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Abstract

In this paper we explore the portfolio selection problem involving an uncertain time
of eventual exit. To deal with this uncertainty, the worst-case CVaR methodology
is adopted in the case where no or only partial information on the exit time is
available, and the corresponding problems are integrated into linear programs which
can be efficiently solved. Moreover, we present a method for specifying the uncertain
information on the distribution of the exit time associated with exogenous and
endogenous incentives. Numerical experiments with real market data and Monte
Carlo simulation show the usefulness of the proposed model.
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1 Introduction

In Markowitz’s paper (1952), as well as his book published seven years later
(Markowitz, 1959), he suggests that investors should decide the allocation of
their investment on the basis of a trade-off between risk and return based
on mean-variance analysis. The mean-variance framework is so intuitive and
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so strong that it has been continually applied to different areas within fi-
nance and risk management. Indeed, numerous innovations within finance
have either been an application of the concept of mean-variance analysis or
an extension of the methodology to alternative portfolio risk measures (see
Fabozzi, Gupta, and Markowitz, 2002 for current applications). Conditional
Value-at-Risk (CVaR) is currently one of the popular risk measures suggested
by theoreticians and market practitioners.

As a measure of downside risk, CVaR exhibits some attractive properties.
First, it can deal with the asymmetric distribution of asset return better than
mean-variance analysis, especially for assets with returns that are heavy-tailed.
Second, minimizing CVaR usually results in solving a convex programming
problem, such as a linear programming problem, which allows the decision
maker to deal with a large scale portfolio problem efficiently (Rockafellar and
Uryasev, 2000, 2002). Finally, Artzner et al. (1999) demonstrate that CVaR is
a coherent measure of risk 1 , which has been widely accepted as a benchmark
to evaluate risk measures.

All the above analysis, however, is based on the assumption that the invest-
ment horizon of an investor is pre-specified, either finite or infinite, and that
any investor operates the buy-hold strategy until the explicit exit moment. In
fact, as well as taking on asset risk, typically an investor faces the exit time
risk because he never acknowledges the time of his eventual exit upon entering
the market. Generally speaking, there are many exogenous and endogenous
factors that can drive the exit strategy of an investor. For example, the in-
vestor’s sudden consumption is an important reason for exiting the market.
In addition, due to the price movement of risky assets, the optimal exercise
strategy for American options usually causes the investor to terminate his
portfolio. In short, it is quite reasonable for an investor to take into account
the uncertainty of his eventual exit time when constructing a portfolio. How-
ever, portfolio choice when the investor faces an uncertain exit time—more
specifically, how to model the uncertainty of the eventual exit—is a difficult
problem to deal with because one must capture the distribution of the asset
returns under an uncertain exit time.

Research on portfolio selection with uncertain investment horizon has been
limited in the literature, though Merton (1971) addresses a dynamic optimal
portfolio selection problem for an investor retiring at an uncertain time. Sim-
ilar work in a discrete case can be traced back to Yaari (1965) and Hakansson
(1969). More recently, Karatzas and Wang (2001) consider an optimal dy-
namic investment problem which assumes that markets are complete and the
eventual exit is a completely endogenous factor—a stopping time of asset price

1 Pflug (2000) and Acerbi and Tasche (2002) discuss the coherence of CVaR exclu-
sively.
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filtration. Liu and Loewenstein (2002) consider the case where the exit time
in portfolio selection follows an explicit exponential distribution. Blanchet-
Scalliet, El Karoui and Martellini (2005) and Blanchet-Scalliet et al. (2005)
investigate the pricing problems associated with an uncertain time-horizon.
Martellini and Uros̆ević (2006) first propose the concept of exit time risk and
show that the mean-variance efficient frontier in the case where the exit time is
independent of the portfolio performance (exogenous exit) coincides with the
traditional mean-variance efficient frontier (fixed exit time), and conversely,
when the exit time is dependent on portfolio performance (endogenous exit),
the set of mean-variance efficient portfolio may rely on the exit time distribu-
tion.

In the past decade, some researchers, particularly those specializing in the field
of optimization, have paid considerable attention to a type of mathematical
programming under uncertainty—robust optimization—which is used to solve
an optimization problem involving uncertain parameters. 2 With respect to
portfolio management, Lobo and Boyd (2000) are among the first to apply
worst-case analysis to robust portfolio selection. 3 Costa and Paiva (2002), as
well as Goldfarb and Iyengar (2003) and Erdoğan et al. (2006), study robust
portfolio optimization in the mean-variance framework in detail. El Ghaoui et
al. (2003) investigate robust portfolio selection using worst-case Value-at-Risk.
Zhu and Fukushima (2005) further consider the worst-case CVaR (WCVaR) in
the case where only partial information on the underlying probability distribu-
tion of returns is given. 4 Although the models developed by these researchers
sought to tackle the one-period investment problem with certain time of even-
tual exit, we believe that they can be similarly applied to the situation where
there is an uncertain investment horizon. It is easily imaginable that the un-
certainty of risk factors results partly from the uncertainty of eventual exit,
while a robust strategy of portfolio selection can well incorporate and assimi-
late such uncertainty.

This work is greatly motivated by Martellini and Uros̆ević (2006) and Zhu
and Fukushima (2005), among others mentioned above. In contrast to the ap-
proach developed by Martellini and Uros̆ević (2006) to select a portfolio with
uncertain exit time using mean-variance formulation, we propose a worst-case
CVaR approach, which is formally defined and applied to robust portfolio man-

2 Robustness is only a concept or a strategy, which has different meanings in the
literature. Some researchers look at robustness as controlled sensitivity to uncertain
data from statistical perspective, see for example Mulvey, Vanderbei and Zenios
(1995), while others discuss robustness in the “worst case” context. In this paper,
we consider robustness in the latter sense.
3 It should be noted that the robust portfolio management in Mulvey, Vanderbei
and Zenios (1995) is different from that in the sense of Lobo and Boyd (2000).
4 For a complete discussion of robust portfolio management and the associated
solution methods, see Fabozzi et al. (2007).
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agement in the recent work of Zhu and Fukushima (2005). We show that it can
be implemented as an alternative approach to remove or alleviate those diffi-
culties of traditional portfolio selection methodologies, such as mean-variance
and CVaR strategies.

There are three original contributions we make in this paper. Firstly, con-
sidering the inconveniences and complexity of portfolio modeling when the
exit is uncertain, we propose the worst-case CVaR strategy as an effective
alternative under this situation. The widely accepted risk measure CVaR and
the powerful robust optimization methodology are integrated to generate at
least sub-optimal solutions; this makes the model interesting to risk and asset
managers that are primarily concerned in controlling large losses but would
like to exploit opportunities. Secondly, in contrast to Martellini and Uros̆ević
(2006), the estimation of the exit time distribution is explicitly addressed, and
exogenous and endogenous factors that drive the exit are simultaneously in-
corporated into our formulation. Finally, we propose an algorithm to ascertain
the bounds of the endogenous exit probability in the case where the exit time
distribution is partially, or even completely, unknown.

The remainder of this paper is organized as follows. Section 2 provides back-
ground information for CVaR and worst-case CVaR that will be used in later
sections. In Section 3, we analyze the properties of return involving asset price
risk and exit time risk, and discuss the difficulty of implementing the CVaR
approach for the uncertain exit time problem. Section 4 formulates the portfo-
lio selection problem with no or partial information on the eventual exit time
by means of the worst-case CVaR strategy. In Section 5, we present a unified
model that relates the specification of information on the exit time to the
exogenous and endogenous incentives. In Section 6, we show some numerical
experiments with real market data and Monte Carlo simulation. Finally, some
concluding remarks are given in Section 7.

2 CVaR and Worst-Case CVaR

In this section, we formally define CVaR and worst-case CVaR, and present
some theoretical results. First, following Rockafellar and Uryasev (2000) as
well as Zhu and Fukushima (2005), let f(x,y) denote the loss of a portfolio
with decision vector x ∈ X ⊆ <n and random vector y ∈ <N that represents
the value of underlying risk factors at maturity of the investment horizon T .
Suppose E(|f(x,y)|) < +∞ for each x ∈ X . For simplicity of presentation,
we assume that y ∈ <N has a continuous density function p(y). By way of
Rockafellar and Uryasev (2002) and Zhu and Fukushima (2005), all the results
can be applied to the case where p(y) follows a discontinuous distribution. For
the purpose of clarity, we may denote a random variable and the related deter-
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ministic variable/constant as the same symbol since they can be distinguished
clearly by context.

For a given portfolio x ∈ X , the probability of the loss not exceeding a thresh-
old α is given by

Ψ(x, α) =
∫

f(x,y)≤α
p(y)dy.

Given a confidence level β, the VaR associated with the portfolio x is defined
as

VaRβ(x) = min{α ∈ < : Ψ(x, α) ≥ β}.

The corresponding CVaR is defined as the conditional expectation of the loss
of the portfolio exceeding or equal to VaR, i.e.,

CVaRβ(x) =
1

1− β

∫

f(x,y)≥VaRβ(x)
f(x,y)p(y)dy.

Rockafellar and Uryasev (2000, 2002) prove that CVaR has an equivalent
definition as follows:

CVaRβ(x) = min
α∈<

Fβ(x, α), (1)

where Fβ(x, α) is expressed as

Fβ(x, α) = α +
1

1− β

∫

y∈<N
[f(x,y)− α]+p(y)dy,

where [·]+ is defined as [z]+ = max{0, z} for any z ∈ <.

Thus, minimizing CVaR over x ∈ X is equivalent to minimizing Fβ(x, α) over
(x, α) ∈ X × <, i.e.,

min
x∈X

CVaRβ(x) = min
(x,α)∈X×<

Fβ(x, α).

If X is a convex set in <n, and the function f(x,y) is convex with respect to
x, then the problem is a convex programming problem.

The remaining task in optimizing a portfolio using the CVaR approach is to
achieve the precise knowledge of the distribution of random vector y with a
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given explicit investment horizon. More specifically, the investor should know
the density function p(y) of the random vector y at maturity of the investment
horizon. However, in many cases, the distribution cannot be precisely specified.
Here, we relax the requirement and assume that the density function is only
known to belong to a certain set P of distributions, i.e., p(·) ∈ P. As a
special case, we will discuss this issue arising from the uncertainty of exit time
in the next section.

Now, we turn to the following definition of worst-case CVaR. 5 We adopt the
definition by Zhu and Fukushima (2005): Given a confidence level β, the worst-
case CVaR (WCVaR) for a given portfolio x ∈ X with respect to P is defined
as

WCVaRβ(x) = sup
p(·)∈P

CVaRβ(x). (2)

Then by (1), it is clear that

WCVaRβ(x) = sup
p(·)∈P

min
α∈<

Fβ(x, α).

Thus, minimizing the worst-case CVaR over x ∈ X is equivalent to the fol-
lowing min-sup-min problem:

min
x∈X

sup
p(·)∈P

min
α∈<

Fβ(x, α). (3)

Zhu and Fukushima (2005) extensively investigate (3) for several concrete
structures of P and reformulate it in a tractable form that can be efficiently
solved.

3 Asset Return under Uncertain Exit Time

In this section we consider the specification of asset return associated with
asset price risk and exit time risk since an investor may exit the market at
any moment before the maturity of his investment horizon. In particular, we
discuss the difficulty that lies in CVaR optimization.

5 As a worst-case risk measure, WCVaR remains coherent in the sense of Artzner
et al. (1999).
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One of the essential tasks in portfolio management is to set criteria for com-
puting the returns of risky assets available and further specify the joint dis-
tribution of those returns. Let the initial time of investment be zero, and the
asset price at exit time τ be Vτ . Then the return from time 0 to time τ is
defined as

yτ =
Vτ − V0

V0

.

We follow Martellini and Uros̆ević (2006) and identify the uncertainty of the
return from two sources. The first type of uncertainty is the asset price risk,
which is due to the irregular fluctuation of the asset price for a given realization
of τ , for example, geometric Brownian motion. The second type of risk is
called the exit time risk, which derives from the uncertainty of eventual exit
time of the investor. More accurately speaking, the exit time risk is caused
by the uncertain distribution of the return at different exit times, since the
joint distribution of risky assets possesses a time-varying feature. Of course, it
should be noted that exiting is an individual action, so it does not change the
return structure of the portfolio because the price of the portfolio is determined
by the total market. On the contrary, the price movement of the portfolio is
a crucial factor driving the exit of the investor.

In the case where the exit time is uncertain, finding a proper way of speci-
fying the distribution of asset returns is obviously a difficult thing. However,
according to the discussion of the last paragraph, we can decompose the speci-
fication into two steps by first specifying the conditional (on time) distribution
of returns and then determining the distribution of exit time.

Before giving the general result, we first consider a simple example consisting
of one asset with uncertain exit time. Suppose that the investment horizon
is time period [0, T ]. We assume that the exit time τ follows a truncated
exponential distribution with exit intensity ς. This is related to the jump of a
Poisson process, which will be further explained in Section 5. Therefore, the
exit distribution function G(t) at time t can be written as

G(t) =





1− e−ςt, 0 < t < T,

1, t = T.

For simplicity, we assume that there are m tradable moments for the in-
vestor in the investment horizon, and that at every tradable moment ti (i =
1, · · · ,m, ti−1 < ti, t0 = 0, tm = T ) the investor can choose to exit or not.
Hence, the probability of exiting at ti is
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g(ti) = Pr(τ = ti) = G(ti)−G(ti−1) =





1− e−ςt1 , i = 1,

e−ςti−1 − e−ςti , i = 2, · · · , m− 1,

e−ςtm−1 , i = m.

(4)

In accordance with the general assumption of geometric Brownian motion of
the asset price, we assume that the density function of return, pt(y), condi-
tional on exit time τ = t is normally distributed with mean µt and variance
σ2t. By the conditional probability formula, it is easy to get the unconditional
density function p(y) as

p(y) =
m∑

i=1

1√
2πσ2ti

e
− (y−µti)

2

2σ2ti g(ti).

The general formula of the unconditional density function is shown in the fol-
lowing proposition whose proof is straightforward from the conditional prob-
ability formula.

Proposition 1 Let g(·) be the density function of exit time τ and pt(·) be the
conditional (on exit time t) density function of the asset returns. Then the
corresponding unconditional density function is given by

p(·) =
∫ T

0
pt(·)g(t)dt.

In particular, if the exit time τ follows a discrete distribution on time {t1, t2, · · · , tm}
with Pr(τ = ti) = λi,

∑m
i=1 λi = 1, λi ≥ 0, i = 1, · · · ,m, then we have

p(·) =
m∑

i=1

λipi(·), (5)

where we denote pi(·) as pti(·) in the discrete case throughout for brevity.

By Proposition 1, we get the following optimization problem of portfolio selec-
tion via minimizing CVaR in accordance with Rockafellar and Uryasev (2000,
2002):

min
(x,α)∈X×<

α +
1

1− β

∫

y∈<N
[f(x,y)− α]+p(y)dy, (6)

where

p(y) =
∫ T

0
pt(y)g(t)dt, (7)
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and X is specified by a set of constraints including budget constraint, target
return constraint, regulation constraint, and so on. In the case where τ follows
a discrete distribution, p(·) specified by (7) should be replaced by (5).

Critically, one of the difficulties that lie in solving problem (6) is the specifi-
cation of density function p(y) since precisely determining g(t) is obviously a
hard thing, though pt(y) may be easily estimated via the historical data. So,
we may explore an alternative technique to model the case of uncertain exit
time. As a matter of fact, if it is hard to obtain the precise distribution of
the exit time, an intuitive indirect approach is to monitor and optimize the
most adverse case of exit so that the resulting portfolio is still preferable with
uncertain exit time. This is the so called worst-case analysis extensively used
in system control. It will be seen that the problem resulting from the “uncer-
tainty” of the uncertain (or stochastic) time of eventual exit can be naturally
formulated within the framework of Zhu and Fukushima (2005).

4 Robust Formulation with Uncertain Exit Time

In this section, the assumption in model (6) that the probability distribution
of the exit time τ is precisely known is relaxed. We assume that the density
function of the exit time is only known to belong to a certain set which covers
all the possible exit scenarios, and formulate the portfolio selection problem
by means of the worst-case CVaR strategy.

From a practical point of view, we deal with a discrete version of the prob-
ability distribution of τ to develop the model. 6 The reason is not only that
this treatment will result in a tractable model, but also that it meets the
general purpose since we usually approximate the continuous distribution via
discretization sampling.

Due to the uncertainty of the distribution of asset returns resulting from the
exit time, we replace the CVaR criterion by the worst-case CVaR criterion
and reformulate (6) as the following problem:

6 Mathematically, we may consider the exit time following a general distribution
when building the model. On the other hand, we are concerned with the rationality
and applicability of our approach in practice because many incentives that may
drive an exit are discrete, such as noneconomic factors (death, divorce), changes in
taxes, changes in regulations or market structure, and changes in the institution’s
liability structure. More importantly, all the exits (transactions) are accomplished
discretely in reality. Thus, it is fair to say that the assumption of discrete exit is
the rule, not the exception.
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min
x∈X

sup
p(·)∈PM

min
α∈<

α +
1

1− β

∫

y∈<N
[f(x,y)− α]+p(y)dy, (8)

where the set PM represents all the densities of the possible probability dis-
tributions of asset returns, and is defined as

PM =

{
m∑

i=1

λipi(·) : (λ1, · · · , λm)′ ∈ Ω

}
(9)

with Ω being a compact set satisfying the probability measure such that

Ω ⊆
{

(λ1, · · · , λm)′ :
m∑

i=1

λi = 1, λi ≥ 0, i = 1, · · · ,m

}
. (10)

Define

F i
β(x, α) = α +

1

1− β

∫

y∈<N
[f(x,y)− α]+pi(y)dy. (11)

Then we have the following theorem whose proof can be found in Zhu and
Fukushima (2005) (to ensure the paper is self-contained, we provide the proof
in Appendix):

Theorem 1 Let Ω be defined in (10), then for each x, WCVaRβ(x) with
respect to PM defined in (9) is equivalently given by

WCVaRβ(x) = min
α∈<

max
λ∈Ω

m∑

i=1

λiF
i
β(x, α).

Theorem 1 unveils the fact that, for fixed x, the computation of WCVaR
amounts to solving a min-max problem, which is easy to deal with because
the objective function is convex in α and concave in λ. It should also be
noted that while Zhu and Fukushima (2005) denote Ω as a general set, here
Ω is supposed to be equipped with a sigma-algebra over which a probability
measure is assigned, the actual probability representing the frequencies with
which the “exit” takes place.

Now define

FΩ
β (x, α) = max

λ∈Ω

m∑

i=1

λiF
i
β(x, α).

By Theorem 1, the following corollary is obtained immediately.
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Corollary 1 Minimizing WCVaRβ(x) over X can be achieved by minimizing
FΩ

β (x, α) over X × <, i.e.,

min
x∈X

WCVaRβ(x) = min
(x,α)∈X×<

FΩ
β (x, α). (12)

More specifically, if (x∗, α∗) attains the right-hand side minimum in (12), then
x∗ attains the left-hand side minimum. Conversely, if x∗ attains the left-hand
side minimum, then (x∗, α∗) attains the right-hand side minimum, where α∗

is the minimizer of FΩ
β (x∗, α).

Up to this point, we have transformed the problem of selecting a portfolio with
uncertain exit time into a robust optimization problem in the sense of worst-
case analysis, which requires further reformulation before it can be efficiently
solved. Theorem 1 together with Corollary 1 will serve as a basis for the
tractable reformulation.

4.1 WCVaR formulation with no information on exit time

In this subsection, assuming that there is no information available on the
exit time, we discuss the worst-case CVaR strategy for the robust portfolio
selection problem.

If there is no available information on exiting, the distribution of the exit time
can only be represented in general as

ΩA =

{
(λ1, · · · , λm)′ :

m∑

i=1

λi = 1, λi ≥ 0, i = 1, · · · ,m

}
.

Then by Zhu and Fukushima (2005), Corollary 1 reduces to

min
x∈X

WCVaRβ(x) = min
(x,α)∈X×<

max
i∈L

F i
β(x, α) (13)

where

L = {1, 2, · · · ,m}. (14)

Given the worst-case expected target return µ, it can be easily verified that

min
p(·)∈PM

∫

y∈<N
−f(x,y)p(y)dy = min

λ∈ΩA

{
m∑

i=1

λi

∫

y∈<N
−f(x,y)pi(y)dy

}
≥ µ
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is equivalent to

∫

y∈<N
−f(x,y)pi(y)dy ≥ µ, i = 1, · · · ,m.

Thus, the feasible set of asset positions that satisfy the budget constraint,
target return constraint, and regulation constraint can be explicitly formulated
as

XA =
{
x : e′x = 1,x ≤ x ≤ x,

∫

y∈<N
−f(x,y)pi(y)dy ≥ µ, i = 1, · · · ,m

}
,(15)

where e denotes the vector of ones, x and x are the lower and upper regulation
bounds on the portfolio positions satisfying x ≥ 0 and x ≤ e.

The difficulty in computing (11) lies in the calculation of the integral of the
multivariate and non-smooth function. In this paper, we adopt approximation
via sampling method (Rockafellar and Uryasev, 2000) as follows:

F i
β(x, α) ≈ α +

1

1− β

Si∑

k=1

πi
k[f(x,yi

[k])− α]+, i = 1, · · · ,m,

where Si denotes the number of samples with respect to the i-th distribution
scenario pi(·), yi

[k] denotes the k-th sample of pi(·), and πi
k denotes the corre-

sponding probability of yi
[k] (we use the subscript [k] to distinguish a vector

from a scalar).

Now, from (13) we are in a position to establish the following proposition:

Proposition 2 Let πi = (πi
1, · · · , πi

Si)′ and l =
∑m

i=1 Si. Then, by introducing
an auxiliary vector u = (u1;u2; · · · ;um) ∈ <l, the optimization problem (8)
with Ω = ΩA can be approximated by the following minimization problem with
variables (x,u, α, θ) ∈ <n ×<l ×<×<,

min θ

s.t. x ∈ XA,

α +
1

1− β
(πi)′ui ≤ θ, (16)

ui
k ≥ f(x,yi

[k])− α,

ui
k ≥ 0, k = 1, · · · , Si, i = 1, · · · ,m.

Apparently, with sampling technique, the “min-sup-min” optimization prob-
lem (8) reduces to a general optimization problem. If f(x,y) is a convex func-
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tion with respect to x, then problem (16) is a convex program. Furthermore,
if f(x,y) is a linear function with respect to x, then this problem is a linear
program, and therefore can be efficiently solved. Note that in the special case
where m = 1 (the exit time is fixed without any uncertainty), problem (16)
reduces to the ordinary CVaR minimization problem.

Suppose there exist n risky assets for an investor to construct portfolios. Let
random vector y = (y1, · · · , yn)′ ∈ <n denote uncertain returns of the n risky
assets, and x = (x1, · · · , xn)′ denote the amount of the portfolio to be invested
into the n risky assets. Then the loss function is defined as

f(x,y) = −x′y.

By definition, the portfolio return is the negative of the loss, i.e., x′y. Thus
the constraints

∫
y∈<N −f(x,y)pi(y)dy ≥ µ (i = 1, · · · ,m) can be written as

x′ȳi ≥ µ, i = 1, · · · ,m,

where ȳi denotes the expectation of y with respect to the distribution pi(·).

Together with (15) and (16), the robust portfolio selection problem with uncer-
tain exit time can then be cast as the following linear program with variables
(x,u, α, θ) ∈ <n ×<l ×<×<,

min θ

s.t. e′x = 1,

x ≤ x ≤ x,

x′ȳi ≥ µ, (17)

α +
1

1− β
(πi)′ui ≤ θ,

ui
k ≥ −x′yi

[k] − α,

ui
k ≥ 0, k = 1, · · · , Si, i = 1, · · · ,m.

4.2 WCVaR formulation with partial information on exit time

In this subsection we consider the portfolio selection problem by means of the
worst-case CVaR strategy in the case where partial information on exiting is
available.

Suppose Ω in (10) is given as a component-wise bounded set such that
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ΩB =

{
λ : e′λ = 1, λ ≤ λ ≤ λ

}
, (18)

where λ and λ are two given constant vectors. The condition e′λ = 1 ensures
λ to be a probability distribution, and the non-negativity constraint λ ≥ 0 is
included in the bound constraints λ ≤ λ ≤ λ. Since ΩB can be easily specified
and reformulated in a tractable way, it is one of the most often used uncertain
sets in robust optimization formulation.

Denote

π · u =




(π1)′u1

...

(πm)′um




.

By Corollary 1, we have the counterpart of problem (16) that minimizing
WCVaRβ(x) over X can be achieved by solving the following optimization
problem with decision variables (x,u, α, θ) ∈ <n ×<l ×<×<, i.e.,

min θ

s.t. x ∈ X ,

max
λ∈ΩB

λ′(eα +
1

1− β
π · u) ≤ θ, (19)

ui
k ≥ f(x,yi

[k])− α,

ui
k ≥ 0, k = 1, · · · , Si, i = 1, · · · ,m.

In the sequel, we reformulate (19) into a more tractable one. For brevity, we
denote

v = eα +
1

1− β
π · u.

Consider the following linear program:

max
λ∈<m

λ′v

s.t. e′λ = 1, (20)

λ ≤ λ ≤ λ.
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We obtain the corresponding dual program as follows: 7

min
(z,ξ,ω)∈<×<m×<m

z + λ
′
ξ + λ′ω

s.t. ez + ξ + ω = v, (21)

ξ ≥ 0, ω ≤ 0.

In relation to (19), let us consider the following minimization problem in
(x,u, z, ξ, ω, α,
θ) ∈ <n ×<l ×<×<m ×<m ×<×<:

min θ

s.t. x ∈ X ,

z + λ
′
ξ + λ′ω ≤ θ,

ez + ξ + ω = eα +
1

1− β
π · u, (22)

ξ ≥ 0, ω ≤ 0,

ui
k ≥ f(x,yi

[k])− α,

ui
k ≥ 0, k = 1, · · · , Si, i = 1, · · · ,m.

Proposition 3 If (x∗,u∗, z∗, ξ∗, ω∗, α∗, θ∗) solves (22), then (x∗,u∗, α∗, θ∗)
solves (19). Conversely, if (x̃∗, ũ∗, α̃∗, θ̃∗) solves (19), then (x̃∗, ũ∗, z̃∗, ξ̃∗, ω̃∗,
α̃∗, θ̃∗) solves (22), where (z̃∗, ξ̃∗, ω̃∗) is an optimal solution to (21) with v =
eα̃∗ + 1

1−β
π · ũ∗.

The proof of Proposition 3 is provided in the appendix. Proposition 3 shows
that solving problem (19) derived from the min-max formulation can be sub-
stituted by solving a more tractable formulation (22). Moreover, if f(x,y) is
linear with respect to x and X is a convex polyhedron, then the problem can
actually be reduced to a linear programming problem, as shown below.

In the special case where λ = 0 and λ = e, (22) reduces to the minimiza-
tion problem (16). Moreover, if m = 1, (22) reduces to the ordinary CVaR
minimization problem.

Recall that the return of the portfolio position x is given by x′y. Here, the
constraint on the worst-case target return is specified by

7 In the Appendix, we provide a concise review on the primal linear program and
the dual linear program. Interested readers may also refer to Vanderbei (1996) and
references therein for details.
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min
p(·)∈PM

∫

y∈<N
x′yp(y)dy = min

λ∈ΩB

{
m∑

i=1

λi

∫

y∈<N
x′ypi(y)dy

}
≥ µ,

which can be simply expressed as

min
λ∈ΩB

m∑

i=1

λi

(
x′ȳi

)
≥ µ.

Denote the matrix constructed by the expected asset returns conditional on
m time points as

Ȳ =




(ȳ1)′

...

(ȳm)′




.

Then, by (18), the feasible set of asset positions X is given as

XB =



x : e′x = 1, x ≤ x ≤ x, min

{λ: e′λ=1, λ≤λ≤λ}
(Ȳ x)′λ ≥ µ



 . (23)

The dual problem of the linear program involved in (23), i.e.,

min
λ∈<m

(Ȳ x)′λ

s.t. e′λ = 1, (24)

λ ≤ λ ≤ λ,

is expressed as

max
(δ,ρ,ν)∈<×<m×<m

δ + λ
′
ρ + λ′ν

s.t. eδ + ρ + ν = Ȳ x, (25)

ρ ≤ 0, ν ≥ 0.

By the duality theory of linear programming, the optimal objective value of
(25) gives a the lower bound of problem (24). Moreover, if both the primal
problem (24) and the dual problem (25) have optimal solutions, then the
duality gap is zero. Therefore, it can be easily verified that XB coincides with
the following set ΦB, which is expressed as
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ΦB =





x : ∃(δ,ρ, ν) satisfying
e′x = 1, x ≤ x ≤ x, eδ + ρ + ν = Ȳ x,

ρ ≤ 0, ν ≥ 0, δ + λ
′
ρ + λ′ν ≥ µ





.

Thus, by (22), the robust portfolio selection problem with partial information
on uncertain exit time specified by (18) can be formulated as the following
linear program with variables (x,u, z, ξ, ω, α, θ, δ,ρ, ν) ∈ <n×<l×<×<m×
<m ×<×<× <×<m ×<m:

min θ

s.t. e′x = 1,

x ≤ x ≤ x,

δ + λ
′
ρ + λ′ν ≥ µ,

eδ + ρ + ν = Ȳ x,

ρ ≤ 0, ν ≥ 0,

z + λ
′
ξ + λ′ω ≤ θ, (26)

ez + ξ + ω = eα +
1

1− β
π · u,

ξ ≥ 0, ω ≤ 0,

ui
k ≥ −x′yi

[k] − α,

ui
k ≥ 0, k = 1, · · · , Si, i = 1, · · · ,m.

5 Specification of Information on Distribution of Exit

In this section, we relate the specification of information on the exit time to
the incentives of exogenous and endogenous factors which drive the investor
to terminate his portfolio.

We begin with a discussion of the classification of the eventual exit time.
According to the relation between the exit time and the asset prices, we may
consider two types of exit: exogenous and endogenous exit times. An exit is an
exogenous exit if the investor exits the market regardless of price fluctuation
of any asset in his portfolio, such as the time of order execution, the time of
the investor’s death, and the time of sudden purchasing or selling a house,
etc. (Yaari, 1965; Hakansson, 1969; Merton, 1971; Richard, 1975). On the
other hand, an exit is an endogenous exit if the exit of the investor heavily
depends on the price behavior of the assets in his portfolio, such as the exit
depicted as the disposition effect in behavioral finance (Shefrin and Statman,
1985; Odean, 1998) or the optimal exercise time for an American option (Hull,
1999). In practice, however, it is a difficult task for an investor to predict the
type of his eventual exit, either exogenous or endogenous. On the contrary,
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the time of his exit may depend not only on the exogenous accidental events,
but also on the price fluctuation of his portfolio, though this will make the
treatment more complex. More specifically, the density function is not only
dependent on time τ , but also dependent on the price Vτ . To the best of our
knowledge, research under such a setting does not exist, though Martellini
and Uros̆ević (2006) have explored mean-variance analysis of exogenous and
endogenous exit times separately.

We now consider to specify the bound on the distribution probability λ of the
exit time τ . For each i = 1, · · · ,m, denote

Eexo
i = {Exit at time ti driven by exogenous factors} ,

Eend
i = {Exit at time ti driven by endogenous factors} .

Since the exogenous factors and endogenous factors that drive the exit are in-
dependent, the exit probability λi at time ti (i = 1, · · · ,m) can be decomposed
into two distinct parts as

λi = Pr {τ = ti} = Pr
{
Eexo

i

⋃
Eend

i

}
= Pr {Eexo

i }+ Pr
{
Eend

i

}
.

This provides us a great convenience in specifying the information on the
distribution of the uncertain exit time.

Denote for each i = 1, · · · ,m

λexo
i = Pr {Eexo

i } and λend
i = Pr

{
Eend

i

}
.

If the bounds of λexo
i and λend

i (i = 1, · · · ,m− 1) are determined respectively,
then the bound of λi (i = 1, · · · ,m − 1) can be calculated via the addition
operation of interval numbers in the following manner:

[a, b] + [c, d] = [a + c, b + d].

Notice that λm = 1 −
(∑m−1

i=1 λi

)
, the bound of λm can be calculated via the

subtraction operation of interval numbers defined by

[a, b]− [c, d] = [a− d, b− c].

Recall that 0 ≤ λi ≤ 1 should never be neglected to construct a reasonable
bound.
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5.1 Exogenous exit

Generally, an uncertain sudden exit driven by an exogenous factor can be
modeled as the jump of a Poisson process. Although it may involve many
different exogenous reasons, exogenous exit can be well captured by the jump
of a Poisson process since it is well known that the sum of independent Poisson
processes remains a Poisson process.

By the fact that the distribution of waiting time of the first jump of Poisson
process with intensity ς follows the exponential distribution with parameter
ς, we conclude that the exogenous exit probability is given by (4).

Because of the lack of data, it is difficult to estimate the exact exit intensity
driven by many of the exogenous factors. However, we can conservatively
choose a certain interval that may cover all of the possible exit intensities ς,
i.e., ς ∈ [ς, ς], where ς > ς > 0. Consequently, the upper and the lower bounds
of λexo

i (i = 1, · · · ,m− 1) are given by

λexo
i = min

ς∈[ς,ς]

{
e−ςti−1 − e−ςti

}
, (27)

λ
exo

i = max
ς∈[ς,ς]

{
e−ςti−1 − e−ςti

}
, (28)

where t0 = 0.

For λexo
1 , it is easy to see that

λexo
1 = 1− e−ςt1 and λ

exo

1 = 1− e−ςt1 .

For i = 2, · · · ,m− 1, denote

gi(ς) = e−ςti−1 − e−ςti .

Solving the equation

g′i(ς) = tie
−ςti − ti−1e

−ςti−1 = 0,

we get the unique root

ς∗ =
ln(ti)− ln(ti−1)

ti − ti−1

.
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Notice that 0 < gi(ς) < 1 for any ς ∈ [ς, ς]. By (27) and (28), simple calculus
yields

λexo
i =





min {gi(ς), gi(ς), gi(ς
∗)} , if ς∗ ∈ [ς, ς],

min {gi(ς), gi(ς)} , else,
(29)

and

λ
exo

i =





max {gi(ς), gi(ς), gi(ς
∗)} , if ς∗ ∈ [ς, ς],

max {gi(ς), gi(ς)} , else.
(30)

5.2 Endogenous exit

Generally speaking, there are two cases providing an investor incentives to ter-
minate his portfolio, a large drawdown or a large appreciation. In the presence
of a large drawdown, the investor may exit the market to reduce his loss. On
the contrary, the investor may also terminate his portfolio when faced with
a large appreciation, since he may believe the portfolio reached its near-term
maximum value. But, in portfolio optimization problems, without choosing a
portfolio position first, how can one predict the probability of drawdown or ap-
preciation precisely? Thus the difficulty in modeling precisely the endogenous
exit is naturally embedded in the portfolio selection problem.

Fortunately, in the worst-case CVaR framework, we do not necessarily require
the precise value of λend

i , but an interval covering all of the possible endogenous
exit intensities, which makes the problem relaxed and hence much tractable.
In view of this point, the remaining task is to ascertain the upper and lower
bounds of λend

i .

For simplicity, we assume here that the investor exits the market if and only
if the portfolio return rises above a high-water threshold γ. Recall that yi

denotes the vector of uncertain returns at time ti, where yi
j represents the

return of asset j, and that e′x = 1 and x ≥ 0. For i = 1, since

min
j
{y1

j} ≤ x′y1 ≤ max
j
{y1

j},

we have

Pr
{
min

j
{y1

j} ≥ γ
}
≤ Pr

{
x′y1 ≥ γ

}
≤ Pr

{
max

j
{y1

j} ≥ γ
}

.
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Hence, a lower bound of endogenous exit probability at time t1 is given by

λend
1 = Pr

{
min

j
{y1

j} ≥ γ
}

,

and a upper bound is given by

λ
end

1 = Pr
{
max

j
{y1

j} ≥ γ
}

.

Similarly, for i = 2, · · · ,m− 1, since

min
j
{yk

j } ≤ x′yk ≤ max
j
{yk

j }, k = 2, · · · , i,

we obtain

λend
i = Pr

{
min

j
{yi

j} ≥ γ, max
j
{yk

j } < γ, k = 1, · · · , i− 1
}

≤Pr

{
x′yi ≥ γ, x′yk < γ, k = 1, · · · , i− 1

}

≤Pr

{
max

j
{yi

j} ≥ γ, min
j
{yk

j } < γ, k = 1, · · · , i− 1

}
= λ

end

i .

Based on the lower and upper bounds of λend
i specified above, we can easily

get the portfolio decision x̃(0) by solving model (26). However, it should be
mentioned that the bounds of the endogenous exit probability in this case
are not tight enough in practice because they depend on the extreme scenar-
ios of individual risky asset. But, given the portfolio x̃(0), the probability of
endogenous exit can be precisely predicted. Thus we can refine the portfolio
decision with this new information via iteration. More specifically, we perform
the portfolio selection procedure in the following steps:

Step 1: For fixed γ and µ, find an optimal portfolio x̃(0) by solving model
(26) where the probability bounds of endogenous exit are derived from real
historical market data or Monte Carlo simulation using the above approach.

Step 2: For each i = 1, · · · ,m − 1, estimate the actual exit probabilities of
the endogenous incentives with x̃(j−1) as

(λend
i )(j−1) =





Pr

{
(x̃(j−1))′y1 ≥ γ

}
, i = 1,

Pr

{
(x̃(j−1))′yi ≥ γ, (x̃(j−1))′yk < γ, k = 1, · · · , i− 1

}
, i = 2, · · · , m− 1.
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Step 3: For each i = 1, · · · ,m− 1, compute the bounds of exit probability as

[λ
(j−1)
i , λ

(j−1)

i ] = [λexo
i + (λend

i )(j−1), λ
exo

i + (λend
i )(j−1)].

Step 4: Find the optimal portfolio x̃(j) by solving model (26) using the bounds
of exit probability obtained from Step 3.

Step 5: Compute the distance between portfolios as

d(x̃(j), x̃(j−1)) =
1

n

n∑

k=1

|x(j)
k − x

(j−1)
k | or |WCVaRβ(x̃(j))−WCVaRβ(x̃(j−1))|.

If d(x̃(j), x̃(j−1)) ≤ ε (we set ε = 0.05 in our numerical experiments), x̃(j)

is an approximate optimal portfolio, and (λend
i )(j) (i = 1, · · · ,m − 1) is the

endogenous exit probability; terminate. Otherwise, go to Step 2 with j :=
j + 1.

More generally, we can further consider that γ is time-varying, which will
make the specification of the information more practical. Other endogenous
exit factors arising from some different portfolio operational strategies can be
also modeled in their own manners.

6 Empirical Applications

In this section, we demonstrate how the proposed model can be implemented
in practice and compare the portfolio performance from this model to the
traditional procedures commonly used in the analysis of real market data and
simulated data. Real market data experiments investigate what would result if
an investor employed our approach compared with the traditional approaches,
while the controlled experiments with simulated data are performed to study
the applicability and the implications of our approach. We use MatLab6p5
and SeDuMi1.05 (Sturm, 2001) for solving our linear programming problems
on PC with Intel Pentium 4 CPU 3.00GHz, 1.5GB RAM. All problems were
successfully solved within 9 seconds.

6.1 Real market data simulation analysis

In this subsection we consider a portfolio consisting of 10 stocks from Tokyo
Stock Exchange and present some numerical experiments in the case of no
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or partial information available on the exit time with the worst-case CVaR
formulations. To construct the portfolio, we collected the historical data of
daily closing prices of these stocks from January 4, 1994 to December 30,
2004, which includes 2,711 samples. Suppose that the investment horizon is
three days, and that the investor may terminate his portfolio at the end of the
first two days. More specifically, there are three possible exit moments during
the investment horizon, i.e., m = 3. It should be mentioned that we assume
the investment horizon T = 1. Then the first and second possible exit time is
1/3 and 2/3, respectively.

In this example, we assume that the samples of future returns are generated by
the historical returns. To improve the precision of the calculation, we multiply
the returns by 100, i.e.,

y1
t =

Vt − Vt−1

Vt−1

× 100, t = 2, 3, 4, · · · ,

y2
t =

Vt − Vt−2

Vt−2

× 100, t = 3, 5, 7, · · · ,

y3
t =

Vt − Vt−3

Vt−3

× 100, t = 4, 7, 10, · · · ,

which means S1 = 2, 710, S2 = 1, 305, and S3 = 903. Table 1 list the expected
values and covariance of daily returns of the 10 risky assets.

On the other hand, we set β = 0.95, x = 0, and x = e, which implies
that short positions are prohibitive. Numerical experiments for the ordinary
and the robust portfolio optimization problems are performed via the linear
programming models (17) and (26). The former employs the ordinary CVaR
as the risk measure, which assumes that the investor terminates his portfolio
at maturity, while the latter uses the worst-case CVaR in the presence of no
or partial information is given. In the computation of the ordinary portfolio
optimization problem, we set m = 1 and S = S3 = 903, i.e., only the samples
at maturity are used in the model to compute the CVaR.

To proceed further, we need to ascertain the lower and upper bounds of the exit
probabilities at each possible exiting moment. As for the exogenous incentives,
without loss of generality we set ς = 0.6 and ς = 1, which we will pay particular
attention to the Monte Carlo analysis later. Hence, we obtain the exogenous
bounds of the first two exiting moments as [λexo

1 , λ
exo

1 ] = [0.1813, 0.2835] and
[λexo

2 , λ
exo

2 ] = [0.1484, 0.2021].

As the determination of endogenous exit probabilities, we compute them in
two steps. In the first step, we simulate the bounds of the endogenous in-
centives with historical data based on the analysis of Section 5.2. Suppose
γ = 5%, i.e., the investor may terminate his portfolio if the return of the
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portfolio is greater than or equal to 5%, then [λend
1 , λ

end

1 ] = [0, 0.1561]

and [λend
2 , λ

end

2 ] = [0, 0.2775]. Thus, we get [λ1, λ1] = [0.1813, 0.2835] +
[0, 0.1561] = [0.1813, 0.4396] and [λ2, λ2] = [0.1484, 0.2021] + [0, 0.2775] =
[0.1484, 0.4796], as shown in Table 2 (column *), which lists the concrete
bounds of the exit probability at each exit moment.

To explain our method, we assume that the worst-case expected return of the
portfolio is µ = 0.00025, then the second step is to get the precise probability
of endogenous exit via iterations based on the bounds obtained in the first
step. Table 3 shows the concrete process of iterations and its corresponding
information. It is of interest that after 2 iterations, we can obtain the precise
endogenous probability λend

i at each possible exit moment. At the same time,
we exhibit the optimal portfolio positions after each iteration. As expected, the
optimal portfolio resulting from the second iteration changes marginally from
that of the first iteration, i.e., the distance d(x̃(2), x̃(1)) between x̃(2) and x̃(1) is
0.00016. In fact, it is natural that the value of the worst-case CVaR decreases
as the number of iteration increases, because the uncertainty resulting from
the endogenous exit is reduced gradually. From Table 2, we can also make a
comparison between the bounds with and without iterations. Obviously, we
get a more tight bound of exit probability which only involves the uncertainty
of the exogenous incentives.

To compare the performances of the ordinary portfolio optimization problem
and the robust portfolio optimization problem with uncertain exit time for
various values of the required minimal expected/worst-case expected return
µ, Table 4 shows the expected values and the CVaRs at the 0.95 confidence
level of the corresponding portfolios. It should be mentioned that the ordi-
nary optimal portfolio is obtained by solving model (17) with m = 1 and
S = S3 = 903. It can also be obtained by solving model (26) with m = 1,
λ = 0, and λ = e. The robust optimal portfolio with no or partial information
on exit can be obtained by solving (17) and (26) directly. Hence, we can com-
pute the actual expected returns and corresponding CVaRs of the ordinary
and robust optimal portfolios when the investor exits the market at different
moments. It is obvious that the larger the required minimal expected/worst-
case expected returns, the larger the associated risk. For the same value of µ,
the risk of the robust optimal portfolio strategy appears to be larger than that
of the ordinary optimal portfolio strategy, especially for the worst-case CVaRs
with no information. However, higher risk is compensated by higher return. In
fact, the larger value of the worst-case CVaR does not necessarily imply higher
risk than that of the ordinary CVaR policy, which is only because the investor
considers more uncertainty of future extreme scenarios and hence takes a con-
servative strategy. For the robust CVaR formulation with no exit information,
the worst-case expected return can be guaranteed whenever the investor ter-
minates his portfolio. While for the robust CVaR model with partial infor-
mation of exit, if we define unit risk-return ratio as L = (actual return)/risk,
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it will be easy to show that this robust strategy is much preferred generally
to the ordinary CVaR model (see µ = 0.0002, 0.00025, 0.00030 and 0.00040).
For example, if µ = 0.00025 and the exit takes place at the first day, then
L(Ordinary CVaR) = 0.000049, while L(Robust CVaR) = 0.000057. It should
be noted that such advantage is also possessed by the robust CVaR strategy
with no information. There is another interesting phenomenon that the op-
timal portfolio resulting from the ordinary CVaR is infeasible in general for
the both robust formulations except some small µ, which also implies the
advantage of the worst-case CVaR for the uncertain exit time problem.

Figure 1 graphs the optimal portfolio positions with the ordinary and the
robust CVaR strategies with µ = 0.00025. Obviously, the portfolio with the
robust strategy is different from that of the ordinary CVaR policy. There are
several implications that can be drawn from this figure as well as Table 1. First,
the robust CVaR strategy is more diversified than the ordinary CVaR strat-
egy. In this example, the optimal portfolio of the ordinary CVaR consists of 7
stocks, while both the robust CVaR models with no or partial information have
8 stocks. Second, the ordinary CVaR may give up some higher return assets,
such as the 1st and the 5th stocks (the daily expected returns and variances of
the two assets are (0.00033, 0.000344) and (0.00062403, 0.00085535), respec-
tively). However, typically an investor may pay particular attention to those
assets with higher returns although they have higher volatilities. Moveover,
as the worst-case expected return is guaranteed, the investor has no reason
to refuse the higher return assets. Finally, the 2nd, 7th and 10th stocks are
the three assets that are most likely to be selected by any investor. Con-
versely, the 3rd stock is the most controversial. Actually, its expected return
approaches zero (0.000006) though it has the smallest risk among the 10 stocks
(0.00025213).

6.2 Monte Carlo simulation analysis

In this part, we first perform a Monte Carlo simulation analysis to explore the
appropriate times of possible exit in a given investment horizon T , i.e., how
to determine an appropriate value of m. After that we discuss the sensitivity
of the worst-case CVaR with respect to the bounds of exogenous exit proba-
bility. Thus some key implications that may help to successfully perform our
methodologies in practice will be obtained.

We take the example given by Alexander and Baptista (2002), where the in-
vestor seeks to determine how to allocate his wealth among different asset
classes. The portfolio is to be constructed by six classes of assets: Four in-
volving U.S. securities (large stocks, small stocks, corporate bonds, and real
estate investment trusts (REITs)), and two involving foreign securities (stocks
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in developed markets and stocks in emerging markets). The following indices
are used to measure the rates of return on these classes: The S&P 500 index
(large stocks), the Russell 2000 index (small stocks), the Merrill Lynch U.S.
corporate bond index, the index for all publicly traded REITs provided by the
National Association of Real Estate Investment Trusts, the Morgan Stanley
Capital International (MSCI) EAFE index (stocks in developed markets), and
the MSCI EM index (stocks in emerging markets). Table 5 exhibits the annual
return means, variances, and covariances associated with the six indices from
the data for the period of 1989-1999. Despite the preponderance of evidence
that asset return distributions are not normal, for simplicity, we assume in this
example that the rates of return of these risky securities have a multivariate
normal distribution.

In this example, we set β = 0.95, x = 0, x = e, γ = 0.25, and µ = 0.018.
Assuming the investment horizon is one year, we explore the likely possible
times of exit before maturity, i.e., we try to find an appropriate value of m
which can approximate all the possible exit scenarios. Table 6 exhibits the
sensitivity of the worst-case CVaRs with respect to the times of possible exit
with ς = 0.5 and ς = 12. The first column is the times of possible exit in
the whole investment horizon, and the second column is the corresponding
moments at which the events of exit take place. For example, the fact that
the number of possible exit is 5 means that the investor may terminate his
portfolio at five different moments in his investment horizon, which correspond
to the ends of the 2nd, 4th, 6th, 9th, and 12th months, respectively. The third
and the last columns are the values of the worst-case CVaRs with no or partial
information (WCVaR (I) and WCVaR (II)). Assume that the annual returns
yT ∼ N (ȳ, Σ) and the returns of the tth month yt ∼ N ( t

12
ȳ, t

12
Σ), where

N (·, ·) denotes the multivariate normal distribution. Then, we can adopt the
Monte Carlo approach to simulate the return evolution of these risky assets.
Obviously, as the times of exit increase, the value of the worst-case CVaR
increases. This is because an increase of m increases the complexity of the set
of possible exit moments, and hence gives rise to a larger CVaR. However,
when m > 5, the increase of the worst-case CVaR is marginal, unlike the
variations of m < 5. To some extent, we can safely conclude that the most
appropriate times of possible exits in this example is 5. Indeed, there is a
tradeoff between the value of m and the computational complexity. Due to
not taking fully account of all the possible exit scenarios, smaller m may give
rise to modelling risk, while larger m may cause computational risk because
of the higher complexity.

The last problem we will tackle here is to perform a sensitivity analysis for the
worst-case CVaR with respect to the lower and upper bounds of the exogenous
exit probability. Figure 2 plots ς-WCVaR and ς-WCVaR curves. The left panel
shows that as ς increases, the worst-case CVaR decreases where the upper
bound ς is fixed as 12 or 30. For example, when ς varies from 1 to 10, the worst-
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case CVaR decreases from 0.0589 to 0.0501 (ς = 12) or from 0.060 to 0.0529
(ς = 30). This is natural because as ς increases, the interval of [ς, ς] shrinks,
which reduces the uncertainty of the exogenous incentives. Consequently, the
risk is reduced. On the contrary, as ς increases with fixed ς (ς = 1 and 5 in the
right panel), the interval of [ς, ς] expands, which leads to an increase of the
worst-case CVaR. However, the variations of the worst-case CVaR resulting
from ς are less significant than those from the changes of ς. Actually, the
worst-case CVaR varies from 0.0589 to 0.0601 as ς increase from 10 to 40 with
fixed ς = 1. After that, the value of the worst-case CVaR does not change any
more. That is, an investor should pay more attention to the lower bound rather
than the upper bound of the probability of exogenous exit when constructing
a portfolio.

7 Conclusion

This paper develops modelling of the uncertainty of eventual exit time in port-
folio management. In practice, in addition to the asset price risk, an investor
typically faces an exit time risk because he never acknowledges the time of his
eventual exit upon entering the market. Considering the inconvenience and
complexity of portfolio modelling in the case where the exit time is uncertain,
we propose a worst-case CVaR approach as an effective alternative, which is
formally defined and applied to robust portfolio management in the recent
work of Zhu and Fukushima (2005). The proposed model can accommodate
the case where no or partial information on exit is available. In addition, a
unifying model incorporating exogenous and endogenous factors is proposed
to deal with this uncertainty. At the same time, how to ascertain the bounds
of the exit probability at each possible exit moment is explored explicitly.
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Appendix

Proof of Theorem 1

For given x ∈ X , define

Hβ(x, α,λ) = α +
1

1− β

∫

y∈<N
[f(x,y)− α]+

[
m∑

i=1

λipi(y)

]
dy

=
m∑

i=1

λiF
i
β(x, α), (31)

where λ ∈ Ω. Hβ(x, α,λ) is convex in α (see Rockafellar and Uryasev 2000,
2002) and affine (concave) in λ. It is easy to see that minα∈< Hβ(x, α,λ) is a
continuous function with respect to λ. By (1), (2), (9), and the fact that Ω is
compact, we can write

WCVaRβ(x) = max
λ∈Ω

min
α∈<

Hβ(x, α,λ) = max
λ∈Ω

min
α∈<

m∑

i=1

λiF
i
β(x, α). (32)

For each i and fixed x, the optimal solution set of minα∈< F i
β(x, α) is a nonempty,

closed and bounded interval (see Rockafellar and Uryasev 2000, 2002). Thus
we can denote

[α∗i , α
∗
i ] , argmin

α∈<
F i

β(x, α), i = 1, · · · ,m.

Suppose g1(t) and g2(t) are two convex functions defined on <, and the

nonempty, closed and bounded intervals
[
t∗1, t

∗
1

]
,

[
t∗2, t

∗
2

]
are the sets of minima

of these two functions, respectively. It can be easily verified that for any β1 ≥ 0
and β2 ≥ 0 such that β1 + β2 > 0, β1g1(t) + β2g2(t) is convex too, and the set
of minima of β1g1(t) + β2g2(t) must lie in the nonempty, closed and bounded

interval
[
min{t∗1, t∗2}, max{t∗1, t∗2}

]
. From this fact and (31), we get

argmin
α∈<

Hβ(x, α, λ) ⊆ A, ∀λ ∈ Ω,

where A is the nonempty, closed and bounded interval given by

A ,
[
min
i∈L

α∗i , max
i∈L

α∗i

]
,
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where L has the same meaning as (14). This implies

min
α∈<

Hβ(x, α,λ) = min
α∈A

Hβ(x, α,λ).

Therefore, by min-max theory, 8 we have

max
λ∈Ω

min
α∈<

Hβ(x, α, λ) = max
λ∈Ω

min
α∈A

Hβ(x, α,λ) = min
α∈A

max
λ∈Ω

Hβ(x, α,λ). (33)

It is obvious that

min
α∈A

max
λ∈Ω

Hβ(x, α, λ) ≥ inf
α∈<

max
λ∈Ω

Hβ(x, α,λ). (34)

By (33), (34) and the well known result on the min-max inequality

inf
α∈<

max
λ∈Ω

Hβ(x, α,λ) ≥ max
λ∈Ω

min
α∈<

Hβ(x, α,λ),

we immediately get

max
λ∈Ω

min
α∈<

Hβ(x, α,λ) = min
α∈<

max
λ∈Ω

Hβ(x, α,λ).

It then follows from (32), along with (31) that

WCVaRβ(x) = min
α∈<

max
λ∈Ω

Hβ(x, α,λ) = min
α∈<

max
λ∈Ω

m∑

i=1

λiF
i
β(x, α).

This completes the proof. 2

Proof of Proposition 3

Let (x∗,u∗, z∗, ξ∗, ω∗, α∗, θ∗) be an optimal solution to (22), and set v = v∗ =
eα∗+ 1

1−β
π ·u∗. By the weak duality theorem of linear programming, we have

from (20) and (21) that

max
λ∈ΩB

λ′v∗ = max
{λ: e′λ=1,λ≤λ≤λ}

λ′v∗ ≤ z∗ + λ
′
ξ∗ + λ′ω∗ ≤ θ∗,

8 Minimax theory states that suppose X ⊆ Rn and Y ⊆ RN are two nonempty
compact convex sets, and the function ψ(x,y) is convex in x for fixed y, and
concave in y for fixed x. Then we have the equality minx∈X maxy∈Y ψ(x,y) =
maxy∈Y minx∈X ψ(x,y).
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where the last inequality follows from the second constraint of (22). This,
together with other constraints in (22), implies that (x∗,u∗, α∗, θ∗) is feasible
for problem (19). In the following, we prove that it is even optimal to (19).

Suppose to the contrary that (x∗,u∗, α∗, θ∗) is not optimal to (19), i.e., there
exists an optimal solution (x̄∗, ū∗, ᾱ∗, θ̄∗) such that

θ̄∗ < θ∗.

Let (z̄∗, ξ̄∗, ω̄∗) be an optimal solution to (21) with v = eᾱ∗+ 1
1−β

π · ū∗. Since
zero duality gap can be guaranteed by the strong duality theorem of linear
programming, we have

z̄∗ + λ
′
ξ̄∗ + λ′ω̄∗

= max
{λ: e′λ=1,λ≤λ≤λ}

λ′(eᾱ∗ +
1

1− β
π · ū∗)

= max
λ∈ΩB

λ′(eᾱ∗ +
1

1− β
π · ū∗)

≤ θ̄∗.

This, together with other constraints in (19) and (21), implies that (x̄∗, ū∗, z̄∗,
ξ̄∗, ω̄∗, ᾱ∗, θ̄∗) is feasible to problem (22). This contradicts the fact that (x∗,u∗,
z∗, ξ∗, ω∗, α∗, θ∗) is an optimal solution to (22) since θ̄∗ < θ∗. Therefore,
(x∗,u∗, α∗, θ∗) is an optimal solution to (19).

Conversely, let (x̃∗, ũ∗, α̃∗, θ̃∗) solve (19) and (z̃∗, ξ̃∗, ω̃∗) solve (21) with v =
eα̃∗ + 1

1−β
π · ũ∗. Then (x̃∗, ũ∗, z̃∗, ξ̃∗, ω̃∗, α̃∗, θ̃∗) must solve (22). Otherwise,

there exists an optimal solution (x∗,u∗, z∗, ξ∗, ω∗, α∗, θ∗) of (22) such that
θ∗ < θ̃∗. From the first part of the proof, (x∗,u∗, α∗, θ∗) must be an optimal
solution of (19), which contradicts the fact that (x̃∗, ũ∗, α̃∗, θ̃∗) solves (19) since
θ∗ < θ̃∗. The proof is complete. ¤

Linear Program and its Duality

Let the following linear program be the primal problem:

(P) max
x∈<n

c>x

s.t. Ax ≤ b,

x ≥ 0,
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where c ∈ <n, A ∈ <m×n, and b ∈ <m. Then, the associated dual linear
program is given by

(D) min
y∈<m

b>y

s.t. A>y ≥ c,

y ≥ 0.

Thus, we present the following two well-known theorems whose proofs may be
found in a standard text book, e.g., Vanderbei (1996).
Weak Duality Theorem: If x̄ is feasible for the primal problem (P) and ȳ is
feasible for the dual problem (D), then

c>x̄ ≤ b>ȳ.

Strong Duality Theorem: If the primal problem (P) has an optimal solution
x∗, then the dual problem (D) also has an optimal solution y∗ such that

c>x∗ = b>y∗.
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Fig. 1. Optimal portfolio positions with CVaR and robust CVaR strategies
(µ = 0.00025).
Notes: (#): Ordinary CVaR exiting at maturity; (I): WCVaR with no information on exit; (II): WCVaR

with partial information on exit. [ς, ς] = [0.6, 1] and γ = 5%.
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Fig. 2. WCVaR with respect to ς and ς (µ = 0.018).
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Table 1
Summary statistics of the daily returns of risky assets.

Asset
Mean Covariance (10−4)

(%) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(1) 0.0330 6.2403 3.2159 0.7699 1.3127 3.3934 2.4670 1.7294 3.1847 1.2199 1.3818

(2) 0.0254 4.7073 0.6262 1.0800 2.7647 2.1057 1.5289 2.7659 1.3613 1.1087

(3) 0.0006 2.5213 0.6126 0.7224 0.7044 0.5158 0.6261 0.5949 0.6455

(4) 0.0146 4.7663 1.5266 1.6444 1.0569 1.1965 0.9135 0.8293

(5) 0.0344 8.5535 2.7169 2.1450 3.1225 1.4447 1.3433

(6) 0.0340 5.7858 1.7463 2.3009 1.4064 1.2756

(7) 0.0274 5.4695 2.9231 1.2372 0.8940

(8) 0.0274 6.7661 1.4327 1.0968

(9) 0.0102 4.3867 1.2468

(10) 0.0119 3.8311

Notes: (1): Nippon Flour Mills, (2): Nisshin Seifun Group, (3): Ezaki Glico, (4): Teikoku Sen-I, (5): Mit-

subishi Rayon, (6): Nippon Oil Corporation, (7): Showa Shell Sekiyu, (8): Daishi Bank, (9): Shizuoka Bank,

(10): 16 Bank.

Table 2
Bounds of exit probability.

λ
Moment1 Moment2 Moment3

? ?? ? ?? ? ??

λ 0.1813 0.1857 0.1484 0.1639 0.0808 0.4945

λ 0.4396 0.2879 0.4796 0.2176 0.6703 0.6504

? bounds without iterations,

?? bounds after removing the uncertainty from endogenous exit with iterations.

Table 3
Specification of endogenous exit probability

Iterations λend
1 λend

2 WCVaR0.95

Positions of optimal portfolio

(1) (2) (3) (4) (5)

(%) (6) (7) (8) (9) (10)

0 [0, 0.1561] [0, 0.2775] 3.7746
0.0123 0.1180 0.2333 0.0529 0.0252

0.1529 0.1489 0.0000 0.0703 0.1851

1 0.0048 0.0140 3.6252
0.0000 0.1050 0.3081 0.0737 0.0173

0.0998 0.1353 0.0000 0.0697 0.1912

2 0.0037 0.0133 3.6243
0.0000 0.1048 0.3083 0.0740 0.0171

0.0997 0.1351 0.0000 0.0696 0.1915
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Table 4
Comparison of performances of ordinary and robust optimal portfolios.

µ [ς, ς] = [0.6, 1] Mean (%) CVaR0.95 (%)

(%) γ = 5% Moment1 Moment2 Moment3 Moment1 Moment2 Moment3

0.015

# 0.0108 0.0174 0.0206 2.5228 3.3405 3.7547

I 0.0150 0.0246 0.0310 2.6133 3.4446 3.8543

II 0.0107 0.0172 0.0204 2.4953 3.3203 3.7610

0.020

# 0.0108 0.0174 0.0206 2.5228 3.3405 3.7547

I 0.0200 0.0336 0.0441 2.8435 3.7136 4.1553

II 0.0122 0.0200 0.0245 2.5182 3.3347 3.7801

0.025

# 0.0125 0.0204 0.0250 2.5276 3.3446 3.7738

I 0.0250 0.0428 0.0576 3.2201 4.1366 4.6109

II 0.0146 0.02246 0.0312 2.5441 3.3765 3.8629

0.030

# 0.0143 0.0238 0.0300 2.5497 3.3805 3.8325

I 0.0300 0.0522 0.0716 3.6902 4.7106 5.3170

II 0.0172 0.0291 0.0378 2.6439 3.5085 3.9878

0.040

# 0.0181 0.0307 0.0400 2.7057 3.5734 4.0307

I — — — — — —

II 0.0233 0.0383 0.0510 3.0045 3.8968 4.3623

Notes: (#): Ordinary CVaR exiting at maturity; (I): WCVaR with no information on exit; (II): WCVaR

with partial information on exit.

Table 5
Summary statistics of the annual returns of risky assets.

Assets
Expected rate Standard Correlation coefficient

of return (%) deviation (%) (1) (2) (3) (4) (5) (6)

(1) Large stocks (U.S.) 18.98 14.16 1.00 0.67 0.63 0.41 0.40 0.00

(2) Small stocks (U.S.) 13.01 18.15 1.00 0.51 0.78 0.42 0.52

(3) Corporate bonds (U.S.) 8.60 7.89 1.00 0.42 0.00 -0.11

(4) Real estate (U.S.) 9.75 19.67 1.00 0.13 0.29

(5) Stocks (dev. markets) 6.59 16.74 1.00 0.69

(6) Stocks (emerg. markets) 8.09 34.91 1.00

Table 6
WCVaR v.s. exit moments (β = 0.95)

Number Moments WCVaR (I) WCVaR (II)

2 [2, 12] 0.0551 0.0550

3 [2, 4, 12] 0.0587 0.0573

4 [2, 4, 6, 12] 0.0612 0.0586

5 [2, 4, 6, 9, 12] 0.0653 0.0630

6 [2, 4, 6, 9, 10, 12] 0.0653 0.0631

8 [2, 3, 4, 6, 8, 9, 10, 12] 0.0654 0.0631

Notes: WCVaR (I): WCVaR with no information on exit; WCVaR (II): WCVaR with partial information

on exit. Moments represents the possible exit time.
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