crossover and mutation in GP are
highly disruptive with the risk of non-convergence to an optimal structure. To ad-
dress this issue, this work has introduced some local search procedures over a tree
space as alternative operations to crossover and mutation. The proposed procedures
have two aspects; static structure search and dynamic structure search. Static struc-
ture search aims to explore a neighborhood of a tree by altering its nodes without
changing its structure. Dynamic structure search changes the structure of a tree by
expanding its terminal nodes or cutting its subtrees.

The Tabu Programming (TP) algorithm has been proposed by incorporating
the basic idea in the Tabu Search (TS) algorithm, a popular point-to-point meta-
heuristic method. The main difference between TP and TS lies in the representation
of a solution and the neighborhood structure. More specifically, every solution in
the TP algorithm is a computer program represented by a parse tree. Therefore,
the search space of the TP algorithm is the set of computer programs that can
be represented by parse trees. In addition, the neighborhoods of a solution X are
defined and explored using the proposed local search procedures.

We have tested the performance of the TP algorithm for three types of bench-
mark problems and made some experiments to analyze the main components of
the TP algorithm. From these numerical experiments, we have shown that the TP
algorithm is a promising algorithm compared with the GP algorithm. In fact, the
TP algorithm performs better than the GP algorithm in terms of the rate of success
and the number of fitness evaluations at least for the considered test problems.

Finally, the procedures of TP are generalized to construct a more general frame-
work. Using these procedures, various meta-heuristics can be employed to deal with
tree data structures in a unified framework which we call Meta-Heuristics Program-
ming.

Acknowledgment

The authors are grateful to the referees for their many helpful comments and sug-
gestions.

References

1. J. R. Koza, Hierarchical genetic algorithms operating on populations of computer pro-
grams, in Proc. 11th Int. Joint Conference on Artificial Intelligence (Morgan Kauf-

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

32

mann: Los Altos, CA, 1989), pp. 768–774.
2. J. R. Koza, Genetic programming: A paradigm for genetically breeding populations

of computer programs to solve problems. Technical Report: CS-TR-90-1314, Stanford
University, Stanford, USA (1990).

3. A. Hedar, and M. Fukushima, Tabu search directed by direct search methods for
nonlinear global optimization, Eur. J. Oper. Res. 170(2006) 329–349.

4. A. Hedar, J. Wang, and M. Fukushima, Tabu search for attribute reduction in rough
set theory, Soft Comput. 12(2008) 909–918.

5. M. S. Arumugam, M. V. C. Rao, On a class of hybrid systems via a novel approach for
real-coded genetic algorithm with hybrid selection, Int. J. Inf. Technol. Decis. Mak.
6(2) (2007) 315–332.

6. D. E. Goldberg, The Design of Innovation: Lessons from and for Competent Genetic
Algorithms (New York: Addison-Wesley, 2002).

7. M. D. Vose, The Simple Genetic Algorithm: Foundations and Theory (Cambridge,
MA: MIT Press, 1999).

8. E. C. Brown, C. T. Ragsdale, A. E. Carter, A grouping genetic algorithm for the
multiple traveling salesperson problem, Int. J. Inf. Technol. Decis. Mak. 6(2) (2007)
333–347.

9. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning
(New York: Addison-Wesley, 1989).

10. Y. C. Hu, F. M. Tseng, Mining simplified Fuzzy If-Then rules for pattern classification,
Int. J. Inf. Technol. Decis. Mak. 8(3) (2009) 473–489.

11. L. Nie, X. Xu, D. Zhan, Collaborative planning in supply chains by Lagrangian relax-
ation and genetic algorithms, Int. J. Inf. Technol. Decis. Mak. 7(1) (2008) 183–197.

12. N. L. Cramer, A representation for the adaptive generation of simple sequential pro-
grams, in Proc. Int. Conference on Genetic Algorithms and their Applications (Pitts-
burgh, USA, 1985), pp. 183–187.

13. J. R. Koza, Genetic Programming: On the Programming of Computers by Means of
Natural Selection (Cambridge, MA: MIT Press, 1992).

14. J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs
(Cambridge, MA: MIT Press, 1994).

15. J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane, Genetic Programming III:
Darwinian Invention and Problem Solving (Morgan Kaufmann, San Francisco, CA,
1999).

16. J. R. Koza, M. A. Keane, M. J. Streeter, W. Mydlowec, J. Yu, and G. Lanza, Ge-
netic Programming IV: Routine Human-Competitive Machine Intelligence (Kluwer
Academic Publishers, Boston, 2003).

17. W. B. Langdon and R. Políı, Foundations of Genetic Programming (Springer-Verlag
2002).

18. P. Nordin and W. Banzhaf, Complexity compression and evolution, in Proc. 6th Int.
Conference on Genetic Algorithms (Morgan Kaufmann, Pittsburgh, PA, USA, 1995),
pp. 310–317.

19. P. Nordin, F. Francone and W. Banzhaf, Explicitly defined introns and destructive
crossover in genetic programming, in Proc. Workshop on Genetic Programming: From
Theory to Real-World Applications (California, USA, 1995), pp. 6–22.

20. P. Kouchakpour, A. Zaknich and T. Bräunl, A survey and taxonomy of performance
improvement of canonical genetic programming, Knowl. Inf. Syst. 21(2009) 1–39.

21. M. D. Terrio and M. I. Heywood (2002) Directing crossover for reduction of bloat in
GP, in Proc. Canadian Conference on Electrical and Computer Engineering (IEEE
Press, 2002), pp. 1111–1115.

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

33

22. W. Banzhaf, P. Nordin, R. E. Keller and F. D. Francone, Genetic Programming An
Introduction; On the Automatic Evolution of Computer Programs and its Applications
(Morgan Kaufmann, San Francisco, CA, 1998).

23. T. Castle and C. G. Johnson, Positional effect of crossover and mutation in grammat-
ical evolution, in Proc. 13th European Conference on Genetic Programming (Istanbul,
Turkey, 2010), pp. 26–37.

24. T. H. Hoang, N. X. Hoai, R. I. McKay and D. Essam, The importance of local search:
A grammar based approach to environmental time series modelling, in Genetic Pro-
gramming: Theory and Practice III, Vol 9, eds. T. Yu, R. L. Riolo and B. Worzel
(Springer-Verlag, 2006), pp. 159–175.

25. C. G. Johnson, Genetic programming crossover: Does it cross over?, in Proc. 12th
European Conference on Genetic Programming (Springer, Berlin, 2009), pp. 97–108.

26. T. Blickle, and L. Thiele, Genetic programming and redundancy, in Proc. Genetic Al-
gorithms within the Framework of Evolutionary Computation (Saarbrücken, Germany,
1994), pp. 33–38.

27. L. Zhang and A. K. Nandi, Diversity-preserving non-destructive operators in genetic
programming and their application to breast cancer diagnosis, Trans. Inst. Meas.
Control, 31(6) (2009) 533–550.

28. W. A. Tackett, Recombination, selection and the genetic construction of computer
programs, PhD thesis, University of Southern California, (1994).

29. W. A. Tackett and A. Carmi, The unique implications of brood selection for ge-
netic programming, in Proc. 1st IEEE Conference on Evolutionary Computation (New
York, NY, 1994), pp. 160–165.

30. T. Ito, H. Iba and S. Sato, Non-destructive depth-dependent crossover for genetic
programming, in Proc. 1st European Workshop on Genetic Programming (Springer,
Heidelberg, 1998), pp. 71–82.

31. H. Majeed and C. Ryan, On the constructiveness of context-aware crossover, in Proc.
9th Annual Conference on Genetic and Evolutionary Computation (London, England,
2007), pp. 1659–1666.

32. M. Keijzer, C. Ryan, M. ONeill, M. Cattolico and V. Babovic, Ripple crossover in
genetic programming, in Proc. of Genetic Programming (Springer-Verlag, Lake Como,
Italy, 2001), pp. 74–86.

33. M. Kessler, T. Haynes, Depth-fair crossover in genetic programming, in Proc. 1999
ACM Symposium on Applied Computing (San Antonio, Texas, US, 1999), pp. 319–323.

34. N. X. Hoai, R. I. McKay, and D. Essam, Representation and structural difficulty in
genetic programming, IEEE Trans. Evol. Comput. 10(2) (2006) 157–166.

35. L. Lin, M. Gen, Auto-tuning strategy for evolutionary algorithms: Balancing between
exploration and exploitation, Soft Comput. 13(2009) 157–168.

36. F. Glover, Future paths for integer programming and links to artificial intelligence,
Comput. Oper. Res. 13(1986) 533–549.

37. F. Glover, E. Taillard and D. Werra, A user’s guide to tabu search, Ann. Oper. Res.
41(1993) 3–28.

38. F. Glover and M. Laguna, Tabu Search (Kluwer Academic Publishers, Boston, MA,
1997).

39. F. Glover and G. Kochenberger (eds.), Handbook of MetaHeuristics (Kluwer Academic
Publishers, Boston, MA, 2002).

40. F. Glover and G. Kochenberger, New optimization models for data mining, Int. J.
Inf. Technol. Decis. Mak. 5(4) (2006) 605–609.

41. F. Glover and R. Marti, Tabu search, in Metaheuristic Procedures for Training Neutral
Networks, eds. E. Alba and R. Marti (Springer-Verlag, Berlin, Germany, 2006), pp.

December 24, 2010 11:49 WSPC/ws-ijitdm TabuProgramming

34

53–69.
42. A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing (Springer-

Verlag, Berlin, 2003).
43. R. Diestel, Graph Theory (Springer-Verlag, Berlin, 2005).
44. E. K. Burke, S. Gustafson, and G. Kendall, Diversity in genetic programming: An

analysis of measures and correlation with fitness, IEEE Trans. Evol. Comput. 8(1)
(2004) 47–62.

45. M. Boryczka, Z. J. Czech, Solving approximation problems by ant colony program-
ming, in Late Breaking Papers at Genetic and Evolutionary Computation Conference
(New York, NY, 2002), pp. 39–46.

46. M. Boryczka, Eliminating introns in ant colony programming, Fundamenta Informat-
icae 68(2005) 1–19.

47. A. Hedar and M. Fukushima, Meta-heuristics programming, in Proc. 2nd Int. Work-
shop on Computational Intelligence & Applications (Okayama, Japan, 2006).

48. J. Balicki, Tabu programming for multiobjective optimization problems, Int. J. Com-
put. Sci. Network Security 7(10) (2007) 44–51.

49. C. Ferreira, Gene expression programming: A new adaptive algorithm for solving
problems, Complex Systems 13(2001) 87–129.

50. S. Silva, GPLAB: A genetic programming toolbox for MATLAB,
http://gplab.sourceforge.net/

51. E. William, J. Northern, Genetic programming lab (GPLab) tool set version 3.0, in
Proc. IEEE Region 5 Technical, Professional, and Student Conference (Kansas City,
Kansas, 2008), pp. 1–6.

52. R. Poli, W. B. Langdon, Backward-chaining evolutionary algorithms, Artif. Intell.
170(2006) 953-982.

53. J. A. Walker and J. F. Miller, The automatic acquisition, evolution and reuse of
modules in cartesian genetic programming, IEEE Trans. Evol. Comput. 12(4) (2008)
397–417.

54. R. M. A. Azad and C. Ryan, An examiation of simultaneous evolution of grammars
and solutions, in Genetic Programming: Theory and Practice III, Vol. 9, eds. T. Yu,
R. L. Riolo and B. Worzel (Springer-Verlag, 2006), pp. 141–158.

55. M. Dorigo, T. Stützle, Ant Colony Optimization (The MIT Press, 2004).
56. D. H. Wolpert and W. G. Macready, No free lunch theorems for search, Technical

Report: SFI-TR-05-010, Santa Fe Institute, Sante Fe, NM (1995).
57. D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE Trans.

Evol. Comput. 1(1) (1997) 67–82.
58. E. Mabrouk, A. Hedar and M. Fukushima, Memetic programming with adaptive local

search using tree data structures, in Proc. 5th Int. Conference on Soft Computing as
Transdisciplinary Science and Technology (Paris, France, 2008), pp. 258–264.

59. A. Hedar and M. Kamel, Scatter programming, in Proc. 7th Int. Conference on In-
formatics and Systems (Cairo, Egypt, 2010).

